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Normalization properties of a computation process
on colored finite trees

Karim Nour∗ and Ayman El Zein†

November 4, 2024

Abstract

In this paper, we introduce a concept of computation process on colored
finite trees, which symbolize an inheritance process between fathers and sons,
aiming to investigate their termination properties. We develop formal tech-
niques to analyze their behavior and we present various results regarding the
termination of computations performed on these trees. We show that these
results can be generalized to digraphs through a simple transformation.

1 Introduction
A significant amount of research has been conducted on reductions in finite trees,
most notably a famous work by mathematicians L. Kirby and J. Paris, which has
been extensively studied by many researchers and is known as the "Hydra Battle"
problem. The game essentially involves cutting a branch from a finite tree, then
arbitrarily duplicating the neighboring tree at the branch’s cut node. Figure 1
provides an idea of this type of game. We do not wish to provide more details here.
It is not at all obvious that this game terminates. The termination proof employs
ordinal numbers and is not formalizable within Peano arithmetic. The difficulty of
the proof arises from the fact that a part of the game played on a simple and small
tree can have a duration that far exceeds our intuition.

Figure 1: Hydra battle

It is quite natural to think of another game and ask a similar question: what
can be done with a game rule that involves cutting branches from the tree but
reattaching them (possibly duplicating them) at lower levels (unlike the previous
game, where this was done only at the same level)? This game can be seen as a
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process of transferring information from a higher level to lower levels, as shown
in Figure 2. Clearly, this type of game can diverge indefinitely if no additional
restrictions are imposed.

Figure 2: Another game

The idea would therefore be to indicate on the tree the specific locations where
branches can be cut as well as the locations where they can be reattached.

In this paper, we introduce a game played on finite trees, focusing solely on the
results related to termination. Here’s an overview of the game.

• We start with a finite tree drawn from top to bottom, with the initial node at
the top and branches leading to terminal nodes. Branch nodes are depicted
in green, and terminal nodes in black. This tree serves as the skeleton of the
game.

• To facilitate reduction on the tree, we introduce new nodes along the edges,
colored red ("father" nodes) and blue ("son" nodes). Multiple additional
nodes can be placed in a desired order along the edges, with each subtree’s
name at the base of the node.

• We establish the "father/son" relationship by adding oriented edges from a
"father" node to one or more "son" nodes, provided the latter are within the
subtree rooted at the father node. While a father node may have zero, one,
or more son nodes, a son node can have at most one father.

• Each addition of father and son nodes, along with their associations, defines
a game. This game simulates an inheritance process, where the father node
aims to pass on surrounding subtrees to its sons via green branches below the
red node.

Figure 3 represents the game shown in Figure 2.
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Figure 3: Representation of the new game

In summary, the game involves passing subtrees from one level of the tree to
different levels. However, several phenomena can arise.

• A game step can create new situations, causing the tree size to grow arbitrarily.

• A son node can lead a subtree containing other sons with the same father,
resulting in recursive inheritance.

• At each step of the game, there is a choice to be made for the reduction, which
makes the game non-deterministic.

The termination of this reduction process is unclear. We pose two questions
regarding termination.

1- Weak normalization: Is there an algorithm to complete this inheritance
process, meaning to make the right choice at each step to ensure termination?

2- Strong normalization: Is the inheritance process terminating independent
of the choice of reduction to be performed at each step?

In this paper, we prove that the inheritance game presented on trees possesses
the property of strong normalization, meaning that the reduction process always
terminates on any tree. Although our proof is non-constructive, as it relies on proof
by contradiction, we also present a weak normalization result to obtain a particular
termination algorithm.

Moreover, we introduce alternative reduction techniques to anticipate and sim-
plify the main dynamics of the game. To our surprise, these techniques lead to the
loss of the strong normalization property, resulting only in a weak normalization
result for the trees.

We formalize trees completely colored by words over a vocabulary with a count-
able number of symbols. Terminal nodes are represented by black dots (•), branch-
ing nodes by brackets ([.]), red "father" nodes by the letter f indexed by integers
(fi), and blue "son" nodes by the letter s indexed similarly (si). The indices rep-
resent father-son relationships. Note that these indices have no other significance
and thus can be renamed to new indices.

The proofs presented in this paper are adaptations and generalizations of results
obtained in a different context (see [1, 2]). Viewing the problem as a game on trees
allows us to have two perspectives.
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• Highlight arithmetic and rigorous demonstration techniques applicable in graph
theory.

• Pose and attempt to solve questions within a broader framework, bridging
techniques from graph theory and proof theory.

At the end of this paper, we present two distinct applications. The first fo-
cuses on a particular class of trees, demonstrating that the normalization results
in Parigot’s λµ-calculus are special cases of our findings. The second application is
quite surprising, as it extends our results to digraphs using the concept of a mod-
ule. The results we obtain can be derived from those of the trees through a simple
transformation.

2 Definitions
In this section, we will introduce colored trees as well as the main reduction rule,
which will be studied later. We also provide the intuitions behind these concepts
through examples, which will simplify the understanding of the concepts and proofs.

Definition 2.1 Recursively, we may define the colored trees, the set of free sons
FS(.) and the size | . | of the colored tree as follows.

1. We consider a set of symbols.

• A black dot : •,
• A bracket : [.],

• A set F = {fi / i ∈ N} (each fi is called "father"),

• A set S = {si / i ∈ N} (each si is called "son").

2. We define the colored tree A, the set FS(A) and the integer |A| as follows.

– A = • is a colored tree, with |A| = 0 and FS(A) = ∅.
– If A1, . . . , An are colored trees, then A = [A1, . . . , An] is a colored tree,

with |A| =
n∑
i=1

|Ai| and FS(A) =

n⋃
i=1

FS(Ai). This new colored tree

[A1, . . . , An] is considered as the concatenation of the colored trees A1, . . . , An.

– If B is a colored tree, then A = fiB is a colored tree, with |A| = |B|+ 1
and FS(A) = FS(B) \ {si}. The new colored tree fiB is seen as an
assignment of a name fi to the colored tree B.

– If B is a colored tree, then A = siB is a colored tree, with |A| = |B|+ 1
and FS(A) = FS(B) ∪ {si}. The new colored tree siB is seen as an
assignment of a name si to the colored tree B.

We denode by T the set of colored trees.

3. Note that when we say “induction on the tree A”, it means that it is by induc-
tion on the natural integer |A|.

We consider the set T modulo an equivalence, which allows changing the index
of a father i to a new integer j (which does not appear in the tree), by replacing all
the indices of its sons i, located in the subtree having fi as the principal node, with
the same integer j. In other words, we work with equivalence classes of trees where
fathers are considered as binders for the sons that are below them and have the same
indices. We do not wish to formally define this notion, which is quite intuitive. A
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son si that is not under the influence of a father fi (no tree containing si has fi as
its principal node) is said to be free. Therefore, the set FS(A) represents the set
of free sons of A. It is clear that we will not be able to rename the indices of free
sons.

Example 2.2 We consider the colored tree

A = f1s7[f2f4[f6s6•, s2s2s4•], f3•, s1f5s5[•, •]].

Note the difficulty in reading and understanding the structure of a colored tree in
this example, particularly in identifying the open and closed brackets. The colored
tree A intuitively represents the following tree. To better understand the structure
of the colored tree, we have chosen red for the father nodes, blue for the son nodes,
and green for the branching of its subtrees.

f1

s7

f2

f4

f6

s6

s2

s2

s4

f3 s1

f5

s5

Figure 4: Representation of the colored tree A

To define a notion of computation over colored trees, we begin with the following
definition.

Definition 2.3 Let A,A1, . . . , An ∈ T and si1 , . . . , sik 6∈
n⋃
i=1

FS(Ai). Let σ =

〈(si1 , . . . , sik) := [A1, . . . , Aj , ∗, Aj+1, . . . , An]〉 that we call “substitution”. We define
Aσ by induction on A as follows.

– If A = •, then Aσ = •.

– If A = [B1, . . . , Bl], then Aσ = [B1σ, . . . , Blσ].

– If A = fmB with m /∈ {i1, . . . , ik}, then Aσ = fmBσ.
Note that, by equivalence, we can assume that m /∈ {i1, . . . , ik}, since other-
wise, we can rename m by another new integer.

– If A = smB with m /∈ {i1, . . . , ik}, then Aσ = smBσ.

– If A = smB withm ∈ {i1, . . . , ik}, then Aσ = sm[A1, . . . , Aj , Bσ,Aj+1, . . . , An].

The substitution we have just defined corresponds to the addition of the subtrees
A1, . . . , An around all the subtrees named by the sons si1 , . . . , sik . More precisely,
we place A1, . . . , Aj to the left and Aj+1, . . . , An to the right of the subtrees named
by si1 , . . . , sik . Note that the notion of substitution, which will be used to define our
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first reduction rule, will only involve a single son. Generalizing this definition will be
useful for proving some results. It is clear that if additionally si1 , . . . , sik 6∈ FS(A),
then Aσ = A.

Example 2.4 Let B = [f1s2[•, •], s3s3f4•] and σ = 〈(s2, s3) := [A1, ∗, A2]〉.
We have Bσ = [f1s2[A1, [•, •], A2], s3[A1, s3[A1, f4•, A2], A2]]]. It is very easy to
visualize this substitution as in Figure 5, which will also help to understand the
concept of reduction clearly.

f1

s2

s3

s3

f4

f1

s2

A1 A2

s3

A1 A2

s3

A1 A2

f4

Figure 5: An example of a substitution

Definition 2.5 Let A ∈ T and si, sj ∈ S such that fj does not appear in A (we
can always assume this). We define A[si := sj ] being the colored tree obtained by
replacing in A the free sons si by sj.

Now, we have to define a reduction over the colored trees. The first one is called
the inheritance and symbolized by “h”.

Definition 2.6 An h-redex is a colored tree under the form

[A1, . . . , Ak, fiB,Ak+1, . . . , An],

where n 6= 0. Its h-reduced via fi is the following colored tree

fiB〈(si) := [A1, . . . , Ak, ∗, Ak+1, . . . , An]〉.

Note that in this case, we can assume that si 6∈
n⋃
i=1

FS(Ai), thus the substitution is

well-defined. Intuitively, this operation consists of cutting the colored trees located
above the colored tree named by fi, then attaching them around all colored trees
named by an si.

It is very easy to recognize an h-redex, as this is characterized by finding a
father tree within a bracket [.]. A bracket can be considered as containing several
h-redexes if it contains multiple father trees. Figure 6 shows how the h-reduced of
an h-redex is obtained. The situation is much more complex than what we observe
in Figure 6, as we may have multiple independent or nested sons si that will undergo
substitution after the reduction.
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Figure 6: h-redex and h-reduced

Example 2.7 The colored tree A of Example 2.2 has three h-redexes
[f2f4[f6s6•, s2s2s4•], f3•, s1f5s5[•, •]] (this redex counts as two ) and [f6s6•, s2s2s4•].

Definition 2.8 If A,B ∈ T, we define A→h B recursively on A as follows.

– If A = •, then it is impossible.

– If A = fiA1, then B = fiB1 and A1 →h B1.

– If A = siA1, then B = siB1 and A1 →h B1.

– If A = [A1, . . . , An], then there are two cases

- B = [A1, . . . , Ak−1, Bk, Ak+1, . . . , An] where Ak →h Bk.
- There is an Ai = fjBi and B is the h-reduced colored tree of A via fj.

Example 2.9 The colored tree A of Example 2.2 can be h-reduced via f2, f3 and
f6. Besides, the three possible h-reductions:

– Via f2 : A→h f1s7f2f4[f6s6•, s2[s2[s4•, f8•, s1f9s9[•, •]], f3•, s1f5s5[•, •]]].
We give the name f8 (resp. f9) to the second f3 (resp. f5) in order to avoid
confusion. Notice the appearance of other h-redexes in the new colored tree.

– Via f3 : A→h f1s7f3•.

– Via f6 : A→h f1s7[f2f4f6s6[•, s2s2s4•], f3•, s1f5s5[•, •]].

We leave it to the readers to create the tree representations of these three h-
reductions.

Our main study focuses on the normalization of colored trees. We will provide
answers to the following two questions:

– Is there a finite sequence of h-reductions for any colored tree?

– If so, is every sequence of h-reductions finite?

To answer these questions, we define the following notions.

Definition 2.10

1. If A,B ∈ T, we write A �h B if there exist a sequence A1, . . . , An ∈ T such
that A→h A1 →h A2 →h · · · →h An = B. The reduction �h is therefore the
reflexive and transitive closure of the reductio →h.
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2. A colored tree is said to be h-normal if it contains no h-redex i.e. there is no
possible h-reduction.

3. A colored tree A is said to be weakly h-normalizable if there exists an h-normal
colored tree B such that A�h B.

4. A colored tree A is said to be strongly h-normalizable if any sequence of h-
reduction of A ends.

We observe that after an h-reduction in a colored tree, two phenomena may arise
that hinder the termination of the computation and the elimination of all redexes.

- The creation of new redexes that were not present in the initial colored tree.

- The arbitrary duplication of subtrees, leading to an increase in the size of the
initial tree.

This raises the problem of choosing the best redex to reduce at each step in order
to eventually reach an h-normal tree. In Sections 3 and 4, we will prove the weak
h-normalization and strong h-normalization properties for all colored trees.

To simplify the notation, we denote

• [A1, . . . , Ak, B,Ak+1, . . . , An] by [A1, . . . , B, . . . , An],

• [A1, . . . , Ak, ∗, Ak+1, . . . , An] by [A1, . . . , ∗, . . . , An].

3 The weak normalization of the h-reduction
Although the property of weak h-normalization follows from that of strong h-
normalization, in this section, we will provide a constructive proof of weak h-
normalization, which will allow us to develop a particular algorithm. Moreover,
this proof could offer useful insights in other types of calculations. In particular,
we will use it in Section 5 to prove the weak normalization property of a set of
reductions for which we will not have a strong normalization result.

Intuitively, the following lemma shows that it is impossible to create a father
through a substitution followed by an h-reduction.

Lemma 3.1 Let A,B1, . . . , Bn ∈ T and σ = 〈(si1 , . . . , sim) := [B1, . . . , ∗, . . . , Bn]〉.
If Aσ �h fiB, then A�h fiC.
Proof By induction on A.

– If A = fiA1, then we obtain the result immediately.

– If A = siA1, then Aσ = siA1σ. So there is no colored tree B such that
Aσ �h fjB.

– If A = [A1, . . . , Ak], then Aσ = [A1σ, . . . , Akσ]. As Aσ �h fiB, there exists
1 ≤ j ≤ k such that Ajσ �h fiB

′. By the induction hypothesis, Aj �h fiC
′,

thus A�h [A1, . . . , fiC
′, . . . , Ak]→h fiC.

�
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The following definitions help us to prove our result.

Definition 3.2

1. If A,B ∈ T, we say that B is a subtree of A if B is used in the inductive
definition of A.

2. Let [A1, . . . , Am] be an h-redex of A ∈ T. The subtree [A1, . . . , Am] is said to
be protected by a son if it is preceded by a son si. In this case, si[A1, . . . , Am]
is a subtree of A.

3. The order of an h-redex [A1, . . . , An] is o([A1, . . . , An]) = (p, n), where p is
the number of Ai that start by a father.

4. Let n, k ∈ N such that 0 ≤ k ≤ n. A colored tree is said to be (k, n)-good if
all its h-redex are of order (k, n) and are protected by a son. By convention,
a colored tree is said to be (0, n)-good if it is h-normal.

The following lemma is very intuitive and describes the form of a colored tree
after two substitutions.

Lemma 3.3 Let A,B1, . . . , Bn ∈ T,
σ = 〈(si1 , . . . , sim) := [B1, . . . , Bk, ∗, Bk+1, . . . , Bn]〉,
σ1 = 〈(si) := [B1, . . . , Bk, ∗, Bk+1, . . . , Bn]〉, and
σ2 = 〈(si1 , . . . , sim , si) := [B1, . . . , Bk, ∗, Bk+1, . . . , Bn]〉.
We have Aσσ1 = Aσ2

Proof By induction on A.

– If A = fiA1, then Aσ = fiA1σ and Aσσ1 = fiA1σσ1. By the induction
hypothesis, A1σσ1 = A1σ2, thus Aσσ1 = fiA1σ2 = Aσ2.

– If A = sjA1, we have tree subcases.

- If sj 6∈ {si, . . . , sim}, then Aσ = sjA1σ and Aσσ1 = sjA1σσ1. By the
induction hypothesis, A1σσ1 = A1σ2, thus Aσσ1 = Aσ2.

- If j ∈ {i1, . . . , im}, then Aσ = sj [B1, . . . , A1σ, . . . , Bn] and Aσσ1 =
sj [B1σ1, . . . , A1σσ1, . . . , Bnσ1]. By the induction hypothesis, A1σσ1 =

A1σ2, and, since si1 , . . . , sim 6∈
n⋃
i=1

FS(Bi), for all 1 ≤ i ≤ n, Biσ1 = Bi,

thus Aσσ1 = sj [B1, . . . , A1σ2, . . . , Bn] = Aσ2.

- If j = i, then Aσ = sjA1σ and Aσσ1 = sj [B1, . . . , A1σσ1, . . . , Bn]. By
the induction hypothesis, A1σσ1 = A1σ2, thus Aσσ1 =
sj [B1, . . . , A1σ2, . . . , Bn] = Aσ2.

– IfA = [A1, . . . , Ak], thenAσ = [A1σ, . . . , Akσ] andAσσ1 = [A1σσ1, . . . , Akσσ1].
By the induction hypothesis, for all 1 ≤ r ≤ k, Arσσ1 = Arσ2, thus,
Aσσ1 = [A1σ2, . . . , Akσ2] = Aσ2.

�
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Below are the two key lemmas to prove our main result. First, we show (Lemma
3.4) that starting from an h-normal colored tree and a substitution that only uses
h-normal colored trees, we can perform an h-reduction and stop at a colored tree
containing the same type of h-redexes. Then, we will demonstrate (Lemma 3.5)
that such a colored tree can be weakly normalized.

Lemma 3.4 Let A,B1, . . . , Bn be h-normal colored trees such that k of B1, . . . , Bn
starts by a father and σ = 〈(si1 , . . . , sim) := [B1, . . . , ∗, . . . , Bn]〉. There exists a
(k, n+ 1)-good colored tree B such that Aσ �h B.
Proof By induction on A.

– If A = fiA1, then Aσ = fiA1σ. By the induction hypothesis, A1σ �h C with
C is (k, n+ 1)-good, therefore Aσ �h B = fiC with B is (k, n+ 1)-good.

– If A = siA1 with i /∈ {i1, . . . , im}, then Aσ = siA1σ. By the induction
hypothesis, A1σ �h C with C is (k, n + 1)-good, therefore Aσ �h B = siC
with B is (k, n+ 1)-good.

– If A = siA1 with i ∈ {i1, . . . , im}, then Aσ = si[B1, . . . , A1σ,B . . . , Bn]. By
the induction hypothesis, A1σ �h C with C is (k, n+ 1)-good. If C does not
start by a father, then si[B1, . . . , C, . . . , Bn] is (k, n + 1)-good i.e. Aσ �h B
with B is (k, n + 1)-good. Otherwise, C starts by a father fj , by Lemma
3.1, A1 �h fjD, but A is h-normal, so A1 = fjD. If we reduce Aσ via
fj , then, by Lemma 3.3, Aσ →h sifjDσ

′ where σ′ = 〈(si1 , . . . , sim , sj) :=
[B1, . . . , ∗, . . . , Bn]〉. By the induction hypothesis, Dσ′ �h E where E is
(k, n+ 1)-good. Thus Aσ �h B with B is (k, n+ 1)-good.

– If A = [A1, . . . , Al], then Aσ = [A1σ, . . . , Alσ]. By the induction hypothesis,
Aiσ �h Ci with Ci is (k, n+ 1)-good. If there exists Ci starting by a father,
then, by Lemma 3.1, Ai �h fjDi. But Ai is h-normal, so Ai = fjDi and then
A has a h-redex, a contradiction. So Aσ �h B with B is (k, n+ 1)-good.

�

Note that in the proof of Theorem 3.6, we only need one free son in the preceding
lemma, but to prove the lemma, it was necessary to state it with one or more free
sons.

Lemma 3.5 A (k,m)-good colored tree A is weakly h-normalizable and if A�h B
with B is h-normal, then B starts by a father if and only if A starts by a father.
Proof By induction on (k, |A|) using the lexicographic order. The case k = 0 is
trivial since A will be h-normal. Suppose that k ≥ 1.

– If A = fiA1, then A1 is (k,m)-good and |A1| < |A|, therefore, by the induction
hypothesis, A1 �h B1 with B1 is h-normal, therefore, A �h B = fiB1 with
B is h-normal.

– If A = siA1, then A1 is (k,m)-good and |A1| < |A|, therefore, by the induction
hypothesis, A1 �h B1 with B1 is h-normal, therefore, A �h B = siB1 with
B is h-normal and B 6= fjC.

– If A = sj [A1, . . . , Am] with k of the Ai start by a father, then for all 1 ≤ i ≤ m,
Ai is (k,m)-good with |Ai| < |A| so, by the induction hypothesis, Ai �h Bi
with Bi is h-normal and k of the Bi start by a father. Let 1 ≤ i0 ≤ m
such that Bi0 starts by a father fi0 . Reducing via fi0 , A →h sjfi0Bi0σ
where σ = 〈(si0) := [B1, . . . , ∗, . . . , Bm]〉. By Lemma 3.4, Bi0σ �h Ci0
with Ci0 is (k − 1,m)-good and, by the induction hypothesis, since we are
using the lexicographic order, Ci0 �h Di0 with Di0 is h-normal. Hence,
A�h B = sjfi0Di0 where B is h-normal and B 6= flC.
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– If A = [A1, . . . , An], then Ai doesn’t start by a father for all 1 ≤ i ≤ n, since,
otherwise, A is not (k,m)-good. For all 1 ≤ i ≤ n, Ai is (k,m)-good with
|Ai| < |A|, so, by the induction hypothesis, Ai �h Bi with Bi is h-normal
and doesn’t start by a father, therefore, A �h B = [B1, . . . , Bn] with B is
h-normal and B 6= flC.

�

Using the above lemmas, we can now establish the property of weak h-normalization.

Theorem 3.6 Every colored tree A is weakly h-normalizable.
Proof By induction on A.

– If A = fiA1, then, by the induction hypothesis, A1 �h B1 with B1 is h-
normal. Hence, A�h B = fiB1, where B is h-normal. The result follows.

– If A = siA1, then, by the induction hypothesis, A1 �h B1 with B1 is h-
normal. Hence, A�h B = siB1, where B is h-normal. The result follows.

– If A = [A1, . . . , Am], then, by the induction hypothesis, Ai �h Bi with Bi is
h-normal, for all 1 ≤ i ≤ n. If Bi doesn’t start by a father for all 1 ≤ i ≤ n,
then A�h B = [B1, . . . , Bm] where B is h-normal. Otherwise, let 1 ≤ i0 ≤ m
such that Bi0 starts by a father which is denoted by fi0 . Reducing via fi0 ,
B →h fi0Bi0σ, where σ = 〈(si0) := [B1, . . . , ∗, . . . , Bm]〉. By Lemma 3.4,
Bi0σ �h Ci0 where Ci0 is (k,m+1)-good, hence, by Lemma 3.5, Ci0 �h Di0

where Di0 is h-normal. The result follows.
�

We summarize what we did to present a normalization algorithm.

1. Lemma 3.4 gives an algorithm to transform a colored tree of the form Aσ
where A is a h-normal colored tree, σ = 〈(si1 , . . . , sim) := [B1, . . . , ∗, . . . , Bn]〉
and B1, . . . , Bn are h-normal colored trees, to a (k,m)-good colored tree.

2. Lemma 3.5 gives an algorithm (using the first one) to h-normalize a (k,m)-
good colored tree.

3. Theorem 3.6 gives an algorithm to h-normalize a colored tree A (by induc-
tion on A). In the case where A = [A1, . . . , An], the first two algorithms are
successively used. Case 3 in the proof of Theorem 3.6 leaves us with a non-
deterministic choice concerning the process of finding a h-normal form of A.
This means that instead of one uniquely determined h-normal form we end
up with one of the possible h-normal forms of A.

4 The strong normalization of the h-reduction
The proof we presented in the previous section allows us to establish normalization
algorithms to transform a colored tree into an h-normal form. In this section, we
will establish a stronger result, namely the strong h-normalization of any colored
tree. This means that no matter which redex is chosen for reduction, after several
h-reductions, we will eventually reach an h-normal colered tree. The proof of this
result is non-constructive as it relies on a proof by contradiction.

To establish the property of strong h-normalization, several preliminary lemmas
are proven. The first lemma provides a characterization of the phenomenon of
creating a father at the head of a colored tree after a sequence of h-reductions on a
colored tree of the form [A1, . . . , An].
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Lemma 4.1 If A1, . . . , Am, A ∈ T and [A1, . . . , Am] �h fiA, then there exists
1 ≤ j ≤ m such that Aj �h fiBj, Aj �h A

′
j for all 1 ≤ i ≤ m and i 6= j, and

[A1, . . . , Am] �h [A′1, . . . , fiBj , . . . , A
′
m]→h fiBjσ �h fiA.

Proof By induction on the number of h-reductions between [A1, . . . , Am] and
fiA. If there is only one h-reduction, the result follows by the definition of the h-
reduction. So, assume that there are two or more h-reductions. Let A′ be a colored
tree such that [A1, . . . , Am]→h A

′ �h fiA. If A′ = fiC, we obtain the result by the
induction hypothesis. Otherwise, A′ = [A1, . . . , Bk, . . . , Am] such that Ak →h Bk
for 1 ≤ j ≤ m. By the induction hypothesis, there exists 1 ≤ j ≤ m such that j 6= k
and Aj �h fiBj or Ak →h Bk �h fiBj otherwise. The result follows. �

The following lemma provides a condition for permuting substitutions. It will
be used in the proof of Lemma 4.3.

Lemma 4.2 Let B,A1, . . . , Am, B1, . . . , Bn ∈ T, si, sj ∈ S such that si 6= sj and

sj 6∈
n⋃
i=1

FS(Bi), σ = 〈(si) := [B1, . . . , ∗, . . . , Bn]〉, δ = 〈(sj) := [A1, . . . , ∗, . . . , Am]〉

and ρ = 〈(sj) := [A1σ, . . . , ∗, . . . , Amσ]〉. We have Aσρ = Aδσ.
Proof By induction on A.

– If A = fkB, then, by the induction hypothesis, Aσρ = fk(Bσρ) = fk(Bδσ) =
Aδσ.

– If A = skB with k 6= i and k 6= j, then, by the induction hypothesis, Aσρ =
sk(Bσρ) = sk(Bδσ) = Aδσ.

– IfA = siB, thenAσρ = si[B1, . . . , Bσ, . . . , Bn]ρ = si[B1ρ, . . . , Bσρ, . . . , Bnρ] =
si[A1, . . . , Bσρ, . . . , An] andAδσ = (siBδ)σ = si[B1, . . . , Bδσ, . . . , Bn], hence,
by the induction hypothesis, we obtain the result.

– If A = sjB, then Aσρ = (sjBσ)ρ = sj [A1σ, . . . , Bσρ, . . . , Amσ]〉 and Aδσ =
(sj [A1, . . . , Bδ, . . . , Am]〉)σ = sj [A1σ, . . . , Bδσ, . . . , Amσ]〉, hence, by the in-
duction hypothesis, we obtain the result.

– IfA = [A′1, . . . , A
′
k], then, by the induction hypothesis, Aσρ = [A′1σρ, . . . , A

′
kσρ]

= [A′1δσ, . . . , A
′
kδσ] = Aδσ.

�

The following lemma is intuitive and expresses a useful property about the re-
duction of a colored tree affected by a substitution.

Lemma 4.3 Let A,A′, B1, . . . , Bn, B
′
1, . . . , B

′
n ∈ T such that A�h A

′ and Bi �h

B′i for all 1 ≤ i ≤ n. Let σ = 〈(si) := [B1, . . . , ∗, . . . , Bn]〉 and σ′ = 〈(si) :=
[B′1, . . . , ∗, . . . , B′n]〉. We have : 1. Aσ �h Aσ

′. 2. Aσ �h A
′σ. 3. Aσ �h A

′σ′.
Proof

1. By induction on A.

– If A = fjB, then Aσ = fjBσ and Aσ′ = fjBσ
′. By the induction

hypothesis, Bσ �h Bσ
′, thus Aσ �h Aσ

′.

– If A = sjB with j 6= i, then Aσ = sjBσ and Aσ′ = sjBσ
′. By the

induction hypothesis, Bσ �h Bσ
′, thus Aσ �h Aσ

′.

– If A = siB with 1 ≤ i ≤ n, then Aσ = si[B1, . . . , Bσ, . . . , Bn] and Aσ′ =
si[B1, . . . , Bσ

′, . . . , Bn]. By the induction hypothesisn, Bσ �h B′σ′,
thus Aσ �h Aσ

′.
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– IfA = [A1, . . . , Am], thenAσ = [A1σ, . . . , Amσ] andAσ′ = [A1σ
′, . . . , Amσ

′].
By the induction hypothesisn, Aiσ �h Aiσ

′ for all 1 ≤ i ≤ m, thus
Aσ �h Aσ

′.

2. It is sufficient to prove the result for a one step of reduction, i.e. we suppose
A→h A

′ and we prove, by induction on A, Aσ →h A
′σ.

– If A = fjB, then Aσ = fjBσ and A′ = fjB
′ where B →h B

′. By the
induction hypothesis, Bσ →h B

′σ, thus Aσ →h fjB
′σ = A′σ.

– If A = sjB with j 6= i, then Aσ = sjBσ and A′ = sjB
′ where B →h B

′.
By the induction hypothesis, Bσ →h B

′σ, thus Aσ →h sjB
′σ = A′σ.

– If A = siB with 1 ≤ i ≤ n, then Aσ = si[B1, . . . , Bσ, . . . , Bn] and
A′ = siB

′ where B →h B
′. By the induction hypothesis, Bσ →h B

′σ,
thus Aσ →h= si[B1, . . . , B

′σ, . . . , Bn] = A′σ.

– If A = [A1, . . . , Am], then Aσ = [A1σ, . . . , Amσ] and we have two cases
to study.

- If A′ = [A1, . . . , A
′
i, . . . , Am] where Ai →h A

′
i, then, by the induction

hypothesis, Aiσ →h A′iσ, thus Aσ →h [A1σ, . . . , A
′
iσ, . . . , Amσ] =

A′σ.
- If A = [A1, . . . , fjBi, . . . , Am] and A′ = fjBiδ where δ = 〈(sj) :=
[A1, . . . , ∗, . . . , Am]〉, thenAσ = [A1σ, . . . , fjBiσ, . . . , Amσ]→h fjBiσρ
where ρ = 〈(sj) := [A1σ, . . . , ∗, . . . , Amσ]〉, thus, by Lemma 4.2,
Aσ →h A

′σ.

3. It is sufficient to use parts 1 and 2 of this lemma.
�

The following lemma provides a characterization of the phenomenon of creating a
father at the head of a colored tree after a sequence of h-reductions on a substitution
of a colored tree.

Lemma 4.4 Let A,B1, . . . , Bn ∈ T and σ = 〈(sj) := [B1, . . . , ∗, . . . , Bn]〉.
If Aσ �h fiB, then A�h fiA

′ and A′σ �h B.
Proof By induction on A.

– If A = fiC, we have the result immediately.

– If A = siC, then A cannot be h-reduced to fiB.

– If A = [A1, . . . , Ak], then Aσ = [A1σ, . . . , Akσ], and, by Lemma 4.1, there
exists 1 ≤ j ≤ k such that Ajσ �h fiC, Arσ �h A′r for all 1 ≤ r ≤ k
and k 6= j, and [A1, . . . , Ak] �h [A′1, . . . , fiC, . . . , A

′
k] →h fiCσ

′ �h fiB
where σ′ = 〈(si) := [A′1, . . . , ∗, . . . , A′k]〉. By the induction hypothesis, Aj �h

fiD and Dσ �h C, thus A �h [A1, . . . , fiD, . . . , Ak] →h fiDδ where δ =
〈(si) := [A1, . . . , ∗, . . . , Ak]〉. By Lemma 4.2, Dδσ = Dσρ where ρ = 〈(si) :=
[A1σ, . . . , ∗, . . . , Akσ]〉, thus, by Lemma 4.3, Dδσ �h Cσ

′ �h B.
�
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The following König’s lemma is essential for defining a measure on strongly
h-normalizable colored trees. We state the lemma without providing precise defini-
tions of the terms used, especially since we only need this lemma to define a notion
of measure.

Lemma 4.5 (König’s lemma) Every connected, locally finite, infinite undirected
graph contains an infinite path (ray).

Definition 4.6 Let A be a strongly h-normalizable colored tree. Since the reduc-
tion tree of A is locally finite by König’s Lemma, we can denote the length of the
longest reduction sequence of A by η(A). We immediately deduce the following prop-
erties.

1. If C →h D, then η(C) > η(D).

2. To prove that a colored tree C is strongly h-normalizable, it suffices to show
that if C →h D, then D is strongly h-normalizable.

We obtain also the following property.

– η(C) = 0 if and only if C is h-normal.

– η(C) = max
C→hD

η(D) + 1 if C is not h-normal.

The following definitions are useful in the proof of the main result.

Definition 4.7 If A,B ∈ T, we write

– B v A if B is a colored subtree of A,

– B � A if B v A′ and A�h A
′.

The two lemmas below explain why a colored tree may not be strongly h-
normalizable even if some of its subtrees are.

Lemma 4.8 Let A1, . . . , An be strongly h-normalizable colored trees. If [A1, . . . , An]
is not strongly h-normalizable, then there exists 1 ≤ i ≤ n such that Ai �h fjA

′
i

and A′iσ is not strongly h-normalizable, where σ = 〈(sj) := [A1, . . . , ∗, . . . , An]〉.

Proof By induction on
n∑
i=1

η(Ai). We consider an infinite reduction of [A1, . . . , An]

and distinguish two cases for the first reduct.

– If [A1, . . . , An]→h [A′1, . . . , A
′
n], then [A′1, . . . , A

′
n] is not strongly h-normalizable

and
n∑
i=1

η(A′k) <

n∑
i=1

η(Ak), then, by the induction hypothesis, there exists

1 ≤ i ≤ n such that A′i �h fjA
′′
i and A′′i σ

′ is not strongly h-normalizable
where σ′ = 〈(sj) := [A′1, . . . , ∗, . . . , A′n]〉, thus, Ai �h fjA

′′
i and, by Lemma

4.3, A′iσ �h A
′′
i σ
′, therefore A′iσ is not strongly h-normalizable.

– If there exists 1 ≤ i ≤ n such that Ai = fjA
′
i and [A1, . . . , fiA

′
i, . . . , An] →h

fiA
′
iσ where σ = 〈(sj) := [A1, . . . , ∗, . . . , An]〉, then A′iσ is not strongly h-

normalizable.
�
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Lemma 4.9 Let A,B1, . . . , Bn be strongly h-normalizable colored trees and σ =
〈(si) := [B1, . . . , ∗, . . . , Bn]〉. If Aσ is not strongly h-normalizable, then there exists
siB � A such that Bσ is strongly h-normalizable and [B1, . . . , Bσ, . . . , Bn] is not
strongly h-normalizable.
Proof By induction on (η(A), |A|) using the lexicographic order.

– If A = fjA
′, then, by the induction hypothesis, there exists siB � A′ � A such

that Bσ is strongly h-normalizable and [B1, . . . , Bσ, . . . , Bn] is not strongly
h-normalizable.

– If A = sjA
′ with j 6= i, then, by the induction hypothesis, there exists siB �

A′ � A such that Bσ is strongly h-normalizable and [B1, . . . , Bσ, . . . , Bn] is
not strongly h-normalizable.

– If A = siA
′, then Aσ = si[B1, . . . , A

′σ, . . . , Bn]. If A′σ is not strongly h-
normlaizable, then, by the induction hypothesis, there exists siB � A′ �
A such that Bσ is strongly h-normalizable and [B1, . . . , Bσ, . . . , Bn] is not
strongly h-normalizable. Otherwise, siA′ � A such that A′σ is strongly h-
normalizable and [B1, . . . , A

′σ, . . . , Bn] is not strongly h-normalizable.

– If A = [A1, . . . , Am], we have Aσ = [A1σ, . . . , Amσ]. By Lemma 4.8, there
exists 1 ≤ j ≤ m such that Ajσ �h fkA

′
j and A′jσ

′ is not strongly h-
normalizable, where σ′ = 〈(sk := [[A1σ, . . . , ∗, . . . , Amσ]〉. By Lemma 4.4,
Aj �h fkCj and Cjσ �h A

′
j . By Lemma 4.2, Cjσσ′ = Cjδσ, and Cjσσ′ �h

A′jσ
′, then Cjδσ is not strongly h-normalizable. We have A �h Cjδ, then

η(Cjδ) < η(A) and, by the induction hypothesis, there exists siB � Cjδ �
such thatBσ is strongly h-normalizable and [B1, . . . , Bσ, . . . , Bn] is not strongly
h-normalizable.

�

We define now a norm on colored trees.

Definition 4.10 The norm ‖.‖ of a colored tree is defined as follows.

– ‖ • ‖ = 0.

– ‖fiA‖ = 0 if si /∈ FS(A) and ‖fiA‖ = max
siBvA

‖B‖+ 1 if si ∈ FS(A).

– ‖siA‖ = 0.

– ‖[A1, . . . , An]‖ =
n∑
i=1

‖Ai‖.

The first intuition about the defined norm is that it does not change after “adding
branches” to the colored trees.

Lemma 4.11 Let A,B1, . . . , Bn ∈ T and σ = 〈(si) := [B1, . . . , ∗, . . . , Bn]〉.
We have ‖Aσ‖ = ‖A‖.
Proof By induction on A.

– If A = fiA
′, then Aσ = fiA

′σ. If si ∈ FS(A), then si ∈ FS(A′) and
siB v A′σ if and only if siB v A. We have ‖Aσ‖ = ‖fiA′σ‖ = max

siBvA′σ
‖B‖+

1 = max
siBvA

‖B‖+ 1 = ‖A‖. Otherwise, si /∈ S(A) and ‖A‖ = ‖A′σ‖ = 0.

– If A = siA
′ with i /∈ {i1, . . . , im}, then Aσ = siB, where B = A′σ. So,

‖A‖ = ‖Aσ‖ = 0.
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– If A = siA
′ with i ∈ {i1, . . . , im}, then B = [B1, . . . , A

′σ, . . . , Bn]. So, ‖A‖ =
‖Aσ‖ = 0.

– If A = [A1, . . . , Ak], then Aσ = [A1σ, . . . , Akσ] and ‖Aσ‖ =

k∑
i=1

‖Aiσ‖. By

the induction hypothesis, ‖Aiσ‖ = ‖Ai‖, so ‖Aσ‖ =
k∑
i=1

‖Ai‖ = ‖A‖.

�

The following lemma is quite intuitive.

Lemma 4.12 Let A,B1, . . . , Bn ∈ T and σ = 〈(si) := [B1, . . . , ∗, . . . , Bn]〉.
If siA′ v A, then ‖fiA‖ > ‖A′σ‖.
Proof If siA′ v A, then, by Lemma 4.11, ‖A′σ‖ = ‖A′‖, thus ‖fiA‖ = max

siBvA
‖B‖+

1 > ‖A′‖ = ‖A′σ‖. �

We will now prove that after an h-reduction on the head of a colored tree, the
norm cannot increase.

Lemma 4.13 Let A,B1, . . . , Bn ∈ T and σ = 〈(si) := [B1, . . . , ∗, . . . , Bn]〉.
We have ‖[B1, . . . , fiA, . . . , Bn]‖ ≤ ‖fiAσ‖.
Proof We have siB v A if and only if si[B1, . . . , B, . . . , Bn] v Aσ. If si /∈ FS(A),
then ‖fiAσ‖ = 0 and so ‖[B1, . . . , fiA, . . . , Bn]‖ ≤ ‖fiAσ‖. Otherwise, we have
‖fiAσ‖ = max

siCvAσ
‖C‖ + 1 = max

siBvA
‖[B1, . . . , B, . . . , Bn]‖ + 1 = max

siBvA
‖B‖ + 1 +

n∑
i=1

‖Bi‖ =
n∑
i=1

‖Bi‖+ max
siBvA

‖B‖+ 1 = ‖[B1, . . . , fiA, . . . , Bn]. �

We observe that any sequence of h-reductions on a given colored tree produces
a non-increasing sequence of the norm.

Lemma 4.14 If A,B ∈ T and A�h B, then ‖A‖ ≥ ‖B‖.
Proof Without loss of generality, we may suppose that A→h B. We proceed by
induction on (η(A), |A|) using the lexicographic order.

– If A = siA
′, then B = siB

′ with A′ →h B
′, thus ‖A‖ = ‖B‖ = 0.

– If A = fiA
′, then B = fiB

′. If si /∈ FS(A′), then si /∈ FS(B′) and so
‖A‖ = ‖B‖ = 0. Otherwise, let siC v B, then there exists siD v A such that
C = Dσ for some σ. By Lemma 4.11, ‖C‖ = ‖D‖, thus, ‖A‖ = max

siA′vA
‖A′‖+

1 = max
siB′vB

‖B′‖+ 1 = ‖B‖.

– Let A = [A1, . . . , An]. If A →h [A1, . . . , A
′
i, . . . , An] = B with Ai →h A′i,

then, by the induction hypothesis, ‖Ai‖ ≥ ‖A′i‖, thus ‖A‖ =

n∑
k=1

‖Ak‖ ≥∑
k 6=i

‖Ak‖+ ‖A′i‖ = ‖[A1, . . . , A
′
i, . . . , An]‖ = ‖B‖. Otherwise, A→h fiAjσ =

B with Aj = fiA
′
j and σ = 〈(si) := [A1, . . . , ∗, . . . , An]〉. By Lemma 4.13,

‖A‖ ≥ ‖fiAjσ‖ = ‖B‖.
�
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The colored tree [A1, . . . , An] will be strongly h-normalizable if allAi are strongly
h-normalizable. The following theorem, prove by contradiction, prevents us from
devising an algorithm for strong h-normalization.

Theorem 4.15 If A1, . . . , An are strongly h-normalizable, then [A1, . . . , An] is
strongly h-normalizable.
Proof Suppose, to the contrary, that there exist A1, . . . , An which are strongly
h-normalizable, but [A1, . . . , An] is not strongly h-normalizable. Let A1, . . . , An be
chosen as the smallest counter-example with respect to the pair(
‖[A1, . . . , An]‖ ,

n∑
i=1

η(Ai)

)
using the lexicographic order. As [A1, . . . , An] is not

strongly h-normalizable, by Lemma 4.8, there exists 1 ≤ i ≤ n such that Ai �h fjBi
and Biσ is not strongly h-normalizable, where σ = 〈(sj) := [A1, . . . , ∗, . . . , An]〉.
By Lemma 4.14, ‖Bi‖ ≤ ‖Ai‖. Now, [A1, . . . , An] �h [A1, . . . , fjBi, . . . , An], then
if Ai 6= fiBi, we obtain η(Bi) < η(Ai) so [A1, . . . , Ai−1, fjBi, Ai+1, . . . , An] is a
counter-example smaller than [A1, . . . , An], a contradiction. Consequently, Ai =
fjBi. As Biσ is not strongly h-normalizable, by Lemma 4.9, there exists sjCi � Bi
such that Ciσ is strongly h-normalizable and [A1, . . . , Ciσ, . . . , An] is not strongly
h-normalizable. Let B′i be the colored tree such that Bi �h B

′
i and sjCi v B′i, we

have, by Lemma 4.12, ‖fjBi > ‖Ciσ‖. Thus, [A1, . . . , Ciσ, . . . , An] is not strongly
h-normalizable and smaller than [A1, . . . , An], a contradiction. The result follows.

�

After proving all preceding lemmas and theorems, the main result is established
below.

Theorem 4.16 Any colored tree A is strongly h-normalizable.
Proof By induction on A.

– If A = fiA
′, then, by the induction hypothesis, A′ is strongly h-normalizable,

so A is strongly h-normalizable.

– If A = siA
′, then, by the induction hypothesis, A′ is strongly h-normalizable,

so A is strongly h-normalizable.

– If A = [A1, . . . , An], then, by the induction hypothesis, A1, . . . , An are strongly
h-normalizable, so, by theorem 4.15, A is strongly h-normalizable.

�

This strong normalization result states that any h-reduction of a colored tree
terminates without specifying how to perform it, so there is no need to define a nor-
malization algorithm. We reiterate that the presentation of the weak normalization
proof in Section 3 aims to familiarize the reader with this type of proof technique,
which will be used a second time in Section 5.

5 A weak normalization result for several reduction
rules

We will propose additional reduction rules on colored trees to simplify the use of
h-reduction. We will examine the succession of father and son nodes. First, we will
explain the intuitive ideas behind these reductions before defining them formally.
Let A ∈ T.

– If there are two consecutive fathers fi and fj in A, the father fj will never
undergo an h-reduction. To simplify the reduction process, we will delete the
father fj along with its sons from A. We will call this the ff -reduction.
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– If a father fi has a unique son that comes directly below it, any h-reduction
involving fi will not change the shape of A. Therefore, we will delete the
father along with its son. We will call this the sf -reduction.

– If a father fj appears before a son si, the father fi will only undergo an h-
reduction if the father of si undergoes an h-reduction that places fj in an
h-redex. Consequently, the h-reduction via fj will be equivalent to that via
fi but will use the son sj instead of si. Therefore, we will delete the father fj
and substitute its sons with the sons si. We will call this the fs-reduction.

We recall that the goal of these three rules is to eliminate undesirable phenomena
for our main rule, the h-reduction. We cannot achieve this by restricting the syntax
to colored trees, as we could create such phenomena in an h-reduction. The intu-
ition suggests that these elementary rules cannot affect the normalization results
already obtained. We will show that this is actually false, as we can construct a
colored tree that is not strongly normalizable.

In order to introduce these simplification rules, we define, for any A ∈ T and
any i ∈ N, the colored tree dAei to be the colored tree obtained by erasing all free
sons si from A.

Definition 5.1 Let A ∈ T and i ∈ N. The colored tree dAei is defined as follows.

– If A = •, then dAei = •.

– If A = fjB, then dAei = fjdBei.

– If A = sjB with j 6= i, then dAei = sjdBei.

– If A = siB, then dAei = dBei.

– If A = [A1, . . . , Am], then dAei = [dA1ei, . . . , dAmei].

The following two definitions introduce the three new simplification rules.

Definition 5.2

1. An ff-redex is a colored tree under the form fifjB. Its ff-reduced is fidBej.

2. An fs-redex is a colored tree under the form fisiB with si /∈ FS(B). Its
fs-reduced is B.

3. An sf -redex is a colored tree under the form sifjB. Its sf -reduced is B[sj :=
si].

Definition 5.3 Let A,B ∈ T.

1. We define A→ff B, by induction on A, as follows.

– If A = •, then it is impossible.

– If A = siA1, then B = siB1 and A1 →ff B1.

– If A = [A1, . . . , An], then B = [A1, . . . , Bk, . . . , An] and Ak →ff Bk.

– If A = fiA1, then there are two cases.

- B = fiB1 and A1 →ff B1.
- A1 = fjA2 and B = fidA2ej.

2. We define A→fs B, by induction on A, as follows.
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– If A = •, then it is impossible.

– If A = siA1, then B = siB1 and A1 →fs B1.

– If A = [A1, . . . , An], then B = [A1, . . . , Bk, . . . , An] and Ak →fs Bk.

– If A = fiA1, then there are two cases.

- B = fiB1 and A1 →fs B1.
- A1 = siA2 with si /∈ FS(A2) and B = A2.

3. We define A→sf B, by induction on A, as follows.

– If A = •, then it is impossible.

– If A = fiA1, then B = fiB1 and A1 →sf B1.

– If A = [A1, . . . , An], then B = [A1, . . . , Bk, . . . , An] and Ak →sf Bk.

– If A = siA1, then there are two cases.

- B = siB1 and A1 →sf B1.
- A1 = fjA2 and B = A2[sj := si].

As in the case of the h-reduction rule, we can define normalization properies
with respect to each reduction as well as to the combined ones.

Definition 5.4 Let R ⊆ {h, ff, fs, sf}.

1. A colored tree is said to be R-normal if it contains no r-redex for all r ∈ R.

2. If A,B ∈ T, we write A �R B if there exist a sequence A1, . . . , An ∈ T such
that A→r1 A1 →r2 A2 →r3 · · · →rn An = B where ri ∈ R for all 1 ≤ i ≤ n.

3. A colored tree A is said to be weakly R-normalizable if there exists an R-normal
colored tree B such that A�R B.

4. A colored tree A is said to be strongly R-normalizable if any sequence of R-
reductions of A ends.

Example 5.5 The following counter-example, negates that every colored tree is
strongly {h, ff, fs, sf}-normalizable.

C = [f1f2s2s2•, f3s3s3•]→h f3s3[f1f2s2s2•, s3[f4f5s5s5•, •]]
→h f3s3[f1f2s2s2•, s3f4f5s5s5•]
→sf f3s3[f1f2s2s2•, f5s5s5•]

→fs A.

Figure 7 shows in the tree representation of C how the reduction leads to a loop.
Note that we used f4 and f5 instead of f1 and f2 under the second son of f3.
As mentioned earlier, the numbering has no intrinsic meaning; it is given to high-
light the relationships between sons and fathers. However, this example prevents
us from considering a proof of strong {h, ff, fs, sf}-normalization for any colored
tree. We observe that if we reduce the h-redex in C via f1, we immediately obtain
the {h, ff, fs, sf}-normal colered tree f1f2s2s2•. Therefore, we will proceed to
prove weak {h, ff, fs, sf}-normalization for any colored tree. Note also that this
phenomenon of non-normalization does not arise from having two consecutive sons.
Indeed, we can easily verify that the colored tree D = [f1f2s2[•, s2•], f3s3[•, s3•]] is
also non-normalizable.
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Figure 7: A counter-example for the {h, ff, fs, sf}-strong normalization property

For abbreviation, let R1 = {h, ff, sf} and R2 = {h, ff, fs, sf}. First, let’s
define a (k, n)-super good colored tree.

Definition 5.6 Let n, k ∈ N such that 0 ≤ k ≤ n. A colored tree is said to be
(k, n)-super good if it is {ff, sf}-normal and all its h-redex are of order (k, n) and
are protected by a son. By convention, a colored tree is said to be (0, n)-good if it
is R1-normal.

We will start with the weak R1-normalization property, and then we will prove
that any colored tree is fs-normalizable; consequently, any tree will beR2-normalizable.
The following lemmas, which will be useful in the proof, are similar to those used
in the proof of the weak h-normalization property; however, here, due to the new
reductions, the proofs will be simpler.

Lemma 5.7 Let A,B1, . . . , Bn be colored R1-normal trees such that k colored tree
of B1, . . . , Bn starts by a father and σ = 〈(si1 , . . . , sim) := [B1, . . . , ∗, . . . , Bn]〉.
Then Aσ is (k, n+ 1)-super good.
Proof By induction on A.
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– If A = fiA1, then Aσ = fiA1σ and, by the induction hypothesis, A1σ is
(k, n+ 1)-super good, thus Aσ is (k, n+ 1)-super good.

– If A = siA1 with i /∈ {i1, . . . , im}, then Aσ = siA1σ. By the induction
hypothesis, A1σ is (k, n+ 1)-super good, thus Aσ is (k, n+ 1)-super good.

– If A = siA1 with i ∈ {i1, . . . , im}, then Aσ = si[B1, . . . , A1σ, . . . , Bn]. By the
induction hypothesis, A1σ is (k, n+ 1)-super good and A1 doesn’t start by a
father since A is sf -normal, thus Aσ is (k, n+ 1)-super good.

– If A = [A1, . . . , Al], then Aσ = [A1σ, . . . , Alσ]. By the induction hypothesis,
Aiσ is (k, n + 1)-super good for all 1 ≤ i ≤ l. Clearly, Ai doesn’t start by a
father for all 1 ≤ i ≤ l and so it is the case for Aiσ, thus A is (k, n+1)-super
good.

�

The following lemma explains how to R1-normalize a super good colored tree.

Lemma 5.8 A (k,m)-super good colored tree A is weakly R1-normalizable and if
A �R1 B with B is R1-normal, then B = fiC for some colored tree C if and only
if A = fiD for some colored tree D.
Proof By induction on (k, |A|) using the lexicographic order.

– If A = fiA1, then A1 is (k,m)-super good and |A1| < |A|, therefore, by the
induction hypothesis, A1 �R1

B1 with B1 is R1-normal. But A is ff -normal,
so A1 doesn’t start by a father, then, by the induction hypothesis, B1 doesn’t
start by a father, thus, A�R1 B = fiB1 with B is R1-normal.

– If A = siA1, then A1 is (k,m)-super good and |A1| < |A|, then, by the
induction hypothesis, A1 �R1

B1 with B1 is R1-normal. But A is sf -normal,
so A1 doesn’t start by a father, then, by the induction hypothesis, B1 doesn’t
start by a father, thus A�R1

B = siB1 with B is R1-normal.

– If A = sj [A1, . . . , Am] with k of the Ai start by a father, then or all 1 ≤ i ≤ m,
Ai is (k,m)-super good with |Ai| < |A| so, by the induction hypothesis,
Ai �R1

Bi with Bi is R1-normal and Bi starts by a father if and only if
Ai starts by a father. Let 1 ≤ p ≤ m such that Bp = fpCp, then A �R1

sj [B1, . . . , Bm] →h sjfpCpσ →sf Cpσ[sp := sj ] = B where σ = 〈(sp) :=
[B1, . . . , ∗, . . . , Bm]〉. By Lemma 5.7, Cpσ is (k − 1,m)-super good, then,
by the induction hypothesis, Cpσ �R1 Dp with Dp is R1-normal. Since Cpσ
doesn’t start by a father, then Dp does not start by a father. Hence, A�R1

B
where B is R1-normal and B doesn’t start by a father.

– If A = [A1, . . . , Am] and Ai doesn’t start by a father for all 1 ≤ i ≤ m,
then Ai is (k,m)-super good with |Ai| < |A|, so, by the induction hypothesis,
Ai �R1 Bi with Bi is R1-normal and doesn’t start by a father. Therefore,
A �R1

[B1, . . . , Bn] = B with B is R1-normal and B does not start by a
father.

�

The following lemma is intuitive and simple to prove.

Lemma 5.9 Let A ∈ T and i ∈ N. If A is R1-normal, then dAei is R1-normal
and dAei does not start by a father whenever A does not start by a father.
Proof By induction on A.
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– If A = fjA1, then dAei = fjdA1ei and, by the induction hypothesis, dA1ei is
R1-normal and does not start by a father, thus dAei is R1-normal.

– If A = sjA1 with j 6= i, then dAei = sjdA1ei and, by the induction hypothesis,
dA1ei is R1-normal and doesn’t start by a father, thus dAei is R1-normal.

– If A = siA1, then dAei = dA1ei, and, by the induction hypothesis, dA1ei is
R1-normal and does not start by a father.

– If A = [A1, . . . , An], then dAei = [dA1ei, . . . , dAnei] and, by the induction
hypothesis, dAkei is R1-normal and does not start by a father for all 1 ≤ k ≤ n,
thus, dAei is R1-normal and does not start by a father.

�

We now achieve the following normalization result.

Theorem 5.10 Every colored tree A is weakly R1-normalizable.
Proof By induction on A.

– If A = fiA1, then, by the induction hypothesis, A1 �R1
B1 with B1 is

R1-normal. If B1 does not start by a father, then A �R1
fiB1 and fiB1

is R1-normal. Otherwise, let B1 = fjC1 with C1 R1-normal does not start
by a father, then A �R1 fiB1 →ff fidC1ej and, by Lemma 5.9, fidC1ej is
R1-normal.

– If A = siA1, then, by the induction hypothesis, A1 �R1
B1 with B1 is

R1-normal. If B1 does not start by a father, then A �R1
siB1 and siB1

is R1-normal. Otherwise, let B1 = fjC1 with C1 R1-normal, then A �R1

siB1 →ff C1[sj := si] and C1[sj := si] is R1-normal.

– If A = [A1, . . . , Am], then, by the induction hypothesis, for all 1 ≤ i ≤ m,
Ai �R1

B1 with Bi is R1-normal, thus A �R1
[B1, . . . , Bm] = B. If all Bi

does not start by a father, then B is R1-normal. Otherwise, let 1 ≤ j ≤ m
such that Bj = fjCj . We have B →h fjCjσ, where Cj does not start by a
father and σ = 〈(sj) := [B1, . . . , ∗, . . . , Bm]〉. By Lemma 5.7, Cjσ is (k,m)-
super good, for some k, and by Lemma 5.8, it is weakly R1-normalizable
and its R1-normal form does not start by a father, thus fjCjσ is weakly
R1-normalizable.

�

The following two lemmas examine the fs-reduction to subsequently achieve our
desired result.

Lemma 5.11 Let A be an R1-normal colored tree. If A →fs B, then B is R1-
normal with B doesn’t start by a father whenever A does not start by a father.
Proof By induction on A.

– If A = fiA1, B = fiB1 and A1 →fs B1, then, by the induction hypothesis,
B1 is R1-normal and does not start by a father, thus B is R1-normal.

– If A = fisiB with si /∈ FS(B), then B is R1-normal.

– If A = siA1, B = siB1 and A1 →fs B1, then, by the induction hypothesis,
B1 is R1-normal and does not start by a father, thus B is R1-normal, thus B
is R1-normal.

– If A = [A1, . . . , Am], B = [A1, . . . , A
′
i, . . . , Am] and Ai →fs A

′
i, then, by the

induction hypothesis, A′i is R1-normal and does not start by a father, thus B
is R1-normal.

�
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Lemma 5.12 Every R1-normal colored tree A is weakly R2-normalizable.
Proof By induction on A. If A is not R2-normal, then A contains an fs-redex.
By Lemma 5.11, A→fs B with B is R1-normal and |B| < |A|, so, by the induction
hypothesis, B is weakly R2-normalizable. The result follows.

�

We can now deduce our result.

Theorem 5.13 Every colored tree A is weakly R2-normalizable.
Proof By Theorem 5.10 and Lemma 5.12.

�

Although we used the method from Section 3 to obtain our result of weak nor-
malization for a broader set of reduction rules, we find that the proof is simpler.
This is mainly due to the fact that there are fewer normal forms, and thus fewer
cases to consider. As in the weak h-normalization property, the proof is construc-
tive, so we may write a similar algorithm.

We observe that the ff -reduction is not utilized in Example 5.5. This raises the
question of whether the set {h, sf, fs} is weakly normalizable. We have identified
a colored tree that is not weakly {h, ff, fs}-normalizable; however, we have chosen
not to include this example in the paper to maintain clarity and avoid overwhelming
the reader. It is quite striking that by considering all the rules, we can still achieve
a weak normalization result.

We could also consider a reduction rule concerning the succession of two sons
(either with the same or different indices). We could introduce an ss-reduction, but
without a solid motivation to simplify the application of our main h-rrduction. In
other types of calculus (such as that in Subsection 6.1), this type of rule might be
justified. We prefer not to include it in this paper.

6 Two applications of our results
In this section, we will first present an application of our results to Parigot’s µ-
calculus, which originally motivated our paper. Subsequently, we will propose a
generalization to other types of binary relations, thereby extending our results to
more complex structures.

6.1 Parigot’s µ-calculus
The λµ-calculus was introduced by Parigot ([7]) in 1990 to capture the algorithmic
content of proofs in classical logic presented in a natural deduction style system.
The resulting calculus includes the λ-calculus, which allows for the representation
of all computable functions. It also encompasses techniques from the Exit pro-
gramming style, which enables exiting a program in case of an error and displaying
a message. The computation or program execution rules correspond to cut elim-
inations (reductions on proofs), which simplify certain parts of proofs. Here, we
present only the µ-calculus part, which corresponds to reasoning by contradiction
in proofs. Towards the end of this subsection, we will see that the execution rules
of this calculus exactly correspond to the rules presented in the preceding sections
on colored trees, which is surprising given that the motivations for the two calculi
are completely different.

Definition 6.1 We consider two new countable sets of variable V = {x, y, z, . . .}
and W = {ai | i ∈ N}. The set of µ-terms P of the µ-calculus and the function Fv
is defined as follows.
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• If x ∈ V, then x ∈ P and Fv(x) = ∅.

• If M ∈ P and ai ∈ W, then µai.M ∈ P and Fv(µai.M)) = Fv(M) \ {ai},

• If M ∈ P and ai ∈ W, then baicM ∈ P and Fv(baicM)) = Fv(M) ∪ {ai},

• If M1,M2 ∈ P, then (M1)M2 ∈ P and Fv((M1)M2) = Fv(M1) ∪ Fv(M2).

In the µ-calculus, similar to colored trees, the symbol µ is considered a binder for
the variables ai. The set Fv(M) represents the set of free ai in M . We read the
term (M1)M2 as M1 applied to M2, so M1 is considered as a function and M2 as
an argument.

To define reductions on µ-terms, we first need to define two kinds of substitutions
and a translation.

Definition 6.2

1. A µ-substitution is an expression of the form σ = [ai :=s N ] where s ∈ {l, r},
αi ∈ W and N is a µ-term.

2. Let M,N ∈ P and σ = [ai :=s N ]. We define by induction the µ-term Mσ.
We can assume that the free variables of the µ-term N are not linked to a
µ-abstraction in the µ-term M .

• If M = x, then Mσ = x.
• If M = (M1)M2, then Mσ = (M1σ)M2σ.
• If M = µaj .M

′, then Mσ = µaj .M
′σ.

• If M = bajcM ′ and j 6= i, then Mσ = bajcM ′σ.
• If M = baicM ′ and s = r, then Mσ = baic(M ′σ)N .
• If M = baicM ′ and s = l, then Mσ = baic(N)M ′σ.

3. Let M ∈ P and i ∈ N. We define the i-translation dMei of M by induction
on M .

• If M = x, then dMei = x.
• If M = (P )Q, then dMei = (dP ei)dQei.
• If M = µaj .N , then dMei = µaj .dNei.
• If M = bajcN and j 6= i, then dMei = bajcdNei.
• If M = baicN , then dMei = dNei.

In effect, dMei is the result of replacing, starting from the innermost ones,
every subterm baicN in M by N .

We now define the redexes of a µ-term and how to reduce them.

Definition 6.3

1. A µ-redex is a µ-term of the form (µai.M)N and we call µai.M [ai :=r N ] its
contractum.

2. A µ′-redex is a µ-term of the form (N)µai.M and we call µai.M [ai :=l N ] its
contractum.

3. A ρ-redex is a µ-term of the form [aj ]µai.M and we call M [ai := aj ] its
contractum, where M [ai := aj ] represents the substitution in M of each ai by
aj.
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4. An ε-redex is a µ-term of the form µai.µaj .M and we call µai.dMej its con-
tractum.

5. A θ-redex is a µ-term of the form µai.baicM where ai 6∈ Fv(M) and we call
M its contractum.

Finally, we define the notions of reductions and normalizations.

Definition 6.4 Let R ⊆ {µ, µ′, ρ, θ, ε}.

1. If M,M ′ ∈ P and r ∈ R, we write M →r M
′, if M ′ is obtained from M by

replacing a r-redex in M by its contractum. The reductions (on the redexes)
take the following forms (the θ-redex has an additional condition).

(µai.M)N →µ µai.M [ai :=r N ]
(N)µai.M →µ′ µai.M [ai :=l N ]
bajcµai.M →ρ M [ai := aj ]
µai.µaj .M →ε µai.dMej
µai.baicM →θ M

2. If M,M ′ ∈ P, we write M �R M ′ if there exist a sequence M1, . . . ,Mn ∈ P
such that M →r1 M1 →r2 M2 →r3 · · · →rn Mn = M ′ where ri ∈ R for all
1 ≤ i ≤ n.

3. A µ-term is said to be R-normal form if it does not contain r-redex for r ∈ R.

4. A µ-term M is said to be weakly R-normalizable if there exists an R-normal
form M ′ such that M �R M

′.

5. A µ-term M is said to be strongly R-normalizable, if there exists no infinite
R-reduction paths starting from M .

First, we note that the nodes • do not appear in the normalization results we
presented in the previous sections. Therefore, we can replace them with the count-
able set V = {x, y, z, . . .}. We will restrict ourselves to the cases where the colored
trees contain only subtrees of the form [A1, . . . , An] with n = 2. Let T2 denote
the set of colored trees thus obtained. We will define a bijective translation from
T2 to P. Lemma 6.7 shows that the reduction rules we presented in the previ-
ous sections correspond to those of the µ-calculus, thereby automatically providing
normalization results.

Definition 6.5 We define the translationM : T2 −→ P by induction as follows.

• M(x) = x,

• M(fiA) = µai.M(A),

• M(siA) = baicM(A),

• M([A1, A2]) = (M(A1))M(A2).

It is easy to see that this application is bijective and it is very easy to define the
inverse bijection.

The following lemma presents the correspondence between the reduction rules
of T2 and those of P. This correspondence is a true bijection and works in both
directions. We will not provide a proof of this result, as our goal is merely to
present this application in a completely different domain from our own. Note that
the inheritance rule h transforms into two reductions in the µ-calculus. Indeed,
the colored tree [fiA,B] transforms into a µ-redex, and the colored tree [B, fiA]
transforms into a µ′-redex.
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Example 6.6 Let A = f1s7[f2f4[f6s6x, s2s2s4y], s1f5s5[y, z]], we have M(A) =
µa1.bfc(µa2.µa3.(µa5.ba5cx)ba2cba2cba3cy)ba1cµa4.ba4c(y)z.

Lemma 6.7 Let A,B ∈ T2.

1. A→h B if and only ifM(A)→µM(B) orM(A)→µ′ M(B).

2. A→sf B if and only ifM(A)→ρM(B).

3. A→ff B if and only ifM(A)→εM(B).

4. A→fs B if and only ifM(A)→θM(B).

Since the translation transforms a reduction in one calculus into a reduction in
the other, the normalization results obtained in the previous sections are preserved
in the µ-calculus.

Theorem 6.8

1. Every µ–term is strongly {µ, µ′}-normalizable.

2. Every µ–term is weakly {µ, µ′, ρ, ε, θ}-normalizable.
Proof It suffices to apply Lemma 6.7 and Theorems 4.16 and 5.13. �

The second author of this paper, along with another collaborator, presented di-
rect proofs of Theorem 6.17 in the µ-calculus in [1, 2]. The proofs presented in the
preceding sections generalize and adapt these proofs to a more general framework
where trees can branch arbitrarily. Our demonstrations not only enhance under-
standing of the earlier work but also demonstrate that to obtain normalization
results in the µ-calculus, the reduction rules µ and µ′ play equivalent roles, despite
their differing origins and properties.

6.2 Reductions on digraphs
If the previous subsection presents an application of the preceding sections to a
very particular case, in this subsection, we will provide a generalization to a much
broader class of binary relations. We will see how the proofs introduced in the
earlier sections can be adapted to this more general case by simply omitting certain
details of these complex structures. The intuitions underlying this general case stem
from the modular decomposition of a binary relation. Indeed, this result allows us
to define a notion of reduction by coloring certain modules with two distinct colors
and establishing father-son relationships between them, akin to our work on trees.
We will introduce fairly detailed definitions, although we will not provide full proofs
of all the stated results, as some are both intuitive and technically similar to what
has already been established in this paper. We will focus on digraphs, although our
results also apply to d-multigraphs.

Definition 6.9

1. A digraph is a pair G = (|G|, AG) where

• |G| is a finite set of vertices (or nodes), called base of G,
• AG is a set of arcs (or directed edges), which are ordered pairs of vertices,
i.e., AG ⊆ |G| × |G|.

2. A module M of a digraph G is a subset of |G| such that, ∀u, v ∈M , u and v
have the same neighbors outside of M , i.e., ∀x ∈ |G| \M , and ∀u, v ∈M , we
have

(
(x, u) ∈ AG if and only if (x, v) ∈ AG

)
and

(
(u, x) ∈ AG if and only if

(v, x) ∈ AG
)
.
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The modular decomposition of a digraph consists of partitioning the set of ver-
tices into modules. This decomposition simplifies the study of the digraph by re-
ducing each module to a single vertex (one can think of "contracting" each module
into a single vertex), yielding a simplified digraph on which algorithms can be more
easily applied. We will provide the necessary definitions to explain the most famous
decomposition due to Gallai [3]. This will be useful for understanding what follows.

Definition 6.10 Let G be a digraph such that |G| = {x1, . . . , xn} andM1, . . . ,Mn

be digraphs with disjoint base. We define the digraph G = G [[M1, . . . ,Mn]] as the
digraph obtained by replacing each vertex xi with the digraph Mi, and connecting
every vertex of Mi to every vertex of Mj if and only if (xi, xj) ∈ AG. In other
words, G is constructed by taking the digraphs M1, . . . ,Mn and adding edges be-
tween Mi and Mj based on the edges between the corresponding vertices xi and xj
in the digraph G. Formally, the digraph G is definied by

• |G| =
n⋃
i=1

|Mi|,

• (u, v) ∈ |AG | if and only if
(
∃ 1 ≤ i ≤ n, u, v ∈ |Mi| and (u, v) ∈ AMi

)
or(

∃ 1 ≤ i 6= j ≤ n, u ∈ |Mi|, v ∈ |Mj |, and (xi, xj) ∈ AG
)
.

It is clear that the Mi’s are modules of the digraph G. In this case, we say that the
digraph G is decomposable into modules M1, . . . ,Mn via the diagraphe G which is
called the basis of the decomposition.

Gallai’s modular decomposition of a digraph involves partitioning the vertices
into specific modules: "proper, strong and maximal." This decomposition is unique,
and its basis has a well-characterized specific form. We prefer not to provide all the
definitions and details necessary to properly state Gallai’s theorem because, on the
one hand, it would require a lot of space, and on the other hand, we will not need
its result in the following sections to establish our results. We are only interested
in the idea of modular decomposition.

We will now define a game on digraphs, starting from a modular decomposition
that is not necessarily the one from Gallai. In fact, the reductions we will define on
the digraphs will not preserve such a decomposition. The idea is to assign names
(father/son) to certain modules, as we did in the first part of the paper, with links
between them. The goal of this game is that each son module receives all the
connections associated with the corresponding father module. For this reason, we
will use the sets F and S from the first part, as well as the notations [[. . . ]], which
is useful for defining the modular decomposition. We begin by defining colored
digraphs, and then introduce reduction concepts on these objects.

Definition 6.11 Let B be a countable set of variables. We define the colored
digraph G and the set FS(G) as follows.

– If G ∈ B, then G is a colored digraph and FS(G) = ∅.

– If G is a digraph such that |G| = {x1, . . . , xn} and G1, . . . ,Gn are colored di-

graphs, then G = G [[G1, . . . ,Gn]] is a colored digraph, with FS(G) =
n⋃
i=1

FS(Gi).

The new colored digraph is seen as a decomposition into the moduls G1, . . . ,Gn
via G.

– If G′ is a colored digraph, then G = fiG′ is a colored digraph, with FS(G) =
FS(G′) \ {si}. The new colored digraph fiG′ is seen as an assignment of a
name fi to the colored digraph G′.
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– If G′ is a colored digraph, then G = siG′ is a colored digraph, with FS(G) =
FS(G′) ∪ {si}. The new colored digraph siG′ is seen as an assignment of a
name si to the colored digraph G′.

We denote by G the set of colored digraph.

We now define the main reduction on colored digraphs.

Definition 6.12

1. Let G,G1, . . . ,Gn ∈ G, G a digraph such that |G| = {x1, . . . , xn} and sk 6∈
n⋃
i=1

FS(Gi). Let σ = 〈(sk) := G [[G1, . . . ,Gj , ∗,Gj+1, . . . ,Gn]]〉 that we call “sub-

stitution”. We define Gσ by induction on G as follows:

– If G is a digraph, then Gσ = G.
– If G = G′ [[G′1, . . . ,G′l ]], then Gσ = G′ [[G1σ, . . . ,Glσ]].
– If G = fmG′ with m /∈ {i1, . . . , ik}, then Gσ = fmG′σ.
Note that, by equivalence, we can assume that m /∈ {i1, . . . , ik}, since
otherwise, we can rename m by another new integer.

– If G = smG′ with m /∈ {i1, . . . , ik}, then Gσ = smG′σ.
– If G = smG′ with m ∈ {i1, . . . , ik}, then
Gσ = smG [[G1, . . . ,Gj ,G′σ,Gj+1, . . . ,Gn]].

2. An h-redex is a colored digraph under the form

G [[G1, . . . ,Gk, fiG,Gk+1, . . . ,Gn]] ,

where n 6= 0. Its h-reduced via fi is the following colored digraph

fiG〈(si) := G [[G1, . . . ,Gk, ∗,Gk+1, . . . ,Gn]]〉.

Note that in this case, we can assume that si 6∈
n⋃
i=1

FS(Gi), thus the substi-

tution is well-defined. Intuitively, this operation consists of cutting all con-
nections to the colored digraph named by fi, and then redirecting them to all
colored digraphs named by si.

Figure 8 presents a specific example of how to obtain the h-reduced of an h-redex.
We have a father module (labeled in red as fi) connected to modules outside. This
module contains three submodules, one of which, M , is its son (labeled in blue
as si). The reduction only affects the module M , which inherits the connections
from its father. Note that the red and blue colors remain, as they can be reused
later. The situation is much more complex than what we observe in Figure 8, as
we may have multiple independent or nested sons si that will undergo substitution
after the reduction. Here, we aim to provide further motivation and justification
for this notion of reduction. All elements within the module labeled by the father
fi interact uniformly with the external environment, particularly with respect to
the son submodules labeled si. This reduction enables the father module to offload
these connections, transferring them exclusively to its son modules.
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Figure 8: h-redex and h-reduced

We now define three other notions of redex and their reducts.

Definition 6.13

1. Let G ∈ G and i ∈ N. The colored digraph dGei is defined in the same way as
for colored trees, by removing all instances of si from the colored digraph G.

2. • An ff-redex is a colored digraph under the form fifjG. Its ff-reduced
is fidGej.

• An fs-redex is a colored digraph under the form fisiG with si /∈ FS(G).
Its fs-reduced is G.

• An sf -redex is a colored digraph under the form sifjG. Its sf -reduced is
G[sj := si].

Finally, we define the notions of reductions and normalizations.

Definition 6.14 Let R ⊆ {h, ff, fs, sf}.

1. A colored digraph is said to be R-normal if it contains no r-redex for all r ∈ R.
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2. If G,G′ ∈ G, we write G �R G′ if there exist a sequence G1, . . . ,Gn ∈ G such
that G →r1 G1 →r2 G2 →r3 · · · →rn Gn = G′ where ri ∈ R for all 1 ≤ i ≤ n.

3. A colored digraph G is said to be weakly R-normalizable if there exists an
R-normal colored digraph G′ such that G �R G′.

4. A colored digraph G is said to be strongly R-normalizable if any sequence of
R-reductions of G ends.

We now define a notion of translation from colored digraphs to colored trees
that preserves all reductions.

Definition 6.15 We define the translation T : G −→ T by induction as follows.

– If G ∈ B, then T (G) = •.

– If G = G [[G′1, . . . ,G′l ]], then T (G) = [T (G1), . . . , T (Gl)].

– If G = fmG′, then T (G) = fmT (G′).

– If G = smG′, then T (G) = smT (G′).

It is easy to verify the following reduction preservation properties.

Lemma 6.16 Let G,G′ ∈ G and r ∈ {h, ff, fs, sf}. If G →r G′, then T (G) →r

T (G′).

Since the translation transforms a reduction in one calculus into a reduction in
the other, the normalization results obtained in the previous sections are preserved
on colored digraphs.

Theorem 6.17

1. Every colored digraph is strongly h-normalizable.

2. Every colored digraph is weakly {h, ff, fs, sf}-normalizable.
Proof It suffices to apply Lemma 6.16 and Theorems 4.16 and 5.13.

�

We will conclude this subsection with important remarks that highlight the
significance of our results on digraphs.

• We motivated the definition of colored digraphs through modular decomposi-
tion; however, as we will see, the definition of a module does not play a role in
our results. Thus, we can reinterpret the object G [[G1, . . . ,Gn]] in a different
way and obtain termination results for other forms of digraphs.

• The translation T that we have defined eliminates all bases of modular de-
compositions. This means that, after this translation, the h-reduction can be
reinterpreted by varying these bases after the reductions, and also in a non-
uniform manner. This mechanism leads to a much more general result, and
it will be worthwhile to explore it further to derive additional applications,
particularly in contexts where modular structures play a key role.

• Before an h-reduction, the submodules of a father module are connected in
the same way with respect to their external environment. However, after the
reduction, only the son modules of this father retain these connections, while
the others become disconnected. This observation reveals another perspective
on the h-reduction: it functions as a "cut" of connections for certain submod-
ules of a father module, a behavior not observed in h-reductions on colored
trees.
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These remarks enhance our understanding of reduction mechanisms in different
contexts and open up new avenues for future research.

Acknowledgments. We would like to thank Y. Boudabbous, C. Delhomme
and A. El Sahili for the many discussions on this work, which helped to better
present and generalize our results.

References
[1] Battyányi, P. and Nour, K. Normalization proofs for the un-typed µµ′-calculus,

Special Issue: LICMA’19 Lebanese International Conference on Mathematics
and Applications., AIMS Mathematics, 5(4), pp. 3702-3713, 2020.

[2] Battyányi, P. and Nour, K. Normalization in the simply typed λµµ′ρθε-calculus.
Mathematical Structures in Computer Science, 32(8), pp. 1066-1098, 2022.

[3] Gallai, T. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18,
pp. 25-66, 1967.

[4] David, R. and Nour, K. Arithmetical proofs of strong normalization results for
the symmetric λµµ′-calculus, In: P. Urzyczyn (editor), Typed Lambda Calculi
and Applications, TLCA ’05, Lecture Notes in Computer Science (3461), pp.
162-178, Springer Verlag, 2005.

[5] El Zein, A. About Cycles and Out-Domination in Tournaments and Rewriting
on Trees, PhD thesis, Lebanese University & Université Savoie Mont Blanc,
2023.

[6] Kirby, L. and Paris, J. Accessible independence results for Peano arithmetic,
Bulletin of the London Mathematical Society, 14, pp. 725-731, 1982.

[7] Parigot, M. λµ-calculus: an algorithmic interpretation of classical natural
deduction, Lecture Notes in Computer Science (624), Springer Verlag, Berlin,
pp. 190-201, 1992.

31


