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Constant step-size stochastic approximation with delayed updates

Aditya Mahajan, Silviu-Iulian Niculescu, and Mathukumalli Vidyasagar

Abstract— In this paper, we consider constant step-size
stochastic approximation with delayed updates. For the non-
delayed case, it is well known that under appropriate conditions,
the discrete-time iterates of stochastic approximation track the
trajectory of a continuous-time ordinary differential equation
(ODE). For the delayed case, we show in this paper that, under
appropriate conditions, the discrete-time iterates track the
trajectory of a delay-differential equation (DDE) rather than
an ODE. Thus, delayed updates lead to a qualitative change
in the behavior of constant step-size stochastic approximation.
We present multiple examples to illustrate the qualitative
affect of delay and show that increasing the delay is generally
destabilizing but, for some systems, it can be stabilizing as well.

Index Terms— stochastic approximation; iterative learning
algorithms; time-delay systems

I. INTRODUCTION

Stochastic approximation refers to a family of iterative
algorithms for finding the root of a function when only noisy
function evaluations are available [1]. Formally, given a real
function f : Rp → R and an initial value θ0 ∈ Rp, consider
the iteration

θn+1 = θn + αn

[
f(θn) + ξn+1

]
, n ≥ 0 (1)

where {ξn+1}n≥1 is a noise process, {αn}n≥1 is the learning
rate process, and f : Rp → R is a continuous function.
Stochastic approximation theory identifies conditions under
which the iteration (1) converges almost surely, with high
probability, or in the mean-squared sense. We refer the reader
to [2]–[4] for an overview. Stochastic approximation theory
is the building block of many of modern machine learning
methods including system identification [5], [6], adaptive
control [7], [8], reinforcement learning [9], and others.

Time heterogeneity is an important feature in a large
variety of applications where transport and propagation
phenomena and/or communication constraints have to be
considered. In such cases, the noisy evaluation of the function
is not available instantaneously but only after a delay. For
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example, delays appear in biological systems, financial mar-
kets, feedback communication systems, reward feedback in
learning algorithms, etc. For instance, there is a lot of recent
interest in multi-armed bandits (MAB) and reinforcement
learning (RL) when there is a delay between taking an
action and receiving a reward. Several variations of MAB
with delayed reward feedback have been considered [10],
[11] and follow-up literature. However, the literature on RL
with delayed reward feedback is more limited [12]–[15] and
a general theory characterizing the fundamental limits of
convergence of RL with delayed reward feedback is still
lacking.

In such settings, it is important to understand the conver-
gence properties of the iteration

θn+1 = θn + αn

[
f(θn−d) + ξn+1

]
, n ≥ d (2)

where d ∈ Z≥0 corresponds to the processing delay. We call
this iteration stochastic approximation with delayed updates.
For the case of d = 0, it reduces to the standard stochastic
approximation. In this paper, we focus on the setting where
the step size αn = α is constant. The standard approach
to analyze such models when delay d = 0 is the so called
ODE approach, which was initiated in the 1970s by Ljung
[16] and extensively developed during the last 40 years,
see, e.g. [3], [4], [17] and the references therein. Stochastic
approximation with constant step size is useful for analysis
of reinforcement learning algorithms [18] and evolutionary
games and population dynamics [19], [20].

The main contribution of the paper is twofold: first, we
extend the ODE approach for the analysis of stochastic ap-
proximation to the delay case. We will show that in the case
of constant step-size, the long-term qualitative behavior of
the above process is “close” to the behavior of the solutions
of an appropriate delay-differential equation (DDE)1 and thus
the exponential stability of the corresponding DDE will allow
concluding on the convergence properties of the stochastic
approximation under consideration. The results are proposed
in the case of a single delay and extend to multiple delays by
following the same arguments. To the best of our knowledge,
such a result represents a novelty in the literature.

Second, we show the way in which the delay, seen as a
parameter, affects the corresponding convergence properties.
More precisely, we show that increasing the delay has a
dichotomic character: generally, increasing the delay has a
destabilizing effect but, under some conditions, increasing
the delay may have a stabilizing effect as well. Such a
property, largely discussed in the analysis and control of

1We refer the reader to [21], [22] for an overview of DDEs.



(a) Delay d = 0 (b) Delay d = 2

(c) Delay d = 4 (d) Delay d = 8

Fig. 1: Iterates for Example 1 for different values of delay.

delay systems (see, e.g. [23] and the references therein),
opens interesting perspectives in stochastic approximation
that need to be further explored.

In contemporaneous work, [24] have also investigated
constant step-size stochastic approximation with delayed
updates. They focus on finite time convergence guarantees
and, therefore, their proof techniques and the nature of results
are different than ours.

The remaining of the paper is organized as follows: Sec. II
includes a motivating example, prerequisites and basic results
in the stability analysis of DDEs. The convergence analysis
of the constant step-size approximation in the case of single
delays is proposed in Sec. III. Next, the proposed results
are illustrated on an application involving multiple delays in
Sec. IV. Finally, some concluding remarks end the paper.
The notations are standard and explained when first used.

II. A MOTIVATING EXAMPLE AND BACKGROUND

To fix ideas, we present a simple example to illustrate why
delay may cause a qualitative difference in the behavior of
stochastic approximation.

Example 1 Consider iteration (2) for θn ∈ R with αn =
α = 0.1 and

f(θ) = −κθ, where κ = 2.5 and ξn+1 ∼ N (0, 0.5).

We plot the iterates θn for different values of delay d. We run
each simulation for N = 100 steps and repeat the simulation
for M = 25 sample paths. For each sample path, the initial
conditions θ1:d are chosen such that θn, n ∈ {0, 1, . . . , d},
are independently sampled from Unif[−1, 1]. The results are
shown in Figure 1.

The plots show that when the delay is small, the iterates
are stable and converge to zero. However, as the delay
increases, the iterates become unstable and diverge. Thus,
delay may quantitatively change the behavior of stochastic
approximation.

To understand why this is the case, recall that the standard
stochastic approximation iteration (1) may be viewed as a
noisy Euler discretization of the continuous-time ODE:

θ̇(t) = f(θ(t)). (3)

Therefore, under appropriate regularity conditions, the it-
erates of (1) converge to the equilibrium points of (3).
By analogy, one may view the iterations (2) of stochastic
approximation with delay as a noisy Euler discretization of
the continuous-time DDE of retarded type2

θ̇(t) = f(θ(t− τ)), where τ = αd. (4)

Therefore, one would expect that under appropriate regu-
larity conditions, the iterates of (2) should converge to the
equilibrium points of (4).

For Example 1, Eq. (4) is a linear (scalar) DDE:

θ̇(t) + κθ(t− τ) = 0, where κ = 2.5, τ = 0.1d. (5)

To understand the behavior of this DDE, we review basic
stability results [21], [25] for linear DDEs of the form

θ̇(t) = Aθ(t− τ), where θ ∈ Rp, A ∈ Rp×p. (6)

The characteristic function f : C × R∗
+ 7→ C of (6) writes

as:
f(λ; τ) = det

(
λIp −Ae−λτ

)
, (7)

which is a quasipolynomial of retarded type3. Let
{λi(A)}pi=1 denote the eigenvalues of A, with |λi(A)| and
∠λi(A) denoting their modulus and argument, respectively.

With the notations above, we have the following result
(see [25] for details):

Lemma 1 Under the assumption that A is a Hurwitz matrix,
the trivial solution of the DDE (6) is exponentially stable if
and only if the delay τ ∈ [0, τ◦), where τ◦ is given by:

τ◦ = min
i∈{1,...,p}

ωi

|λi(A)| , (8)

where ωi = min(A+
i ) denotes the smallest positive value of

the (non-empty) set A+
i given by:

A+
i = R∗

+ ∩
{
−π

2
+ ∠λi(A) + 2ℓπ : ℓ ∈ Z

}
,

for i ∈ {1, . . . p}.

For the scalar case (5), A = −κ (with κ > 0). So, λ1 =
−κ = κeiπ , and ω1 = π/2 is the smallest positive element
of the set A+

1 . Thus, the system (4) is stable when delay
τ = αd < τ◦ := π/(2κ); thus

αd <
π

2κ
. (9)

The above bound is derived based on the approximate
equivalence between the discrete-time iterates and the Euler
discretization of the continuous time DDE, which is valid
only for small values of α. It turns out that the value α = 0.1

2For a classification of DDEs, the reader is referred to [22]; Throughout
this paper, all the DDEs based-models are of retarded type.

3including only point spectrum, see, e.g. [25]



(a) Delay d = 6 (b) Delay d = 7

Fig. 2: Iterates for Example 1 for different values of delay
close to critical delay for α = 0.1.

(a) Delay d = 62 (b) Delay d = 63

Fig. 3: Iterates for Example 1 for different values of delay
close to critical delay for α = 0.01.

which we picked in Example 1 is not sufficiently small. For
that value of α, (9) implies that the system is stable as long as
d < d◦ := π/(2ακ) = 6.283. However, this is not the case as
can be seen by the plots shown in Figure 2 for d = ⌊d◦⌋ = 6
and d = ⌈d◦⌉ = 7. However, if we pick a smaller value of α,
say α = 0.01, and rerun the simulation for d = ⌊d◦⌋ = 62
and d = ⌈d◦⌉ = 63, the results (shown in Figure 3) are
consistent with the theoretical intuition.

In Sec. III, we identify general set of conditions under
which the constant step-size stochastic approximation with
delayed updates (2) converges.

In the example presented above, delay has a destabilizing
effect, i.e., increasing the delay destabilizes the system. In
general, delay can also have a stabilizing effect, i.e., increas-
ing the delay stabilizes the system! In Sec. IV, we present an
application which gives rise to stochastic approximation with
two delay blocks and present a numerical example which
highlights the stabilizing impact of delay.

III. CONVERGENCE ANALYSIS OF CONSTANT STEP-SIZE
STOCHASTIC APPROXIMATION WITH SINGLE DELAY

Consider stochastic approximation with delayed up-
dates (2) when the step size is constant, i.e., αn = α for
all n. The following assumptions are imposed on the model.

(A1) There exists a root θ∗ of f(θ) = 0.
(A2) The function f is Lipschitz continuous with a Lipschitz

constant ∥f∥L < ∞.
(A3) The noise {ξn}n≥1 is a martingale difference sequence

with respect to Fn = σ(θ1:n, ξ1:n), i.e.,

E[ξn+1 | Fn] = 0.

Moreover, {ξn}n≥1 is square integrable with

E[∥ξn∥2 | Fn] ≤ Cξ(1 + ∥θn∥2), a.s., n ≥ 1,

where Cξ < ∞ is a constant.
(A4) θ∗ is the unique solution of f(θ) = 0 and is also

the global asymptotically stable equilibrium point of
DDE (4).

(A5) The process supk∈{−d+1,...,0}∥θ2n+k∥2 is uniformly
integrable, i.e., there exists a constant Cθ < ∞
and a Borel function G : [0,∞) → [0,∞) satisfying
G(x)/x → ∞ when x → +∞ such that

sup
n≥1

E

[
sup

k∈{−d+1,...,0}
∥θn+k∥2

] 1
2

≤ Cθ

and

sup
n≥1

E

[
G
(

sup
k∈{−d+1,...,0}

∥θ2n+k∥2
)]

< ∞.

Assumptions (A1)–(A3) are standard in the analysis of
stochastic approximation [3]. Assumption (A4) is the natural
analog of the corresponding stability assumption in the ODE
analysis of stochastic approximation [3]. Assumption (A5)
ensures that the iterates {θn}n≥0 remain stable. In principle,
it is possible to relax this assumption by assuming the
global asymptotic stability of an appropriately scaled DDE,
following the ideas of [18], but we defer such a relaxation
to future work.

For the ease of notation, we will assume that the coor-
dinate system is chosen such that θ∗ = 0; i.e., under (A1),
f(0) = 0 and under (A4), origin is global asymptotically
stable solution of the DDE (4).

The high-level idea is similar to the convergence analysis
of standard stochastic approximation with constant step
size [3] with appropriate changes to account for the fact
that the discrete-time process is tracking a DDE rather than
an ODE. We start with the construction of two continuous
time processes {Θ(t)}t∈R≥0

and {ϑ(s)(t)}t∈R≥0
that track

the discrete-time iterates {θn}n≥0 in an appropriate sense.
In order to define these processes, we define the map t(n) =
nα, n ≥ 0, which translates discrete-time to continuous-time.
Let τ = dα be the continuous-time processing delay.

• The process {Θ(t)}t∈R≥0
is a piecewise linear and

continuous process which is defined to be equal to θn
at time t(n), n ∈ Z≥0, and is a linear interpolation
between θn and θn+1 at times in the open interval
(t(n), t(n+ 1)).

• For any t0 ∈ R≥0, the process {ϑ(t0)(t)}t≥t0 is the
solution of the DDE (4), starting at time t0 with the
initial conditions ϑ(t0)(t0+s) = Θ(t0+s), s ∈ [−τ, 0].

We introduce the following notations:
• For a discrete-time sequence {xn}n>−d,

JxnK :=
[
supk∈{−d+1,...,0}∥xn+k∥2

] 1
2

.

• For a continuous-time signal {x(t)}t≥−τ ,

Jxt(·)K :=
[
sups∈[−τ,0]∥x(t+ s)∥2

] 1
2

.



Remark 1 By Assumption (A5), JθnK2 is uniformly inte-
grable. Therefore, there exists a positive real R such that

sup
n≥1

P(JθnK ≥ R) < α, (10a)

sup
n≥1

E
[
JθnK21{JθnK ≥ R}

]
< α. (10b)

By construction, JΘt(n)(·)K = JθnK. So, equation (10) also
holds when JθnK is replaced by JΘt(n)(·)K.

Remark 2 By Assumption (A4), we can pick a T = Nα
large enough such that any solution ϑ(·) of (4) starting with
an initial ϑ(s), s ∈ [−τ, 0] with ϑ(0) ̸= 0, where Jϑ0(·)K ≤
R has the property that JϑT (·)K ≤ 1

2Jϑ0(·)K.

The following two lemmas are technical. Their proofs are
derived by analogy to the ODE case (see, e.g., [3]) and, due
to space limitations, are omitted.

Lemma 2 For any initial time t0 ∈ R≥0 and horizon T ∈
R≥0, we have

E
[
sup

t∈[0,T ]

∥∥Θ(t0 + t)− ϑ(t0)(t0 + t)
∥∥2] ∈ O(α). (11)

Lemma 3 For all t ≥ 0, the following inequalities hold:

E
[
JΘt+T (·)K21{JΘt(·)K ≤

√
α}

] 1
2 ∈ O(

√
α), (12)

E
[
JΘt+T (·)K21{JΘt(·)K > R}

] 1
2 ∈ O(

√
α). (13)

With the remarks and the technical lemmas above, we can
state our main result:

Theorem 1 We have that

lim sup
n→∞

E[∥θn∥2]
1
2 ∈ O(

√
α). (14)

Therefore, for any ε > 0, we have

lim sup
n→∞

P(∥θn∥ > ε) ∈ O(α). (15)

PROOF Take an arbitrary n and let t0 = t(n). Then,

E[Jθn+N K2]
1
2 = E[JΘt0+T (·)K2]

1
2

≤ E[JΘt0+T (·)K21{JΘt0(·)K ≤
√
α}] 12

+ E[JΘt0+T (·)K21{
√
α < JΘt0(·)K ≤ R}] 12

+ E[JΘt0+T (·)K21{JΘt0(·)K > R}] 12
(a)

≤ E[JΘt0+T (·)K21{
√
α < JΘt0(·)K ≤ R}] 12 +O(

√
α)

(b)

≤ E[Jϑ(t0)
t0+T (·)K21{

√
α < JΘt0(·)K ≤ R}] 12 +O(

√
α)

(c)

≤ 1
2E[JΘt0(·)K2]

1
2 +O(

√
α) = 1

2E[JθnK2]
1
2 +O(

√
α),
(16)

where (a) follows from Lemma 3, (b) follows from
Lemma 2, and (c) follows from Remark 2 and the choice
of T . Let the constant corresponding to the O(

√
α) term

in (16) be K. Now consider

E[Jθn+2N K2]
1
2 ≤ 1

2E[Jθn+N K2]
1
2 +K

√
α

≤ 1
4E[JθnK2]

1
2 +K(1 + 1

2 )
√
α (17)

where both inequalities follow from (16). Continuing this
way, we can show that for any positive integer k

E[Jθn+kN K2]
1
2 ≤ ( 12 )

kE[JθnK2]
1
2

+K(1 + 1
2 + · · ·+ 1

2k−1 )
√
α. (18)

Therefore, lim sup
k→∞

E[∥θn+kN∥2] 12 ≤ 2K
√
α. Recall that n

was chosen arbitrarily. By repeating the above argument for
n+ 1, n+ 2, . . . , n+N − 1, in place of n, we get

lim sup
n→∞

E[JθnK2]
1
2 ∈ O(

√
α). (19)

Eq. (14) follows from the observation that ∥θn∥ ≤ JθnK, and
(15) is a direct consequence of Chebyshev’s inequality. ■

IV. AN APPLICATION

Consider the problem of fine-tuning a machine learning
model on a mobile device connected to a cloud server. For the
purpose of this section, we abstract this problem to finding
the zero of a function f : Rp → R. At each time n, the
mobile device and the cloud server are asked to provide an
estimate of f(θn). The mobile device provides a “quick and
dirty” answer while the cloud server provides a “slow and
precise” answer. We model this situation by assuming that the
mobile device (which we index by 1) returns the evaluation
f(θn) at time n+ d1 with noise level w1,n−d1+1, while the
cloud server (which we index by 2) returns the evaluation
of f(θn) at time n+ d2 with noise level w2,n−d2+1, where
d1 < d2 but the variance of w1,n is more than the variance
of w2,n. The computational bandwidth on the two devices
is not limited. That is, if the mobile device and the cloud
server have inputs θn and θn+1 at times n and n + 1, they
will generate outputs at time n+di and n+di+1, i ∈ {1, 2}.

Both these evaluations are combined together as follows:

θn+1 = θn + α1

[
f(θn−d1

) + w1,n−d1+1

]
+ α2

[
f(θn−d2

) + w2,n−d2+1

]
, (20)

where we assume that the noise processes {w1,n}n≥1 and
{w2,n}n≥2 are i.i.d. processes that are mutually independent.
For the ease of notation, we take α1 = α and α2 = γα, and
write the above iteration as

θn+1 = θn + α
[
f(θn−d1) + γf(θn−d2) + ξn+1

]
(21)

where ξn+1 = w1,n−d1+1 + γw2,n−d2+1.
Following an argument similar to Sec. III, we can show

that the result of Theorem 1 is also true for iteration (21),
provided assumption (A4) is replaced by the following:

(A4a) θ∗ is the unique solution of f(θ) = 0 and is also global
asymptotically stable equilibrium point of the DDE

θ̇(t) = f(θ(t− τ1) + γf(θ(t− τ2)) (22)

where τ1 = αd1 and τ2 = αd2.
Eq. (22) is a DDE with two delay blocks. We now provide

two examples to illustrate the impact of the delays d1 and
d2 and the gain γ on the stability of (22).



A. Scalar example with two delay blocks

Example 2 Consider iteration (21) for θn ∈ R with

f(θ) = − 1
2κθ and γ = 1.

In this case, the corresponding DDE (22) is

θ̇(t) = −κ

2

[
θ(t− αd1) + θ(t− αd2)

]
, (23)

where 0 ≤ d1 < d2. Since the delays are commensurate4,
the exponential stability of (23) is guaranteed all α ∈ [0, α◦),
with:5

α◦ =

[
d1κ sinc

(
π

1 + d2/d1

)]−1

where sinc(x) = (sinx)/x. Furthermore, the system is
unstable for all α > α◦.

We consider a few special cases below.
Case 1. Consider d1 = d2 = d. In this case, α◦ =
π/(2dκ), and the system (23) is stable iff α < π/(2dκ) or,
equivalently, d < d◦ := π/(2ακ). This recovers the result
for Example 1.
Case 2. Consider now d1 = 1 and d2 = d. In this case, the
system (23) is stable iff

α <
1

κ sinc

(
π

1 + d

) .

Note that the right hand side is a decreasing function of d
and converges to the limit 1/κ as d → ∞ Thus, if α < α◦ :=
1/κ, then the system (23) is always stable for any value of
d. If α > α◦, then there is a critical delay:

d◦ :=

⌊
π

sinc−1(ακ)
− 1

⌋
,

such that (23) is stable for all d < d◦ and unstable if d > d◦.

B. Vector example with two delay blocks

Example 3 Suppose we are interested in finding the fixed
point of f(θ) = Aθ based on different delayed evaluations
of f(θ). Then (21) rewrites as:

θn+1 = θn + α
[
Aθn−d1

+ w1,n−d1+1

]
+ αΓ

[
Aθn−d2

+ w2,n−d2+1

]
, (24)

where Γ ∈ Rp×p.

The equivalent of assumption (A4a) in this case reads as:
(A4b) θ∗ is the unique solution of f(θ) = 0 and also global

asymptotically stable equilibrium point of the DDE

θ̇(t) = Aθ(t− τ1) + ΓAθ(t− τ2), (25)

where τ1 = αd1 and τ2 = αd2.
Consider the case where p = 2, d1 = 0, d2 = d > 1, and:

A =

[
0 −ω2

◦
1 0

]
− κI, Γ =

[
0 0
0 −γ

]
,

4i.e., there is rational dependence between the delay parameters
5See [21], [25] for details on the analysis of such linear DDEs.

+ Hyu(λ)

−γe−λτ

+

−

Fig. 4: Interpretation of ∆(λ) in (27) as the characteristic of
a closed loop SISO system with time-delays.

where γ, ω◦ ∈ R∗
+. Thus, the DDE (25) is equivalent to

θ̇(t) = Aθ(t) + ΓAθ(t− τ)

=

[
−κ −ω2

◦
1 −κ

]
θ(t) +

[
0 0
−γ γκ

]
θ(t− τ) (26)

where τ = αd. The characteristic function of the DDE (26)
∆ : C 7→ C is given by:

∆(λ) := λ2+2λk+k2+ω2
◦ −γe−λτ (k2+λk+ω2

◦). (27)

It is easy to see that ∆ can be interpreted as the closed-
loop characteristic function of a transfer LTI SISO function

Hyu(λ) =
λk + k2 + ω2

◦
λ2 + 2λk + k2 + ω2◦

controlled by a delay block (−γ, τ) as shown in Figure 4.
In the case of low damping (κ), depending of the gain γ, the
closed-loop system free of delay is exponentially stable and
we will have a finite sequence of delay intervals guaranteeing
the stability of the closed-loop system. In our example, we
have 2 crossing frequencies 0 < ω− < ω+ independent of
the delay values: ω+ (ω−) corresponds to characteristic roots
crossing the imaginary axis towards instability (stability) if
the delay is increasing in R+. Furthermore, as mentioned in
[25], the crossing directions at ω± are independent of the
delay, and these crossing roots define a partition of R+ in a
sequence of stable delay intervals (τ−i , τ+i+1), and unstable
delay intervals (τ+i+1, τ

−
i+2), for a positive, but finite integer

i ≥ 1. Such a procedure, called τ -decomposition method,
was introduced by Lee and Hsu [26] and it is at the origin
of several approaches and procedures largely reported in the
literature (see, e.g., [23] and the references therein).

In our case study, the first delay interval has the form
[0, τ+1 ) where τ+1 represents the delay margin. Thus, to
conclude, the continuous dynamical system is stable if

αd = τ ∈ [0, τ+1 ) ∪ (τ−2 , τ+3 ) ∪ · · ·
As an illustrative example, suppose γ = 0.3 and κ = γ/4,
then the root locus is shown in Figure 56 with

τ+1 = 3.4015, τ−2 = 6.9064, τ+3 = 9.0049, etc.

Note larger delays stabilize the system showing the so-called
stabilizing effect induced by the delay, seen as a parameter.
For a better understanding of such a mechanism we refer to
[25] and the references therein.

6The authors wish thank CÉSAR FERNANDO MÉNDEZ-BARRIOS
(UASLP, Mexico) and DIEGO TORRES-GARCIA (UASLP, MEXICO &
UPSAY, FRANCE) for their help in generating the graphical representation.
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Fig. 5: Characteristic roots as a function of the delay parameter
τ ∈ [0, 15]: the black plot corresponds to the first crossing towards
instability at the frequency ω+ and back to stability at the frequency
ω− defining thus the first unstable delay interval (τ+

1 , τ−
2 ); the red

plot corresponds to the second crossing towards instability at the
frequency ω+ and back to stability at the frequency ω− defining
the second unstable delay interval (τ+

3 , τ−
4 ), etc.

V. CONCLUSION

In this paper, we considered constant step-size stochastic
approximation with delayed updates. Our main observation
is that under appropriate conditions, the discrete-time iterates
of stochastic approximation with delayed updates

θn+1 = θn + α[f(θn−d) + ξn+1]

track the continuous-time trajectory of a DDE

θ̇(t) = f(θ(t− τ)), τ = αd.

The result was derived under several technical conditions; the
most critical being (A4) which asserts that the DDE should
be global asymptotically stable and (A5) which asserts that
the discrete-time iterates are uniformly integrable. There are
several results in time-delay systems to verify the stability
of DDEs. Typically, the DDE is stable for values of τ = αd
belonging to a union of disjoint intervals. This shows that
there is a trade-off between the learning rate α and the delay
d. Verifying (A5) is harder. It may be possible to generalize
the scaled ODE approach of [18] to derive sufficient con-
ditions to verify (A5), which may be an interesting future
research direction.
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