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CONDITIONAL NORMALIZING FLOWS FOR NONLINEAR REMOTE SENSING IMAGE
AUGMENTATION AND CLASSIFICATION

Victor Enescu Hichem Sahbi

Sorbonne University, CNRS, LIP6, F-75005, Paris, France

ABSTRACT

Deep neural networks have recently shown outstanding per-
formances in remote sensing image classification. The suc-
cess of these models is highly reliant on the availability of
large collections of hand-labeled training images which are
usually scarce. Data augmentation mitigates this scarcity by
enriching labeled training sets using different geometric and
photometric transformations, or by relying on deep genera-
tive models. In this paper, we investigate the potential of gen-
erative models, and particularly normalizing flows (NFs), in
remote sensing image augmentation and classification. The
main contribution relies on a novel conditional NF model that
achieves a bidirectional mapping of images between ambient
and latent spaces with the particularity of learning disentan-
gled multi-modal distributions through image classes. The
proposed NF also achieves nonlinear augmentations in highly
intricate ambient spaces by mapping images to latent spaces
where augmentations become linear and more tractable. Ex-
tensive experiments conducted on the EuroSAT benchmark
show the benefit of our NF-based augmentation when learn-
ing vision transformers.

Index Terms— Generative Models, Normalizing Flows,
Transformers, Remote Sensing Image Augmentation and
Classification

1. INTRODUCTION

Remote sensing image classification seeks to automatically
assign labels to the visual content of aerial and satellite im-
ages [1]. This task is challenging as observed scenes are
subject to different sources of variability due to eclectic con-
tents and sensors. This variability can either be attenuated
using different normalization techniques (such as registration,
radiometric corrections, etc), or considered as a part of scene
appearance modeling. The latter is particularly successful and
relies on different machine learning models. Among these
models, deep neural networks [2–4] are particularly interest-
ing but their success is tributary to the availability of large
hand-labeled image collections. For some tasks, including re-
mote sensing image classification, labeled training collections
are difficult to obtain and their hand-labeling is cumbersome
[5, 6]. Alternative and more effective approaches rely on data

augmentation (DA) in order to mitigate the scarcity of labeled
data.
Data augmentation is nowadays becoming mainstream, in
training deep neural networks, and its purpose is to create
artificial data by leveraging different transformations. Staple
augmentation methods rely on geometric and photometric
transformations (mirroring, etc.) while more sophisticated
DA methods combine images through different operations
such as mixing [7] and interpolation [8]. Alternative aug-
mentation methods — producing more realistic images —
are based on deep generative models. Their principle consists
in mapping images from ambient to latent spaces, achiev-
ing augmentation in the latent spaces, prior to reconstructing
images in the ambient spaces. In particular, variational au-
toencoders (VAEs) [9–12] follow this principle and proceed
either by (i) interpolating images in the latent spaces while
adversarially learning class-dependent masks that make the
resulting interpolated images realistic, or (ii) by injecting
noise in the latent image representations.

Existing generative models, including VAEs [9–12] and
generative adversarial networks (GANs) [2, 13, 14], map and
reconstruct input data through low dimensional bottlenecks.
However, these models suffer either from (i) a significant drop
in their generative properties due to these bottlenecks (which
make these mappings non-bijective and thereby data recon-
struction challenging), or (ii) instabilities when learning these
models. Other generative approaches, known as normalizing
flows (NFs) [15–18] are rather more appropriate, and consist
in learning bijective mappings between equidimensional (la-
tent and ambient) spaces leading to exact density estimation,
and also better generative properties [19]. Hence, NFs hold
many promises towards learning more powerful nonlinear
data augmentations that ultimately lead to better discrimina-
tive models, including transformers, which are known to be
highly effective but data/label hungry.

In this paper, we devise a novel conditional NF model
for nonlinear image augmentation that learns a bidirectional
mapping between ambient and latent spaces. Unlike previ-
ous methods that rely on unimodal, mingled latent spaces,
and unconditional NFs for augmentation [12, 20, 21], our
proposed NF makes it possible to model the distribution of
image classes as disentangled multi-modal gaussians where
each one is assigned to a single class. Consequently, our



NF design achieves both conditional image generation (i.e.,
augmentation) and classification thereby acting as a pseudo-
oracle capable of labeling the augmented images. It’s worth
noticing that our NF model also renders the interpolation of
images lying on highly nonlinear manifolds in the ambient
space possible thanks to the NF which makes image interpola-
tions more tractable (linear) in the latent space. Considering
this issue, we investigate different augmentation methods
based on single and pairwise image interpolations as well
as more robust augmentation methods operating in the span
of the eigenvectors of training data in the latent space. Ex-
tensive experiments, conducted on the EuroSAT benchmark,
show the impact of our augmentations on vision transformers
trained from scratch, with different (labeled) data regimes.

2. PROPOSED METHOD

2.1. A Glimpse on Normalizing Flows

Let X be a random variable standing for all possible images
taken from an existing but unknown probability distribution
PX in an ambient space X ⊆ Rd. Considering Z as a latent
representation associated to X drawn from a known proba-
bility distribution PZ in a latent space Z ⊆ Rd; normalizing
flows aim at learning a diffeomorphism f from X to Z (to-
gether with its inverse g). Given x ∈ X , one may write

PX(x) = PZ(f(x))

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ = PZ(f(x))
∣∣detJf(x)

∣∣ , (1)

where Jf(x) ∈ Rd×d is the Jacobian of f w.r.t. x and |det(.)|
stands for determinant magnitude. In practice, f is a neu-
ral network composed of several smaller invertible flows cho-
sen to make Jf(x) computationally efficient. As defined in
[15, 17], each flow is usually made of an Actnorm layer, an
Invertible 1×1 convolution, and a Coupling Layer stacked
together. Let x1:d be a d-dimensional vector, a Coupling
Layer maps x1:d to two subvectors x̃1:d/2 and x̃d/2+1:d being
x̃1:d/2 = x1:d/2 and x̃d/2+1:d = xd/2+1:d ⊙ exp(s(x1:d)) +
b(x1:d), s(.), b(.) are two neural networks, ⊙ the Hadamard
product and exp(.) is applied entrywise. Invertible 1×1 con-
volutions are generalized permutation layers that enhance ex-
pressivity by allowing permutations between image channels
to be learned [17]. An Actnorm layer is an invertible equiva-
lent of Batch Normalization that increases stability and per-
formance. NFs are usually trained to minimize the nega-
tive log-likelihood of Eq. 1. From transport theory point of
view [22], NFs pushforward a complex ambient distribution
into a simpler latent one as the mono-modal normal. In what
follows, we first describe our extension of standard NFs that
makes them conditional by allowing their latent distributions
to be multi-modal and class-dependent.

2.2. Conditioning

Let D = {(xi,yi)}ni=1 ⊂ X × Y denote a collection n of
labeled images with xi belonging to an ambient space X and
yi its underlying class-label taken from a discrete set Y =
{1, . . . ,K}. Given a pair (x,y) ∈ X ×Y , one may write the
conditional form of Eq. 1 as

PX(x|y) = PZ(f(x)|y)
∣∣detJf(x)

∣∣ , (2)

here PZ(.|y) is set a priori to a given distribution, viz., gaus-
sian, denoted for a given class y as Ny. Our goal here is to
train the parameters of the NF (denoted as Θ) together with
the hyperparameters of the underlying gaussians (referred to
as Ψ = {(µy,Σy)}y∈Y ) while guaranteeing better generation
performances of the resulting NF. To further ensure gaussians
are not overlapping through classes, a Kullback-Leibler Di-
vergence (KLD) is applied amongst all the gaussian pairs

LKLD(Ψ) = −
∑

y,y′∈Y:y ̸=y′

KLD(Ny || Ny′). (3)

With the above term, we define our global loss as

L(Θ,Ψ) = LNF (Θ,Ψ) + λLKLD(Ψ). (4)

This formulation has the advantage of producing a NF that
can also obtain good classification performance, by assign-
ing labels using argmaxyPZ(z|y). In order to optimize the
loss in Eq. 4, we use an EM-like procedure. Two steps are
alternatively applied: in the E-step, we fix the hyperparame-
ters Ψ, and we train our NF while in the M-step we fix the
NF parameters Θ and we optimize only Ψ using gradient de-
scent. In order to make the training of the covariances {Σy}y
tractable while guaranteeing the positive definiteness of these
matrices, we consider anisotropic diagonal {Σy}y using a
reparametrization function ψ(.) = a(1+exp{−β(.)})−1+c,
forcing them to remain strictly positive after gradient descent.
Indeed, the positive variables a, b and c respectively control
the amplitude (scale), the slope (smoothness) as well as the
shift of the reparametrization ψ. Furthermore, a+c

c controls
the conditioning of the learned diagonal covariance matri-
ces, and to some extent, the shape of the learned multi-modal
gaussians in the latent space. The aforementioned E and M
steps are run using two disjoint subsets Dnf and Dg (taken
from D) in order to mitigate the co-adaptation between Θ and
Ψ. In practice, |Dg| = 0.1× |D| and |Dnf| = 0.9× |D|.

2.3. Augmentation

In what follows, we generate labeled images by disrupting
the original ones in the latent space, using unary and pairwise
as well as principal modes perturbations and interpolations.

Unary Image Augmentation. The latent representation of a
given image x ∈ D is disrupted by adding a normal noise
ϵ ∼ N (0d, Id) as

x̂ = g
(
f(x) + α (ϵ⊙ diag Σ

1
2
y )

)
, (5)



being g = f−1 the NF generation function, α > 0, y the
label of x, and Σ

1
2
y the square root of the covariance matrix

of class y. With this perturbation, and thanks to the learned
multi-modal latent distributions, the generated image inherits
the same label as the original image.

Pairwise Image Augmentation. Given any arbitrary x1 and
x2 in D, a new x̂ is generated by combining the latent repre-
sentations of these images, and inverting the result as

ẑ = t · f(x1) + (1− t) · f(x2), with t ∈ [0, 1]
x̂ = g(ẑ).

(6)

We also consider a rescaled variant of x̂ (related to [23]) as

x̂ = g

([
t · ∥z1∥+ (1− t) · ∥z2∥

]
· ẑ

∥ẑ∥

)
, (7)

being z1 = f(x1), z2 = f(x2) the NF latent representations
of images x1, x2, and ∥.∥ the L2 norm with t a coefficient that
controls the weight given to each image. Note that (i) if x1

and x2 have the same label y, then the generated x̂ inherits
y, (ii) otherwise, an extra step is considered (see later in this
section and also Eq. 11) in order to decide about its label and
whether it is reliable. The settings (i) + (ii) are respectively
dubbed as intra and inter (class) augmentation.

Principal Modes Augmentation. Given a class y and the un-
derlying dense covariance matrix Σ̂y estimated on the latent
representations of training images belonging to class y, we
consider the singular value decomposition (SVD) of Σ̂y

Σ̂y = Vy · Λy ·V⊤
y , (8)

with Vy and Λy being respectively the eigenvectors and
eigenvalues of Σ̂y. Augmentation is achieved by disrupting
data in the span of the eigenvectors Vy as

ẑ = π−1
y

(
πy(z) + α (ϵ⊙ diag Λy)

)
x̂ = g(ẑ),

(9)

here πy defines a projection from the latent to the eigenspace
(corresponding to the aforementioned SVD decomposition)
and π−1

y its backprojection in the latent space, i.e.,

πy(z) = (z− µy) ·Vy

π−1
y (ẑ) = ẑ ·V⊤

y + µy,
(10)

with µy being the mean of training images in the latent space
(belonging to class y). Similarly to unary augmentation, the
generated image inherits the same label as the original image.
As shown in experiments, this principal modes perturbation
scheme is more relevant (compared to the two others) as it
considers the eigenvectors that define the principal variation
modes of data in the latent space. Besides, it takes into ac-
count the dependencies between all latent dimensions (see

Fig. 1) prior to disentangle those dimensions using SVD.
This eigenspace can also be interpreted as an extra latent
space — built on top of the NF latent space — that provides
uncorrelated and disentangled latent representations.

Label reliability. Given a generated image x̂, and y its pos-
sible label, this pair is kept if

PZ(ẑ|y) ≥ τy, (11)

being τy a cut-off threshold that keeps 95% of training im-
ages (belonging to class y) whose likelihoods {PZ(.|y)} are
the largest. Note that for pairwise augmentation experiments,
we consider small t-values (in Eq. 6) so only the generated
images whose labels correspond to y1 are kept in practice.

(a) (b)

Fig. 1: Figure 1a shows the correlation matrix obtained from Σ̂y . Figure
1b shows this correlation (after subtracting the identity matrix and omitting
the signs of these correlations for better visibility). We observe high correla-
tions suggesting that achieving principal modes augmentation in the span of
the eigenvectors of the dense reestimated covariance matrices (instead of the
diagonal ones) is more relevant and faithful w.r.t. training data.

3. EXPERIMENTS

3.1. Dataset and Settings

Experiments have been conducted on the EuroSAT dataset
[4, 24] which includes 27k satellite images of 64 × 64 pixels
belonging to 10 different classes; 80% of these data (21.6k
images) are used for training and the remaining 20% (5.4k
images) for testing. This test set has the same cardinality as
[3,4,25] and differs from [2] which includes 2.7k images. The
discriminative model used in our experiments is the vision
transformer in [26] which is suitable for mid-scale datasets; it
uses a Swin architecture [27] of 7M parameters trained with
the Adam optimizer [28]. Besides standard data augmenta-
tions, we also use cutmix [7], mixup [8], auto-augment [29]
and repeat augment [30] as well as random erasing [31] prior
to train the transformer. In all experiments, the Swin model
is trained for 100 epochs with a batch size of 256 (see [26]
for more details). The NF backbone is taken from Matrix Ex-
ponential Flow [32] which is trained for 350 epochs using the
Adamax optimizer [28] with a learning rate of 0.01, decreased
by half at the 200, 250 and 300 epochs. The NF model is also



NF Augmentation Used
10%
Data

25%
Data

50%
Data

100%
Data

Latent Code
Mixing

Baseline (no NF augmentation) 96.47 98.33 98.83 99.15 ✗

Unary (α = 0.24) 96.59 98.44 99.82 99.12 ✗

Pairwise+Intra (t = 0.02) 96.43 98.41 98.94 99.18 ✓

Pairwise+Intra+rescaled (t = 0.02) 96.39 98.28 98.88 99.14 ✓

Pairwise+Inter (t = 0.04) 96.57 98.21 98.79 99.12 ✓

Pairwise+Inter+rescaled (t = 0.06) 96.55 98.36 98.84 99.14 ✓

Principal Modes (α = 0.035) 96.72 98.35 98.86 99.21 ✗

Table 1: Comparison and ablation study of the proposed augmentation
methods for different training data regimes. Each reported accuracy corre-
sponds to an average over 5 different runs. Again, intra (resp. inter) corre-
sponds to pairwise interpolations involving training images with the same
(resp. different) labels. Latent code mixing stands for generated images
obtained by combining 2 distinct original images. Green and red cells re-
spectively indicate whether the obtained accuracy is higher or lower than the
baseline.

trained with standard augmentations including horizontal and
vertical flip, padding with 12 degree rotation, random crop
and color jitter that modifies the brightness+contrast with an
intensity of 25, and the saturation with an intensity of 12. All
these models are trained using Pytorch 2 on Nvidia V100 and
A100 GPUs.

3.2. Performances and Comparison

Table 1 shows the performance of the proposed augmentation
methods, at different data regimes, obtained by training the
NF and the transformers on 10%, 25%, 50% and 100% of the
training sets which are afterwards augmented by a factor of
20. From these results, principal modes augmentation consis-
tently outperforms the baseline while pairwise interpolations,
involving images with the same labels, are generally worse
than the baseline at lower data regimes and better at higher
regimes; a different behavior is observed when images, in-
volved in augmentation, have different labels particularly at
low data regimes (see also Table 2).

NF-based Augmentation Configurations

Data %
Basic

Baseline Unary
Pairwise

+intra

Pairwise
+intra

+rescaled

Pairwise
+inter

Pairwise
+inter

+rescaled

Principal
Modes

10% 90.81 92.56 90.69 90.66 91.04 91.65 92.64
5% 87.29 89.59 87.21 87.05 87.27 89.26 90.27
1% 73.2 75.86 73.36 73.19 73.87 75.13 80.26

Table 2: Accuracies obtained at 1%, 5% and 10% data regimes. “Basic”
baseline uses flipping and cropping transformations only.

Method Accuracy
Generative
Model

Discriminative
Model Pretrained IS Params (M)

Ours 99.21 NF Transformer ✗ 642 7
[2] 99.2 GAN Wide Resnet50 ✓ 642 67
[3] 99.22 ✗ Transformer ✓ 3842 307
[25] 99.2 ✗ Transformer ✓ 3842 307
[4] 99.2 ✗ Resnet50 ✓ 2242 24

Table 3: Comparison of our method against related SOTA. IS stands for
Image Size (in pixels). We observe that our method, at least, matches the
accuracy of larger pretrained models that operate on larger images.

Fig. 2: Sample of generated images using principal modes augmentation
(upper) versus original training images (lower). From left-to-right and top-
to-bottom, classes correspond to: annual crop, highway, sea/lake, pasture,
river, residential, permanent crop, forest, herbaceous vegetation and indus-
trial. We observe that images have different appearances while preserving
the structures of the original classes.

Table 3 shows a comparison of our best augmentation method
(namely principal modes) against related methods using
GANs [2] and various discriminative classifiers on EuroSAT
[3,4,25]. The accuracies obtained match those of larger, fine-
tuned discriminative models, trained on larger-size images.
Finally, Fig. 2 shows a sample of augmented images together
with the underlying original training images.

4. CONCLUSION

In this paper, we introduce a novel image augmentation
method based on normalizing flows. The strength of our
method resides in its ability to learn a bidirectional mapping
that takes data from a highly nonlinear ambient space to a
well disentangled latent space where class distributions be-
come more tractable. This mapping also allows achieving
nonlinear data augmentation in the ambient space through the
latent space and the NF mapping. The impact of this augmen-
tation process is demonstrated through extensive experiments
in remote sensing image classification using transformers on
the EuroSAT benchmark. These experiments show a clear
positive impact of our augmentation on the trained trans-
formers. As a future work, we are currently investigating
the extension of this method to other transformer models and
other applications.
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