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Abstract 20 

Numerous studies have shown that a healthy reproductive tract microbiota is crucial for successful 21 

reproduction and that its composition is influenced by various environmental and host factors. 22 

However, it is not known whether the reproductive microbiota is also shaped by the major 23 

histocompatibility complex (MHC), a family of genes essential to differentiate “self” from “non-self” 24 

peptides to initiate an adaptive immune response. We tested the association between the follicular 25 

fluid microbiome and MHC genes in 27 women. Women with higher MHC diversity had a higher 26 

microbiome diversity, characterized by bacteria commonly associated with vaginal dysbiosis. Women 27 

with similar MHC genes were also similar in their microbiome composition, indicating that MHC 28 

composition may be a key factor in determining the bacterial assemblage in reproductive tract. 29 

Finally, the composition of the follicular fluid microbiome was similar to the vaginal microbiome, 30 

suggesting that numerous bacteria of the vagina are true inhabitants of the follicular fluid or that 31 

vaginal microbiota contaminated the follicular fluid microbiota during transvaginal collection. 32 
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Collectively, our results demonstrate the importance of host genetic factors in shaping the 33 

reproductive microbiota of women, and open the door for further research on the role of microbiota 34 

in mediating MHC-related variation in reproductive success. 35 

 36 

  37 
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Introduction 38 

The reproductive microbiome is emerging as an important determinant of male and female 39 

reproductive health and performance [1–4]. For example, certain bacteria of the semen microbiota 40 

are associated with decreased sperm quality in humans and livestock (e.g., bulls, boars) [4–7], while 41 

the composition of the vaginal microbiota is associated with egg number variation in hens [8] and 42 

reproductive outcome in ewes [9]. In addition, in women, microbial imbalance in the reproductive 43 

tract is associated with a range of pregnancy disorders, including polycystic ovary syndrome, 44 

recurrent implantation failure and spontaneous preterm birth [10–12]. Given the importance of 45 

reproductive microbiota for successful host reproduction, it is critical to unravel the factors that 46 

shape its variation in microbial composition and function.  47 

The reproductive microbiota is the focus of intense research, especially in women [13–16]. 48 

While the vagina was the focus of early microbiology studies, the upper reproductive tract 49 

(endometrium, fallopian tubes, ovaries) has recently been shown to be also colonized by bacteria, 50 

even in the absence of symptomatic infection, thereby challenging the traditional assumption that it 51 

is sterile [17–19]. The abundance, diversity and composition of women’s reproductive microbiota is 52 

in fact a continuum along the reproductive tract, changing from the vagina to the ovaries [20]. For 53 

instance, the vaginal microbiota, which mostly comprises Lactobacilli in healthy women, is typically 54 

less diverse, but more abundant, than upper sites [20]. The increasing literature on the determinants 55 

of the women’s reproductive microbiota remains, however, mostly limited to the vaginal microbiota. 56 

Women’s vaginal microbiota varies with age, menstruation cycle, sexual practices, hormone levels, 57 

disease state and host genetics [21–25]. Among the host genetic factors, immune-related genes have 58 

been of special interest, because of their vital role in maintaining the intimate relationship between 59 

the host and its commensal microorganisms [26]. For instance, genetic polymorphism in interferon, 60 

interleukins and toll-like receptors are associated with the abundance of specific vaginal bacteria 61 

[22,27,28]. 62 

Among the host immunogenetic factors, the major histocompatibility complex (MHC; called 63 

HLA in humans) may play an important role in shaping the host-associated microbiomes [29]. The 64 

MHC is one of the most polymorphic group of genes in vertebrates and encompass the classical MHC 65 

class I and class II genes that encode for cell-surface proteins that are crucial in the recognition of 66 

“self” and “non-self” antigens by T-cells. While MHC class I molecules mainly process peptide 67 

fragments derived from intracellular proteins, MHC class II molecules predominantly process 68 

extracellular peptide fragments. The MHC class II plays therefore a traditional role in the defence 69 

against extracellular bacterial pathogens [30], but is also increasingly recognized to shape tolerance 70 
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towards symbiotic bacteria [26,29,31,32]. This tolerogenic effect may be, in part, mediated by the 71 

immunoglobulin A (IgA), which is a key component of adaptive immunity at mucosal tissues, such as 72 

the vagina or the gut epithelium, and which is known to promote the proliferation of beneficial 73 

bacteria [33–35]. Importantly, in several vertebrates including humans, different characteristics of 74 

the MHC class II genotype are associated with inter-individual differences in the microbiota [36–40]. 75 

For instance, certain MHC class II motifs are specific to certain bacteria of the gut microbiota of 76 

sticklebacks (Gasterosteus aculeatus), reddish-gray mouse lemurs (Microcebus griseorufus) and 77 

neotropical bats (Artibeus jamaicensis) [41–43]. In addition, individuals with higher MHC class II 78 

diversity have lower gut microbiota diversity in sticklebacks and lemurs [41,42]. However, the 79 

association between the MHC and the reproductive tract microbiota is unknown in both humans and 80 

other species. 81 

Here, we investigated the potential relationship between reproductive tract microbiota and 82 

MHC class I and class II variation in women. We focused on the microbiota of the follicular fluid, 83 

which forms the microenvironment of the oocyte during its development and maturation, and which 84 

bacterial composition, albeit poorly described, has been shown to be a key element determining 85 

pregnancy success [44–47] [but see 48,49]. Specifically, we tested whether the α-diversity (within-86 

individual microbial diversity) of the human reproductive microbiota co-vary with MHC diversity. 87 

Furthermore, as two individuals with the same MHC genotypes are hypothesized to have similar 88 

immune control of their microbiota, we predicted that similarity in microbiome composition 89 

between individuals (β-diversity) would covary with MHC similarity. We studied associations 90 

between microbiome and both MHC class I and class II genes; though we primarily expected to find 91 

associations between the microbiota and MHC class II genes because of their important role in the 92 

recognition of antigenic peptides derived from extracellular bacteria. 93 

 94 

Material and methods 95 

Sample collection 96 

We investigated the association between follicular fluid microbiome and HLA profiles in 27 women 97 

who underwent transvaginal follicular aspiration for in vitro fertilization. Three women were sampled 98 

twice, with 6-16 months intervals between sampling events, leading to a total of 30 follicular fluid 99 

samples. Women were recruited via three fertility clinics, located in the Eastern Finland: North 100 

Karelia Central Hospital (Joensuu, Finland, n = 20 samples), Kuopio University Hospital (Kuopio, 101 

Finland, n = 4 samples) and InOva fertility clinic (Kuopio, Finland, n = 6 samples), between April 2017 102 

and December 2020. The women’s mean age was 30.7 ± 0.96 (s.e.) years. All women were of 103 
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apparent Finnish origin, except for one woman of Asian origin. The inclusion of this individual did not 104 

affect our results (table S1 and S2). We therefore included this participant in our final dataset. All 105 

samples were collected during the ovulation phase. Prior to follicular fluid collection, follicle 106 

maturation was hyperstimulated with follicle-stimulating hormone, and premature ovulation was 107 

prevented using a gonadotrophin-releasing hormone antagonist. When the diameter of the largest 108 

follicle reached 18–20 mm, human chorionic gonadotrophin was administered. Transvaginal follicular 109 

punctures were performed under local anesthesia, using ultrasound guidance. The collected follicular 110 

fluid was centrifuged at 500 × g for 10 min, and supernatant aliquoted and stored in liquid nitrogen 111 

for later use. Nine of the women had been diagnosed with diseases associated with female factor 112 

infertility (i.e., anovulation, polycystic ovarian syndrome, or endometriosis), whereas 18 women did 113 

not have any female factor infertility diagnosis. All the women donated a blood sample for genetic 114 

analyses. 115 

For this study, follicular fluid samples were obtained transvaginally, the only reasonable 116 

method for collecting follicular fluid in living patients. However, transvaginal collection increases the 117 

risk of sample contamination by vaginal bacteria [19]. Consequently, we collected both follicular fluid 118 

samples and vaginal swabs from four additional women recruited from the InOva fertility clinic 119 

(Kuopio, Finland) in March-April 2022. Before follicular fluid collection, a sterile cotton swab 120 

(FLOQSwabs, COPAN, California) was inserted in the vagina to collect mucus from the area of the 121 

transvaginal puncture. After the collection, swabs were transferred in sterile 5 ml cryotubes and 122 

stored in liquid nitrogen. We did not carry out HLA imputation for these four women, who were 123 

sampled later than the other women. Instead, these paired samples were only used to investigate 124 

the possibility that the follicular fluid samples reflected the vaginal microbiome. At the same time, 125 

we hoped to understand the potential for contamination of follicular fluid samples from the blood, as 126 

the transvaginal collection of samples may involve a small amount of bleeding and thus may also be 127 

prone to bacterial contamination from the blood. Therefore, we performed microbiome analysis of 128 

the blood collected during the ovulation phase for six of the study participants. 129 

 130 

Microbiome analyses 131 

All DNA extractions were carried out in a sterile environment. We added 50 μL of lysozyme (10 132 

mg/ml) to each sample of 500 μL follicular fluid and to each vaginal swab, and 20 µl of lysozyme (10 133 

mg/ml) to each blood sample. Samples were incubated at 37°C for 60 minutes. Next, we added 50 μL 134 

of proteinase K (20 mg/ml) and 50 μL of RNase A to each follicular fluid and vaginal sample, and 20µl 135 

of proteinase K and 20µl RNase A to each blood sample. We mixed samples by vortexing, and 136 

incubated samples for 2-minutes at room temperature (22°C). Following this chemical lysis step, we 137 
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further processed all samples using PureLink™ Genomic DNA Mini Kit (Invitrogen) following the kit 138 

protocol. Extracted DNA was stored at -20°C until later analysis. Follicular fluid DNA was extracted in 139 

five different batches. To control for the potential batch effect, one sample was repeatedly extracted 140 

in each batch (three times in the first batch and once in each other batch). In addition, DNA 141 

extraction was repeated twice for five other follicular fluid samples to ensure that DNA extraction 142 

was repeatable. Because commercial extraction kits can contain microbial DNA [50], we also included 143 

four additional ‘blank’ DNA extraction controls.  144 

To characterize the bacterial community present in each sample, we performed 16S rRNA 145 

amplicon high-throughput sequencing targeting the V4 region (primers: 515F 146 

[GTGCCAGCMGCCGCGGTAA; 51] and 806R [GGACTACHVGGGTWTCTAAT; 51]. Extracted DNA was 147 

amplified and sequenced at Genome Quebec (Montréal, Canada). We included three PCR blank 148 

controls to control for the possibility of microbial contamination during PCR and sequencing. Samples 149 

were sequenced as 250bp paired-end reads using an Illumina MiSeq (n = 45 follicular fluid samples, 4 150 

vaginal swab samples, 6 blood samples, 4 extraction blanks and 3 PCR blanks).  151 

We analyzed sequence data using the FROGS 4.1 pipeline (Escudié et al., 2018). Briefly, 152 

demultiplexed reads were merged using VSearch [52], with a minimum of 10bp in the overlap region 153 

and a maximum mismatch rate of 10% in the overlap region.  Primers were trimmed using cutadapt 154 

and a maximum error rate of 10% [53]. Unmerged reads were excluded. Amplicon sequence variants 155 

(ASVs) were formed using the swarm denoising method with the fastidious method and with d = 1 156 

[54]. Chimeras were detected using VSearch (Rognes et al., 2016). In total of 15.4% of the ASVs 157 

(representing 0.9 % of the reads) were considered as chimeras and were thus removed. We also 158 

removed ASVs that had only one read. Taxonomic assignment was then performed using the RDP 159 

classifier and the 16S SILVA v138.1 database (Quast et al., 2012). ASVs sharing same taxonomy with 160 

at least 99% sequence similarity and 99% alignment coverage were aggregated together. We 161 

removed ASVs that were taxonomically classified as mitochondria, chloroplasta or Archaea, as well as 162 

each ASV that totaled fewer than 0.0005 % of all reads, as suggested by Bokulich et al. (2013) and 163 

those that were detected in two or fewer samples. Finally, we used the isContaminant function with 164 

the prevalence option and threshold value of 0.5 (package decontam in R) to remove potential 165 

contaminants from the data set [56]. In this approach, ASVs are classified as contaminants if they are 166 

more frequently present in negative controls than in true samples [56]. The isContaminant function 167 

was run first with the DNA extraction blank controls, and second with the PCR blank controls as 168 

negative controls. Six ASVs were found to be contaminants and were removed from the dataset. 169 

They belonged to families Burkholderiaceae, Pseudomonadaceae Rhodobacteraceae and Bacillaceae. 170 

The microbiome of the blood samples differed from that of the follicular fluid samples (permanova: 171 
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F1,11 = 2.65, r² = 0.21, P = 0.001), and had very low biomass and richness. In blood samples, number of 172 

reads ranged between 37 and 1972 reads and richness was low (number of ASVs per blood sample 173 

ranged between 4 and 14 ASVs; in total, 26 ASVs were detected in blood samples). Therefore, to 174 

remove bacterial contamination from the blood, we run also the isContaminant function with blood 175 

samples as negative controls. Six additional ASVs were found to be contaminants and were removed. 176 

They belonged to families Maroxellacea, Staphylococcaceae, Veillonellaceae, Xanthomonadaceae 177 

and Rhodobacteraceae. We did not use the vaginal samples as negative controls, because the 178 

bacterial composition of the reproductive tract is a continuum along the reproductive tract [20] and 179 

therefore several abundant residents of the vagina might be true inhabitants in follicular fluid. For 180 

instance, Lactobacillus, which is the predominant bacteria genera in the vagina, is also an abundant 181 

genera in follicular fluid [45–47]. In the four women with both follicular fluid and vaginal swab 182 

samples, we found no differences in the composition or diversity of the microbiome between sample 183 

types (permanova: F1,6 = 330, r² = 0.14, P = 0.54 and paired t-test: t3 = 0.30, P = 0.80, respectively; Fig. 184 

S1). 185 

 We found that the number of reads of the ASV belonging to Escherichia-Shigella was similar 186 

between follicular fluid samples and blank controls (mean ± SE: 2474 ± 229 vs 1892 ± 337 reads, 187 

respectively; Wilcoxon rank sum test: W = 188, P = 0.40). Given that it has been suggested that reads 188 

attributed to Escherichia-Shigella may represent remnant DNA from the Escherichia coli used to 189 

produce Taq DNA polymerase [57], the ASV belonging to Escherichia-Shigella was excluded from our 190 

final dataset. In addition, when focusing on the sample that was extracted repeatedly, we observed 191 

high variation in the relative abundance of Acinetobacter between extraction replicates (Fig. S2). 192 

When considering all follicular fluid samples, the relative abundance of Acinetobacter was found to 193 

vary with the DNA extraction batch (Kruskal-Wallis test: χ2
4 = 21, P = 0.0004; Fig. S2). Acinetobacter 194 

are frequent cleanroom contaminants because they resist sterilization procedures and disinfectants 195 

[58,59]. We therefore excluded all ASVs belonging to Acinetobacter from the analyses (n = 8 ASVs). 196 

After filtering, we obtained 118 ASVs in follicular fluid samples and mean ± SE: 61 012 ± 11 441 197 

sequences per follicular fluid sample (median: 21 377 sequences; range: 1 689 – 285 147 sequences) 198 

The most abundant ASVs belonged to the genus Lactobacillus and included Lactobacillus iners, 199 

Lactobacillus jensenii, Lactobacillus acidophilus / L. crispatus, Lactobacillus gasseri / L. johnsonii. 200 

Other abundant taxa included Gardnerella vaginalis, Sneathia amnii, Prevotella sp, Atopobium 201 

vaginae, Kocuria sp. and Alishewanella sp. (Fig. 1). DNA extraction replicates were repeatable 202 

(permanova testing the effect of replicate identity on microbiome composition: F5,11 = 5.79, r² = 0.73, 203 

P < 0.001; Fig. S3) and were therefore averaged. 204 
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Because phylogenetically‐related bacteria are likely to share similar MHC‐binding peptides 205 

[60], we integrated phylogeny into the α- and β-diversity measures. To analyse α-diversity of 206 

follicular fluid microbiota, we used weighted phylogenetic diversity (Faith’s PD) based on the 207 

unrooted phylogenetic tree (function “pd” in package picante in R). Faith's PD is the sum of total 208 

phylogenetic length of ASVs in each sample. Unrooted Faith’s PD has been shown to be one of the 209 

diversity measures that is highly effective in distinguishing community types in women vaginal 210 

microbiota [61]. In our dataset, ANCOM-BC analyses at the species level [62] showed that follicular 211 

fluid microbiomes with higher Faith’s diversity were characterized by higher abundance of 212 

Gardnerella vaginalis, Atopobium vaginae, Sneathia amnii, Prevotella sp and Megasphaera sp, and 213 

lower abundance of Lactobacillus jensenii, Lactobacillus acidophilus / L. crispatus and Lactobacillus 214 

gasseri / L. johnsonii. 215 

To analyse β-diversity, we used the phylogenetic isometric log-ratio transform (PhiLR), which 216 

allows analysis of compositional data where the parts can be related through a phylogenetic tree 217 

(Silverman et al., 2017). PhiLR has been suggested to be a replacement for the weighted UniFrac 218 

distances when accounting for the compositional nature of the data is needed (Gloor et al., 2017). 219 

ASV sequences were aligned using Decipher (Wright, 2015), and a maximum-likelihood tree 220 

constructed using the package phangorn (Schliep, 2011). This tree was used as a reference from 221 

which the Euclidean distances were calculated on phylogenetic isometric log-ratio transformed ASV 222 

abundance (i.e., the PhILR transformation) between samples (Egozcue et al., 2003; Gloor et al., 2017) 223 

using the package PhiLR (Silverman et al., 2 017). In the PhiLR transform, we added a pseudocount of 224 

0.1 reads.  225 

While there have been considerable debate concerning rarefaction in microbiome datasets 226 

[63–65], we rarefied the dataset (without replacement) because of the wide variability in our library 227 

sizes, ranging from 1 808 to 259 887 sequences in follicular fluid samples (Fig. S4). However, because 228 

rarefaction can result in a substantial loss of reads [63] and can introduce a stochastic component to 229 

the analysis (because the rarefied taxa count table depends on the specific rarefaction replicate), we 230 

used bootstrapping (i.e., multiple rarefactions; n = 500 rarefaction rounds), which has been proposed 231 

to recover some of the information lost through a single rarefaction [65]. Our results are robust to 232 

the library size used when rarefying (e.g. rarefaction to the smallest library size, 5000 reads or 10 000 233 

reads), except for one result which is discussed below (Table S1 and Table S2). We present results 234 

using a rarefied dataset to the smallest library size (i.e., 1689 sequences). 235 

 236 

HLA genotyping 237 
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Details about HLA genotyping can be found in the supplementary materials. Briefly, genomic DNA 238 

was extracted and genotyped on an Illumina GlobalScreeningArray-24v2-0 + Multi-Disease beadchip 239 

at the Institute for Molecular Medicine Finland (FIMM). All genotypes were named with Ilumina’s 240 

GenomeStudio 2.0.3 software. PLINK v1.90b6.6 [66] was used to manage and filter the genotyping 241 

data. We carried out imputation of three classical HLA class I genes (HLA-A, -B, and -C) and four 242 

classical HLA class II genes (HLA-DRB1, -DQA1, -DQB1, and -DPB1) at four-digit (i.e., protein level) 243 

resolution. 244 

HLA diversity of the women was calculated based on (1) the number of heterozygous sites 245 

and (2) the mean Sandberg divergence over the seven imputed HLA genes per individual. The 246 

Sandberg divergence is the pairwise Euclidean distance between the two protein sequences 247 

represented by the five physico-chemical z-descriptors [67]. For HLA genes, the Sandberg distance 248 

has been found to correlate with the total number of peptides bound by the alleles [68]. The 249 

Sandberg divergence at each HLA gene was calculated using the DistCalc function in the MHCtools 250 

package in R [69]. For each woman, the Sandberg divergence was then averaged across the seven 251 

genes. The number of heterozygous sites was correlated to the Sandberg divergence (Spearman 252 

correlation test: S = 837, r = 0.74, P < 0.0001). Dissimilarity between each women pair was estimated 253 

based on (1) a pure shared/non-shared allele basis and (2) mean Sandberg dissimilarity between HLA 254 

alleles. HLA dissimilarity based on a pure shared/non-shared allele basis (hereafter called allelic 255 

dissimilarity) was calculated as 100*(1- (the number of shared alleles / the total number of alleles)). 256 

For each HLA gene, Sandberg dissimilarity was calculated by constructing a UPGMA dendrogram of 257 

alleles (function hclust in R), which represents clusters of functionally similar HLA sequences. Then 258 

HLA dissimilarity between two women was estimated using the tree distance (function treedist in 259 

package vegan) [70]. In this method, the alleles of the two women are combined in a common 260 

dendrogram and the distance between two women corresponds to how much of the dendrogram 261 

height is shared between the women and how much of it is unique. Allelic dissimilarity was 262 

correlated to Sandberg dissimilarity (Mantel test: r = 0.91, P = 0.001). Given the limited sample size 263 

and high allelic variations across women, we did not test the associations between specific HLA 264 

alleles and specific ASVs. Because correlations between HLA characteristics and microbiome diversity 265 

might be the result of background genetic diversity, we also characterized the whole genome 266 

heterozygosity of the participants and the whole-genome dissimilarity between each female-female 267 

combination (methods are described in the supplementary materials) 268 

 269 

Statistical analyses 270 
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We performed all statistical analyses using the R 4.3.1 statistical software (R Core Team, 2020). To 271 

determine whether HLA diversity (heterozygosity or Sandberg divergence) was associated with 272 

microbiome α-diversity (Faith’s PD), we used correlation tests (Spearman’s correlation tests for the 273 

ordinal heterozygosity variable and Pearson’s correlation test for the continuous Sandberg 274 

divergence variable). For each analysis (heterozygosity or Sandberg divergence), we performed 500 275 

iterations of the model, with each iteration corresponding to a single rarefaction run round [65]. In 276 

addition, for each of the three women who were sampled twice, we included just one sample 277 

(chosen at random) in each rarefaction round to avoid pseudoreplication. We report the mean of the 278 

statistic parameters over the 500 tests. We did not control for the DNA extraction batch, because it 279 

had no effect on the microbiome α-diversity (anova test: F3,23 = 0.51, P = 0.68). Next, to characterize 280 

the specific bacterial species that were best associated with variations in HLA diversity, we used 281 

ANCOM-BC [ancombc2 function in the ANCOM package; ,62]. Since ANCOM includes an internal 282 

normalization step, we used the unrarefied data. ANCOM-BC analysis was carried out on the most 283 

abundant ASVs (i.e., ASVs representing > 1% of the total reads and present in more than 5 samples). 284 

In ANCOM-BC, we compared women who were heterozygous at the three HLA class I genes to 285 

women who had at least one homozygous HLA class I gene.  286 

To determine whether women who were more similar at HLA sites (allelic dissimilarity or 287 

Sandberg dissimilarity) had more similar microbiome composition, we used partial Mantel test. 288 

Because women whose DNA was extracted in the same extraction batch had more similar 289 

microbiome composition (mantel test: r = 0.11, P = 0.039), we included a binomial matrix of DNA 290 

extraction batch similarity (0: the two samples were extracted in the same batch and 1: the two 291 

samples were not extracted in the same batch) as a covariate. Similarly to the analysis on the 292 

association between HLA and microbiome diversity, we performed 500 iterations of the Mantel test, 293 

with each iteration corresponding to a single rarefaction run round [65]. In addition, for each of the 294 

three women who were sampled twice, we included just one sample (chosen at random) in each 295 

rarefaction round to avoid pseudoreplication. We report the mean of the statistic parameters over 296 

the 500 tests.  297 

Because infections, autoimmune diseases or endocrine disorders may destabilize the 298 

microbiota due to alterations in the immunogenetic control [71], we expected HLA to be a weaker 299 

determinant of the microbiome in women with female factor infertility than in healthy women. 300 

Despite low sample sizes, we explored this hypothesis by testing the associations between HLA and 301 

microbiome diversity (α- and β-diversity) in the two groups of women separately.  302 

 303 
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Results 304 

Microbiome α-diversity and HLA diversity 305 

Women who had a higher HLA heterozygosity or Sandberg divergence had higher Faith’s PD in 306 

follicular fluid microbiome (heterozygosity: r = 0.39, P = 0.050 and Sandberg divergence: r = 0.44, P = 307 

0.023, respectively). This relationship was also significant when considering HLA class I genes only 308 

(heterozygosity: r = 0.55, P = 0.004 and Sandberg divergence: r = 0.42, P = 0.032, respectively; Fig. 2). 309 

In contrast, when considering HLA class II genes, the association between HLA diversity and 310 

microbiome diversity was not significant (heterozygosity: r = 0.16, P = 0.44 and Sandberg divergence: 311 

r = 0.36, P = 0.069; Fig. S5). ANCOM-BC analyses carried out at the bacterial species level showed that 312 

women who were heterozygous at the three class I genes had lower relative abundance of 313 

Lactobacillus jensenii, but higher relative abundance of Atopobium vaginae and Prevotella bivia than 314 

women who had at least one homozygous class I genes (Fig. 3). There was no association between 315 

follicular fluid microbiome α-diversity and genome-wide heterozygosity (r = 0.02, P = 0.91; Fig. S6). 316 

Interestingly, although α-diversity of follicular fluid microbiome was not affected by the female factor 317 

infertility diagnoses (t- test: t1,24 = -0.96, P = 0.35; Cohen’s d: -0.32 [-1.13 – 0.48]; Fig. S7), the 318 

association between HLA diversity and microbiome diversity was detected in women without the 319 

diagnosis of female factor infertility only (i.e., ‘healthy women’) (heterozygosity at HLA class I genes: 320 

r = 0.74, P = 0.001 and Sandberg divergence at HLA class I genes: r = 0.57, P = 0.014; heterozygosity at 321 

HLA class II genes: r = 0.30, P = 0.24 and Sandberg divergence at HLA class II genes: r = 0.44, P = 322 

0.071). In contrast, we did not detect an association between microbiome diversity and HLA class I or 323 

class II diversity in women with the diagnosis of female factor infertility (n = 9 women; heterozygosity 324 

at HLA class I genes: r = -0.44, P = 0.25; Sandberg divergence at HLA class I genes: r = -0.65, P = 0.07; 325 

heterozygosity at HLA class II genes: r = -0.12 P = 0.74; Sandberg divergence at HLA class II genes: r = -326 

0.10, P = 0.79). 327 

Microbiome similarity and HLA similarity 328 

Women who were more similar at HLA genes had more similar follicular fluid microbiomes when 329 

considering allelic dissimilarity (r = 0.18, P = 0.039; Fig; S8a), but not when considering Sandberg 330 

dissimilarity (r = 0.12, P = 0.11; Fig. S8b). However, this former result was only a non-significant trend 331 

when using the rarefied dataset (Table S2) or when excluding the Asian woman from the data (Table 332 

S2). Interestingly, when we focused on healthy women only, we found that women with more similar 333 

HLA genes had more similar follicular fluid microbiome (allelic dissimilarity: r = 0.31, P = 0.010 and 334 

Sandberg dissimilarity: r = 0.23, P = 0.036; Fig. 4). This effect was mainly due to HLA class II genes 335 

(HLA class II genes: r = 0.29, P = 0.008 and r = 0.23, P = 0.027, while HLA class I genes: r = 0.23, P = 336 
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0.056 and r = 0.15, P = 0.14, for allelic dissimilarity and Sandberg dissimilarity respectively; Fig. S9). In 337 

contrast, there was no association between similarity at HLA class I or class II genes and similarity in 338 

microbiome in women diagnosed with female factor infertility (P > 0.45, in all cases). Women with a 339 

higher genome-wide similarity did not have more similar follicular fluid microbiome (r = 0.15, P = 0.20 340 

when considering all women, and r = -0.20, P = 0.82 when focusing on the women with no female 341 

factor infertility), indicating that our results cannot be explained by the observed covariation 342 

between HLA and genome-wide dissimilarity and is thus HLA-specific. The β-diversity of follicular 343 

fluid microbiome did not vary, however, with the female factor infertility diagnoses (permanova: F1,22 344 

= 0.79, r² = 0.03, P = 0.76; Fig. S10). 345 

 346 

Discussion 347 

Here, we report the first evidence that the female reproductive tract microbiome varies with HLA. 348 

First, we found that women with higher HLA class I diversity (heterozygosity and divergence) had a 349 

more diverse follicular fluid microbiome (Faith’s PD). In the context of the fight against bacterial 350 

pathogens, a higher diversity of MHC molecules is expected to lead to the recognition of a greater 351 

number of foreign peptides, and thus to the elimination of a larger number of bacterial species [68]. 352 

However, while this negative association is expected for pathogenic bacteria, the opposite may be 353 

expected for commensal bacteria, to which we are immunologically tolerant. Accordingly, MHC class 354 

II expression has been shown to promote gut bacterial richness in mice [29,37]. Therefore, a positive 355 

association between MHC and microbiome diversity may arise if a higher diversity of MHC molecules 356 

facilitate the proliferation of a more diverse range of symbiotic microbes [72]. However, studies on 357 

the association between MHC diversity and microbiome diversity have yielded inconsistent results. 358 

While MHC class II diversity is positively associated with microbiome diversity in the skin of two 359 

amphibians [73,74], it is negatively associated with gut microbiome taxonomic diversity in 360 

sticklebacks (Gasterosteus aculeatus) and gut microbiome functional diversity in reddish-gray mouse 361 

lemurs (Microcebus griseorufus) [41,42]. In contrast, in neotropical bats (Artibeus jamaicensis), 362 

Seychelles warblers (Acrocephalus sechellensis) and congenic mice, MHC allelic diversity seems to 363 

play little role in shaping gut bacterial diversity [38,43,75]. Considerably more research is thus 364 

required to determine the mechanisms by which MHC diversity may influence microbiome diversity 365 

at mucosal surfaces, including in the female reproductive tract.  366 

In contrast to our initial expectations, the association between HLA diversity and 367 

reproductive microbiome diversity was mainly detected at HLA class I genes. Similarly, the gut 368 

microbiome of humans show stronger association with HLA class I diversity than with HLA class II 369 
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diversity [40]. While MHC class II is typically involved in the interaction between the host and the 370 

microbiome [37], evidence also suggests the role of MHC class I pathway in the cross-talks between 371 

the host and its bacterial commensals [37,76,77]. In addition, in our dataset, the stronger association 372 

with HLA class I diversity may potentially be explained by the higher inter-individual variability of HLA 373 

class I diversity than HLA class II diversity. 374 

We found that women with higher HLA class I diversity had higher abundances of Prevotella 375 

bivia and Atopobium vaginae and a lower abundance of Lactobacillus jensenii. In the vagina, this 376 

highly diverse microbial composition, described as “CST-IV”, is commonly associated with bacterial 377 

vaginosis [reviewed in 78], a disorder that can cause vaginal discharge and foul-smelling odor. 378 

Bacterial vaginosis is associated with sexually transmitted infections and adverse reproductive 379 

outcome, including pre-term birth, low birthweight and miscarriage [reviewed in 79]. Bacterial 380 

vaginosis may also play a role in the acquisition of human papillomavirus and the development of 381 

associated cervical neoplasia [80,81]. Interestingly, the positive association between HLA diversity 382 

and a CST-IV microbiome, might therefore explain the surprising positive association between HLA 383 

diversity and increased risk of cervical cancer [82]. Although high diversity of the vaginal microbiome 384 

is considered deleterious for fitness in women [78], high HLA diversity conversely is expected to be 385 

beneficial, because it confers enhanced resistance to several pathogens [30,83] and reduces risks of 386 

several cancers (albeit not cervical cancer) [82]. The positive association between HLA diversity and 387 

reproductive tract microbiome diversity observed here therefore raises the possibility of a potential 388 

conflict between the fitness benefits of a highly diverse HLA and of a poorly diverse reproductive 389 

microbiome. However, the effect of the CST-IV microbial state on reproduction is mixed and, in some 390 

women, this microbial state is asymptomatic [84]. Some studies suggest that CST-IV state increases 391 

the risk of adverse outcome only in interaction with a specific genotype (i.e., gene-environment 392 

interaction). For instance, Gómez et al.  [85] showed that bacterial vaginosis per se is not associated 393 

with an increased risk of spontaneous preterm delivery, but it is its association with susceptible 394 

genotypes at several immune genes that increases the risk. It is therefore possible that women with 395 

higher HLA-diversity are better able to tolerate CST-IV state (i.e., reduced or absent pathogenesis 396 

despite high pathogen load).  Similarly, HLA-heterozygosity has been shown to confer better 397 

tolerance to HIV [86].  398 

We also found that HLA similar women host more similar reproductive tract microbiome than 399 

HLA-dissimilar women. This is in line with the recent findings by Andeweg et al. (2021), who showed 400 

that individuals with similar functional HLA profile have similar gut microbiota community. This result 401 

suggests that women with similar HLA profile have similar immune control of their microbiota, which 402 

is probably due to differences between HLA variants in their binding specificity to distinct peptides 403 
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[60]. Specific associations between certain HLA motifs and certain commensal bacteria of the gut 404 

have been detected in sticklebacks, mouse lemurs and neotropical bats [41–43].  405 

In the present study, the association between HLA and microbiome (α- and β-diversity) was 406 

detected in healthy women, but not in women who had female factor infertility. Although we found 407 

no significant differences in the microbiome composition or diversity of women with female factor 408 

infertility and that of healthy women (but see Fig. S6 and S9 which show that this lack of difference is 409 

mostly driven by the microbiome of few healthy women that looks like that of women with female 410 

factor infertility), previous studies have detected that polycystic ovary syndrome, endometriosis or 411 

tubal disease alters the reproductive microbiota [11,87,88]. These reproductive disorders are 412 

associated with changes in immunity [89–91]. The associated dysbiosis might thus be due to an 413 

alteration of the immune control of the microbiota, as suggested for other diseases [71]. Although 414 

our results should be taken with caution because of low sample sizes (n = 18 healthy women and 9 415 

women with female factor infertility), they suggest that, compared to HLA genes, other deterministic 416 

factors or stochastic effects might be stronger determinants of the reproductive microbiome of 417 

women with female factor infertility.  418 

We found that, in our follicular fluid samples, the most abundant ASVs belonged to the genus 419 

Lactobacillus. This result is consistent with other studies which showed that Lactobacillus is a 420 

common genus in follicular fluid [44–49]. However, we found that other abundant ASVs belonged to 421 

the genera Gardnerella, Prevotella, Atopobium and Sneathia, which contrasts with the abundant 422 

bacteria detected in other studies (e.g., Achromobacter, Actinomyces, Propionobacterium, 423 

Bifidobacterium, Staphylococcus, Streptococcus and Enterococcus) [44,46–49]. Recently, low-biomass 424 

microbial niches, such as the human fetus, the placenta or the endometrium, have been suggested to 425 

be sensitive to contamination and thus data misinterpretation [92–94]. The follicular fluid, like other 426 

sites of the upper reproductive tract, is likely to have low microbial biomass, and clearly, the original 427 

source of the bacteria detected in our study and others can be called into question. In the present 428 

study, the most abundant bacteria are common members of the vaginal microbiome [15,95,96], and 429 

we did not detect significant differences between the composition of follicular fluid microbiome and 430 

vaginal microbiome. In addition, our follicular fluid microbiome can be split into five configurations 431 

that correspond to the five community state types (CSTs) widely used to describe vaginal microbiota 432 

(Fig. 1) [15,97]. Samples collected transcervically or transvaginally are known to differ to samples 433 

collected using hysterectomy, laparoscopy or cesarean section [19,98]. Therefore, we cannot exclude 434 

the possibility that our follicular fluid samples were contaminated with vaginal bacterial strains at the 435 

time of puncture for transvaginal oocyte aspiration, although it is quite possible also that the bacteria 436 

observed both in follicular fluid and vagina are true inhabitants of both sites. 437 
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In conclusion, regardless of the true (vaginal or follicular fluid) origin of the microbiome 438 

studied, our study indicates that HLA is an important host genetic factor driving differences in the 439 

reproductive microbiota of women. The MHC is known to affect the reproductive success via 440 

numerous mechanisms, including effects on the quality of the gametes, fertilization success and 441 

embryonic development [99–101]. Because the reproductive tract microbiota is well known to 442 

modulate all these factors, our results open the door for further research on the role of the 443 

reproductive tract microbiota in mediating MHC-related variation in reproductive success.  444 
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Figure 1: Relative abundance of the most abundant bacterial species in follicular fluid. Each bar 728 

corresponds to one of the sample. The samples of the three women sampled twice are named with 729 

“.a” and “.b”. The four women who were not genotyped at HLA correspond to samples 28-31. The 730 

Asian woman is sample 26. Bars are ordered based on community-state like type. In the vagina, CST-I 731 

is dominated by Lactobacillus crispatus, CST-II is dominated by L. gasseri, CST-III is dominated by L. 732 

iners, CST-V is dominated by L. jensenii and CST-IV is composed of a polymicrobial mixture of strict 733 

and facultative anaerobes including species of the genera Gardnerella, Atopobium, Prevotella [97]. 734 

Only the 15 most abundant bacterial species are shown. 735 
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Figure 2: Microbiota diversity (Faith’s PD) in follicular fluid according to (a) the number of 738 

heterozygous HLA class I sites and (b) the Sandberg divergence at HLA class I sites. The red, green and 739 

blue dots correspond to the three women sampled twice. Only one of their two samples was 740 

considered in the statistical analyses during each of the 500 rarefaction rounds. For (a), similar 741 

results were found when pooling all the women with at least one homozygous site. The black line 742 

and grey shadow in (b) represent the linear trend and confidence interval.743 
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Figure 3: Results of ANCOMBC analyses, as shown by the log fold change of the 3 bacterial species 747 

that were differently abundant between women who were heterozygous at the three HLA class I 748 

genes and  women who were heterozygous at < 3 HLA class I genes. 749 
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Figure 4 : Dissimilarity in microbiome composition in pairs of women with no female factor infertility 752 

diagnoses (n = 18 women, 153 pairs) according to their dissimilarity in HLA class I and class II genes. 753 

Dissimilarity in HLA class II genes was estimated (a) on a pure shared-non shared allele basis and (b) 754 

using Sandberg dissimilarity. The black line and grey shadow represent the linear trend and 755 

confidence interval. The dot at 0 HLA dissimilarity corresponds to two women who had the same HLA 756 

genotype. When excluding these two women from the dataset (i.e., 33 pairs excluded), results 757 

remained significant for allelic dissimilarity (r = 0.19, P = 0.050), but not for Sandberg dissimilarity (r = 758 

0.12, P = 0.17). 759 
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