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Abstract

We aimed to address two common challenges for scientists working with ob-
servational data: “how to quantify the relation between two observed variables”,
and, “how to account for censored observations” (i.e., observations whose value is
only known to fall within a range). Quantifying the relationship between observed
variables, and predicting one measured quantity from another (and vice versa), vi-
olates the assumption of standard regression regarding the existence of an indepen-
dent, explanatory variable that is measured with no (or limited) measurement error.
To overcome this challenge, we developed and tested a Bayesian error-in-variables,
EIV, regression model which accounts for measurement uncertainty orthogonally.
Moreover, parameter estimation using Bayesian inference allowed the full parame-
ter uncertainty to be propagated into probabilistic model predictions suitable for
decision making. Alternative model formulations were applied to a dataset contain-
ing measured concentrations of organic pollutants in mothers and their eggs from
the freshwater turtle Malaclemys terrapin and validated against an independent
dataset of the turtle Chelydra serpentina. The best performing EIV model was then
applied to the dataset again after censoring observations in one or both variables.
The Bayesian implementation allowed for such application as independent likeli-
hoods for both censored and uncensored data could be combined. The EIV model
performed well, as revealed by posterior predictive checks around 85%, and obtained
comparable parameter estimates in both censored and uncensored cases. The re-
sulting model allows scientists and decision-makers to quantitatively link measured
variables, and make predictions from one variable to the next while accounting for
measurement uncertainties and censored data.

keywords: Orthogonal regression, Measurement error, Maternal transfer, Reptile eco-
toxicology, environmental pollution
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1 Introduction

In ecology and ecotoxicology, researchers are often confronted with relationships between
two observed variables. For example, allometric relations between various length and
weight measurements of organisms [Vermeiren et al., 2021], measured concentrations of
chemicals in different environmental matrices [Muñoz et al., 2024], relationships between
different observed toxic effects, or when comparing the performance of two indices or
measuring devices [Hawkins and Weckwerth, 2016, Connors et al., 2022]. The strength
and direction of the association between such observed variables can be described in a
correlation. However, capturing this relation quantitatively and predicting one measured
quantity from another (and vice versa) faces a challenge. Regression is frequently used to
describe the relationship between two or more variables, which can be linear or non-linear
and amenable to several quantitative data types (e.g., counts, binary, or continuous data)
commonly encountered in ecology and ecotoxicology. Nevertheless, when the variables are
both observed features, they violate a basic assumption of standard regression models,
namely the existence of an independent explanatory variable that is measured without
uncertainty (i.e., error) and used to explain a dependent variable [Pallavi et al., 2022].
Often, measurement uncertainty is neglected in at least one of the two variables (which
is then assumed to be the “independent” variable) leading to biased parameter estimates
[Mikkonen et al., 2019]. Indeed, interchanging the role of the two variables as “dependent”
and “independent” variables leads to different regression coefficients [Andreon and Hurn,
2013]. Hence, there is a need for a model that can mathematically quantify the relationship
between the two variables, where each variable contains observations associated with
measurement uncertainty.

Error-in-variables (EIV) regression methods have been proposed to tackle this chal-
lenge. They consider observations of each variable to come from some unobserved, true
value with added measurement error [Mikkonen et al., 2019]. Orthogonal regression is
one of the main EIV techniques [Pallavi et al., 2022] that aims to minimise the distance
between observed data and the fitted regression curve orthogonally (i.e., perpendicular
to the regression line) during parameter inference. In contrast, a standard regression
aims to minimise the distance between observed data and the regression curve only in the
direction of the dependent variable (that is usually vertically).

Capturing parameter uncertainties during inference is an important requisite for mod-
els to be useful for decision-making, for instance, in the context of risk assessment or
environmental management [Schuwirth et al., 2019]. Here, a Bayesian approach toward
parameter inference is well suited. A Bayesian approach considers parameters as random
variables (rather than fixed but unknown point estimates under a frequentist approach)
for which prior probability distributions are updated from the sample of the observations
during the inference process [Gelman et al., 2014]. Consequently, parameter uncertainty
(as shape, height, and width of the probability distributions) is explicitly quantified dur-
ing inference, and can be propagated into predictions and in any decision-making process
built around these predictions. Within a Bayesian context, the term Bayesian EIV regres-
sion has been more commonly used [Reily and Patino-Leal, 1981, Mikkonen et al., 2019,
Splett et al., 2019], although the term orthogonal regression has also been used [Novick
et al., 2012]. Irrespective of the terminology, and despite the advantage of allowing for
explicit modelling of uncertainties in both measured variables under a Bayesian frame-
work [Splett et al., 2019], the application of Bayesian EIV models is still relatively little
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evaluated, as orthogonal regression has traditionally mainly relied on a frequentist frame-
work for parameter inference. One particular issue that has been highlighted (under both
frequentist and Bayesian frameworks) relates to the identifiability of model parameters
(i.e., the theoretic possibility to learn the true values of the model’s underlying parameters
if an infinite set of observations was available, Splett et al. [2019]).

A further challenge in working with observed values is the possibility for censored data
to occur (also referred to as truncated or non-detect data, Tobin [1958], Helsel [2005]).
This is a situation in which an observation could not be determined to a specific value,
but rather falls below, above, or between given bounds, thus called left, right, or interval-
censored data, respectively. This is a relatively common occurrence in ecological and
ecotoxicological data [Shoari and Dubé, 2018, Landes et al., 2020], for instance, when
chemical concentrations fall below analytical detection limits, organisms survive or do not
show an observable effect until some time after the study has ended, or events occur dur-
ing gaps in observations. The inclusion of censored data in linear regression is generally
known as Tobit regression, yet, the combination of EIV with censored data is much less
established [Wang, 1998, Hawkins and Weckwerth, 2016]. The inclusion of censored data
during inference of model parameters is generally achieved by splitting the likelihood (i.e.,
the probability of the data given the parameters) into a product of individual likelihoods
for the censored and uncensored data. Such a product of likelihoods is relatively straight-
forward to implement under a Bayesian framework through the use of Bayes theorem [Kon
Kam King et al., 2015, Hawkins and Weckwerth, 2016, Qi et al., 2022].

To tackle the challenge of quantifying the relationship between observed variables
in ecology and ecotoxicology, we developed a Bayesian EIV model that is parsimonious
regarding model parameters; that accounts for uncertainties in both variables; that prop-
agates these uncertainties into predictions relevant to decision-making; and that accounts
for censored data. To illustrate our strategy, several variants of the EIV model have been
applied to a dataset containing measured concentrations of organic pollutants in mothers
and their eggs from the freshwater turtle Malaclemys terrapin and validated against an
independent dataset of the turtle Chelydra serpentina. The best performing EIV model
was then applied to the dataset again after censoring observations in one or both variables.
This case study is detailed below after all features of the model have been described.

2 Methods

2.1 Model concept and formulation

We developed a Bayesian EIV model (equation. 1) inspired by Novick et al. [2012]. Specif-
ically, for each pair of n independent observations, Xobs

i and Y obs
i (i = 1...n) represent

the observed values of the two variables. The values of both Xobs
i and Y obs

i are observed
with uncertainty, and are linked to their respective latent (unobserved) values Xi and Yi,
which represent the “true” value of the variable without uncertainty. This stochastic link
is formalised as a normal distribution with mean value at Xi (resp. Yi) and standard
deviation σ2

u (resp. σ2
y) for Xobs

i (resp. Y obs
i ). The assumption that observed data stem

from a distribution around the true, latent value is also called a classical measurement
error model [Andreon and Hurn, 2013]. In addition, latent values Xi are assumed to be
independent, identically distributed random variables stemming from a normal distribu-
tion (i.e., a structural model according to Novick et al. [2012]) around population mean µx
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with standard deviation σ2
x; such an assumption prevents extreme values during model cal-

ibration. Finally, the deterministic link between the two latent variables is characterised
by intercept, α, and slope, β, parameters which characterise the linear dependency. The
following set of equations describes the base Bayesian EIV model (further: model M6)
with six parameters gathered in vector θ6 = {α, β, σ2

u, σ
2
y , µx, σ

2
x}.

Xobs
i ∼ N (Xi, σ

2
u)

Y obs
i ∼ N (Yi, σ

2
y)

Xi ∼ N (µx, σ
2
x)

Yi = α + βXi

(1)

In practice, since we assume that Xobs
i is randomly distributed, the deterministic

parameterization of Yi can equivalently be derived from Xobs
i instead of Xi (equation. 2).

Yi = α + βXobs
i (2)

Alternative formulations were developed to improve model performance and parsimony
(i.e., reduce the number of required parameters, fig. 1), and considering previous reports
on identifiability issues in EIV models [Splett et al., 2019]. A first alternative (model M5)
assumes that the uncertainty on both observed variables, Xobs

i and Y obs
i , is equal (e.g.,

when both are measurements of the same process collected with the same methodology).
This reduces the number of parameters to 5, that is θ5 = {α, β, σ2, µx, σ

2
x}. A second

alternative (model M4) additionally assumes that the slope β has a fixed value of 1
which corresponds to a relationship between X and Y that does not vary with increasing
or decreasing values. In this case, the linear dependency gets reduced to Yi = α + Xi.
Model M4 is thus described by 4 parameters θ4 = {α, σ2, µx, σ

2
x}.
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Figure 1: Schematic representation of model alternatives as directed acyclic graphs; open
circles: parameters, filled ellipses: variables, squares: observations, full arrows: stochastic
links, dashed arrows: deterministic links.

The model was adapted to account for censored data. Therefore, the likelihoods (i.e.,
the probability of the observed data given the parameters) were calculated independently
for uncensored and censored data, and then combined using Bayes theorem into the prod-
uct of these individual likelihoods. In practice, this means that each data point, Y obs

i , that
was censored (further referred to as Y cens

i ), is no longer a continuous variable, but rather a
binary outcome Zi (censored or not). This outcome was represented as a Bernoulli distri-
bution of probability pi, itself determined as the cumulative probability for the censored
data to be below or above the censoring limit named cut, the censored data being itself
sampled from a normal probability distribution around mean Yi and standard deviation
σ2
y (equation. 3).

Zi ∼ Bern(pi)

pi = F (Y cens
i , cut)

(3)

with F the cumulative distribution function of N (Yi, σ
2
y). In case of left-censored data,

F (Y cens
i , cut) = P (Y cens

i ≤ cut).

2.2 Modelling strategy

Two analyses were conducted to develop and apply the model to datasets containing
censored data. In the first analysis, we aimed to develop and test the Bayesian EIV model
using two datasets. The first dataset was used to calibrate the three model alternatives
(M6, M5, and M4, section 2.4), to select the best performing alternative (section 2.5), and
to internally validate the chosen alternative (Fig. 2, section 2.6). Therefore, we used a
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3-fold cross-validation where the dataset was randomly split into three equal parts. Then,
two thirds (i.e., two subsets of the data) were combined into one training set, and the
remaining third was used as the corresponding test set. This partitioning was done three
times, resulting in three different training and test set combinations. Calibration of the
three model alternatives and selection of the best one were then done on the three training
sets, while the internal validation was done on the complementary three test datasets. This
three-fold cross-validation was chosen to evaluate the influence of the input datasets on
the models’ performance, while keeping a sufficiently large number of data points within
each fold. A second, independent, dataset was subsequently used for external validation
of the best performing model, with the parameter values for this model taken across the
three-fold calibration.

In a second analysis, the best performing model was tested for its ability to account
for censored data. Therefore, the model was re-calibrated to the whole first dataset, but
with part of this dataset censored. Specifically, the lower 20th percentile of the data corre-
sponding to Y obs

i was censored (i.e., recorded as a value falling below the 20th percentile).
It was then assessed (1) how much parameter distributions differed between the calibra-
tion against the uncensored and the censored dataset, and how well the model represented
the original values (before censoring) during validation. This procedure was repeated, but
then censoring the lower 20th percentile of the data corresponding to Xobs

i , and once more
censoring the lower 20th percentile of the data in both Xobs

i and Y obs
i (Supplement S1).

Figure 2: Schematic representation of our modelling strategy.

2.3 Implementation

Parameter estimation was conducted using Bayesian inference to allow the full parameter
uncertainty to be quantified and propagated into probabilistic model predictions. Param-
eter estimation was performed using Monte Carlo Markov Chain (MCMC) simulations
with Gibbs sampling using the JAGS software via the R2jags package version 0.7-1 [Yu-
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Sung and Masanao, 2021], in R version 4.3.2 [R Core Team, 2023], on three independent
chains. JAGS model code is presented in Supplement S1.

2.4 Calibration

Preliminary model runs using Raftery and Lewis’ diagnostic were used to assess suitable
lengths for the MCMC burn-in and sampling phases [Raftery and Lewis, 1992]. This
diagnostic estimates the number of MCMC iterations needed to obtain a sufficiently pre-
cise posterior (specifically to estimate the 0.025 quantiles of the posterior distribution
with an accuracy of 0.005). The values suggested by Raftery and Lewis’ diagnostic were
rounded to the nearest 10 and tripled to account for high autocorrelation. At least 100
burn-in iterations were used, and chains were thinned by 10 for computational efficiency
(Supplement S2).

MCMC chain convergence was assessed as the overlap of the independent chains on
MCMC traceplots and via the Rhat diagnostic (using <1.01 as the criterion for conver-
gence of individual parameters, Gelman and Rubin [1992]). Autocorrelation was checked
on traceplots and using the effective sample size. Parameter prior and posterior prob-
ability distributions were compared, and bi-variate scatterplots of posterior parameter
distributions were checked for collinearity in parameter estimates.

We opted to define broad, vague prior parameter distributions. This ensures parameter
inference to be driven largely by the information within the data. These priors were
derived based on logical reasoning about parameter ranges, and information about the
maximum observed value across the whole dataset (a data point which was then removed
from further analyses). Priors on σ2

u and σ2
y (or simply σ2 in models M5 and M4), and

on the population level standard deviation σ2
x, were given on their respective precision τu,

τy, (or simply τ) and τx where the precision equals the inverse of the variance. Gamma
priors were used for the precision, with a shape coefficient of 1 and a rate of 0.001. Normal
distributions were used to set the prior for parameters: β (the slope of the line) with a
mean of 1 and a standard deviation of 10; α (the intercept of the line) with a mean of
0 and the maximum observed value in the data as the standard deviation; and µx (the
population mean) with the half of the maximum observed value as the mean, and the
maximum observed value as the standard deviation.

2.5 Model selection

To compare model alternatives (M6, M5, and M4), we evaluated the predictive perfor-
mance of each model using 3-fold cross-validation. For each model alternative, and for
each training set, the within-sample predictive performance was assessed using the Widely
Applicable Information Criterion (WAIC, Watanabe [2013]). This is a highly suitable in-
formation criterion in a Bayesian context since it considers the full uncertainty in the
model by using the full posterior density for testing predictive capacity, as compared to
parameter point estimates as done in AIC and Deviance Information Criterion, DIC [Gel-
man et al., 2014]. Plots of residuals for all model alternatives were also checked for any
remaining pattern.
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2.6 Validation

After selection, the best performing model was validated internally and externally. For
internal validation, the out-of-sample predictive accuracy of the model was assessed by
using the model calibrated on each of the three training datasets to predict observations
in their three respective test datasets. For external validation, predictions were made for
a separate, independent dataset (2nd dataset) with the full calibrated model (using the
posterior parameter estimates across all training datasets). We focused on the model’s
ability to predict Y obs

i from Xobs
i (in line with the traditional use of regression to pre-

dict one variable from another, even though in EIV models the role of both variables is
interchangeable).

For internal and external validation, several goodness-of-fit measures were assessed,
namely: (i) the posterior predictive check (PPC) which was calculated and plotted to
identify which percentage of observed Y obs

i values fell within the 95% credible interval of
model predictions (with values closer to 95% indicating better performance) ; (ii) Pearson
correlation coefficients for prediction (r2) to evaluate how closely observed and predicted
Y obs
i values align (values closer to 1 indicating better alignment); (iii) the Nash-Sutcliffe

coefficient of Efficiency (NSE) to compare the relative magnitude of residual against mea-
sured data variance (values closer to 1 indicating better fit); and (iv) the normalized Root
Mean Squared Error of prediction (nRMSE) to assess the overall magnitude of residual
variance in comparison to the magnitude of the mean (with values of 0.5 or lower preferred
as they indicate a variance less or equal to half of the mean observed value).

Regarding the application of the best performing model towards censored datasets,
the same four goodness-of-fit criteria (PPC, r2, NSE, and nRMSE) were calculated by
comparing the predicted Y obs

i values (after re-calibrating the model to the censored first
dataset) against the uncensored data. Meanwhile, for the censored data, it was assessed
how many were predicted below the detection limit, and how well they correlated with
the original values before censoring.

2.7 Model application

We applied model alternatives M6, M5, and M4 in a case study of the maternal transfer
of organic pollutants between mothers and their eggs. Such transfer represents an ex-
posure route for developing embryos during a sensitive developmental stage and before
encountering the external environment (Hitchcock et al. [2017], Muñoz and Vermeiren
[2018], Gómez-Roig et al. [2021]). This can affect embryo vitality and survival, as well as
health and disease later in life (Hamlin and Guillette Jr [2011], Chin et al. [2013], Kim
et al. [2018], Basak et al. [2020]).

A large database containing the current state-of-the-art data regarding concentrations
of organic pollutants measured in paired samples of reptile mothers and their eggs was
recently collected through a systematic search for published data, followed by their ex-
traction, homogenisation, and integration into one comprehensive database [Muñoz et al.,
2024]. All pollutant concentrations in this database were standardized to ng.g−1 lipid
basis. We selected two subsets of this large database to apply the models. Specifi-
cally, we selected a homogeneous dataset for calibration, selection, and internal validation
(dataset 1). This dataset contained measurements of polychlorinated biphenyls (PCBs),
organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) measured
in female livers and their whole egg in the freshwater turtleMalaclemys terrapin, originally
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collected by Basile et al. [2011]. The dataset contained some measurements below the de-
tection limit, however, with no further information regarding the detection limit reported
in the original study. Consequently, only values above detection limits (i.e., uncensored
data) were used, resulting in a database with 514 observations. Additionally, for external
validation, we selected a comparable dataset, which contained a set of 14 PCBs and OCPs
that were also recorded in dataset 1 and were measured on the same tissues (mothers’
liver and offsprings’ whole egg); however, these measurements were obtained from a dif-
ferent species, namely the freshwater turtle Chelydra serpentina, in a study conducted by
Hebert et al. [1993]. To link the datasets to the model, log10 lipid-normalized pollutant
concentrations observed in mothers’ liver were used as Xobs

i values, while observations in
offsprings’ eggs were used as Y obs

i values.

3 Results

3.1 Selection

The formulation of model M6 led to identifiability issues. Specifically, the MCMC algo-
rithm was highly autocorrelated leading to low effective sample sizes of less than 100 for
α and β, and had convergence issues with Rhat values close to 1.1 for cross-validation run
2 (Supplement S3). Moreover, parameter values for standard deviations σ2

u and σ2
y (esti-

mated as their respective precision τu and τy) on Xobs
i and Y obs

i were pushed towards their
lower limit; and bimodal marginal posterior distributions were returned for the intercept
α and the slope β of the regression line (Supplement S4). Given these issues, model M6
was not further considered.

Meanwhile, models M5 and M4 converged well, with clearly identified, narrow marginal
posterior parameter distributions distinct from the prior ones (Table 1, Supplement S4).
Marginal posterior parameter distributions were highly comparable across the three train-
ing datasets, with most variation in the precision τ (Fig. 3). Parameters in model M5
and M4 were clearly uncorrelated, with exception of parameters α and β in model M5
(corr = −0.873, Fig. 3, Supplement S4). Comparing both models, M5 performed better,
as revealed by a lower mean (± standard deviation) WAIC of 6.37 ± 83.03 across three
training sets compared to 57.83 ± 75.05 for model M4. Model M5 was therefore selected
as the best performing alternative and used for further evaluation.

Prior Posterior

median 95% CI median 95% CI median ÷ 95% CI
α 0.00 [-5.74 ; 5.74] -0.33 [-0.41 ; -0.25] 2.13
β 1.02 [-18.53 ; 20.56] 1.14 [1.08 ; 1.19] 10.13
τ 695.24 [25.26 ; 3684.00] 24.91 [19.05 ; 30.27] 2.22
µx 1.46 [-4.31 ; 7.21] 1.22 [1.14 ; 1.29] 7.97
τx 695.24 [25.26 ; 3684.00] 2.70 [2.23 ; 3.27] 2.60

Table 1: Prior and posterior parameter quantiles in model M5; median, 95% confidence
interval (CI), and ratio of median over 95% CI.
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Figure 3: Posterior parameter correlations in model M5 coloured per training set.

3.2 Validation

Model M5 performed well during internal and external validation, as revealed by the
goodness-of-fit criteria. Specifically, for internal validation: (i) the PPC ranged (min.
- max.) between 82.5% and 90.1% of measured pollutant concentrations in eggs in the
3-fold test datasets to fall within the 95% credible interval of predictions (Fig. 4); (ii) the
predictive Pearson coefficient r2 ranged between 0.90 and 0.93 indicating close alignment
between observed and median predicted values; (iii) the NSE ranged between 0.79 to 0.86
suggesting that variance is well captured by the model; and (iv) low nRSME between
0.25 and 0.31 were observed. Results of the external validation against an independent
dataset of pollutant concentrations in the turtle C. serpentina were highly comparable to
those of the internal validation with a PPC of 84.9, an r2 of 0.93, an NSE of 0.84 and an
nRMSE of 0.12.

3.3 Interpretation

The 95% credible interval for the slope parameter β in model M5 did not include 1 (Table
1), suggesting a trend for higher maternal transfer at higher mother concentrations. In
model M5, the intercept α differed from zero, and the precision τ capturing the uncertainty
around the observed variablesXobs

i and Y obs
i was about 10 times larger (i.e., small standard

deviation) compared to the overall population level precision, τx (Table 1).
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Figure 4: PPC plots for model M5 across the three cross validation (CV) test-folds in
dataset 1; segments in green (resp. orange) indicate 95% credible intervals overlapping
(resp. not-overlapping) with observed data.

3.4 Application to censored data

Applying model M5 to a dataset where the lowest 20% of the data was censored in one
or both of the observed variables, resulted in a good model convergence as revealed by
overlapping MCMC traceplots for the three chains showing no pattern, Rhat values for
all parameters close to 1.00, and sufficient effective sample sizes (Supplement S3). Addi-
tionally, in all cases, narrow posterior probability distributions were obtained compared
to the prior distributions, and overlapping those obtained when applying model M5 to
the same dataset without any censored values (Fig. 5, Supplement S4). Consequently,
the fitted regression lines highly aligned across results with the uncensored and censored
data (Fig. 6).
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Figure 5: Probability density plots for M5 model parameters, including prior (red line)
and posterior (histograms coloured based on whether model M5 was calibrated against
dataset 1 with or without censored values)

As expected, the intercept α and the slope β were highly correlated (-0.926, -0.912,
-0.921 when censoring only in Y obs

i , only in Xobs
i , or in both variables, respectively),

similarly to the results obtained for the uncensored dataset (fig. 11). Other parameters
were uncorrelated.

Model M5 performed well when applied to the dataset censored only in Y obs
i , only in

Xobs
i , or in both variables, with a PPC of 85.64%, 88.49%, and 90.33%, respectively, of

uncensored concentrations in eggs falling within the 95% credible interval of predictions.
Additionally, for these uncensored data, good performance was revealed by Pearson r2

values of 0.89, 0.89, and 0.91, NSE of 0.78, 0.78, and 0.82, and nRSME of 0.22, 0.25 and
0.20 for the dataset censored only in Y obs

i , only in Xobs
i , or in both variables, respectively.

Meanwhile, for the dataset with censored Y obs
i , median predicted values for censored

data points fell largely below the censoring limit, although 12.6% were predicted above
it. Additionally, the median predicted values correlated poorly to the original values (i.e.,
before censoring), with a Pearson r2 of 0.20. Yet, a group of outlying observations with
relatively high maternal concentrations, but low offspring concentrations (compared to the
bulk of observations in the dataset) could contribute to this poor correlation. Omitting the
outlying values led to much better agreement between observed and predicted values, with
just 1% above the censoring limit and a correlation with the original uncensored values
of 0.52. (Note that a similar analysis was not conducted for the datasets censored in Xobs

i

only and in both variables together. Indeed, it is not sensible to evaluate the predictive
performance for censored datapoints as there are no known Xobs

i values to predict from,
only the value of the censoring limit.)
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Figure 6: Median predictions and 95% credible interval band for model M5 on uncensored
(black), Y censored (yellow), X censored (green, or both censored (blue) data. For datasets
containing censoring in X, predictions below the detection limit use the detection limit as
X value.

4 Discussion

We developed and tested a Bayesian EIV model allowing us to quantify the relationship
between two observed variables, both associated with measurement uncertainty, and with
the possibility to contain censored data. These are two challenges often encountered in
ecology, ecotoxicology, and other scientific fields [Connors et al., 2022]. The EIV model
allows to overcome a strong limitation in standard regression imposed by the assumption
that uncertainty is only present in the dependent variable, while the explanatory variable
is assumed to be measured with no (or very limited) uncertainty [Pallavi et al., 2022].

4.1 Model implementation and performance

Quantifying the uncertainty on both variables, however, represents an additional chal-
lenge. Indeed, our first model alternative, M6, which included all 6 parameters θ6 =
{α, β, σ2

u, σ
2
y , µx, σ

2
x} faced identifiability issues as it attempted to push the variances of

at least one of the two variables towards their lower limit (i.e., towards zero which is
the minimum variance possible, as also determined by their gamma priors). Meanwhile,
both slope and intercept parameters returned bimodal marginal posterior distributions.
In other words, the model attempted to align with classical regressions of either ”X versus
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Y” or ”Y versus X”, but struggled to find a way to divide the uncertainty between the
two variables. Parameter identifiability has been outlined as a challenge in EIV models
[Splett et al., 2019]. Novick et al. [2012] were able to estimate the full 6-parameter model,
since their data included repeated measurements of the same samples thus allowing the
quantification of measurement uncertainty in each variable separately. Collecting data
with repeated measurements so that measurement uncertainty can be explicitly quan-
tified would thus be a valuable recommendation to improve study designs for statistical
analyses if resources allow. Nevertheless, this recommendation does face challenges related
to the time and effort needed to collect such data.

An alternative approach is to constrain the variances to a ratio (σ2
u/σ

2
y), based on

assumptions or selected measurements, thereby reducing the problem to a 5-parameter
estimation [Novick et al., 2012, Andreon and Hurn, 2013]. Our implementation of M5
applies this alternative by assuming that the variance is equal between the two variables
(i.e., a ratio of 1:1). Such assumptions, however, need to be clearly communicated, so that
their applicability can be checked and potential effects on parameter estimates evaluated
[Hawkins and Weckwerth, 2016]. Nevertheless, model assumptions or implementations
are not always communicated when research is predominantly focused on the application
and outcomes of the technique. For instance, orthogonal regression was applied to assess
the equivalence of ecotoxicity tests between two Daphnia species [Connors et al., 2022],
yet, the underlying model and assumptions were unspecified in the publication (and not
upfront communicated in the documentation of the R package used to fit the model,
Borchers [2023]). Increased details in the documentation would improve awareness and
understanding of EIV models and their underlying assumptions. In our case study, both
Xobs

i and Y obs
i were measurements of pollutant concentrations in biological tissues. Hence,

an assumption of equal variance is reasonable. We applied our model to data already
available from the literature (which did not include repeated measurements of the same
sample). Nevertheless, a recommendation for future studies would be to measure a few
samples repeatedly, so that the assumption of equal variance can be tested, and, if needed,
adjusted to a ratio between the two variances.

The 5-parameter model, M5, performed well in both internal and external validation, in
compliance with our four goodness-of-fit criteria. This suggests that, given the assumption
of equal variance on the measured variables, Bayesian orthogonal regression models can
be used to quantify the linear relationship between measured variables. Moreover, the
regression parameters were stable across the three training sets, although the variance, τ ,
on the observed variables did vary somewhat. The training datasets, each of which had
342 or 343 data points, were of sufficient size compared to rough rules of thumb of about
15 to 25 times more data than parameters in generalized linear regression models (e.g.,
Zuur et al. [2015]). In ecotoxicology, datasets can sometimes be quite small given ethical
and practical constraints to experimentation [Muñoz et al., 2023]. Therefore, evaluating
the behaviour of the model with lower numbers of data points would be a future research
direction.

We applied the model to pollutant concentrations, which are quantitative continuous
variables that are typically assumed to follow a Gaussian error distribution, as imple-
mented in our equations (1). The model, however, could easily be extended towards
count or ratio variables (as encountered in ecology and ecotoxicology, for instance, as
numbers of offspring or proportions of survivors), by adapting to other error distributions
(e.g., Poisson or Binomial distributions). The Bayesian implementation of the EIV model
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is well suited to such changes, as it explicitly formulates the stochastic part of the model,
which might be less visible in implementations under a frequentist framework.

4.2 Application to censored data

The Bayesian framework in which we developed the error-in-variables model lends itself
well for the consideration of censored data as the likelihood in Bayes theorem can be split
in independent likelihoods for censored and uncensored data [Qi et al., 2022]. We observed
good performance for model M5 when applied to a dataset with the lower 20% of data
in either one or both of the variables censored, with parameter estimates overlapping
those for the same model calibrated to the uncensored dataset (fig. 6). This offers
interesting opportunities for ecology and ecotoxicology where censored data are common.
Particularly, it allows for the full inclusion of the information contained in the dataset
into the model, rather than omitting censored data or substituting them with an arbitrary
value thereby introducing bias and loss of information to the model results [Helsel, 2005,
Hawkins andWeckwerth, 2016]. Moreover, the Bayesian implementation allows for explicit
quantification of parameter uncertainties during inference, where censored EIV models
thus far have relied on frequentist approaches where parameter confidence intervals were
obtained as a secondary step after inference [Wang, 1998, Hawkins and Weckwerth, 2016].
Further research could consider the influence of right and interval censored data in addition
to the left censored implementation presented here, and evaluate the influence of the
amount of data and proportion of censored values within datasets on the stability and
performance of the model fitting outputs.

4.3 Ecotoxicological interpretation

Our research focused on the development and testing of the Bayesian EIV model, with a
detailed ecotoxicological analysis beyond the current scope (see e.g., Muñoz et al. [2024]
for an investigation of data regarding maternal transfer of organic pollutants in reptiles).
Nevertheless, we briefly discuss the parameterization of M5. Specifically, the intercept
close to 0 and the slope close to 1 suggest that, overall, pollutant concentrations (on a
lipid normalised basis) are comparable in offspring (whole egg) to that in mothers (liver).
This implies, firstly, that maternal transfer of organic pollutants might pose a non-trivial
exposure route for developing embryos of freshwater turtles such as M. terrapin and
C. serpentina to the PCB, OCP and PBDE compounds which can affect embryo and
juvenile development as demonstrated for several reptile species [Hamlin and Guillette Jr,
2011]. Secondly, for mothers, maternal transfer presents a potentially relevant pollution
offloading route. Such offloading can decrease the concentration of pollutants in females
and contribute to explain differences in body burdens of some pollutants between males
and females [Humphries et al., 2021], although other processes also contribute to these
differences such as differences in metabolic rates, lipid storage and allocation, and habitat
usage as observed in wildlife (Binnington and Wania [2014], Lawson et al. [2020]) and
humans [Salihovic et al., 2012]. Finally, for egg predators, this might lead to a source of
dietary exposure [Warwick et al., 2013].

The fact that the estimated regression slope β was slightly larger than 1 (and the re-
lated intercept α slightly below 0), indicates that maternal transfer of organic pollutants
is elevated at higher maternal concentrations. This result could hint at some underlying
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biological mechanism which, for instance, limits maternal transfer at lower concentrations,
or promotes higher transfers at elevated concentrations; increases (or decreases) elimina-
tion via other means in the mother (or egg) at elevated concentrations; or a combination
of both. Alternatively, the difference in slope could be a result of difficulties in measur-
ing lower concentrations compared to higher ones, although the good performance of the
model against an external, independent dataset collected by different authors would make
such a methodological reason less likely. At this moment, we can only hypothesise about
the potential reasons. Nevertheless, further interpretation and exploration of the model’s
ecotoxicological outputs is needed. This includes testing the relevance and applicability of
the model to other reptile species and other organic pollutants. Such further ecotoxicolog-
ical work, using, among others, our implementation of Bayesian EIV, is an urgent research
topic given the relatively long lifespan of many reptile species (and associated long-term
accumulation and potential maternal transfer of pollutants); the limited knowledge on
maternal transfer in reptiles; and the overall lag in ecotoxicology in this group compared
to other vertebrates [EFSA PPR panel et al., 2018].
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7 Supplementary information

S1. JAGS models and data

Model M5 for datasets without censored observations

Visualisation of censoring of the dataset
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Figure 7: Plots of censored datasets, from left to right: censoring in Y, censoring in X,
and censoring in both variables
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Model M5 for datasets including censored observations in Y
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Model M5 for datasets including censored observations in X and Y

Figure 8: JAGS code for the case of censoring in both variables
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S2. Model setup

MCMC setup in Table 2 and 3.

M6 M5 M4
burn in 60 / 180 5 / 100 2 / 100

Nr. iterations 67428/ 202290 7492 / 22470 7492 / 22470
Thinning 11/10 2 / 10 2 / 10

Table 2: MCMC setup as suggested by Raftery Lewis Diagnostic / effectively used

M5-censored Y M5-censored X M5-censored X and Y
burn in 7 / 100 4 / 100 10/100

Nr. iterations 7492 / 22470 7492 / 22470 14984 / 44940
Thinning 2 / 10 2 /10 4/10

Table 3: MCMC setup as suggested by Raftery Lewis Diagnostic / effectively used

S3. Model convergence

Rhat (Gelman-Rubin diagnostic)

CV1 CV2 CV3
M6 a 1.019 1.081 1.003

b 1.02 1.082 1.003
µx 1.001 1.001 1.001
σ 1.025 1.072 1.004
σ2
x 1.01 1.043 1.002

σ2
y 1.017 1.069 1.002

M5 a 1.001 1.001 1.003
b 1.001 1.001 1.002
µx 1.001 1.001 1.001
σ2 1.001 1.001 1.002
σ2
x 1.001 1.002 1.001

M4 a 1.001 1.001 1.001
µx 1.001 1.001 1.001
σ2 1.001 1.001 1.001
σ2
x 1.001 1.001 1.001

Y censoring X censoring Y and X censoring

M5 cens a 1.005 1.004 1.004
b 1.006 1.003 1.004
µx 1.001 1.001 1.000
σ 1.001 1.001 1.000
σ2
x 1.001 1.000 1.000

Table 4: Rhat values for the different model versions
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Effective sample size table

Model M6 Model M5 Model M4 M5 cens
mean sd mean sd mean sd Y X Y and X

α 93.4 22.1 α 2765.1 56.7 α 6711.0 0.0 379.8 1471.1 497.5
β 89.0 18.3 β 2735.4 57.5 372.4 1604.2 463.9
σ2
y 698.9 33.9 σ2 5612.9 727.2 σ2 6556.6 267.4 3968.8 3472.1 6592.2

σ2
u 490.9 35.2

µx 27515.0 4150.9 µx 6407.8 269.3 µx 6910.2 345.0 6711.0 5522.5 12898.9
σ2
x 238.1 62.5 σ2

x 6540.2 166.9 σ2
x 6603.5 186.2 6711.0 6260.2 4422.9

Table 5: Effective sample sizes

S4. Parameter behaviour

Parameter 2.5% 50% 97.5%
α -5.74 0.00 5.74
β -18.53 1.02 20.56

τy, τx, τu or τ 25.26 695.24 3684.00
µx -4.31 1.46 7.21

Table 6: Prior parameter distributions

Parameter Model M6 Model M4
2.5% 50% 97.5% CV 2.5% 50% 97.5% CV

α -0.52 -0.39 -0.14 1.03 -0.20 -0.16 -0.13 2.49
β 0.98 1.19 1.22 3.98

τy or τ 9.56 127.55 3224.89 0.01 17.89 22.95 27.84 2.31
τu 11.59 16.95 2694.09 0.01
µx 1.14 1.22 1.30 7.96 1.14 1.22 1.30 7.62
τx 2.11 2.74 3.47 2.01 1.99 2.39 2.85 2.76

Table 7: Posterior parameter distributions

Model M5 censored in Y Model M5 censored in X Model M5 censored in X & Y
2.5% 50% 97.5% CV 2.5% 50% 97.5% CV 2.5% 50% 97.5% CV

α -0.44 -0.37 -0.30 2.56 -0.36 -0.29 -0.22 1.95 -0.39 -0.32 -0.24 2.11
β 1.11 1.16 1.21 11.43 1.06 1.11 1.16 10.52 1.08 1.13 1.18 10.94
τ 23.80 27.19 30.77 3.94 19.05 21.82 24.61 3.92 21.84 25.18 28.55 3.75
µx 1.16 1.22 1.28 10.89 1.16 1.21 1.27 10.89 1.13 1.19 1.25 9.72
τx 2.33 2.66 3.03 3.79 2.27 2.62 3.02 3.46 1.95 2.29 2.66 3.19

Table 8: Posterior parameter distributions for censored runs
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Posterior correlation matrices

Figure 9: Parameter correlations M6
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Figure 10: Parameter correlations M4
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Figure 11: Parameter correlations M5 to censored and uncensored data
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