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Abstract

Traditional signal processing methods relying on mathematical data generation models have been cast aside
in favour of deep neural networks, which require vast amounts of data. Since the theoretical sample complexity
is nearly impossible to evaluate, these amounts of examples are usually estimated with crude rules of thumb.
However, these rules only suggest when the networks should work, but do not relate to the traditional methods.
In particular, an interesting question is: how much data is required for neural networks to be on par or
outperform, if possible, the traditional model-based methods? In this work, we empirically investigate this
question in three simple examples covering estimation and classification, where the data is generated according
to precisely defined mathematical models, and where well-understood optimal or state-of-the-art mathematical
data-agnostic solutions are known. A first problem is deconvolving one-dimensional Gaussian signals, a second
one is estimating a circle’s radius and location in random grayscale images of disks, and a third one both
classifies the presence of a line and locates it when present in a binary random dot image. By training various
networks, either naive custom designed or well-established ones, with various amounts of training data, we find
that networks require tens of thousands of examples for estimation in comparison to the traditional methods
and thousands for classification, whether the networks are trained from scratch or even with transfer-learning
or finetuning.

1 Introduction

Neural network-based machine learning has widely re-
placed the traditional methods for solving many signal
and image processing tasks that relied on mathemati-
cal models for the data [1, 2]. In some cases, the as-
sumed models provided ways to optimally address the
tasks at hand and resulted in well-performing estima-
tion and prediction methods with theoretical guaran-
tees [3, 4, 5]. Nowadays, gathering raw data and apply-
ing gradient descent-like processes to neural network
structures [6, 7, 8, 9] largely replaced modelling and
mathematically developing provably optimal solutions.

It is commonly accepted that, if the networks are
complex enough and when vast amounts of data are
available, neural networks outperform traditionally de-
signed methods [10, 7] or even humans [11, 12, 13, 14].
In many real-world applications, the availability of vast
amounts of data is often limited by factors such as cost,
privacy concerns, or logistical challenges. This makes
it critical for the field to understand the data require-
ments for neural networks to achieve high performance,
especially as these networks are increasingly applied
in data-limited domains like healthcare and finance,
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where accurately estimating the minimum data needed
for successful training is becoming ever more impor-
tant. The required amount of data is called in statis-
tical learning theory the sample complexity and is re-
lated to the input-output information relation [15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and to the
VC-dimension of the problem [29, 30, 31, 32, 33, 34],
which is usually intractable for non trivial networks
[35]. Instead, various rules of thumb have been used
in the field to guess how many samples are needed:
at least 10-50 times the number of parameters [36], at
least 10 times per class in classification (and 50 times
in regression) the data dimensionality [37] and at least
50-1000 times the output dimension [36].

However, these rules only suggest how much data
is needed to get a “good” network, but they do not
relate to the traditional data-generation model-based
methods. A natural question hence arises: do the
neural network-based solutions perform as well as, or
even outperform, the processing methods based on tra-
ditional data-generation models when lots of data is
available, and if so how much data is necessary? We
address this question in three simple empirical exam-
ples, where the data is produced according to precisely
defined models, and where well understood optimal or
state-of-the-art mathematical solutions are available.
The first is the deconvolution of Gaussian signals, op-
timally solved with the Wiener filter [3]. The second
is the estimation of the radius and centre coordinates
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of a disk in an image, which can be elegantly solved
using a Pointflow method [38]. The third is the clas-
sification of a random dot image to have a significant
line in it based on the estimation of position of the can-
didate line, which is classically achieved by the Hough
transform [39, 40]. This work aids engineers to decide
when to use model-based classical methods or simply
feed lots of data (if available) to deep neural networks.
This paper extends our previous study [41].
Section 2 presents our comparison for the one-

dimensional signal recovery, Section 3 deals with es-
timation of disk characteristics in an image, and Sec-
tion 4 tackles the classification of binary random dot
images to possess a significant line and, when present,
estimate its location.

2 One-dimensional signal recov-
ery

We suggest to first analyse a simple and well-
understood problem in the one-dimensional case where
the optimal solution is provingly known.

2.1 Data model and optimal solution

The original data consists of real random vectors φ of
size D that are centred, i.e. E(φ) = 0, and with known
autocorrelation Rφ = E(φφ⊤) ∈ RD×D. However, φ
is degraded by blur and noise producing the observed
data φdata as follows:

φdata = Hφ+ n, (1)

where H ∈ RD×D is a known deterministic matrix
and n is random additive noise independent from φ
that is centred E(n) = 0 and with known autocor-
relation matrix Rn ∈ RD×D. It is well-known [3]
that the best linear recovery of φ in the L2 sense,
i.e. minimising the Expected Squared Error (ESE)
ESE (φ̂, φ) = E

(
∥φ̂− φ∥22

)
with respect to the matrix

M ∈ RD×D such that φ̂ = Mφdata , is given by apply-
ing the Wiener filter W = RφH

⊤(HRφH
⊤ + Rn)

−1,
i.e. φ̂∗ = Wφdata . Moreover, if we further assume both
φ ∼ N (0, Rφ) and n ∼ N (0, Rn) are Gaussian, then
the Wiener filterW minimises the ESE over all possible
recoveries including nonlinear ones. Furthermore, note
that if Rφ is circulant, i.e. φ is cyclostationary, and so
is n, e.g. if n has independent entries implying Rn is
diagonal, and if H is circulant, then W is also circu-
lant and Wiener filtering is a pointwise multiplication
in the Fourier domain given by applying the unitary
Discrete Fourier Transform [DFT ] with (k, l)-th entry

[DFT ]k,l =
1√
D
e−i 2πkl

D .

In our tests, the dimensionality is D = 32
and the problem is circulant. We use an in-
terpretable symmetric positive-definite autocorrela-
tion matrix Rφ parameterised by a large number
ρ = 0.95 to create high spatial correlation over
a large support decaying with distance and H is
a local smoothing convolution. The first lines of

Rφ and H are
(
1 ρ ρ2 ρ3 ρ3 ρ2 ρ

)
and(

1 1 0 0 1
)
. The noise is i.i.d. n ∼

N (0, σ2
nI) with σn = 0.1. We display example data

in Figure 1, the designed H, Rφ, and Rn along with
their associated Wiener filter W in Figure 2.

Figure 1: Two example signals φdata, with their asso-
ciated blur Hφ and noise n.

H Rφ Rn W

Figure 2: Chosen model matrices and associated opti-
mal Wiener filter.

2.2 Neural models

We wish to evaluate the capabilities of neural networks
by comparing them to humanly designed methods by
classical experts using no training. Our criterion is the
amount of random training samples N needed to reach
or overtake human expertise. Working in the Gaus-
sian case for the data model of equation (1), we create
various random training datasets containing N data
samples ranging in N ∈ {10, 100, 1000, 10000, 100000}.
We train a variety of small Convolutional Neural Net-
works (CNNs) of various depths k ∈ {0, 1, 2, 3}. The
depth of the network is measured as the number of
successions of convolution-pointwise-nonlinearity lay-
ers. Each network ends with a final fully connected
layer A (with bias bA), i.e. a final unconstrained
affine transformation. For simplicity, our CNNs will
be single-channel only and without various architecture
tricks, e.g. dropout, batch normalisation, or pooling.
The network functions, denoted fk for k ∈ {1, . . . ,K}
can thus be written as:

fk(φ
data) = Aσ ◦ C̃k ◦σ ◦ C̃k−1 ◦ · · · ◦σ ◦ C̃1(φ

data)+bA,
(2)

where C̃i(x) = Cix + bi is the i-th convolution layer
comprising the circulant matrix Ci for the convolution
and its additive unconstrained bias bi and σ = ReLU
the standard pointwise nonlinearity in neural networks.
Note that a CNN with depth 0 degenerates to an un-
constrained affine transformation in RD (no pointwise
nonlinearity or convolution): f0(φ

data) = Aφdata + bA.
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The networks are trained to minimise the Mean
Squared Error (MSE)1, a proxy for the ESE, using the
N generated samples. Denoting fk,N,η the resulting
networks (where η a hyperparameter of the optimisa-
tion algorithm), we have:

MSE train(fk,N,η) =
1
N

N∑
i=1

∥fk,N,η(φ
data
train,i)− φtrain,i∥22,

(3)
where for a sample collection set , φset,i and φdata

set,i de-
note the i-th original and degraded samples. This
quantity is to be compared with ESE (fk,N (φdata), φ),
which evaluates the performance on all possible data of
a network trained on N instances only. Naturally, this
quantity cannot be computed by hand and is approxi-
mated by another MSE calculation on a large test set
using Nt test samples independently generated from
the training ones:

MSE test(fk,N,η)=
1
Nt

Nt∑
i=1

∥fk,N,η(φ
data
test,i)− φtest,i∥22

−−−−→
Nt→∞

ESE (fk,N,η(φ
data), φ). (4)

In our tests, Nt = 100000. Note that implicitly in
ESE (fk,N,η(φ

data), φ) the network fk,N,η is the given
result of a minimisation algorithm. For randomised
algorithms, it is thus to be understood as the ex-
pectation conditional to the learned network fk,N,η:
ESE (fk,N,η(φ

data), φ) = E(∥fk,N,η(φ
data) − φ∥22 |

fk,N,η).
We train our networks using Stochastic Gradient De-

scent with Nesterov momentum parameter equal to
0.9. We train the networks using various learning rates
η ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} over 50
epochs, performing Nr = 50 independent training tri-
als per learning rate, and compute the final median
performance per learning rate on a validation set gen-
erated independently of the train and test data com-
prising Nv = 100000 validation samples:

MSE val(fk,N,η)=
1
Nv

Nv∑
i=1

∥fk,N,η(φ
data
val,i)− φval,i∥22

−−−−−→
Nv→∞

ESE (fk,N,η(φ
data), φ). (5)

The validation set is used to choose the best learning
rate for each amount of training data η∗(N) by taking:

η∗(N) = argmin
η

MEDIAN r(MSE val(fk,N,η)), (6)

where MEDIAN r takes the median over the r ≤ Nr

best independent runs on the validation set per η.
Given that a significant amount of runs do not converge
or get trapped early in a poor local minimum depend-
ing on the random initialisation, choosing r ≪ Nr en-
sures that only the networks finding a good local min-
imum are considered. The final performance of CNNs

1The loss function is actually scaled to 1
D
MSE train as is com-

monly done in practice.

SCOREk,r(N) for each amount of data N is then the
median of the test performance over those selected r
trials2 of the final test score at the chosen learning rate
η∗(N):

SCOREk,r(N) = MEDIAN r(MSE test(fk,N,η∗(N))).
(7)

See Table 1 for a summary of our training procedure
and hyperparameters.

We display the evolution of the networks’ perfor-
mance on the amount of training data N in Figure 3
for each depth k, with detailed scores in Table 2, along
with the performance of the Wiener filter. Regardless
of N , the Wiener filter outperforms the neural mod-
els as expected by the theory, but their performance
converges to the Wiener’s one when a lot of data is
available, with similar performance when at least 10000
training samples are available. We can thus consider
this study as providing a criterion that a model would
be preferable for estimation if data is limited to fewer
than 10000 samples to train on.

Figure 3: Median test scores for CNNs with depth k ∈
{0, 1, 2, 3} on r = 10 selected runs (k = 0 is just a linear
layer). Vertical bars represent the standard deviation
of the MSE of these runs. The right figure is a zoomed-
in plot of the left one for large N .

3 Two-dimensional geometric
estimation

We next analyse a more complicated yet well-
understood problem based on Euclidean geometry.
The goal is to estimate basic geometric properties on
simple data: the radius and centre location of a ran-
dom disk in an image. It was shown in [42] that this
seemingly trivial task is more complex than expected
for neural models even when focusing on radius esti-
mation of centred disks.

3.1 Data model

The original data now consists of D ×D random two-
dimensional grayscale images of disks. Images are cen-
tred at (0, 0), and for a pixel p ∈ [−D−1

2 , D−1
2 ]2:

φ(p) =

{
b if ∥p− c∥2 > r

f if ∥p− c∥2 ≤ r,
(8)

2Selected on the validation set.
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1D estimation 2D estimation 2D classification

CNN architecture Custom {AlexNet, VGG11, ResNet18} {AlexNet, VGG11, ResNet18}
k {0, 1, 2, 3} — —
Nr 50 1 1
r 10 1 1

η
{0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1}

{0.000001, 0.00005, 0.00001, 0.0005,
0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1}

{0.000001, 0.00005, 0.00001, 0.0005,
0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1}

Batch size 10 10 10
Epochs 50 50 50
N {10, 100, 1000, 10000, 100000} {10, 100, 1000, 10000, 100000} {10, 100, 1000, 10000, 100000}
Nv 100000 100000 100000
Nt 100000 100000 100000
Loss MSE MSE BCE +MSGE + λregLreg

Table 1: Summary of training procedures and hyperparameters for all CNNs in this work.

N 0 10 100 1000 10000 100000

Wiener 1.743 — — — — —
Linear (k = 0) — 6.204 2.295 1.811 1.751 1.748
CNN (k = 1) — 12.386 3.662 1.924 1.799 1.762
CNN (k = 2) — 15.614 3.789 2.051 1.842 1.767
CNN (k = 3) — 20.395 4.911 2.167 1.869 1.771

Table 2: Median MSE scores SCOREk,r of the CNNs
on r = 10 selected runs, compared to the theoretically
optimal Wiener filter.

where r is the circle’s radius, c = (cx, cy) its centre, and
f (resp. b) is the foreground (resp. background) in-
tensity. These parameters are independently3 and uni-
formly chosen at random: r ∼ U([ εr2

D−1
4 , (1− εr

2 )
D−1
4 ])

with εr = 0.4, c ∼ U([(D − 1) εc2 − D−1
2 , (D − 1)(1 −

εc
2 ) −

D−1
2 ]2) with εc = 0.5, b ∼ U([0, 1]), and f | b ∼

U([0, 1] \ [b− δ, b+ δ]) with δ = 50
255 the minimum con-

trast4. However, φ is degraded with blur and noise
giving the observed data φdata as follows:

φdata = gσb
∗ φ+ n, (9)

where gσb
(p) = 1

2π exp(−
∥p∥2

2

2σ2
b
) is a Gaussian convolu-

tion kernel, and n is i.i.d. white noise n ∼ N (0, σnID2).
We plot example data in Figure 4. The task is to es-
timate the three geometric numbers (r, c) = (r, cx, cy)
from φdata .

3.2 Expert engineer’s solution

Unlike in the Wiener case, the optimal estimator min-
imising the ESE is not so trivial to find. Instead, we
choose a method called Pointflow designed by an expert
engineer that perfectly tackles the problem at hand.
Pointflow [38, 43] is an elegant subpixel level con-

tour integrator and edge detector in images requiring
no learning whatsoever. It consists in defining po-
tential vector fields V along which random points P
flow: dP

dt (t) = V (P (t)), such that end trajectories lie

3Except f and b which are slightly correlated to ensure a
minimal contrast |f − b| > δ.

4In our tests, we take D = 201 implying that r ∼ U([10, 40])
and c ∼ U([−50, 50]2).

Figure 4: Four examples of clean φ and degraded φdata

disk images.

on edges of the image I. The vanilla Pointflow [38]
uses two fields V+ and V− from the edge attraction Va

and rotating Vr fields based on the image gradients as
follows:

Va = ∇∥∇Ib∥2, Vr = ∇I⊥b , V± = 1
2 (Va±Vr), (10)

where Ib = gσPf
∗I is a blurred version of I with a Gaus-

sian kernel gσPf
. Various stopping conditions and uses

of V± exist to detect edges in natural images, however
on our data containing a single circular edge per image,
we need only consider the basic ones. Indeed, the possi-
ble cases for trajectories are: it loops (Cl), it leaves the
image domain (Co), or it is stuck in an area with small
magnitude ∥V ∥2 (Cs). Flowing initially from V+, if we
loop (Cl), then the point has reached the circle and it
suffices to reflow along V+ to extract just the circle’s
contour. If we end up outside the image domain (Co),
which is rare in our data, we reflow from the exit point
along V−. If we are in a low flow magnitude area (Cs),
which is not rare, then we discard the trajectory. In
total, NPf = 200 points are randomly uniformly sam-
pled in the image domain and used for Pointflow, and a
fraction of them end up flowing on the disk’s edge with
subpixel precision, as the other ones lead to discarded
trajectories. For more details on our implementation
of Pointflow see A. For some illustrations of Pointflow
results on our data see Figure 5.

To estimate the disk’s radius and centre from point-
flow contours (Cl), we can simply compute the aver-
age length of the reflown closed contours and divide
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(a) φ (b) V+ (c)

(d) φdata (e) V− (f)

Figure 5: Pointflow in practice. (5a): clean data. (5d):
degraded data. (5b) and (5e): pointflow fields sampled
every five pixels. (5c): initial flows of points without
reflowing with groundtruth boundary in green. (5f): all
final trajectories that have reflown in a closed loop (Cl)
with groundtruth boundary in green and all regressed
circles using least squares on each looped trajectory in
blue (used for estimating the centre).

it by 2π. To compute the centre’s coordinates, we
could compute for each closed trajectory the average
of its points, and then average over these estimations.
However, this method empirically did not best per-
form on validation data, so we refined it by applying
least-squares regression on the equation of a circle to
estimate from it its location per trajectory and then
average the estimations. Note that the least-squares
regression did not provide a better estimation of the
radius so we keep the crude length integration strategy
for it.

3.3 Neural models

As in the one-dimensional case, the expert’s method is
to be compared with a convolutional neural network.
Although the learning problem seems trivial, it is ac-
tually harder than expected for networks, as has been
shown in [42] even when the circles are centred. Em-
pirically, we were not able to train correctly a small
custom model similar to those previously used having
just three layers and even many channels per layers and
no further deep learning tricks. To overcome this lim-
itation, we use famous networks in the deep learning
literature: the CNNs Alexnet [7], VGG [8] and ResNet
[9], and the transformer VIT5 [44]. To adapt the model
to our task, we change the final fully connected layer
to have 3 outputs only.

For each architecture, we either train the networks
from scratch (SC), or initialise the weights, except
those of the final fully connected layers, to those pub-
licly available obtained by classification on Imagenet
[45], as is commonly done in the field. The pretrained
weights can be either frozen for transfer-learning (TL)
or retrained as well for finetuning (FT). Although the

5We use the simplest ones VGG11, ResNet18, and VIT B 16,
as larger ones are here unnecessary.

task and data are fundamentally different from ours,
it is generally believed that the wide variety of nat-
ural images encourages the famous networks to learn
features that generalise quite well to most reasonable
tasks.

Once again, the MSE loss is used for training6. As
it is significantly more expensive to train such net-
works compared to the tiny ones in the Wiener case,
we only perform Nr = 1 run per learning rate config-
uration, ranging in η ∈ {0.000001, 0.00005, 0.00001,
0.0005, 0.0001, 0.005, 0.001, 0.05, 0.01, 0.5, 0.1},
with a batch size of 10 for 50 epochs. As previ-
ously, the optimal learning rate is chosen on the per-
formance on validation data. Both the test and vali-
dation data use Nv = Nt = 100000 independently ran-
domly sampled images, whereas the training sets have
N ∈ {10, 100, 1000, 10000, 100000} ones. See Table 1
for a summary of our training procedure and choice of
hyperparameters.

3.4 Results

We present the results in Figure 6 and Table 3. Al-
though the networks are simultaneously trained for
both the radius and centre location estimation, we also
present the MSE on the estimation of each geometric
concepts separately.

First, the transfer-learning network ResNet-TL is
not able to correctly estimate the radius or centre’s
location, meaning that its learned features on classifi-
cation of Imagenet are not able to handle our simple
data: they are not so general after all. Likewise, the
prelearned features of Alexnet-TL, VGG-TL, and VIT-
TL do not generalise well to this toy problem, requiring
significantly more data than the maximum available
to compare with the simple data-agnostic pointflow.
However, when the networks are entirely trained, ei-
ther finetuned or from scratch, they are either flatly
beaten by pointflow when using small amounts of train-
ing data or on par or slightly outperform it when
N ≥ 10000. The only networks beating pointflow
overall are VGG-SC, ResNet-FT, and VIT-FT when
N = 100000, but more (VGG-FT, VGG-SC, ResNet-
FT, ResNet-SC, and VIT-SC) significantly outperform
pointflow on the radius estimation when N ≥ 10000.
The difference between finetuning and training from
scratch seems to only appear when small amounts of
training data are available, and then finetuning is bet-
ter. However, in these cases, both approaches pale in
comparison to the reference data-agnostic method.

From this experiment, we conclude that a realistic
neural network is worth at least tens of thousands of
examples on a fairly simple task (toy problem vs real
world challenge) compared to an expert engineer. We
thus provide a criterion that a data model is preferable

6To help the networks converge, the radius and centre co-
ordinates are scaled to [−1, 1] using rs = 8

D−1
(r − D−1

8
) and

cs = 2
D−1

c. In all plots and numbers provided in this paper, the

results are rescaled to the original scale: r and c and not rs and
cs.
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for estimation if fewer than 10000 training samples are
available.

N Pointflow AlexNet VGG ResNet VIT

TL FT SC TL FT SC TL FT SC TL FT SC

(r, c) 0 0.66
10 826 524 1748 1581 754 1748 5256 3358 2590 2257 2282 2099
100 314 66 291 448 69 215 2064 1124 793 1183 694 1799
1000 183 23 9.0 189 6.5 7.6 1092 48 45 669 18 1788
10000 140 31 4.8 71 2.9 1.2 814 3.7 4.4 289 1.0 1681
100000 67 17 1.5 40 0.68 0.42 826 0.51 0.93 213 0.21 5.6

r 0 0.26
10 66 65 75 75 69 75 110 86 82 30 21 85
100 36 5.9 42 52 5.6 40 42 25 31 5.3 6.9 70
1000 26 2.4 1.3 20 0.57 0.62 24 2.2 1.3 1.7 0.58 28
10000 16 2.0 1.5 9.9 0.23 0.11 19 0.19 0.27 0.95 0.065 0.72
100000 6.8 1.7 0.69 4.9 0.075 0.051 19 0.066 0.078 0.73 0.034 0.12

c 0 0.40
10 759 454 1673 1506 675 1673 5142 3206 2507 2195 2282 2001
100 277 60 249 393 63 175 2020 1099 762 1178 687 1724
1000 157 21 7.7 169 5.9 6.9 1067 46 43 667 18 1717
10000 118 29 3.0 61 2.6 1.1 795 3.5 4.1 288 0.96 1680
100000 57 6.4 0.79 36 0.57 0.37 807 0.45 0.86 212 0.17 5.5

Table 3: MSE scores of the networks compared to
Pointflow on test data, computed on both r and c
(top), just r (middle), or just c (bottom). Networks
were trained on joint prediction of r and c. For the
separate r (resp. c) scores, the selected networks were
those providing the best r (resp. c) error on validation
data.

4 Two-dimensional geometric
classification

Most traditional prediction problems fall in one of the
following categories: estimation – also known as re-
gression – and classification. Both previously studied
problems belong to estimation, where precise numbers
need to be predicted. The problem we next analyse
is a classification task: what primarily matters is the
accuracy of the class attribution scheme rather than
the precision of the numbers used to determine it. It
is commonly believed that classification is easier than
regression.
Classification methods, both traditional and neural,

usually follow the same scheme: find an embedding
that (approximately) linearly separates the data and
then perform linear classification for the class attribu-
tion. While linear classification is well-known, under-
standing the good non unique embedding strategies is
more complex. For this reason, the problem we anal-
yse next is once again simple and based on geometric
data. To control the embeddings used for classification,
we also study a well-understood geometric estimation
problem. The main goal is thus to classify whether a
random dot image stems from a line image or is pure
white noise. The auxiliary estimation task consists in
locating the line: estimating its distance from the im-
age centre and orientation. The random dot images we
use have been studied in detail both theoretically and
empirically for joint classification and line estimation
on both algorithms and humans [46, 47].

4.1 Data model

The original data now consists of two-dimensional
D × D binary images that are either empty or of a
random line. Images are centred at (0, 0) and now the

y-axis is pointed upwards to fit the natural mathemat-
ical convention on axes and angle orientations7. For a
pixel p ∈ [−D−1

2 , D−1
2 ]2:

φ(p) =


0 if l = 0,{
0 if |u⊤

n (p− p0)| > w
2 ,

1 if |u⊤
n (p− p0)| ≤ w

2 ,
if l = 1,

(11)

where l ∈ {0, 1} is the binary label line-no line of the
image, w is the fixed width of all straight lines, p0
is the orthogonal projection of the image centre onto
the medial axis of the line, and un ∈ R2 is the nor-
mal vector to the medial axis of the line (see Figure
7). The lines are randomly chosen by selecting the
distance r = ∥p0∥2 and orientation θ at random, giv-
ing un = (− sin θ, cos θ)⊤ and p0 = −run. To ensure
uniformly sampling lines in the image in the natu-
ral sense, r and θ are independently uniformly sam-
pled: r ∼ U([ιr, (1 − εr)

D−1
2 ]) with εr = 0.3 and

θ ∼ U([0, 2π]). We enforce ιr > 0 to remove label in-
stability that occurs with magnitude π for θ when lines
pass close to the origin8. In our tests, we take D = 201
pixels, w = 8 and ιr = 3 pixels, and so r ∼ U([3, 70)]).
Note that all lines9 are uniquely mapped to a point in
the polar coordinate system (r, θ).

However, φ is degraded by a sampling process on
the line along with additive white noise points, gener-
ating the observed data of random dot images φdata as
follows:

φdata = φpf
∨ npb

, (12)

where ∨ is the logical OR operator replacing a logical
addition, npb

is a white noise image where each pixel
value is drawn independently, a Bernoulli with param-
eter10 pb, and φpf

is a sampled version of φ where
pixels outside the line11 all take value 0, but pixels on
the line have independent sampled values of Bernoulli
random variables with parameter pf . We followed the
model and notations of [46, 47] and this is similar in
style to the proposed degradations previously studied.
Note that φdata would have been equivalently given by
the alternative model consisting in taking pixel values
independently according to Bernoulli variables of pa-
rameters p0 = pb outside the line and p1 = pb+pf−pbpf
inside it, as the probability of a pixel on the line to be
white is the sum of the probabilities of it being white
in the sample image φpf

(pf ) or in the noise image
npb

(pb) minus the probability that it is white in both
of them (pbpf ). We have p1 > p0. An image with a
line should thus possess a straight region of width w
with a higher point density p1 compared to the back-
ground density p0. Following the analysis of [46, 47],

7Which differs from the image convention of a downwards y-
axis. Angles with respect to the x-axis are opposites up to 2π
between conventions.

8The same issue would occur for a different choice of origin,
e.g. the top left corner.

9Except those passing through the origin, which we exclude
by ιr > 0.

10With our notations, p = (x, y) denotes a pixel position,
whereas p > 0 is a scalar parameter of a Bernoulli distribution.

11In the absence of a line, we simply have φpf = φ ≡ 0.
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Figure 6: Test scores of the data-agnostic Pointflow and of the best networks learned from scratch, transfer-
learned, or finetuned. Left: MSE computed on both the radius and the centre’s location estimation. Middle:
same but only on the radius estimation. Right: same but only on the centre location estimation. We zoom-in
in the bottom set of figures.

we took pb = 1 − (1 − p′b)
w with p′b = 0.005 and for

w = 8 we chose pf = 0.05, making it possible to easily
see and retrieve algorithmically the line without many
false alarms in most but not all cases. We plot exam-
ple data in Figure 8. In all our work, classes l are bal-
anced out unless explicitly mentioned otherwise. The
primary goal is line-no line classification from φdata .
This classification must be based on features that al-
low to achieve the secondary goal: estimating the two
geometric numbers (r, θ) when l = 1, and both goals
must be simultaneously performed.

un

w p0ιr

θ
r

Figure 7: Line data generation process. The clean im-
age (left) is generated by randomly sampling the white
cross, at angle θ and distance r from the origin, which
is associated to a unique line of width w. If a line at
angle θ passes too close to the origin (r ≤ ιr), then
its image and that of a line of angle θ + π are almost
identical, yet have very different angles, which is an is-
sue for angle regression, so it is banned. Given a clean
line image, we randomly sample points on it (middle
left), and points anywhere in the image with a different
density (middle right), and merge the two with a logi-
cal union (right). For visualisation purposes, we draw
negated images (points are black instead of white).

Figure 8: Three examples of clean and degraded ran-
dom dot images, that have been negated, i.e. 1−φ and
1− φdata, for better visualisation. Electronic zooming
in is recommended for best viewing conditions.

4.2 Expert engineer’s solution

Once again, the optimal estimator or classifier are not
easily derived. Instead, we choose the classical and per-
fectly suited Hough transform [39, 40] (see Figure 9).
The Hough transform was initially designed to retrieve
edges in images. Once binary edge maps have been
extracted, edges consist in locally maximal alignments
of white pixels. To locate them, the Hough transform
maps lines to a polar coordinate system (rh, θh) centred
in ph, where the equation of a line is

rh = x cos(θh) + y sin(θh). (13)
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Points are thus mapped to continuous non straight
curves, each point on the curve corresponds to a line
passing through the point at some angle. More pre-
cisely, all lines that pass by a given point (x, y) have
an equation with parameters (rh, θh) such that rh =
x cos(θh)+y sin(θh). This means that rh is a sinusoidal
function of θh and to each point p = (x, y) corresponds
a sinusoidal curve in the Hough space (rh, θh). If many
points pi = (xi, yi) are aligned, it means that their
sinusoidal curves will intersect. In reverse, many in-
tersections of sinusoidal curves in the Hough space re-
veal the existence of aligned points in the image. The
Hough transform is usually implemented by a voting
strategy: each point in the (edge map) image votes for
all the lines passing through it up to an angular reso-
lution δhθ . Votes are accumulated between all points in
an array, on which we then extract the peaks to detect
the lines.

θh

rh

x

y

θh

rh

Figure 9: The Hough transform maps image points to
curves, where each point on a curve is a line passing
through a point in the image. Intersection of many
curves happens when points in the image are aligned.
It is usually implemented by a voting strategy where
each image point votes for the set of sampled lines pass-
ing through it.

Magnitudes of the peaks correspond to the number
of votes, as such the higher the peak, the more points
are located along the line. This information provides
a confidence score for the Hough transform related to
the density of points along the estimated line. Since in
our data a higher density of p1 is expected

12 along lines
and p0 everywhere else, the proposed expert’s solution
is to extract the maximum peak on the Hough trans-
form of φdata and compare its intensity Ph

max(φ
data) to

a threshold λ, which is global since pb, pf , and w are
shared between all images. The classification result at
threshold λ is thus l̂h = 1Ph

max(φ
data)>λ, where 1 is the

indicator function on the set of data functions. This
classification strategy is based on line estimation to be
provided by the line with the estimated line parameters
(r∗h, θ

∗
h) of the peak. Due to possible convention differ-

ences, conversion is needed to get the final estimate
(r̂h, θ̂h). See B for more information on implementa-
tion details.

12This is expected on average but differs randomly in each
sample. Random events can also lead to seeing lines in white
noise, which in psychophysics is called apophenia or the cluster-
ing illusion [48] and is mathematically likely [49].

4.3 Neural models

The expert’s method is to be compared with convolu-
tional neural networks. We chose the exact same net-
works as in the previous section, namely AlexNet [7],
VGG [8], ResNet [9], and VIT [44], trained either from
scratch (SC), with transfer-learning (TL), or finetuning
(FT) like before.

As previously motivated, simultaneous classification
and line position estimation is performed. As such,
three numbers need to be extracted from the output
of the network r̂n, θ̂n, and l̂n. However, due to the
periodic nature, but not values, of angles, careless black
box angular regression can lead to unstable behaviours
around the border of the angle interval, here 0 and 2π.
While it is partly mitigated by using geodesic angle
errors rather than crude differences in angle values, the
common recipe is to regress periodic values, usually
xθ = cos θ and yθ = sin θ, and then compute the angle
via the arctangent13 rather than let the network find
this operation on its own. As such, we modify the
last linear layer of the neural architecture to output
four numbers: rn, x

θ
n, y

θ
n, and the logit ylogn , and once

trained we denote them respectively r∗n, x
θ
n
∗
, yθn

∗
, and

llogn
∗
. The final estimates based on these numbers are

r̂n = r∗n and θ̂n = arctan2 (yθ
∗

n , xθ∗

n ) up to rescaling14,

and l̂n = 1l∗n>λ where l∗n = σ(llogn
∗
) and σ = 1

1+e−x is
the sigmoid operator mapping logits to [0, 1].

For the estimation part (r, θ), we wish to minimise
the minimum squared geodesic error MSGE , a modi-
fication of the MSE loss where the distance between
angles is now geodesic rather than the crude value dif-
ference. The geodesic distance between two angles θ1
and θ2 is given by

G(θ1, θ2) = 1|θ2−θ1|≤π|θ2 − θ1|

+ 1|θ2−θ1|>π

(
2π −max(θ1, θ2) + min(θ1, θ2)

)
,

(14)

with G(θ1, θ2) ∈ [0, π], therefore the MSGE is given by

MSGE =
1

N
(1)
b

N
(1)
b∑

i=1

li

[(
(rn)i − ri

)2

+G
(
arctan2

(
(yθin )i, (x

θi
n )i

)
, θi

)2
]
,

(15)

where N
(1)
b ≤ Nb is the number of line images in the

batch and Nb is the batch size, the index i in ri is the
value of r for the i-th batch sample, and the same goes

13This is done with the 2-argument arctangent θ =
arctan2(y, x), which essentially computes arctan( y

x
) the regu-

lar scalar arctangent, but can add or subtract π to it depending
on the quadrant of (x, y), and also handles cases where one of
the arguments is 0. This allows the predicted angle to lie in an
interval of length 2π.

14As in the previous section, the estimation training labels
were scaled to [−1, 1] using rs = D−1

4
(r − D−1

4
) and θs =

1
π
(θ − π). The results presented in this paper, either formu-

lae, numbers, or figures, have been rescaled to the original scale:
r and θ and not rs and θs.
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for the other symbols (rn)i, (x
θi
n )i, (y

θi
n )i, θi, li but also

(llogn )i. We abused notations when no line is present,

i.e. N
(1)
b = 0, as then MSGE = 0.

Without further constraints, the network does not
respect the condition (xθ

n)
2 + (yθn)

2 = 1, leading often
to a collapse to the origin. To stabilise training, we
add the regularisation loss

Lreg =
1

N
(1)
b

N
(1)
b∑

i=1

li

(
(xθ

n)
2
i + (yθn)

2
i − 1

)2

. (16)

Note that an alternative strategy to bypass the
geodesic issue on angles and the previously mentioned
collapse would be to use the regular MSE on the co-
sine and sine estimates directly. However, naturally
random uniform lines in the plane do not have an ori-
entation of uniform cosine and sine, contaminating the
training labels with a bias that the networks could ex-
ploit. For this reason we did not use this strategy and
work in the proposed angular domain.
The binary classifier is trained as is the norm using

the binary cross entropy loss

BCE =
1

Nb

Nb∑
i=1

−
[
li ln

(
σ
(
(ylogn )i

))
+ (1− li) ln

(
1− σ

(
(llogn

)
i

)]
.

(17)

The total loss used for training the networks is then

L = BCE +MSGE + λregLreg , (18)

where λreg is a Lagrangian multiplier chosen to be 1
in our experiments. With this new loss, the train-
ing methodology is unchanged from the previous case:
only Nr = 1 run is performed per learning rate con-
figuration η ranging in the same values, with the same
batch size and number of epochs. See Table 1 for a
summary of our training procedure and choice of hy-
perparameters. Since classification is the main goal,
the optimal learning rate is decided based only on the
classification performance. The cross entropy loss is
a differentiable proxy for an interesting classification
score, usually taken to be the accuracy at λ = 1

2 . In-
stead, we prefer the area under the curve AUC ∈ [0, 1]
of the receiver operating characteristic (ROC) curve
that summarises the balance between the true and
false positive rates TPR and FPR respectively over
all λ. The higher the AUC is the better, and for
the blind random predictor it has value 1

2 . As such,
the optimal learning rate η∗(N) for N training sam-
ples is chosen based on the maximum AUC score on
Nv = 100000 independent validation samples. The test
set uses Nt = Nv samples whereas the training sets
have N ∈ {10, 100, 1000, 10000, 100000} ones. Note
that in the validation, test, and all training sets, half
the data comes from a line image l = 1. For exam-
ple, our largest training set contains 50000 random dot
images of lines and 50000 pure white noise images.

4.4 Results

We present the results in Figures 10 and 11 and Table
4 for both the main classification and auxiliary estima-
tion tasks.

Classification Once again the transfer-learning net-
works perform poorly and are incapable to beat the
simple data-agnostic Hough transform with the pro-
vided amount of data. However, when training the
entire networks from scratch or with finetuning, the
CNN networks all outperform the Hough transform
with over N = 1000 training samples, even reaching
close to perfect classification with N = 100000 sam-
ples. Unlike the CNNs, the transformer VIT networks
require more data to outperform the Hough transform,
needing at least N = 10000 samples. This illustrates
the widespread belief in the field that transformers re-
quire significantly more data to be properly trained
than CNNs. Overall, these results show that this clas-
sification task is fairly easy for neural networks, with
ResNet-SC and AlexNet-SC on par or better than the
Hough transform with only N = 100 training samples.

Estimation When observing the MSGE for radius
or angle prediction, the Hough transform seems to
struggle compared to the neural networks, being on
par or slightly better than the transfer-learning net-
works for high number of training samples. All CNNs
trained from scratch or with finetuning, along with
transfer-learned VIT, outperform the Hough transform
with at least N = 10000 training samples, some of
them (VGG-FT and AlexNet-FT) doing so with only
N = 1000, and the gap with the Hough transform is
large at N = 100000. These results would suggest that
neural networks need few amounts of data to compete
with the Hough transform. However, this analysis is
not fully correct. There is an artefact in the presented
results stemming from the choice of summariser: a
mean of errors. When a method fails to predict the
correct line, the error can become large in the autho-
rised range. In the Hough transform approach, pre-
dicting an incorrect line, e.g. by hallucinating a line in
white noise, leads to a somewhat random estimation
uncorrelated to the groundtruth geometric quantities,
and thus to high errors. Since the Hough transform
is not a perfect classifier, with an AUC of approxi-
mately 90%, these large errors act like large outliers,
which heavily bias the mean score. To complement
the analysis, we analyse the full distribution of estima-
tion errors and found that the Hough transform error
is heavy tailed with 20% of large errors that do not
reflect the acute precision of the method on the other
80% of data. In comparison, most successful convolu-
tional neural networks tend to have an error distribu-
tion that is significantly more progressive and at higher
levels than the Hough transform approach, which re-
flects a lack of precision in most cases of these methods.
To quantitatively reveal this effect, we study the me-
dian of squared (geodesic) errors MdSGE as a replace-
ment of their mean MSGE . It becomes clear that the
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Hough transform is an extremely precise approach in
most cases, and networks need at leastN = 10000 sam-
ples to be on par with it. To outperform the Hough
transform in precision for the radius estimation, the
methods require N = 100000 training samples (VGG-
FT, VGG-SC, AlexNet-SC, ResNet-FT). No method
achieves better MdSGE for angle estimation than the
Hough transform even with N = 100000 training sam-
ples. Furthermore, none of the VITs manage to out-
perform the Hough transform for either radius or an-
gle estimation, requiring more data than the maximum
available.
From this experiment, we conclude that classifica-

tion is indeed simpler than regression, requiring at least
hundreds to thousands of samples to compare with or
outperform an expert method for classification. Fur-
thermore, we found once again that the number climbs
to tens of thousands of samples for estimation. In-
terestingly, this experiment also shows that with fewer
examples, e.g. a thousand, they can avoid random esti-
mations in failure cases to maximise their average per-
formance, which was not handled in the design of our
expert method. We thus provide a criterion that a data
model is preferable if fewer than 1000 samples are avail-
able if only classification is of interest, and otherwise
10000 samples if precise estimates are required.

Figure 10: Test classification AUC scores of the data-
agnostic Hough transform and of the best networks
learned from scratch, transfer-learned, or finetuned.
The AUC scores are the area under the ROC curves for
networks trained with N = 10, 100, 1000, 10000, 100000
samples.

5 Conclusion

We analysed the amount of data required by neural net-
works, either shallow custom ones or deep famous ones,
trained from scratch, finetuned, or transfer-learned, to
compete with optimal or state-of-the-art traditional
data-agnostic methods based on mathematical data
generation models. To do so, we mathematically gen-
erated data, and fed various amounts of samples to the
networks for training. We found that tens of thousands
of data examples are needed for the networks to be on
par or beat the traditional methods, if they are able to,
for estimation problems, whereas only thousands suf-
fice for classification. For mathematical accuracy, we

N Hough AlexNet VGG ResNet VIT

TL FT SC TL FT SC TL FT SC TL FT SC

AUC 0 0.906
10 0.520 0.523 0.585 0.623 0.587 0.527 0.550 0.534 0.519 0.499 0.517 0.495
100 0.564 0.597 0.879 0.663 0.725 0.700 0.621 0.608 0.946 0.640 0.563 0.524
1000 0.625 0.930 0.940 0.769 0.979 0.940 0.693 0.967 0.984 0.716 0.826 0.643
10000 0.682 0.994 0.991 0.823 0.998 0.998 0.742 0.989 0.992 0.810 0.991 0.914
100000 0.722 0.999 0.999 0.858 0.999 0.999 0.756 0.999 0.998 0.881 0.999 0.972

r 0 330
(mean) 10 380 390 450 420 440 420 1400 1400 390 490 1200 430

100 490 530 380 400 370 370 580 540 400 480 390 1300
1000 400 160 380 360 120 380 520 380 330 390 450 810
10000 360 84 87 280 22 28 410 220 260 430 45 550
100000 340 23 6.8 240 7.7 6.9 390 8.7 40 380 14 380

θ 0 0.647
(mean) 10 0.819 0.828 0.824 0.825 0.826 0.825 0.919 0.919 0.829 0.823 0.823 0.824

100 0.822 0.828 0.819 0.817 0.841 0.829 0.866 0.947 0.825 0.817 0.838 0.817
1000 0.827 0.789 0.816 0.831 0.719 0.815 1.05 0.809 0.700 0.813 0.607 0.929
10000 0.815 0.607 0.655 0.817 0.276 0.479 0.824 0.582 0.738 0.777 0.423 0.797
100000 0.632 0.089 0.048 0.766 0.053 0.099 0.816 0.036 0.233 0.746 0.161 0.805

r 0 3.3
(median) 10 280 280 280 280 280 280 880 850 280 280 710 280

100 280 290 280 270 270 280 310 300 280 280 280 640
1000 280 60 280 250 37 280 290 230 190 270 220 390
10000 260 47 29 160 6.4 10 270 100 150 260 12 300
100000 240 11 1.2 120 2.0 1.8 270 2.1 15 240 4.5 270

θ 0 0.0005
(median) 10 0.614 0.625 0.621 0.622 0.622 0.625 0.636 0.643 0.623 0.621 0.617 0.623

100 0.617 0.627 0.611 0.603 0.623 0.626 0.630 0.628 0.621 0.605 0.623 0.605
1000 0.623 0.568 0.602 0.623 0.461 0.610 0.632 0.536 0.436 0.606 0.344 0.629
10000 0.606 0.317 0.387 0.614 0.096 0.203 0.615 0.305 0.491 0.544 0.057 0.576
100000 0.344 0.010 0.002 0.531 0.011 0.031 0.605 0.002 0.033 0.487 0.018 0.590

Table 4: Classification (top) and estimation scores –
mean (middle) and median (bottom) of the geodesic
squared errors – of the networks compared to the
Hough transform on test data. The estimation scores
are computed on r and θ separately. Networks were
trained for joint line classification and (r, θ) estima-
tion. All scores correspond to the selected networks
providing the best AUC on validation data.

did not investigate real-world problems, which are com-
monly harder with less accurate or non-existent mathe-
matical data generation models, but more data should
be needed in those complex tasks. We also left for fur-
ther work a thorough investigation of the dependence
on the dimensionality of the data. We have empiri-
cally derived a simple criterion, enabling researchers
working on tasks where data is not easily available, to
choose whether to use model-based traditional meth-
ods, by using either preexisting or newly created data
generation models, or simply feed data to deep neural
networks.

A Pointflow implementation de-
tails

The pointflow dynamics are implemented by discretis-
ing time and approximating the time derivative with a
forward finite difference scheme, although it could be
improved with a Runge-Kutta 4 implementation [50].
Given the small magnitudes of the fields, we found that
a large time step dt = 50 works well. We define three
thresholds, τl = 0.9 for Cl, τs = 10−6 for Cs, and
τlen = 0.001. we consider having looped Cl if a point
reaches a previous point within squared Euclidean dis-
tance τl while having on the trajectory between the
looping points at least one point with squared distance
to them of at least τl. A trajectory is stuck if it reaches
a point where the current flow V has small magnitude
∥V ∥22 ≤ τs. Each flow is run for Ni = 1000 iterations,
and trajectories shorter than τlen are discarded, e.g.
trajectories of type Cs. We used σPf = 5 for blurring
out the noise before computing the fields. The imple-
mented pointflow algorithm for finding contours in our
circle images is presented in Algorithm 1.
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Figure 11: Test estimation scores of the data-agnostic Hough transform and of the best networks learned from
scratch, transfer-learned, or finetuned. Our summary quantitative scores are the MSGE and MdSGE , i.e. the
mean (left) and median (middle and zoomed-in right) of the sorted squared geodesic errors on the test set. Top:
errors for the distance estimation. Bottom: same but for the angle estimation.

Algorithm 1 Contour integration with Pointflow on
image I

Compute Ib = gσPf
∗ I

Compute Va = ∇∥∇Ib∥2 and Vr = ∇I⊤
b

Compute V+ = 1
2 (Va + Vr) and V− = 1

2 (Va − Vr)
Choose NPf random points independently and uniformly in the

image domain [−D−1
2 , D−1

2 ]2

Let C = [] be an empty list of computed contours
for i = 1 . . . NPf do

Let (traj+, C) be the flow along V+ starting from the i-th point
if C = Cl and length(traj+) ≥ τlen then

Let (trajl, Cl) be the reflow along V+ starting from the
endpoint of traj+

C.append(trajl)
else if C = Co and length(traj+) ≥ τlen then

Let (traj−, C−) be the reflow along V− starting from the
endpoint of traj+

if C− = Cl and length(traj−) ≥ τlen then
Let (trajl, C) be the reflow along V− starting from the

endpoint of traj−
C.append(trajl)

end if
end if

end for
Return C

After computing the list of contours C in the image I,
we estimate the radius using the average curve length

r̂ = 1
2π

∑|C|
i=1 length(Ci). Since the average of the points

did not yield the best estimation of the circle centre, we
estimate it instead using least squares. The equation of
a circle is naturally given by (x− cx)

2+(y− cy)
2 = r2,

which can be written as θ1x + θ2y + θ3 = x2 + y2,
where θ1 = 2cx, θ2 = 2cy, and θ3 = r2 − c2x − c2y. We

can thus estimate for each contour θ = (θ1, θ2, θ3)
⊤

by least squares as θ̂ = A⊤(AA⊤)−1B, with Ai,: =
(xi, yi, 1) and Bi = x2

i +y2i and i ranging in the number

of computed points on the contour. From θ̂ we can
estimate ĉ = ( θ12 ,

θ2
2 ). The final centre estimation is

then given by the average of this estimation over all
contours. Note that we can also estimate r using θ3
but we found that it did not outperform the lenght
strategy so we do not use it.

B Hough transform implemen-
tation details

Theoretically, we could take the same conventions for
the Hough transform as for the data (r, θ), namely
that the origin is the image centre and that the y-
axis is oriented downwards. However, in the Hough
transform the origin is usually taken at the top left
pixel ph = (−D−1

2 , D−1
2 ) and the y-axis is oriented

downwards as is common for images. For such a
choice, angles for lines passing through the image need
only be taken in [−π

2 ,
π
2 ] rather than in an interval of

length 2π. This different convention is used in most
built-in methods, e.g., in the scikit-image package [51].
While conventions differ, there is a one-to-one mapping
(r∗h, θ

∗
h) 7→ (r̂h, θ̂h) between representations in both sys-
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tems.
In our experiments, we use the built-in Hough trans-

form from the scikit-image package. Each point votes
for kh uniformly spaced lines in [−π

2 ,
π
2 ], which means

an angular precision of δhθ = π
kh

rad = 180
kh

◦

. In our ex-

periments we tested with kh ∈ {360, 1800, 10800} i.e.

δhθ ∈ { 1
2

◦

, 1
10

◦

, 1′}, which gave similar results so we only
present kh = 10800 and δhθ = 1′. The maximum peak
is chosen giving the line estimate (r∗h, θ

∗
h) in the usual

convention that differs from ours. The conversion is
given by the following result.

O

C

OP

CP

θ*h

̂θh

θ*h

nθ*h
h

̂nθ*h

≡

r*h

̂rh

OP

̂θh

O

C
CP

θ*h
nθ*h

h

̂nθ*h

≡

r*h

̂rh

Figure 12: Conversion of the lines estimates in the
Hough top-left centred and downwards y-axis to the
image centre and upwards y-axis. The conversion de-
pends on whether the line separates (figure on the left)
or not (figure on the right) both origins.

Theorem 1. Denote p̄h = (D−1
2 , D−1

2 )⊤ and n
θ∗
h

h =
(cos(θ∗h), sin(θ

∗
h)). The conversion from the top-left

centred and downwards y-axis to the image centre with
an upwards y-axis is given byr̂h =

∣∣∣r∗h − p̄⊤h n
θ∗
h

h

∣∣∣ ,
θ̂h = −θ∗h + 1

r∗h−p̄⊤
h n

θ∗
h

h >0
× π mod 2π.

(19)

Proof. We give an analytical formal proof and a lighter
geometric one. For conciseness, we call the top-left cen-
tred and downwards y-axis system the Hough system
of coordinates.

Analytical proof Denote (x, y) and (x∗, y∗) pixel
coordinates in our and the Hough systems respectively.
In the Hough system, the line is parametrised by

r∗h = x∗ cos(θ∗h) + y∗ sin(θ∗h). (20)

Since the coordinates between systems is given by

x = x∗ − p̄hx and y = p̄hy − y∗, (21)

where p̄h = (p̄hx, p̄hy)
⊤, the line can be reparametrised

as

r∗h − p̄⊤h n
θ∗
h

h = x cos(−θ∗h) + y sin(−θ∗h). (22)

If r∗h − p̄⊤h n
θ∗
h

h > 0, we recognise the equation of a line
in our coordinate system with distance to the image

centre of r̂ = r∗h− p̄⊤h n
θ∗
h

h and angle θ̂h = −θ∗h mod 2π.

If r∗h−p̄⊤h n
θ∗
h

h < 0, then flipping the sign in the equation

gives r̂ = −(r∗h − p̄⊤h n
θ∗
h

h ) and θ̂h = −θ∗h + π mod 2π.

The case r∗h − p̄⊤h n
θ∗
h

h = 0 implies that the line passes
through the image centre, which has been excluded,
and in that case θ̂h is not defined.

Geometric proof A more intuitive proof involves
direct geometry, see Figure 12. In the Hough system,

n
θ∗
h

h is the unit vector pointing from the top-left corner
to its projection on the line. In our system, this unit
vector becomes n̂θ∗

h = (cos(θ∗h),− sin(θ∗h)). Calling O
(resp. C) the geometric point representing the top-
left (resp. centre) of the image, and OP (resp. CP )
its projection on the line, the Chasles relation gives
OC = OOP + OPCP + CPC. Projecting on the line
normal, we get

OC⊤n̂θ∗
h = OO⊤

P n̂
θ∗
h + CPC

⊤n̂θ∗
h = r∗h ± r. (23)

After noticing that OC⊤n̂θ∗
h = (ph)x cos(θ

∗
h) −

(ph)y sin(−θ∗h) = p̄⊤h n
θ∗
h

h , we get that r̂ =
∣∣∣r∗h − p̄⊤h n

θ∗
h

h

∣∣∣.
For the angle, it is easy to see that flipping the axis
flips the sign of the angle, to which an angle of π
must be added when the line separates O and C, i.e.

r∗h < |OC⊤nθ∗
h | = p̄⊤h n

θ∗
h

h .
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