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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• A multiple MCMC method is used for the
first time to interpret water incubation
data.

• Inferred bacterial physiology is consist
with older laboratory experiments.

• Inferred DOC biodegradability allows
for the discussion of a new model
structure.

• Uncertainties in model parameters and
measurement errors are investigated.

• Measuring bacterial information during
water incubation is recommended.
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A B S T R A C T

In aquatic ecosystems, dissolved organic carbon (DOC) plays a significant role in the global carbon cycle. Mi-
croorganisms mineralize biodegradable DOC, releasing greenhouse gases (carbon dioxide, methane) into the
atmosphere. Extensive research has focused on the concentrations and biodegradability of DOC in aquatic sys-
tems worldwide. However, little attention has been given to uncertainties regarding the physiological charac-
teristics of heterotrophic bacteria, which are crucial for biogeochemical modeling. In this study, the physiological
properties of heterotrophic bacteria and the properties of DOC biodegradability in water are inferred through a
Bayesian inversion approach. To achieve this, treated and natural water samples collected from the Seine River
basin, were inoculated and incubated in laboratory. During incubation, the concentrations of DOC and hetero-
trophic bacteria biomass were measured. Then, a multiple Monte Carlo Markov Chains method and the HSB
model (High-weight polymers, Substrate, heterotrophic Bacteria) are applied on the water incubation data. The
results indicate a higher biodegradable fraction of DOC in natural water compared to treated water and sig-
nificant variability in the fraction of fast biodegradable DOC within 5 days in both water samples. The significant
variability highlights the uncertainties/challenges in the HSB model parameterization. The seven water samples
used in the paper serve as a proof of concept. They are from various origins and display the potential of the
method to identify parameter values in a large range of values. Because mortality rate of heterotrophic bacteria
at 20 ∘C (kd20) showed a remarkable stability at 0.013 h− 1, we considered that this parameter can be fixed at this
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value. The maximum growth rates at 20 ∘C (μmax20) was 0.061 h− 1 while optimal growth yield (Y) estimated at
0.34 for treated water and at 0.25 for natural water. All these parameter values are well in accordance with
previous determinations.

1. Introduction

The dissolved organic carbon (DOC) present in surface aquatic eco-
systems serves a pivotal role in the global carbon (C) cycle (Cole et al.,
2007; Battin et al., 2009; Butman and Raymond, 2011; Raymond et al.,
2013; Drake et al., 2018), as well as in the estimation of aquatic
ecosystem metabolism (Vilmin et al., 2016; Battin et al., 2023). The
remineralization process of organic carbon releases greenhouse gases
such as carbon dioxide and methane into the atmosphere (Hotchkiss
et al., 2015; Deemer et al., 2016; Stanley et al., 2016; Prairie et al., 2018;
Marescaux et al., 2020; Hao et al., 2021; Yan et al., 2022). A recent study
has indicated that a significant portion, approximately 37 %, of terres-
trial organic carbon is respired by rivers (Battin et al., 2023). Biode-
gradable DOC (BDOC), which can be decomposed by microorganisms,
emerges as a crucial variable for understanding the global C cycle (Vonk
et al., 2015; Liu and Wang, 2022).

Servais et al. (1987) developed a method to determine the biode-
gradable fraction of DOC in waters through dark incubation, which re-
lies on the microbial degradation-induced loss of DOC. This method
stands as the most widely employed and accurate technique to date
(Begum et al., 2023). Research efforts have extensively explored the
concentration, composition, biodegradability, and sources of DOC in
aquatic systems (Søndergaard and Worm, 2001; Wickland et al., 2007;
Holmes et al., 2008; Fellman et al., 2008; Wickland et al., 2012; Abbott
et al., 2014; Vonk et al., 2015; Goffin et al., 2017; Begum et al., 2019),
with recent comprehensive reviews available (Fellman et al., 2010; Li
and Hur, 2017; Liu and Wang, 2022; Begum et al., 2023). These studies
primarily focus on the variations in DOC concentration and biodegrad-
ability across aquatic ecosystems worldwide, along with investigations
into the key drivers influencing DOC concentrations and biodegrad-
ability (Larouche et al., 2015; O’Donnell et al., 2016; Mutschlecner
et al., 2018; Liu et al., 2021).

However, the concurrent physiological properties of heterotrophic
bacteria during incubation experiments, including growth rate, mor-
tality rate, and growth yield, have been scarcely explored. These prop-
erties are indispensable for modeling the biogeochemical functioning of
aquatic ecosystems, and their uncertainties are of significant interest to
water quality modelers, biogeochemists, and environmental engineers.
The HSB (High-weight polymers, Substrate, heterotrophic Bacteria)
mechanistic model (Billen and Servais, 1989; Billen, 1991; Wang et al.,
2024) facilitates the simulation of organic carbon degradation by mi-
croorganisms, wherein the growth of heterotrophic bacteria and the
hydrolysis of organic carbon (both dissolved and particulate) are rep-
resented by Monod-Michaelis-Menten kinetic equations (Monod, 1949;
Michaelis and Menten, 1913). Since the initiation of the PIREN-Seine
program (https://www.piren-seine.fr/) in 1989, the param-
eter values of heterotrophic bacteria physiological processes in the HSB
model, including maximum growth rate, mortality rate, growth yield,
and biodegradability of organic carbon, have been determined at 20 ∘C
through laboratory experiments conducted on the Seine River (Servais
et al., 1985; Garnier et al., 1992a, 1992b; Bariller and Garnier, 1993).
These parameter values, coupled with the modeling platforms of the
PIREN-Seine program (pyNuts-Riverstrahler, PROSE, and Barman), have
facilitated numerous applications aiming at understanding the biogeo-
chemical functioning of river systems (Billen et al., 1994; Garnier et al.,
1995; Even et al., 1998, 2004; Flipo et al., 2004, 2007; Even et al., 2007;
Thieu et al., 2009, 2010; Le et al., 2015; Vilmin et al., 2016; Garnier
et al., 2018; Romero et al., 2019; Marescaux et al., 2020) and reservoirs
(Garnier and Billen, 1994; Garnier et al., 2000; Yan et al., 2022).

However, in these applications, the parameter values remain

constant during the simulation period, and their uncertainties remain
unclear. Studies focusing on sensitivity analyses of the C-RIVE model,
which integrates the HSB model, have identified the most influential
parameters on dissolved oxygen (DO) under various conditions (Wang
et al., 2018; Hasanyar et al., 2023b). These results have facilitated the
coupling of the deterministic water quality model PROSE (Even et al.,
1998) with data assimilation methods to create PROSE-PA program
(Wang et al., 2019, 2023, https://gitlab.

com/prose-pa/prose-pa). Data assimilation enables the inference
of physiological properties of living communities using measured DO
concentrations, thereby enhancing the simulation of Seine River meta-
bolism (Wang et al., 2022). Recent efforts have attempted to quantify
the DOC biodegradability of different water inflows (rivers, combined
sewer overflows, wastewater treatment plant discharges) by assimi-
lating observed DO data (Hasanyar et al., 2023a). One of the recom-
mendations proposed by Hasanyar et al. (2023a) is to establish a data
assimilation system capable of identifying a plurality of DOC biode-
gradability based on its origin (rivers, combined sewer overflows, or
discharges from wastewater treatment plants). The composition and
sources of DOC influence the variations in DOC biodegradability (Liu
et al., 2021; Liu and Wang, 2022; Begum et al., 2023). Thus, it is
imperative to accurately characterize the properties of DOC biode-
gradability and joint properties of heterotrophic bacteria in different
water inflows.

In this study, seven water samples were collected from the Seine
River basin. These water samples were sourced from surface water
(Seine River, standing water), groundwater, or treated water from
wastewater treatment plants (WWTPs) with varying nominal capacities.
The objective of this study is to infer the physiological properties of
heterotrophic bacteria and the properties of DOC biodegradability in the
seven water samples through a Bayesian inversion approach. To achieve
this, the water samples were inoculated and incubated in the laboratory.
During incubation, the concentrations of DOC and heterotrophic bac-
teria biomass were measured using wet oxidation and epifluorescence
microscopy, respectively (Garnier et al., 2021). Then, a multiple Markov
Chain Monte Carlo (MCMC) method and the HSB model are applied on
the water incubation data. The uncertainties associated with these
properties, their correlations, and measurement errors are subsequently
discussed. The results provide valuable insights and pragmatic recom-
mendations on aquatic biogeochemical modeling. The study demon-
strates the effectiveness of the Bayesian approach and the HSB model.
This methodology can be extended to analyze additional water incu-
bation datasets in future research or applied to previous samples with
existing data, enabling a deeper understanding of the influencing factors
of DOC/BDOC and the uncertainties in model parameters.

2. Material and methods

2.1. Water incubation experiment

2.1.1. Water samples
Seven water samples were collected from the Seine River basin

(Table 1). Among these, three samples were drawn from the effluent of
three WWTPs with different nominal capacities during February 2021.
They are designated as Boissettes, Rosny, and St-Thibault respectively
(Table 1). Two additional samples were procured from standing water,
known as “Grande Mare”, i.e. a pond, situated in the Orgeval basin, in
February and May 2021. They are named as Pond-Feb. and Pond-May
respectively (Table 1). The remaining two samples were sourced from
the surface water and alluvial deposits of the Seine River within the
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designated Bassée region of France during October 2021. They are
identified as River and Alluvial respectively (Table 1).

2.1.2. Water incubation in laboratory
The seven water samples were first sieved through a calcinated

Whatman GF/F filter (45 mm diameter, 0.75 μm porosity). Then, the
filtered water samples (2 l) were inoculated with 0.5 % volume of the
indigenous water type and incubated independently at an ambient
temperature of 20 ∘C in the dark and under agitation for 45 days. During
the length of each batch experiment (7 in total), one water sample was
taken 12 times during the 45 days of incubation. The concentrations of
DOC and bacterial biomass were measured by Aurora 1030 W TOC
Analyzer (Garnier et al., 2021) and epifluorescence microscopy (Garnier
et al., 1992a) respectively, all in duplicate and averaged. This incubation
method was developed by Servais et al. (1995) for determining the
biodegradable fraction of DOC in waters. The biodegradable fraction of
DOC is assumed to be fully degraded through bacterial activities after
45 days.

2.2. Mathematical modeling of water incubation experiment

2.2.1. HSB model
To simulate the water incubation experiments, the HSB model

developed by Billen et al. (1994) is employed. The HSB model explicitly
captures the mechanisms underlying organic carbon degradation and
heterotrophic bacterial activity, including growth, mortality, and
respiration. The model delineates three key variables (depicted in
Fig. 1): H, representing high-weight polymers encompassing dissolved
and particulate organic carbon (DOC and POC); S, denoting small
monomeric substrate (SMS), which emerges as a hydrolysis product of
high-weight polymers and serves as a direct energy source for the
growth and respiration of heterotrophic bacteria (HB).

2.2.2. Organic carbon in HSB model
The total organic carbon is conceptually partitioned into dissolved

(DOC) and particulate (POC) phases, each further subdivided into three
pools associated with specific biodegradability: (1) rapidly biodegrad-
able within a 5-day period (DOC1 and POC1); (2) slowly biodegradable
within a 45-day period (DOC2 and POC2); and (3) refractory (DOC3 and
POC3). Consequently, the HSB model encompasses seven distinct pools
of organic carbon (DOC1, DOC2, DOC3, POC1, POC2, POC3, and SMS).

This paper places particular emphasis on investigating the properties
of DOC biodegradability and heterotrophic bacteria. Hasanyar et al.
(2023b), utilizing observed dissolved oxygen (DO) concentrations,
introduced two parameters, denoted as b1 and s1, to capture the rela-
tionship between DOC and its three constituent pools (Eqs. (1), (2), and
(3)). Here, b1 signifies the fraction of biodegradable DOC, while s1 × b1
quantifies the fraction of fast biodegradable DOC (DOC1).

DOC1 = s1 ×b1 ×DOC (1)

DOC2 = (1 − s1)×b1×DOC (2)

DOC3 = (1 − b1)×DOC (3)

2.2.3. Dynamics of heterotrophic bacteria in HSB model
The dynamics of heterotrophic bacteria encompass growth, mortal-

Table 1
Water samples collected from different sites in Seine River basin.

Sample
name

Sample type Sample
time

Capacity DOC

(PE)* (mgC
L− 1)

Boissettes WWTP (treated water) Feb - 2021 80,000 7.00
Rosny WWTP (treated water) Feb - 2021 135,500 6.87
St-Thibault WWTP (treated water) Feb - 2021 400,000 8.10
Alluvial Hydrosystem

(groundwater)
Oct - 2021 – 4.31

Pond-Feb. Hydrosystem (surface
water)

Feb - 2021 – 4.26

Pond-May Hydrosystem (surface
water)

May - 2021 – 12.00

River Hydrosystem (surface
water)

Oct - 2021 – 4.70

* PE: population equivalence

DOC3

SMS growth HBi

de vlossid
etalucitrap

biodegradablerefractory

sinking

CO2

exoenzym
hydrolysis

particul.
exoenzym. hydrol. 

Total Organic Carbon HSB model

slowly rapidly
respiration

mortality

Heterotrophic bacteria

ɛhp1,2,3 + ɛhd1,2,3

DOC2
DOC1

POC3 POC2 POC1

Fig. 1. Flowchart of HSB model. DOC1: rapidly biodegradable dissolved organic carbon; DOC2: slowly biodegradable dissolved organic carbon; DOC3: refractory
dissolved organic carbon; POC1: rapidly biodegradable particulate organic carbon; POC2: slowly biodegradable particulate organic carbon; POC3: refractory par-
ticulate organic carbon; SMS: small monomeric substrate; HB: heterotrophic bacteria.
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ity, and respiration processes. Within the HSB model, growth is repre-
sented by a Monod function (Monod, 1949), where a maximum growth
rate at 20 ∘C (μmax20,hb, [h− 1], Eq. (4)) is employed. Mortality is described
by a first-order kinetics formulation with a mortality rate at 20 ∘C (kd20,
[h− 1]). In practical applications, parameter values at temperature T ∘C
are derived by adjusting the values determined at 20 ∘C using a tem-
perature function (Billen et al., 1994; Wang et al., 2024). Given that
water samples were incubated at 20 ∘C, Eqs. (4) and (5) do not incor-
porate any temperature effects.

μhb = μmax20,hb
[SMS]

[SMS] + Ksms,hb
(4)

d[HB]
dt

=
(
μhb − kd20,hb

)
[HB] (5)

With μmax20,hb: maximum growth rate of heterotrophic bacteria,
[h− 1].

[SMS]: concentration of small monomeric substrate, [mgC L− 1].
Ksms,hb: half-saturation constant for SMS of heterotrophic bacteria,

[mgC L− 1].
kd20,hb: mortality rate of heterotrophic bacteria, [h− 1].
[HB]: concentration of heterotrophic bacteria, [mgC L− 1].
The growth of bacteria depends on the availability of small mono-

meric substrate. The uptake of small monomeric substrate (uptS) by
heterotrophic bacteria is determined through the utilization of a growth
yield (Yhb) which has been found constant in the 8–25∘C range of tem-
perature (Bariller and Garnier, 1993).

uptS =
μhb

Yhb
[HB] (6)

With μhb: effective growth rate of heterotrophic bacteria, Eq. (4),
[h− 1].

Yhb: growth yield of heterotrophic bacteria, [− ].
[HB]: concentration of heterotrophic bacteria, [mgC L− 1].
uptS: uptake of small monomeric substrate for bacterial activity,

[mgC L− 1 h− 1].

2.2.4. Hydrolysis of organic carbon in HSB model
As previously mentioned, small monomeric substrate (SMS) is

directly assimilated by heterotrophic bacteria. Consequently, high-
weight polymers, represented by dissolved organic carbon (DOC) and
particulate organic carbon (POC), require hydrolysis to generate SMS.
Biodegradable POC (POC1 and POC2) undergo hydrolysis, producing
biodegradable DOC (DOC1 and DOC2). The kinetics governing the hy-
drolysis of biodegradable POC in the HSB model are characterized by a
first-order equation incorporating a hydrolysis rate constant (kpoci ,
[h− 1]). Conversely, DOC hydrolysis is exoenzymatic, resulting in the
formation of SMS. This exoenzymatic process is mathematically
described using a Michaelis-Menten function, as outlined by Michaelis
and Menten (1913).

hyddoci = emax,doci ,hb
[DOCi]

[DOCi] + Kdoci ,hb
[HB] (7)

With emax,doci ,hb: maximum hydrolysis rate of DOCi for heterotrophic
bacteria, i = 1,2, [h− 1].

Kdoci ,hb: half-saturation constant for DOCi of heterotrophic bacteria,
i = 1,2, [mgC L− 1].

[HB]: concentration of heterotrophic bacteria, [mgC L− 1].

2.2.5. Bacterial physiological properties and DOC biodegradability in HSB
model

The physiological properties of heterotrophic bacteria within the
HSB model are represented by parameters such as the maximum growth
rate (μmax20,hb), the growth yield (Yhb), and the mortality rate (kd20,hb), all
determined at 20 ∘C. Studies have illustrated that these parameters have

a considerable influence on river metabolism (Wang et al., 2018;
Hasanyar et al., 2023b). Similarly, the properties of DOC biodegrad-
ability are delineated by the parameters b1 and s1 (Eqs. (1) and (2)).
These parameter values are crucial for aquatic biogeochemical modeling
and their uncertainties are of great interest to scientific community in
biogeochemical modeling.

In this study, the three parameters representing heterotrophic bac-
teria properties (μmax20,hb, Yhb, and kd20,hb), the two parameters charac-
terizing DOC biodegradability (b1 and s1), and the initial concentrations
of heterotrophic bacteria and DOC (hbinit and DOCinit) are selected and
included in the framework of Bayesian inversion.

2.3. Framework of Bayesian inversion

2.3.1. Forward model
The HSB model simulates the dynamics of DOC and heterotrophic

bacteria, given the above mentioned parameters and the initial con-
centrations. However, these parameters are considered unknown and
the initial concentrations are uncertain. These inputs need to be inferred
from the noisy water incubation data. The Bayesian inversion method is
employed to estimate these parameters under uncertainty by integrating
the HSB model with the observation data. Formally, given x, the
parameter vector we seek to identify, and an initial state y0 (concen-
trations of DOC and heterotorophic bacteria), running the HSB model,
denoted byM, yields a sequence y1:T of DOC concentration and bacteria
biomass along time. The problem is then to retrieve the parameters as
well as the initial conditions, given the observation data y*t , where the
subscript t corresponds to the times when the samples were analyzed
during the incubation. We can formalize the forward model and the
observation process as follows:

y1:T = M
(
y0, x

)
(8)

y*t = Hy1:T + ηt (9)

whereH is the observation operator and ηt is the measurement error. t is
the vector of times at which the observations were measured. Consid-
ering the stochastic unknowns y0, x and errors, we can derive their
conditional probability distribution with respect to the observations.
This quantity is termed the posterior distribution and is described below.

2.3.2. Bayesian inference
From Eqs. (8) and (9), we read that y*t is conditionally independent of

y0, x, knowing y1:T . Applying the Bayes theorem (Bayes, 1763), the
posterior (target) distribution of the model parameters and initial state,
f
(
x,y0|y*t

)
, can be derived up to a normalizing constant:

f
(
x,y0|y

*
t
)
∝f
(
y*t |y1:T

)
f
(
y1:T|x,y0

)
f(x)f

(
y0
)

(10)

where f(x) and f
(
y0
)
are the prior distribution of the model parameters

x and initial states y0 (here, initial concentrations of DOC and hetero-
trophic bacteria) that are considered independent. f

(
y*t |y1:T

)
is the

likelihood which gives the probability to observe y*t given model states
y1:T.

2.3.3. MCMC methods: From random walk Metropolis to DREAM
Although no analytical expression is available for the posterior dis-

tribution (f
(
x, y0|y*t

)
), we can access it through sampling. This can be

effectively achieved through Markov Chain Monte Carlo (MCMC)
simulation (Robert and Casella, 2004). This methodology involves
constructing a Markov chain that will converge in distribution toward
the target distribution f

(
x,y0|y*t

)
. The pioneering MCMC method,

introduced by Metropolis et al. (1953), is commonly known as the
Random Walk Metropolis (RWM) algorithm. To explore the posterior
distribution, the algorithm employs trial moves (random walks or other)
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from the current value of the parameters (x) to propose new values (xp),
where xp ∼ q(⋅|x) and q(⋅) represents the proposal distribution. In order
to ensure the convergence of the Markov chain (Hastings, 1970),
probabilities for accepting the trial move from x to xp (αx→xp ) and from
xp to x (αxp→x) are introduced:

αx→xp = min

[

1,
f
(
xp, yp0|y*t

)
q(x|xp)

f
(
x,y0|y*t

)
q(xp|x)

]

(11)

By defining a proposal distribution q(⋅) and utilizing the acceptance
probability αx→xp (Eq. (11)), we can iteratively determine whether to
accept or reject trial moves, thereby approximating the target distribu-
tion. This approach is known as the Metropolis-Hastings algorithm
(Hastings, 1970). In cases where the proposal distribution is symmetri-
cal (q(x|xp) = q(xp|x)), such as with a centered normal distribution, the
acceptance probability αx→xp can be simplified (Eq. (12)):

αx→xp = min

[

1,
f
(
xp, yp0|y*t

)

f
(
x,y0|y*t

)

]

(12)

Since the inception of the RWM algorithm (Metropolis et al., 1953),
more sophisticated MCMC methods have emerged to enhance the effi-
ciency of MCMC simulations. These advancements include both single
and multiple chain methods. Single chain methods, such as adaptive
Metropolis (AM) (Haario et al., 1999) and delayed rejection adaptive
Metropolis (DRAM) (Haario et al., 2006), dynamically adjust the
covariance of the proposal distribution. Multiple chain methods utilize
differential evolution (Storn and Price, 1997; Price et al., 2005) and
subspace sampling (Vrugt et al., 2009) to expedite convergence to the
target distribution, exemplified by the Differential Evolution Markov
chain (DE-MC) (Braak, 2006) and the DiffeRential Evolution Adaptive
Metropolis (DREAM) (Vrugt et al., 2009; Vrugt, 2016). When the target
distribution is hard to reach, for instance when its support is small in the
space of the parameters, other interacting schemes targeting tempered
versions of the posterior distribution can also be used (Romary, 2010;
Bottero et al., 2016).

Multiple chains methods prove efficient in addressing issues such as
local optima, multimodality, and high-dimensional parameter spaces,
which are challenges that single chain methods struggle to deal with
(Braak, 2006; Vrugt, 2016). Studies by Laloy and Vrugt (2012) and
Vrugt (2016) have demonstrated that the DREAM algorithm out-
performs the aforementioned adaptive MCMC methods. Consequently,
we employ the DREAM algorithm to infer the properties of heterotrophic
bacteria and the biodegradability of DOC in the seven water samples
collected from the Seine River basin. Detailed descriptions of the
aforementioned algorithms, including DREAM, are beyond the scope of
this paper, and interested readers are referred to Vrugt (2016) for further
information.

2.3.4. Prior distributions of considered parameters and likelihood function
used in Bayesian inference

The parameter ranges, or parameter spaces, of the physiological
properties and biodegradability of DOC are delineated on the basis of
previous sensitivity analyses of the C-RIVE model (Wang et al., 2018;
Hasanyar et al., 2023b) and detailed in Table 2. A uniform distribution
(U (min,max)) is adopted as the prior distribution (Eq. (10)), f(x)) for
bacterial physiology (growth rate, growth yield, and mortality rate) and
DOC biodegradability while a normal distribution (f

(
y0
)
= N (y*0 ,σ

2
0)
),

centered as the measured concentration, is considered for the initial
concentrations of DOC and heterotrophic bacteria. σ0 represents the
standard deviation of the observations errors of the initial concentra-
tions. It is fixed at 5 % of the measured values for DOC and at 10 % for
bacterial biomass. The parameters and the initial concentrations are
assumed to be mutually independent.

In this study, the observation data (y*) encompass concentrations of
DOC (y*doc) and biomass of heterotrophic bacteria (y

*
hb). To address the

measurement errors of DOC concentration (ηt,doc) and bacterial biomass
(ηt,hb) independently, two coefficients (shb and sdoc) are introduced.

ηt,hb ∼ N (
0,σ2t,hb

) σt,hb = shb × y*t,hb (13)

ηt,doc ∼ N (
0,σ2t,doc

) σt,doc = sdoc × y*t,doc (14)

The likelihood f
(
y*t |y1:T

)
can be evaluated using the probability

density function of the multivariate normal distribution:

f
(
y*t |y1:T

)
∝
∏

i∈{doc,hb}

1
σT
i
exp

(

−
1
2
∑T

t=1

(y*i,t − yi,t
σi

)2
)

. (15)

By incorporating the two coefficients shb and sdoc as unknown in the
MCMC algorithm, the measurement errors of DOC concentration and
bacterial biomass can be inferred. A uniform distribution is adopted as
the prior distribution (shb ∼ U (0.05,0.30) and sdoc ∼ U (0.05,0.30)). In total, 9
parameters (unknown) are integrated into the DREAM algorithm
(Table 2).

2.3.5. Convergence diagnostic of MCMC and model performance
evaluation

To evaluate whether the multiple chains have converged to the target
distribution, the potential scale reduction factor (R̂), proposed by Gel-
man and Rubin (1992), is computed. This diagnostic involves comparing
the between-chain and within-chain variances of each parameter.

W =
1

N(n − 1)
∑N

j=1

∑n

i=1

(
xij − xj

)2
(16)

B
n
=

1
N − 1

∑N

j=1

(
xj − x

)2 (17)

V̂ =
n − 1
n

W+
N+ 1
Nn

B (18)

R̂ =

̅̅̅̅̅

V̂
W

√

(19)

With N: number of Markov chains.
n: number of iterations of each chain.

Table 2
Parameter ranges and prior distribution.

Parameters Unit Description Range Prior

μmax20,hb [h− 1] Maximum growth rate
at 20 ∘C

[0.01, 0.15] U (0.01,0.15)

Yhb [− ] Growth yield at 20 ∘C [0.03, 0.50] U (0.03,0.5)

kd20,hb [h− 1] Mortality rate at 20 ∘C [0.01, 0.08] U (0.01,0.08)

b1 [− ] BDOC/DOC ratio [0.05, 0.54] U (0.05,0.54)

s1 [− ] DOC1/BDOC ratio [0.05, 0.95] U (0.05,0.95)

hbinit [mgC
L− 1]

Initial bacteria biomass N (
y*0 ,(0.10y

*
0)

2
)

DOCinit [mgC
L− 1]

Initial concentration of
DOC

N (
y*0 ,(0.05y

*
0)

2 )

shb [− ] Coefficient to determine
standard deviations of
observation errors of
bacteria biomass

[0.05, 0.30] U (0.05,0.30)

sdoc [− ] Coefficient to determine
standard deviations of
observation errors of
DOC

[0.05, 0.30] U (0.05,0.30)

BDOC: biodegradable dissolved organic carbon in 45 days
DOC1: rapidly biodegradable dissolved organic carbon in 5 days
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W: averaged variances of N chains, within-chain variance.
B
n: variance of the means of multiple chains, between-chain variance.
In a state of convergence, both V̂ andW serve as unbiased estimates

of the true variance of the target distribution. The original proposal by
Gelman and Rubin (1992) suggests running the chains for 2n iterations
and basing the calculation of R̂ on the final n iterations for each
parameter of interest. If R̂ is less than 1.2 for each parameter, then the
latter half-sequences have reached approximately convergence to the
target distribution (Brooks and Gelman, 1998; Vrugt, 2016). In this
paper, the more stringent criteria of R̂ ≤ 1.05 is adopted.

The RMSE (root mean square error) and pbias (percent bias) are used
to evaluate the performance of the HSB model.

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
(simi − obsi)2

/
m

√

(20)

pbias = 100×

∑m

i=1
(simi − obsi)

∑m

i=1
obsi

(21)

With m: number of observations.
sim: simulated concentrations.
obs: observed concentrations.

3. Results

3.1. MCMC setting and convergence diagnostic

A total of 9 parameters (Table 2) require characterization using the
DREAM algorithm. Recent research has suggested that the number of
chains (N) should be at least twice the dimension of the parameters (d,
N ≥ 2d) for differential evolution-based samplers (Brunetti et al., 2023).
In this study, 20 Markov chains, each comprising 50,000 iterations, have
been employed to ensure convergence of the DREAM sampler for each
water sample. The potential scale reduction factors (R̂) indicate that the
DREAM samplers achieve convergence rapidly and that 50,000 itera-
tions are deemed sufficient. Convergence was achieved in less than
10,000 iterations (Fig. SI-1).

3.2. Simulated concentrations of DOC and heterotrophic bacteria

After convergence, the last half-sequences of each Markov chain
(25,000 iterations) are used to estimate the posterior distributions of the
parameters through Kernel Density Estimation. This enables the esti-
mation of the 95 % credibility intervals of the posterior distributions
(Fig. 4 and Table SI-1). The optimal parameter values are considered as
the values corresponding to the maximum a posteriori (MAP) during
these 25000× 20 iterations (Table SI-1). Subsequently, the

Fig. 2. Simulated concentrations of DOC and heterotrophic bacteria using the optimal parameter values corresponding to the maximum a posteriori (noted as
“Simulation” in the graphs) and their 95 % credibility intervals (for 500,000 realizations).
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concentrations of DOC and heterotrophic bacteria are simulated using
the HSB model and the optimal parameter values (MAP).

The findings demonstrate that the dynamics of DOC biodegradation
are effectively simulated with the optimal parameter values (Fig. 2).
Heterotrophic bacteria utilize biodegradable DOC for both growth and
respiration. Rapid bacterial growth primarily occurs within the initial 5
days, coinciding with the degradation of fast biodegradable DOC (DOC1,
Eqs. (1), (2)). Following this, bacterial growth is constrained by the
availability of small monomeric substrate (SMS), which is in turn limited
by the hydrolysis of slowly biodegradable DOC (DOC2, Eqs. (2) and (7)).

The maximum RMSE of simulated DOC concentrations is 1.473 mgC
L− 1 for Pond-May sample. The percent bias of − 6.91 % indicates that the
simulated concentrations are averagely smaller than observed ones
(Fig. 2). The maximum pbias of simulated DOC concentrations is − 6.94
% for River sample while its RMSE is calculated at 0.503 mgC L− 1. For
other samples, the RMSE of simulated DOC concentrations are less than
0.5 mgC L− 1 and the pbias are not greater than 1 %. The bacterial
biomass tend to be underestimated compared to the observations
(Table 3). Although relative important pbias are estimated for Alluvial
and Pond-Feb. samples (− 12.37 % and − 9.85 %), the RMSE of simu-
lated bacterial biomass are around 0.02 mgC L− 1 for all samples
(Table 3). The statistical criteria confirm the high performances of the
HSB model with the optimal parameter values (MAP) which charac-
terize the biodegradability of DOC and physiological properties of het-
erotrophic bacteria.

3.3. Biodegradability of DOC

3.3.1. Biodegradable dissolved organic carbon (BDOC)
The results reveal that the water collected from the hydrosystem

(surface water and groundwater) generally contains higher concentra-
tions of BDOC compared to water sampled from the discharge of
WWTPs, both in terms of absolute concentrations and as a percentage of
DOC (Fig. 3). Specifically, the estimated BDOC concentrations in natural
water range from 0.61 mgC L− 1 (Pond-Feb.) to 5.74 mgC L− 1 (Pond-
May), whereas for treated water, they vary from 0.82 mgC L− 1 (St-
Thibault) to 1.40 mgC L− 1 (Boissettes). Although the BDOC fraction
constitutes averagely 15.7 % of the DOC in treated water, this propor-
tion is lower for the St-Thibault WWTP (10.7 %). Conversely, the
biodegradable fraction of DOC (b1) in hydrosystem water samples is
approximately 50 %, except for the water sampled from Pond in
February 2021 (15 %, with a 95 % credibility interval of [13.2 %, 20.3
%], Fig. 3 and Table SI-1). Notably, the BDOC fraction is estimated at
47.9 % for the water sampled from Pond in May 2021 (Fig. 3), with a 95
% credibility interval of [33.2 %, 52.6 %] (Table SI-1). The highest
percentage of BDOC (represented by the value of b1) is observed in water
sampled from alluvial sources, with a value of 53.8 % (Fig. 3).

3.3.2. Fast biodegradable dissolved organic carbon (BDOC fast)
Concerning the fraction of fast biodegradable DOC within 5 days

(BDOC fast, denoted as s1 = DOC1
BDOC, Eq. (1)), it exhibits considerable

variability (Fig. 3). No significant difference can be observed between
treated and natural water samples. The estimated fast BDOC (s1, Eq. (1))
ranges from 9.3 % to 75.2 % of BDOC for water samples collected from
WWTPs, while it varies between 6.7 % and 38.4 % of BDOC for hydro-
system water samples. However, the 95 % credibility intervals reveal
substantial uncertainties regarding the percentage of BDOC fast (Fig. 4).

For instance, the 95% credibility interval of the fraction of fast BDOC for
the River water sample suggests a range from 7.7% to 86.2 % (Table SI-1
and Fig. 3), which is similar for Boissettes ([6.7 %, 85.4 %]), Rosny ([8.8
%, 84.8%]) Alluvial ([9.4 %, 83.3 %]), and Pond-May ([5.5%, 75.4%]).

3.4. Physiological properties of heterotrophic bacteria

Utilizing the MCMC algorithm, it becomes feasible to characterize
the physiological properties of heterotrophic bacteria (i.e., maximal
growth rate at 20 ∘C, growth yield, and mortality rate at 20 ∘C). The
posterior distributions of the mortality rate at 20 ∘C (kd20,hb) indicate
predominantly low probable values and exhibit minimal uncertainties
across all water samples (Fig. 4). The average of the optimal parameter
values for the mortality rate at 20 ∘C stands at 0.013 h− 1.

The estimated growth yield of heterotrophic bacteria (Yhb) displays
variability in both treated and natural water samples, ranging from
0.125 to 0.498 for natural water and from 0.179 to 0.491 for treated
water respectively (Table SI-1 and Fig. 4). The averaged optimal growth
yield of bacteria in treated water appears to surpass that in natural water
(0.337 vs. 0.247). Notably, Pond-Feb and St-Thibault WWTPs exhibit
the highest optimal values of growth yield (Fig. 4). The posterior dis-
tributions of the maximum growth rate at 20 ∘C (μmax20,hb) for Rosny, St-
Thibault, and River depict wide 95 % credibility intervals, indicative of
substantial uncertainties (Fig. 4). The average optimal value of μmax20,hb

is determined as 0.061 h− 1.

4. Discussions

4.1. Uncertainties of parameterization of DOC biodegradability in the
HSB model

In the HSB model, DOC is partitioned into three pools based on their
biodegradability rates (Section 2.2.2). The results reveal that the
parameter governing the fraction of fast biodegradable DOC within 5
days (s1) exhibits greater uncertainties (Fig. 4) compared to the fraction
of biodegradable DOC (b1). The posterior distributions of s1 are notably
dispersed, displaying large 95 % credibility intervals (Fig. 4). Further-
more, a wide posterior distribution, such as a uniform distribution,
suggests minimal influence of the parameter on the simulation out-
comes. A recent sensitivity analysis highlighted that the fraction of
biodegradable DOC (b1) exerts more significant influence than the
fraction of fast biodegradable DOC (s1) on dissolved oxygen levels
during low flow conditions (Hasanyar et al., 2023b). Particularly, the
fraction of biodegradable DOC (b1) emerges as the second most influ-
ential parameter under high bacteria net growth conditions (Hasanyar
et al., 2023b). The marginal posterior distributions obtained in this
study through experiments reaffirm the findings of the sensitivity
analysis conducted by Hasanyar et al. (2023b) on oxygen data from river
water.

In river water quality modeling, determining the seven fractions of
total organic carbon (Section 2.2.2) for incoming inflows like river
tributaries, combined sewer overflow, and WWTP discharge is often
challenging. To mitigate uncertainties regarding the fraction of fast
biodegradable DOC (s1), a variant of the HSB model with five organic
carbon pools instead of seven could be alternatively used (Wang et al.,
2020). This approach involves grouping slowly and rapidly biodegrad-
able organic carbon (BDOC = DOC1 + DOC2 and BPOC = POC1 +

Table 3
Root mean square error (RMSE, mgC L− 1) and percent bias (pbias, %) for concentrations of DOC and bacteria.

Criteria Boissettes Rosny St-Thibault Alluvial Pond-Feb. Pond-May River

RMSEdoc 0.285 0.109 0.312 0.258 0.099 1.473 0.503
pbiasdoc 0.26 − 0.14 − 0.16 0.65 − 0.20 − 6.91 − 6.94
RMSEhb 0.013 0.024 0.020 0.027 0.021 0.006 0.024
pbiashb 0.44 − 3.13 − 3.43 − 12.37 − 9.85 − 0.06 − 2.69
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POC2). The five organic carbon pools in this setup include the small
monomeric substrate (SMS), the biodegradable DOC (BDOC = b1×
DOC), the biodegradable POC (BPOC), and the refractory organic car-
bon (RDOC = (1 − b1) × DOC and RPOC). However, this adjustment
may affect other parameter values, such as the half-saturation constant
for small monomeric substrate (Ksms,hb, Eq. (4)), the maximum hydrolysis
rates of biodegradable organic carbon, and potentially the physiological
properties of heterotrophic bacteria (Wang et al., 2020). Therefore,
further experiments and investigations would be necessary in future
studies to confirm the relevance of physiological parameters and the
robustness of the HSB model with five vs. seven organic carbon pools.

4.2. Uncertainties of physiological properties of heterotrophic bacteria in
the HSB model

4.2.1. Averaged physiological properties of heterotrophic bacteria
The posterior distributions of the mortality rate at 20 ∘C (kd20,hb)

exhibit pronounced peaks, compared to growth rate and growth yield
(Fig. 4). This observation aligns with the recent sensitivity analysis of
the C-RIVE model, which identified the mortality rate at 20 ∘C as the
most influential parameter affecting dissolved oxygen concentration
under low-flow conditions (Hasanyar et al., 2023b). The average
optimal value of kd20,hb (0.013 h− 1) closely resembles the disappearance
rate of small heterotrophic bacteria documented by Garnier et al.
(1992b) in the Seine River (0.0125 h− 1). Likewise, the average of the
maximum growth rates at 20 ∘C of 0.061 h− 1 (μmax20,hb) aligns with the
value of 0.065 h− 1 reported by Garnier et al. (1992b) for the Seine River.
This consistency suggests the dominance of small heterotrophic bacteria
(Garnier et al., 1992a) in the seven water samples, corroborated by re-
sults from epifluorescence microscopy. In addition, the averaged
optimal growth yield (Yhb) is estimated at 0.34 for treated water and at
0.25 for natural water, which is coherent with the historical reference
growth yield value of 0.33 ± 0.06 experimentally determined (Bariller
and Garnier, 1993) and 0.25 mostly used in the HSB model for natural
waters (Billen et al., 1994; Wang et al., 2024).

4.2.2. Parameter correlation: Growth yield (Yhb), mortality rate at 20 ∘C
(kd20,hb), and biodegradability of DOC (b1)

A scatter plot of all parameters enables the investigation of param-
eter correlations. The results reveal positive correlation (Fig. SI-2) be-
tween the growth yield (Yhb) and the mortality rate at 20 ∘C (kd20,hb) for
the Rosny, Alluvial, and Pond-May water samples with correlation co-
efficients of 0.63, 0.72, and 0.83 respectively. Conversely, a negative
correlation between the growth yield (Yhb) and biodegradability of DOC
(b1) has been observed for the St-Thibault, Pond-Feb, and River samples
(correlation coefficients of − 0.82, − 0.55, and − 0.58 respectively).

These scatter plots show strong nonlinear interactions between pa-
rameters (banana shaped, Fig. SI-2). The substantial interactions of the
growth yield (Yhb), mortality rate at 20 ∘C (kd20,hb), and biodegradability
of DOC (b1) with other parameters have been illustrated by Sobol
sensitivity analyses (Wang et al., 2018; Hasanyar et al., 2023b). These
interactions present challenges for calibrating water quality models or
applying data assimilation techniques (Wang et al., 2019, 2022) due to
the concept of equifinality (Beven, 1989, 2006). The posterior distri-
butions of kd20,hb show pronounced peaks with similar optimal values for
all water samples. Therefore, the authors recommend fixing the mor-
tality rate at 20 ∘C of the small heterotrophic bacteria (Garnier et al.,
1992b) to a constant value of 0.013 h− 1 for future data assimilation
applications.

4.3. Uncertainties of the measurement of DOC concentrations and
bacterial biomass

4.3.1. Initial DOC concentrations and initial bacterial biomass
The marginal posterior distributions of initial bacterial biomass

(hbinit) are consistent with the prior distributions (Fig. SI-3), which in-
dicates that the prior distributions of initial bacterial biomass are well
defined. The standard deviation of observation errors of the initial
bacterial biomass was set to 10 % of the measured values (Table 2),
which can then be considered as reasonable. Generally, the prior dis-
tributions of the initial DOC concentrations are well defined also. Spe-
cifically, the measured initial DOC concentrations for Alluvial and Pond-
Feb. samples appear to be higher than the posterior values. The MCMC
method enables thus the inference of the initial DOC concentration using
water incubation data and refinement of the prior distributions of
DOCinit (Fig. SI-3).

4.3.2. Measurements during water incubation
The two parameters (shb and sdoc, Table 2) to determine the standard

deviation of observation errors allow to originally explore the mea-
surement and model uncertainties during water incubation, which were
rarely quantified in water quality modeling. The results show that the
standard deviation of measurement uncertainties of bacterial biomass
represents averagely 19.5 % of the measured values (Table SI-2), which
corresponds to 0.0245 mgC L− 1. For DOC, standard deviation of mea-
surement uncertainties accounts for 9 % of the measured concentrations,
and a concentration of 0.493 mgC/L.

4.4. Recommendations on parameter ranges for future studies

Parameter ranges play a crucial role in sensitivity analysis and data
assimilation simulations. A recent study highlights the potential for
quantifying DOC biodegradability (b1, Table 2) through oxygen data
assimilation (Hasanyar et al., 2023a, preprint). However, employing a
shared DOC biodegradability parameter range for different water in-
flows (river tributaries, combined sewer overflow, WWTP discharge)
lacks realism, as variations in DOC composition and sources significantly
impact biodegradability (Liu et al., 2021; Liu and Wang, 2022; Begum
et al., 2023) and microbial processes (McCarren et al., 2010; Muscarella
et al., 2019; Zhou et al., 2024).

This study proposes distinct parameter ranges for DOC biodegrad-
ability and the physiological properties of heterotrophic bacteria based
on water origins (treated water - WWTPs or natural water - Hydro-
system). For each water type (WWTP or Hydrosystem), the parameter
ranges (Table 4) are determined based on the minimum and maximum
levels of the 95 % credibility intervals of posterior distributions
(Table SI-1). These parameter ranges can be employed in future data
assimilation efforts to differentiate the DOC biodegradability of various
sources.

Certainly, the parameter ranges presented in this section could
benefit from further refinement through the inclusion of additional in-
cubation data from a broader spectrum of water sources and seasons. For
instance, the incorporation of combined sewer overflow data, which
remains unexplored, would enhance the simulation of river metabolism
during extreme events such as storms (Wang et al., 2022).

4.5. Benefit of bacterial information during water incubation experiment
for biogeochemical modeling

In practice, biogeochemists conducting water incubation

Table 4
Estimated parameter ranges related to the physiological properties of hetero-
trophic bacteria and DOC biodegradability for treated water (WWTPs) and
natural water (Hydrosystem).

Parameters μmax20,hb Yhb b1

[h− 1] [− ] [− ]

WWTPs [0.011, 0.141] [0.129, 0.489] [0.092, 0.301]
Hydrosystem [0.018, 0.140] [0.088, 0.496] [0.114, 0.528]
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experiments typically focus on the biodegradable fraction of DOC (Liu
et al., 2021; Liu and Wang, 2022; Begum et al., 2023) rather than
directly measuring bacterial biomass. Consequently, until now the
MCMC method has been exclusively applied with only DOC data to
explore the uncertainties in predicting the biomass and physiological
properties of heterotrophic bacteria. The results demonstrate that the
DOC concentrations can be accurately simulated (not shown here).
However, the uncertainties associated the bacterial biomass are notably
high due to the absence of observed bacterial information in the MCMC
algorithm. In this context, while the biodegradable fraction of DOC can
be effectively determined, the physiological properties of heterotrophic
bacteria remain highly uncertain. These findings underscore the
importance of incorporating bacterial biomass information into MCMC
analyses to infer the physiological properties of heterotrophic bacteria
(Garnier et al., 1992a), which are essential for a comprehensive
biogeochemical modeling (Wang et al., 2024).

5. Conclusions

The paper employs a multiple Markov Chain Monte Carlo method
(DREAM) to infer the physiological properties of heterotrophic bacteria
and the biodegradability of dissolved organic carbon in the Seine River
basin, France. To achieve this, seven water samples were collected from
either the hydrosystem (river/standing water; groundwater - alluvial) or
from the discharge of wastewater treatment plants in 2021. These water
samples were inoculated and incubated at an ambient temperature of 20
∘C. The concentrations of DOC and heterotrophic bacteria were moni-
tored over a 45-day period. The HSB model was utilized to simulate the
dynamics of organic carbon degradation during the incubation period.
Based on the results, the uncertainties of bacterial physiology and DOC
biodegradability, the parameter correlations, the measurement un-
certainties, and the parameter ranges are discussed. The seven con-
trasted water samples used in the paper serve as a proof of concept. They
indeed display the potential of the method to identify parameter values
in a large range of value. We propose a first synthesis of those values in
the form of narrowed parameter ranges by sample origin. This meth-
odology can be extended to analyze additional water incubation datasets
in future research by experimentalists focused on the carbon cycle in
aquatic environment or applied to previous samples with existing data,
enabling a deeper understanding of the influencing factors of DOC/
BDOC and the uncertainties in model parameters.

The following conclusions emerge from the study.

• The combination of laboratory experiments (water incubation) and
modeling (HSB model) using a Bayesian approach is effective for
investigating the physiological properties of heterotrophic bacteria,
DOC biodegradability, and the uncertainties in parameters and
measurements.

• The biodegradable fraction of DOC exhibits a notably higher pres-
ence in the natural water samples compared to the treated water
samples. Additionally, the fraction of fast biodegradable DOC within
a 5-day period displays considerable variability across both water
sample types. The wide posterior distributions underscore substan-
tial uncertainties/challenges in parameterizing the fraction of fast
biodegradable DOC within the HSB model. As a potential solution, a
version of the HSB model with five pools of organic carbon, rather
than the original seven, is proposed.

• The determined mortality rate of heterotrophic bacteria at 20 ∘C
exhibits remarkable stability at 0.013 h− 1, with no statistically sig-
nificant differences observed between natural and treated water
samples. Regarding the parameter correlations, the authors recom-
mend fixing the mortality rate at 20∘C to 0.013 h− 1 in future data
assimilation applications.

• Treated water is characterized by higher growth yields of hetero-
trophic bacteria compared to natural water (0.34 vs. 0.25).

• Bacterial biomass data is necessary for inferring the physiological
properties of heterotrophic bacteria using the MCMC method.
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exploration des codes et expérimentation numérique en conditions contrôlées.
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