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Abstract

Most of the current action recognition algorithms are based on deep
networks which stack multiple convolutional, pooling and fully connected
layers. While convolutional and fully connected operations have been
widely studied in the literature, the design of pooling operations that
handle action recognition, with different sources of temporal granularity
in action categories, has comparatively received less attention, and ex-
isting solutions rely mainly on max or averaging operations. The latter
are clearly powerless to fully exhibit the actual temporal granularity of
action categories and thereby constitute a bottleneck in classification per-
formances.

In this paper, we introduce a novel hierarchical pooling design that
captures different levels of temporal granularity in action recognition.
Our design principle is coarse-to-fine and achieved using a tree-structured
network; as we traverse this network top-down, pooling operations are
getting less invariant but timely more resolute and well localized. Learn-
ing the combination of operations in this network — which best fits a
given ground-truth — is obtained by solving a constrained minimization
problem whose solution corresponds to the distribution of weights that
capture the contribution of each level (and thereby temporal granularity)
in the global hierarchical pooling process. Besides being principled and
well grounded, the proposed hierarchical pooling is also video-length and
resolution agnostic. Extensive experiments conducted on the challeng-
ing UCF-101, HMDB-51 and JHMDB-21 databases corroborate all these
statements.
Keywords. Multiple aggregation design 2-stream networks action recog-
nition

1 Introduction

Action recognition is standing as one of the most challenging problems which
consists in assigning one or multiple semantic categories to moving objects. This
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task is difficult as scenes are usually acquired under extremely challenging condi-
tions including cluttered background, viewpoint change, illumination variation,
poor camera sensor quality and resolution. This affects the accuracy of multiple
related applications such as scene understanding [34, 35, 36, 103], video surveil-
lance [37, 38], video caption generation and retrieval [39, 41, 42, 43, 44, 45,
46, 47, 48] as well as human computer interaction and robotics [49, 50, 51, 52].
Most of the existing action recognition solutions are based on machine learning
(ML) [9, 10, 11, 12, 13, 79]; their general recipe consists in learning functions that
map video sequences into categories using widely used ML algorithms [32, 31,
63, 64, 108, 40]. Among the existing ML solutions those based on deep networks
are currently witnessing a major interest [30, 23, 57, 58, 55, 56, 97, 8] but their
success is tributary to the availability of large amount of labeled training data
and also the appropriate choice of their architectures [2, 6, 7, 16, 14, 15, 29].

Successful architectures for action recognition include two-stream 2D/3D
convolutional neural networks (CNNs) [1] operating on appearance and mo-
tion flows [2, 6], CNNs combined with Long Short-Term Memory (LSTM) net-
works [75] as well as 3D CNNs [7]. However, the effort in the design of these
CNNs has focused essentially on optimizing their convolutional and fully con-
nected layers while optimizing their pooling has comparatively received less
attention. The difficulty in designing architectures with suitable pooling (a.k.a
aggregation) operators, particularly on video sequences, stems from the eclectic
properties of videos (namely their duration, temporal resolution and velocity of
moving objects as well as the granularity of their action categories). Different
pooling operators have been introduced in the literature and most of them are
based on global measures including max and averaging [65, 66, 67], and more so-
phisticated ones [3, 4, 99] rely on visual saliency measures and attention which
allow keeping only the most relevant information for the subsequent layers.
These operators play a key role in reducing the dimensionality and the num-
ber of parameters of the learned representations, and thereby their dependency
on large collections of labeled training data. While operators, such as global
and max pooling, are well adapted to coarsely-grained actions, they turn out to
be less advantageous on finely-grained categories (compared to other methods
such as spectrograms) [2, 6, 7, 14, 15]. However, both averaging and spectro-
gram representations suffer from several drawbacks; average pooling built upon
global statistical measures are time/duration agnostic but less discriminating
while spectrogram-like methods are discriminant but time/duration aware and
thereby highly sensitive to the acquisition conditions.

A more suitable pooling should gather the advantages of averaging and
spectrogram representations while discarding their inconvenients. Following this
goal, we consider in this paper a hierarchical aggregation scheme that describes
moving scenes at multiple temporal granularities while also being resilient to
their variable acquisition conditions. Top levels in this hierarchical aggrega-
tion provide orderless (invariant) but less discriminating representations (which
capture coarse-grained action categories) while bottom levels correspond to fine-
grained, timely resolute and order-sensitive representations. The design princi-
ple of our proposed solution is coarse-to-fine and allows us to capture a gradual
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Figure 1: Examples of fine and coarse-grained actions. The first row shows three

action categories from the MLB-YouTube dataset [73]: “No swing”, “Swing” and

“Bunting” which are difficult to distinguish as they have very small differences. The

second row shows two instrument playing actions from the UCF-101 dataset [19]:

“cello” and “violin” which are also difficult to distinguish as their arm/hand loca-

tions and directions are similar. In contrast, the third row shows “Pat on back”, “Butt

kick” and “Shaking hand” actions (taken from NTU RGB+D dataset [74]) which are

easier to distinguish.

change of invariance and granularity; as we traverse the hierarchy top-down,
our video representations are getting less invariant but timely more resolute
and fine-grained. However, knowing a priori which combination of levels in this
hierarchy is the most appropriate to capture the actual granularity of our video
data is challenging, and learning this combination “end-to-end” is rather more
appropriate.

Following this line, other related works [5, 24, 25, 26, 27, 28] try to model
granularity of actions in videos by incorporating specific modules into CNNs
beyond global average pooling and spectrograms. Two major categories of
methods have been proposed; pyramidal methods and attention. In the first
category, the method in [24] samples, from each video, frames as well as their
associated optical flow components and adds a spatio-temporal pyramid module
to CNN in order to capture hierarchical relationships between appearance and
motion features. The approach in [25] stacks a temporal pyramid pooling layer
on top of motion and appearance CNN streams in order to build fixed-length
video representations. In [26], authors sample a set of frames by first splitting
videos into segments and taking frames from each segment, and build a spatial
pyramid to extract multi-scale appearance features from different convolutional
layers. These features are then concatenated and fed to a three level temporal
pyramid. The work in [27] samples video frames at different temporal resolu-
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tions, and feeds them to a 3D CNN to extract their respective features followed
by a temporal pyramid which down-samples and concatenates the resulting fea-
tures. Authors in [95] propose the Interactive Aggregation Feature Pyramid
Network (IA-FPN) which first aggregates 2D and 3D convolution features, and
then fuse them at different resolutions. Finally, the method in [28] achieves
frame sampling followed by a temporal pyramid pooling to build features at dif-
ferent pyramidal levels; the resulting features are afterwards fed to a temporal
relational layer that groups these features at different scales.

In the second category of methods (i.e., attention-based), [100] propose two
modules to boost 3D CNNs performances, based on temporal-channel correla-
tion and bilinear pooling. Authors in [5] present a hierarchical bidirectional
self-attention network to encode spatial-temporal information for actions. This
attention network turns out to be effective in capturing both long-term temporal
dependencies and spatial context information in videos. Subsequent work [94]
presents a new architecture called self-attention pooling-based long-term tem-
poral network (SP-LTN), which can learn long-term temporal representations
(similarly to [101]) and aggregate those discriminative representations in an
end-to-end manner. Authors in [96] propose two deep neural networks based
on residual Fast-Slow Refined Highway and Global Atomic Spatial Attention to
effectively detect and recognize actions. The work in [98] combines conditional
random fields (CRFs) with self-attention in order to infer temporal and spatial
dependencies. This combination benefits from the capability of CRFs in model-
ing dependencies, and self-attention in learning temporal evolution and spatial
context in videos. In the particular scenario of skeleton-based recognition, [90]
propose an efficient hierarchical self-attention network (HAN) for skeleton-based
gesture recognition. A joint spatial and temporal self-attention module is used
to aggregate, in a hierarchical way, joints-fingers-hands representations and dy-
namics prior to their classification.

The aforementioned pooling methods either have inherent limitations in
capturing the dynamic of interacting parts in videos (such as global average
pooling and spectrograms), or are computationally very overwhelming (such as
attention-based models). While more tractable and still effective methods rely
on hierarchical temporal aggregation schemes, none of them considers the issue
of learning the best combination of levels in these temporal aggregation hierar-
chies, and this turns out to be highly effective as shown in the following sections
and later in experiments.

In this paper, we introduce a novel scheme for action recognition based on
Deep Multiple Aggregation Networks. Given a hierarchy of aggregation oper-
ations, the goal is to learn a combination of these operations that best fits a
given action recognition ground-truth. We solve this problem by minimizing a
constrained objective function whose parameters correspond to the distribution
of weights through multiple aggregation levels; each weight captures the granu-
larity of its level and its contribution in the global learned video representation.
Beside handling aggregation at different levels, the particularity of our solution
resides in its ability to handle variable length videos (without any up or down-
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sampling) and thereby makes it possible to fully benefit from the whole frames
in videos.

Considering all the aforementioned issues, the main contributions of this
paper include

• A novel hierarchical aggregation block which models video sequences at
multiple levels of temporal granularity. This block is learned “end-to-
end” together with the parameters of a backbone convolutional network
using both motion and appearance streams. A reparametrization trick is
also introduced in order to implement equality and inequality constraints
associated to the parameters of the aggregation block.

• An effective training procedure that allows handling videos with varying
lengths without any up-or-down sampling, and thereby allows leveraging
all the information in videos.

• An efficient training that allows shuffling gradients through multiple frames
leading to high speed-ups in gradient estimation, and hence parameter up-
dates, even when handling large video sequences.

• Extensive experiments on widely used databases show the validity of the
proposed method and its efficiency.

The rest of this paper is organized as follows. First, we describe in Section 2
our hierarchical video representation based on motion and appearance streams.
Then, we introduce in Section 3 our main contribution; a novel “end-to-end” two
stream CNN training that aggregates and combine frame-level representations
into temporal pyramids in order to achieve action recognition. Finally, we show
in Section 4 the validity of these contributions through extensive experiments
using standard and challenging video datasets including UCF-101, HMDB-51
and JHMDB-21. Finally, we conclude the paper while providing possible exten-
sions for a future work.

2 Coarse-to-fine video representation

Let S = {Vi}ni=1 denote a collection of videos with each one being a sequence of
frames Vi = {fi,t}Ti

t=1 and let C = {1, . . . , C} be a set of action categories (a.k.a
classes). In order to describe the visual content of a given video Vi, we rely on a
two-stream process (see Fig. 2); the latter provides a complete description of ap-
pearance and motion that characterizes the spatio-temporal aspects of moving
objects and their interactions. The output of the appearance stream (denoted as
{ϕa(fi,t)}Ti

t=1 ⊂ R2048) corresponds to an intermediate feature map taken from
the deep residual network (ResNet-101; see Fig. 2) trained on ImageNet [23]
and fine-tuned on UCF-101 [19]. The output of the motion stream (denoted as
{ϕm(fi,t)}Ti

t=1 ⊂ R2048) also corresponds to an intermediate feature map taken
from the ResNet-101 network but trained on optical flow image pairs [71, 17];
these pairs correspond to the horizontal and the vertical displacement fields

5



ResNet backbone

Temporal pyramid module

Figure 2: Our two stream network including a ResNet block, a temporal pyramid block
and “batch norm+fully connected+softmax+late fusion” layers. The temporal pyramid
block achieves aggregation/pooling as shown in Eq. 3. (Better to zoom the PDF
version).

which are linearly transformed so that their range belongs to [0, 255]. Following
[2, 17], we adapt the inputs of the pretrained ResNet-101 to optical flow data1.
The number of channels is reset to 20 (instead of 3 in the original ResNet);
given a video Vi, these 20 motion channels correspond to stacked optical flow
maps extracted from a sliding temporal cube of consecutive frames in Vi (see
input of the motion stream in Fig. 2). The initial weights of these 20 channels
are obtained by averaging the original appearance weights and by replicating
their values through the 20 new motion channels.

Given a video Vi (written simply as V) with T frames, we define N as a
tree-structured network with depth up to D levels and width up to 2D−1. Let
N = ∪k,lNk,l with Nk,l being the kth node of the lth level of N ; all nodes
belonging to the lth level of N define a partition of the temporal domain [0, T ]
into 2l−1 equally-sized subdomains (see Fig. 3). A given node Nk,l in this hi-
erarchy aggregates the frames that belong to its underlying temporal interval.

1Already available/pretrained on ImageNet to capture the appearance.
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Each node Nk,l also defines an appearance and a motion representation respec-
tively denoted as ψa

k,l(Vi), ψm
k,l(Vi) and set as ψa

k,l(Vi) = 1
|Nk,l|

∑
t∈Nk,l

ϕa(fi,t),

ψm
k,l(Vi) = 1

|Nk,l|
∑

t∈Nk,l
ϕm(fi,t). Depending on the level in N , each repre-

sentation captures a particular temporal granularity of motion and appearance
into a given scene; it is clear that top-level representations capture coarse visual
characteristics of actions while bottom-levels (including leaves) are dedicated
to fine-grained and timely-resolute sub-actions. Knowing a priori which levels
(and nodes in these levels) capture the best – a given action category – is not
trivial. In the subsequent section, we introduce a novel learning framework
which achieves multiple aggregation design and finds the best combination of
levels and nodes in these levels that fits different temporal granularities of action
categories.

Temporal  pyramid representation of appearance stream

Temporal  pyramid representation of motion stream

Figure 3: This figure shows frame aggregation at each node of the temporal pyramid
for appearance (top) and motion streams (bottom).

3 Hierarchical Aggregation Design

In what follows, and unless explicitly mentioned, the symbols m, a are omitted
in the notation and all the subsequent formulation is applicable to motion as
well as appearance streams.
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Given a set of action categories C = {1, . . . , C}, we train multiple classi-
fiers (denoted {gc}c∈C) on top of the level-wise representations {ψk,l(Vi)}k,l.
In practice, we use maximum margin classifiers whose kernels correspond to
combinations of elementary kernels dedicated to {Nk,l}k,l. These classifiers are
suitable choices as they allow us to weight the impact of nodes in the hierar-
chy N and put more emphasis on the most relevant granularity of the learned
representations. Hence, depending on the granularity of action categories, these
classifiers will prefer top or deep layers of N .
Considering a training set of videos {(Vi, yic)}i associated to an action category
c ∈ C, with yic = +1 if Vi belongs to the category c and yic = −1 other-
wise, the max margin classifier associated to this action category c is given by
gc(V) =

∑
i α

c
iyicK(V,Vi)+bc, here bc is a shift, {αc

i}i is a set of positive param-
eters and K is a positive semi-definite (p.s.d) kernel [76]. In order to combine
different nodes in the hierarchy N and hence design appropriate aggregation,
we consider an extension of multiple kernel learning [18]. Its main idea con-
sists in finding a kernel K as a combination of p.s.d elementary kernels {κ(., .)}
associated to {Nk,l}k,l as

K(V,V ′) =
∑
l

∑
k

βk,l κ(ψk,l(V), ψk,l(V ′)), (1)

with βk,l ∈ [0, 1] and
∑

k,l βk,l = 1. Here βk,l measures the importance (and
hence the contribution) of ψk,l(V) in the global motion representation of V
(denoted as ψ(V)). This global representation ψ(V) results from the closure of
the p.s.d of κ w.r.t. the sum and the product, so K can be written as

K(V,V ′) =
〈
ψ(V), ψ(V ′)

〉
, (2)

with

ψ(V) =
(√

β1,1ψ1,1(V) . . .
√
βk,lψk,l(V) . . .

)⊤
. (3)

Using the maximum margin formulation, we find the parameters β = {βk,l}k,l
and {αc

i}i,c by minimizing the following loss function (denoted as E)

min
0≤β≤1,∥β∥1=1,{αc

i}

1

2

∑
c

∑
i,j

αc
iα

c
jyicyjcK(Vi,Vj)−

∑
i

αc
i

s.t. αc
i ≥ 0,

∑
i

yicα
c
i = 0, ∀i, c.

(4)

As the problem in Eq. 4 is not convex w.r.t β, {αc
i} taken jointly and convex

when taken separately, an EM-like iterative optimization procedure could be
used: first, one may fix the parameters in β and solve the above problem w.r.t.
the classifier parameters {αc

i} using quadratic programming (QP), then one may
fix {αc

i} and solve the resulting problem w.r.t. β using linear programming. This
iterative process should stop when the values of all these parameters remain
unchanged or when it reaches a maximum number of iterations. However, this
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EM-like procedure is sub-optimal as it decouples the learning of β from the
other parameters. Besides, it requires solving multiple instances of constrained
quadratic problems2 and the number of necessary iterations to reach convergence
could be large in practice. We consider instead an end-to-end framework that
learns the two-stream parameters βm and βa together with classifier and ResNet
parameters (denoted as γa, γm) as well as mixing parameters (referred to as wa,
wm); the latters capture the importance of appearance and motion streams in
action recognition.
Considering E as the loss associated to appearance and motion streams, we find
the optimal {βm, βa}, {γm, γa} and {wm,wa} by solving

min
{βs,γs,ws}s

∑
s∈{a,m}

ws E(βs, γs)

s.t. ∥βs∥1 = 1, 0 ≤ βs ≤ 1, s ∈ {a,m}.

(5)

This objective function can be solved using gradient descent and backpropa-
gation. However, gradient backpropagation (through our multiple aggregation
block) should be achieved while considering videos with a varying number of
frames. Besides, constraints on β′s should also be handled. In what follows, we
discuss all these updates in the optimization process.

3.1 Reparametrization trick

Considering ρ() as the final softmax layer of our deep network and considering
∂E
∂ρ available, the gradient ∂E

∂w could easily be obtained by applying the chain

rule, in contrast to ∂E
∂β ,

∂E
∂γ . On the one hand, any step following the gradient

∂E
∂β should preserve equality and inequality constraints in Eq. (5) while a direct
application of the chain rule provides us with a surrogate gradient which ignores
these constraints. On the other hand, the variable number of frames for differ-
ent training videos requires a careful update of ∂E

∂γ as shown subsequently.

In order to implement equality and inequality constraints when optimizing (5),

we consider a re-parametrization as βk,l = h(β̂k,l)/
∑D

q=1

∑2q−1

p=1 h(β̂p,q) for some

{β̂k,l} with h being strictly monotonic real-valued positive function and this

allows free settings of the parameters {β̂k,l} during optimization while guaran-
teeing βk,l ∈ [0, 1] and

∑
k,l βk,l = 1. During back-propagation, the gradient of

the loss E (now w.r.t β̂’s) is updated using the chain rule as

∂E

∂β̂k,l
=

∑
p,q

∂E

∂βp,q
.
∂βp,q

∂β̂k,l

with
∂βp,q

∂β̂k,l
=

h′(β̂k,l)∑
k′,l′ h(β̂k′,l′)

.(δp,q,k,l − βp,q),
(6)

2whose complexity scales quadratically w.r.t. the size of training data.
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and δp,q,k,l = 1{(p,q)=(k,l)} with 1{.} being the indicator function. In practice

h(.) = exp(.) and ∂E
∂βp,q

is obtained from layerwise gradient backpropagation (as

already integrated in standard deep learning tools including PyTorch). Hence,
∂E

∂β̂k,l
is obtained by multiplying the original gradient

[
∂E

∂βp,q

]
p,q

by the Jacobian[∂βp,q

∂β̂p,q

]
p,q,k,l

which merely reduces to
[
βk,l(δp,q,k,l − βp,q)

]
p,q,k,l

.

3.2 Video-length agnostic training

As discussed earlier, motion and appearance ResNets are recurrently (itera-
tively) applied frame-wise prior to pool the underlying representations using
multiple aggregation. It is clear that the number of frames intervening in this
aggregation is video-dependent, and thereby the number of terms in these aggre-
gations (and the number of ResNet branches/instances) is also varying. Hence,
a straightforward application of the chain rule to the whole architecture – in
order to update ∂E

∂γ – becomes possible only when this architecture is unfolded,

and this requires fixing the maximum number of frames (denoted as T ) and
sampling temporally all the videos in order to make Ti constant and equal to T .
Note that beside requiring all the ResNet instances to share the same parame-
ters (as in Siamese nets), this results into a cumbersome architecture even for
reasonable T values. Furthermore, frame sampling requires interpolation tech-
niques which are highly dependent on quality, duration and temporal resolution
of videos and this may result into spurious motion/appearance details (espe-
cially on short videos; even when timely well resolute) which may ultimately
lead to a significant drop in action recognition performances.

In order to avoid these drawbacks and to fully benefit from the available num-
ber (and also temporal resolution) of frames — without using multiple instances
of “Siamese-like” ResNets and without resampling — we consider an alternative
gradient estimation. The latter relies on a membership function µ which assigns
each frame to a unique node in the temporal pyramid as µk,l

i,t = 1{t∈Nk,l}. Using
this membership function, the gradient of the loss E w.r.t. the parameters of
the ResNet γ can be updated as

∂E

∂γ
=

∑
k,l

∑
i,t

µk,l
i,t

∂E

∂ψk,l

∂ψk,l

∂γ
. (7)

From the above equation, it is clear that when k = l = 1, all the frames
{fi,t} contribute in the estimation of the gradient, while for other nodes, only a
subsets of frames (belonging to these nodes) are used. However, all the frames
contribute equally through all the nodes and hence in gradient estimate, without
any sampling. Note also that this formulation implicitly implements weight
sharing as the above gradient can be rewritten as the sum of gradients, with
each one shared across all the frames.
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3.3 Efficiency

Taking all the frames during backpropagation, comes at the expense of a sub-
stantial increase of computation. This high cost results from the large number
of visited frames when (re)estimating the gradient in Eq. 7 w.r.t. the parameters
of the ResNet and through epochs of backpropagation. In order to make the
evaluation of Eq. 7 (and hence training) more tractable, and with a controlled
loss in classification performances, we consider a surrogate gradient as

∂E

∂γ
=

∑
k,l,i

∑
t∈Pi

r

µk,l
i,t

∂E

∂ψk,l

∂ψk,l

∂γ
, (8)

here Pi
r stands for a subset of selected frames, in a given video Vi, that contribute

to gradient estimation at the rth epoch. We consider a periodic selection mech-
anism which guarantees that all the frames are equally used through epochs;
in practice, Pi

r = {t ∈ [0, Ti], t ≡ r (mod K)} with 1/K being the fraction of
frames used per epoch. With this mechanism, gradient evaluation still relies on
the entire set of frames in the training set, but their use is distributed through
epochs and this makes the evaluation and training process far more efficient
while maintaining close performances (see experiments).

4 Experiments

We evaluate the performance of our temporal pyramid design on three standard
action recognition datasets: UCF-101, HMDB-51 and JHMDB-21 [19, 20]. The
largest and most challenging one (UCF-101) is used to comprehensively study
different settings of our model. It includes 13320 videos belonging to 101 cate-
gories with variable duration, poor frame resolution, viewpoint and illumination
changes, occlusion, cluttered background and eclectic content ranging from mul-
tiple and highly interacting individuals to single and completely passive ones.
We also consider HMDB-51 and JHMDB-21 for further comparisons; the latter
include 6766 (resp. 928) videos belonging to 51 (resp. 21) action categories.
In all these experiments, we process all the videos using ResNet-101 in order
to extract appearance and motion representations framewise. Then, we apply
different aggregation schemes prior to assign those videos to classes. We use
the same evaluation protocols as the ones suggested in [19, 20] (i.e., train/test
splits) and we report the average accuracy over all the categories of actions.

We train our temporal pyramid-based networks for respectively 130, 100 and
65 iterations on UCF-101, HMDB-51 and JHMDB-21 using the PyTorch SGD
optimizer. For appearance stream, we set the learning rate to 0.001 and reduce
it by a factor of 10 every 25, 20, 10 iterations for resp. UCF-101, HMDB-51 and
JHMDB-21. For motion stream, we set the learning rate to 0.005 and we reduce
it by the same factor after “80 and 110”, “60 and 80”, “50 and 60” iterations on
the three sets respectively. Experiments on individual streams are run using 4
Titan X Pascal GPUs (with 12 GB) and last 72h for UCF101, 36h for HMDB-51
and 15h for JHMDB-21 on the appearance stream. On the motion stream, these
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experiments last 96h for UCF101, 48h for HMDB-51 and 24h for JHMDB-21
while on the joint (motion+appearance) stream experiments are run using 4
Tesla P100 GPUs (with 16 GB) and last 100h, 55h and 30h on the three sets
respectively.

4.1 Model analysis

Impact of pyramid depth and fusion. Experiments, reported in Fig. 4-left,
show that our temporal pyramid selects the best configurations (combinations)
of level representations that improve the performance of action recognition;
indeed, the results show a clear gain as the depth of the pyramid increases. This
gain results from the match between the temporal granularity of the learned
level-wise representations and the actual granularity of action categories. In
all these results, multi-level combinations (levels 2 up to 6) provide a clear
and a consistent gain w.r.t. global averaging (level 1) both on motion and
appearance streams as well as their fusion. As already discussed, the parameters
wa, wm of this fusion are optimized as a part of the end-to-end learning process.
Results reported in Fig. 4-right show these two parameters wa, wm w.r.t. the
depth of the temporal pyramid and hence the complementary aspects of the
two streams. We observe that the contribution of the motion stream is strictly
increasing as the level of the temporal pyramid increases (and a contrario strictly
decreasing for appearance stream). This clearly corroborates the highest impact
of motion in the combined setting when modeling the temporal granularity of
action categories (see also Fig. 5).
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Figure 4: This figure shows level-wise performances of motion, appearance and joint
streams (left) and also the importance of each stream (i.e., obtained wa and wm values)
when fusing motion and appearance (right).

Impact of multiple pyramids. We further investigate the potential of our
method using multiple instances of temporal pyramids jointly trained (see Ta-
ble 1). Performances reported in this table show a small gain when multiple
pyramids are combined (concatenated) and this results from the heterogene-
ity of action categories and their dynamics which may require multiple pooling
mechanisms (i.e., different pyramids). Indeed, the apex of some actions appears
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# of temporal Accuracy
pyramids per stream Appearance stream Motion stream Joint stream

1 83.92 81.69 90.78
2 83.95 81.73 90.79
4 83.97 81.79 90.84
8 83.92 81.86 90.89
16 83.89 81.83 90.85

Table 1: This table shows the evolution of the performances w.r.t. different # of tem-
poral pyramids per stream. In order to combine the outputs of these multiple pyramids
(when using concatenation), we add a succession of FC+Relu+BatchNorm to reduce
the dimensionality from “63 (number of nodes in TP of 6 levels) × 128 (node dimen-
sion) × # TPs” to “128”. The choice of FC layer of 128 dimensions (for multiple
pyramids) is made in order to reduce time and memory footprint while maintaining
relatively high accuracy. All these results correspond to temporal pyramids of 6 levels.

early in video clips while for others later or spread through all the video du-
ration. Hence, instead of learning a single monolithic temporal pyramid per
stream, one may stack multiple instances of temporal pyramids (with different
weights β) with each one dedicated to a subclass of actions whose dynamics
are similar3. However, as observed in Table 1, the gain is marginal and this
is explained by the correlation of the learned weights for different pyramids as
shown in Fig. 5 (b) and (c).

Sampling # frames (train) # frames (test) Accuracy
settings RGB OF RGB OF Appearance Motion Fusion

#1 25 25 25 25 84.23 81.27 91.65
#2 25 25 25 250 84.23 81.27 91.64
#3 25 50 25 50 84.23 81.86 91.69
#4 25 50 25 250 84.23 81.89 91.78
#5 64 64 250 250 84.62 82.05 91.89
#6 64 64 all all 84.81 82.77 92.09
#7 64 all all all 84.81 83.41 92.29
#8 all all all all 84.92 83.41 92.37

Table 2: This table shows the evolution of the performance w.r.t. to different sampling
settings (i.e., number of frames in training and test videos). RGB and OF stand for
the number of input RGB frames and the number of optical flow frames used in the
appearance and the motion streams respectively. These performances are obtained using
a temporal pyramid of six levels.

Sampling and efficiency. Table. 2 shows the impact of our method – with
and without frame sampling – on the performance of action recognition. These

3These subclasses of actions are not explicitly defined in a supervised manner but implicitly
by allowing enough flexibility in the multiple instances of temporal pyramids in order to
capture different (unknown) subclasses of action dynamics.
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(a) Single temporal pyramid

(b) Multiple temporal pyramids (motion stream)

(c) Multiple temporal pyramids (appearance stream)

Figure 5: (a) Weight distribution of motion and appearance streams obtained when
learning the parameters of a single temporal pyramid (corresponding to the first row
of table 1). (b-c) Weight distribution of multiple temporal pyramids of motion and
appearance streams (corresponding to the fourth row in the same table); the y-axes
correspond to pyramid levels (from 1 up to 6) while the x-axes correspond to nodes in
these levels. Warmer colors correspond to higher weights while cooler colors to lower
ones.

Training time Speed up Avg. Accuracy
motion, appear, comb factor (K) # of frames (train) Appearance Motion Joint

96h, 72h, 100h (4 days) 1× 185 84.92 83.41 92.37
24h, 18h, 25h (1 day) 4× 92 84.27 82.59 91.74
12h, 9h, 12h (half-day) 8× 46 84.10 82.07 91.39

6h, 4h, 6h 16× 23 83.96 81.23 90.70
4h, 3h, 4h 24× 8 83.89 80.95 90.35

Table 3: This table shows the performance of “surrogate back-propagation” with dif-
ferent acceleration factors. Note that motion stream performances are more sensitive
to this acceleration compared to appearance stream.
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results are obtained using a single pyramid. From these results, it is easy to see
that performances get better as the number of sampled frames increases reaching
asymptotically the best performances when all the frames are used. This behav-
ior is similar both on motion and appearance streams. However, we notice that
motion stream, which is based on optical flow data, is more sensitive to sampling
than appearance stream so the accuracy of the former is clearly proportional to
the number of frames. In other words, motion stream builds a better represen-
tation and hence becomes more important for the overall action classification
when it is fed with more optical flow data as shown again in Table 2 (settings
#6 and #7). Nonetheless, taking all the frames during backpropagation, comes
at the expense of a substantial increase of computation; for instance when con-
sidering all the 2.5 millions frames of our videos on UCF-101, training costs 72h
(resp. 96h) for appearance (resp. motion) stream using 4 Titan X GPUs (with
12 GB) and 100h on the joint stream using 4 Tesla P100 GPUs (with 16 GB);
see Table. 3. This high cost results from the large number of visited frames
when (re)estimating the gradient in (7). Eq. 8 reduces substantially this cost by
considering fractions 1

K of frames during backpropagation; for instance, when
K = 24, training is 24× faster compared to the most accurate setting (setting
#8 in Table 2) as only 8 frames are used (on average “per epoch-per video”) in
Eq. 8 instead of 185. Moreover, as all frames contribute equally through all the
epochs, the loss in accuracy is contained. These performances are obtained on
individual and joint streams using the same aforementioned hardware resources.

4.2 Ablation study and comparison

Table. 4 shows an ablation study of our complete model when “network retrain-
ing” and “temporal pyramid” are taken individually and combined. As observed
from the motion stream, retraining the baseline ResNet improves the perfor-
mance by +0.34 while temporal pyramid improves the performance by +1.56.
Combining both “retraining” and “temporal pyramid” brings a substantial gain
of +5.01. Similarly to motion, the gain with “retraining” and “temporal pyra-
mid” when taken individually and combined reaches +0.41, +1.68 and +4.64
respectively and a similar trend is observed when combining both motion and ap-
pearance streams. In sum, the gain brought by our temporal pyramid is clearly
established especially when the ResNet backbone is retrained (fine-tuned).

We also compare the performance and the complementary aspects of our
temporal pyramid model w.r.t. the related state-of-the art methods [16, 71,
29, 7] on UCF-101, HMDB-51 and JHMDB-21. The comparisons are shown
for different 2D and 3D convolutional backbones as well as pooling strategies.
All these networks are based on 2D and 3D spatio-temporal filters [71, 7] that
consider motion and appearance streams and their design is end-to-end but
clearly differ in their pooling mechanisms and the way frames are exploited.
Indeed, these related techniques rely on sampling strategies that vectorize video
sequences into fixed length inputs while our method keeps all the frames in or-
der to build temporal pyramids. Another major difference w.r.t. our method
resides in the huge set used in order to train these related architectures. Pooling
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Configurations Accuracy

Motion stream
ResNet-101 baseline 78.40

ResNet-101 + full network retraining 78.74
ResNet-101 + temporal pyramid 79.96

ResNet-101 + full network retraining + temporal pyramid 83.41
Appearance stream
ResNet-101 baseline 80.28

ResNet-101 + full network retraining 80.69
ResNet-101 + temporal pyramid 81.96

ResNet-101 + full network retraining + temporal pyramid 84.92
Joint (motion and appearance) stream

ResNet-101 baseline 88.91
ResNet-101 + full network retraining 89.69
ResNet-101 + temporal pyramid 89.26

ResNet-101 + full network retraining + temporal pyramid 92.37

Table 4: This table shows an ablation study of our model involving “network retrain-
ing” and “temporal pyramid” settings.

mechanisms used on top of these backbones include global averaging and spec-
trograms. The former produces a global representation that averages all the
frame representations while the latter keeps all the frame representations and
concatenate them prior to their classifications (see Fig. 6). Note that these two
settings are related to the two extreme cases of our hierarchy, i.e., the root and
the leaves. In particular, the spectrogram of a video V with T frames is obtained
when the number of leaf nodes, in the hierarchy, is exactly equal to T . Global
averaging techniques (shown in Table. 5) also include [16]; the latter, based
on colorized heatmaps, correspond to timely-stamped and averaged framewise
probability distributions of human keypoints. These colorized heatmaps are fed
to a 2D CNN for classification; note that colorized heatmaps provide video-level
representations which capture globally the dynamics of video actions without
any weighting scheme to emphasize the most important temporal granularities
of these actions and this results into low accuracy as again displayed in Table. 5.
While these 2D backbones are already effective when combined with global aver-
age pooling and/or spectrograms, their combination with our temporal pyramid
brings an extra significant gain. We observe the same behavior on the 3D back-
bones. Note that some of these backbones rely on extra datasets (including
Kinetics) in order to pretrain their CNNs while our method is trained only on
the original datasets of UCF-101, HMDB-51 and JHMDB-21.

4.3 Extra comparison

In this section, we also evaluate the performances of our proposed temporal
pyramid on the task of skeleton-based action recognition using a challenging
dataset, namely FPHA [91]. The latter includes 1175 videos (with 3D skeleton
and RGB frames as well as depth information4) belonging to 45 action cate-

4In order to make training cycles efficient, we only use the skeleton frames.
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Figure 6: This figure shows the general scheme of “spectrogram” construction.

gories with high inter and intra subject variability. Each video corresponds to a
sequence of skeleton frames, each one includes 21 hand joints, and each joint is
encoded with its 3D coordinates. We evaluate the performance of our method
following the protocol in [91]. In all these experiments, we report the average
accuracy over all the classes of actions.
In order to achieve action recognition, we use a baseline graph convolutional
network (GCN) architecture as a backbone (similar to [54, 68, 87]). This ar-
chitecture includes an attention layer of 16 heads applied to skeleton graphs
whose nodes are encoded with 3-channels (3D joint coordinates), followed by a
convolutional layer of 32 filters, and a dense fully connected layer. This baseline
GCN network is relatively lightweight, its number of parameters does not exceed
239976, and this makes its training and testing cycles highly efficient while being
accurate5. We train all our GCNs — with different pooling mechanisms, namely
temporal pyramid (TP), global average pooling (GAP) and spectrogram (Spect)
— end-to-end using the Adam optimizer [92] for 2,700 epochs with a batch size
equal to 600, a momentum of 0.9 and a global learning rate (denoted as ν(t))
inversely proportional to the speed of change of the classification loss used to
train our networks. When this speed increases (resp. decreases), ν(t) decreases
as ν(t)← ν(t− 1)× 0.99 (resp. increases as ν(t)← ν(t− 1)/0.99). As shown in
Table. 6, when combining this GCN with our TP pooling, it outperforms both
GCNs with GAP and Spect. It also shows very competitive results compared to
the closely related hierarchical attention network (HAN) work in [90] while being
very lightweight and accurate. Indeed, when combining our GCN with TP, the
number of parameters of our lightweight GCN increases from 239976 (without
TP) to 240648 only (with TP), which is four times smaller than HAN-2S and
twice smaller than HAN [90]6 while also being equivalently competitive.

5Training of each lightweight GCN architecture lasts less than an hour on a GeForce GTX
1070 GPU (with 8 GB memory).

6As reported in [90], the number of parameters in HAN-2S and HAN architectures are
940k and 530k respectively.
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Methods UCF-101 HMDB-51 JHMDB-21 ImageNet Kinetics
pretraining pretraining

ResNet-A + Spect [29] 78.40 57.76 61.26 Yes No
ResNet-M + Spect [29] 76.46 55.38 60.66 Yes No
ResNet-J + Spect [29] 80.10 58.28 62.14 Yes No
ResNet-M + GAP [71] 79.4 59.13 61.39 Yes No
ResNet-A + GAP [71] 82.1 60.24 62.71 Yes No
ResNet-J + GAP [71] 88.5 63.31 64.11 No No
ResNet-A + Our TP 83.41 61.04 62.97 Yes No
ResNet-M + Our TP 84.92 62.23 63.51 Yes No
ResNet-J + Our TP 92.37 65.14 66.96 Yes No
2D col-heat [16] 64.38 54.90 60.5 No No

2D col-heat + Our TP 80.41 65.21 69.93 No No
3D CNN-M [7] 96.41 80.39 - Yes Yes
3D CNN-A [7] 95.60 76.47 - Yes Yes

3D CNN-M + Our TP 96.61 80.54 - No No
3D CNN-A + Our TP 96.05 76.56 - No No

Other Action
Recognition Methods
TwoStr (2014) [2] 88.0 59.4 - Yes No
TwoStrF (2014) [2] 92.5 65.4 - Yes No
C3Dr (2015) [69] 82.3 51.6 - - -
ST-Res (2016) [14] 93.4 66.4 - Yes No
TSNr (2016) [17] 94.0 68.5 - Yes No
P3Dr (2018)[104] 88.6 - - - -

Res3Dr (2018) [105] 85.8 54.9 - - -
R(2 + 1)Dr (2018) [105] 93.6 66.6 - - -
ARTNetr (2018) [106] 94.3 70.9 - No Yes
ECOr (2018) [107] 94.8 72.4 - No Yes

CoViARr (2018) [102] 94.9 70.2 - Yes No
I3Dr (2017) [7] 95.6 74.8 - Yes Yes

TSMr (2019) [109] 95.9 73.5 - Yes Yes
NST (2021) [110] 96.0 76.1 - Yes Yes

Table 5: This table shows a comparison of our temporal pyramid (referred to as TP)
w.r.t. different related works; in this table, “col-heat” stands for colorized heatmaps,
“Spect” for spectrograms, “A” for appearance, “M” for motion and “GAP” for global
average pooling. In our experiments, ResNets are pretrained on ImageNet and fine-
tuned on UCF-101 (for both appearance and motion).

5 Conclusion

We introduce in this paper a temporal pyramid approach for video action recog-
nition. The strength of the proposed method resides in its ability to learn hier-
archical pooling operations that capture different levels of temporal granularity
in action recognition. This is translated into learning the distribution of weights
in the temporal pyramid that capture these granularities. This is obtained by
solving a constrained quadratic programming problem, and by optimizing the
parameters of a deep network including a temporal pyramid module both on
motion and appearance streams as well as their combination. We also con-
sider variants of the deep learning framework that designs multiple instances
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Method Color/RGB Depth Skeleton Accuracy (%)
Two stream-color (2016) [6] ✓ ✗ ✗ 61.56
Two stream-flow (2016) [6] ✓ ✗ ✗ 69.91
Two stream-all (2016) [6] ✓ ✗ ✗ 75.30
HOG2-depth (2014) [77] ✗ ✓ ✗ 59.83

HOG2-depth+pose (2014) [77] ✗ ✓ ✓ 66.78
HON4D (2013) [78] ✗ ✓ ✗ 70.61

Novel View (2016) [80] ✗ ✓ ✗ 69.21
1-layer LSTM (2016) [81] ✗ ✗ ✓ 78.73
2-layer LSTM (2016) [81] ✗ ✗ ✓ 80.14
Moving Pose (2013) [82] ✗ ✗ ✓ 56.34
Lie Group (2014) [83] ✗ ✗ ✓ 82.69
HBRNN (2015) [84] ✗ ✗ ✓ 77.40

Gram Matrix (2016) [85] ✗ ✗ ✓ 85.39
TF (2017) [86] ✗ ✗ ✓ 80.69

JOULE-color (2015) [88] ✓ ✗ ✗ 66.78
JOULE-depth (2015) [88] ✗ ✓ ✗ 60.17
JOULE-pose (2015) [88] ✗ ✗ ✓ 74.60
JOULE-all (2015) [88] ✓ ✓ ✓ 78.78
Huang et al. (2017) [89] ✗ ✗ ✓ 84.35
Huang et al. (2018) [93] ✗ ✗ ✓ 77.57

HAN (2021) [90] ✗ ✗ ✓ 85.74
HAN-2S (2021) [90] ✗ ✗ ✓ 89.04

GCN + Spect ✗ ✗ ✓ 86.78
GCN + GAP ✗ ✗ ✓ 87.13

GCN + Our TP ✗ ✗ ✓ 87.47

Table 6: Comparison of our GCNs, with different poolings, against related work on
FPHA.

of temporal pyramids each one dedicated to a particular subcategory of action
granularities and also a procedure that allows us to efficiently train the network
at the detriment of a slight decrease of its classification accuracy. The advan-
tages of these contributions are established, against different baselines as well
as the related work, through extensive experiments on challenging action recog-
nition benchmarks including the UCF-101, HMDB-51 and JHMDB-21 datasets
as well as skeleton videos including the FPHA dataset.
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