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ABSTRACT

Intransitive  competition  has  received  much  attention  over  the  past  decade.  Indeed,

these cyclic arrangements of species interactions have the potential to promote and sta-

bilise species coexistence. However, the importance of intransitive interactions in real-

world species-rich communities containing a mixture of hierarchic and intransitive in-

teractions remains unknown.

Here, using simulations, we explore the behaviour of intransitive loops when they inter-

act with outer competitors, as would be expected in real-world communities. Our results

show that dominant competitors often cancel the beneficial effects of intransitive loops

of inferior competitors. These results call for caution when inferring beneficial effects of

intransitivity on species coexistence. Although intransitive loops are a frequent motif in

competition networks, their positive effects on species coexistence may be less import-

ant than previously thought. The specific properties of a sub-network - such as stabilisa-

tion by intransitive loops - should thus not be interpreted outside the context of the

global network.
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INTRODUCTION

Understanding the mechanisms by which multiple species interact and coexist is one of

the central quests of ecologists. In recent decades, we have moved from studying pairs

of species to studying species-rich communities with complex direct and indirect inter-

actions (Godoy et al., 2018; Levine et al., 2017; Losapio et al., 2021). In this context, one

specific type of indirect interaction has (re)gained much attention: intransitive competi-

tion (Gilpin, 1975; May and Leonard, 1975; Soliveres and Allan, 2018).

Intransitive competition, sometimes also called cyclic competition, emerges when there

is no strict hierarchy between competitors and when the competitive interactions of

species form a loop, as in the rock-paper-scissors game (rock beats scissors, which beat

paper, which beats rock). The mechanisms underlying intransitive competition and its

potential consequences for species coexistence have been explored in theoretical mod-

els (Fig. 1; Alcántara et al., 2017; Allesina and Levine, 2011; Gallien et al., 2018; Vander-

meer, 2011). It has notably been shown that intransitivity can stabilise coexistence in

loops containing an odd number of species. In an odd-loop, each competitor directly re -

duces the abundance of the next species in the loop, which indirectly regulates its own

abundance at the end of each cycle, creating a mechanism of negative frequency depend-

ence. Conversely, in even-loops cyclic interactions will destabilise coexistence (Allesina

and  Levine,  2011;  Vandermeer,  2011).  In  systems  that  contain  multiple  intransitive

loops nested within each other, their overall effects on coexistence can be highly vari-

able and hard to predict (Gallien et al., 2017). In the end, most of what we know about

the effects of intransitive competition comes from the study of single loops, independ -

ently of their interactions with the rest of the community (but see Vandermeer, 2011;

Muyinda et al. 2020).
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Species-rich real-world communities potentially contain a mixture of both transitive and

intransitive competition, yet little is known about the dynamics of systems with this

type of mixed architecture (Muyinda et al., 2020). It has been proposed that since spe-

cies-rich systems are likely to harbour a large number of interaction loops, these loops

must have a general stabilisation effect for the whole community richness and persist-

ence; and that the more loops there are in the system, the more stable it  should be

(Soliveres et al., 2015; Wootton, 2001; but see Godoy et al., 2017). However, these hypo-

theses and the stability of coexistence within those systems remain to be tested.

A necessary first step to improve our understanding of mixed systems is to test whether

species outside the intransitive loops can modify the intransitive stabilisation effects. In

fact, a species outside of an intransitive loop (“outer competitor” in the following) that

imposes competition on a species inside the loop may alter the stabilising effect of the

loop by dampening the oscillations in species abundances over time and thus reducing

the negative frequency dependence mechanism. But does the competition imposed by

the outer species have to be strong to affect the intransitive dynamics, or can a mild in-

teraction also interfere? What happens when not just one species in the intransitive loop

is affected but several species, do the outer competitors have additive effects or do they

counteract each other? And does the loop length affect the way an intransitive loop re-

sponds to outer competitors?

Here, we propose to test the influence of outer (dominant) competitors on the stabil-

ising effects of (inferior) intransitive loops. Specifically, we investigate whether and how

intransitive stabilisation is affected by: the strength of species competition (inside and

outside of the loop), the number of species in the loop directly impacted by outer com-

petitors, and the length of intransitive loops.
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Figure 1. What we know and what we don’t know about intransitive loop effects on coexistence.

The expression “stronger loops” here refers to loops in which the fitness difference between spe -

cies is large (i.e., greater asymmetry in competition relationships). Arrows point to the weaker

competitors, and their thickness represents the fitness difference between species.
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SIMULATION MODEL, SCENARIOS & STABILITY METRIC

We decomposed and tested the influence of external competitors on the stabilisation

provided by intransitive competition loops (i.e., in odd-loops) according to the following

questions: (1) How strong should an outer competitor be to influence an intransitive

loop? (2) What happens when multiple competitors influence the loop? (3) Are longer

loops more resistant to outer competitors than shorter ones? (Fig. 1) To answer these

questions,  we (i)  simulated the  dynamics  of  species  abundances  (ii)  under  different

scenarios of “outer” competition on intransitive loops, and (iii) evaluated the stability

provided by intransitivity in the resulting communities.

(i) The simulation model:

We simulated temporal abundance dynamics for given sets of competing species based

on Lotka-Volterra (LV) equations. In a LV competition model, the growth rate of species

i can be expressed as: 
d N i
dt

=λiN i(1−α ii N i−Σ j≠ iα ijN j) where λ i is the intrinsic growth

rate of species i, Ni is the abundance of species i, Nj are the abundances of all other spe-

cies j (with j ≠ i), α ii is the intraspecific competition coefficient, and α ij are the interspe-

cific competition coefficients representing the per capita effect of species j on species i.

Modern coexistence theory shows that the coexistence of pairs of species is determined

by how much resource need they have in common: their  niche overlap (measured as

NO=√ α ijα jiα iiα jj
 ; Chesson 2012), relative to whether one is better at acquiring these re-

sources  than  the  other:  their  relative  fitness  difference (measured  as  FD=√ α jjα jiα iiα ij
 ;

Chesson, 2012). Given this conceptual framework, increasing the competition effect of

6

95

100

105

110

https://www.zotero.org/google-docs/?QhfQXZ


species i on the population of species j (α ji) directly translates into an increase in the rel-

ative fitness difference of species i over species j (i>j, denoting that i has a greater com-

petitive effect on j than j has on i), but it also increases their level of niche overlap (i.e.

they have to share more resources, see formulas above). Thus, to explore the effects of

increasingly  strong  competitive  interactions  without  confounding  effects  linked  to

changes in resource needs, it is necessary to keep the level of niche overlap constant

while varying species fitness differences (as in Gallien et al. 2017; see more details in

Supplementary Materials).

For our simulation experiments, interaction coefficients were set to allow both intransit-

ive interactions (to  form the intransitive loops),  and transitive interactions between

loop-species and species outside the loop (see Supp. Mat. and section ii for more detail).

For simplicity, in the following we identify species by capital letters (from A to I for spe -

cies within the loop, and from X to Z for species from outside the loop).

(ii) The competition network scenarios:

We parameterized three sets of model scenarios to answer our research questions (see

Supp. Mat. for parameter values).

Scenario 1 - How strong should an outer competitor be to influence an intransitive loop?

In scenario 1, we focussed on the response of a 3-species intransitive loop (A>B>C>A) to

external competition by a single species which impacts only one species in the loop (X

with X>A). Two main features can influence the outcome of this interaction: the compet-

ition between species of the loop (loops with stronger fitness differences are known to

be more stabilising; Fig. 1), and the competition between the outer competitor and the

species of the loop. In our model, under a given niche overlap between species (and
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equal λ i across species), the competitive superiority of one species over another is de-

termined by their fitness differences (in other words, the level of competition asym-

metry).  We  thus  varied  independently  the  fitness  differences  within  the  loop,  and

between the outer competitor and the species of the loop.

We simulated the abundance dynamics of a 3-species loop community until equilibrium,

then added the outer competitor and followed all abundance dynamics until the system

re-equilibrated. We repeated these simulations along a gradient of increasing fitness dif -

ference within the loop. To ensure comparability across simulations, we set all pairwise

niche overlaps constant (set to NO=0.5), and varied only the average fitness difference

between species. Fitness differences were chosen to  range from a minimum of 1 (all

pairwise interactions in the loop are symmetric) to a maximum of 3 (strong asymmetry

of  competition),  the  value  of  2  being  the  threshold  separating  pairwise  coexistence

(FD<2) from pairwise competitive exclusion (FD>2; see Letten et al.  2016 for an in-

depths description of the relationship between NO, FD and coexistence). Similarly, the

fitness difference between the outer competitor and one species in the loop varied so

that it ranged from 1 (symmetric competition, α AX=αXA) to 3 (strong competitive exclu-

sion of the loop species,  α AX>αXA). These values for niche overlap and relative fitness

differences were chosen to cover the wide range of values found in empirical studies

(e.g., see for example Bimler et al., 2018; Godoy and Levine, 2014; Kraft et al., 2015; Li et

al., 2019).

Scenario 2 - What happens when multiple competitors influence intransitive loops?

In scenario 2, we investigated the response of a 3-species intransitive loop to competi-

tion from one, two, or three outer competitor(s), each impacting a different species in

the loop (which is equivalent to one outer competitor impacting 1, 2, or 3 species of the

loop, see Fig. S1). Similarly to Scenario 1, we varied independently the fitness difference
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within the loop, and between the outer competitor(s) and the species of the loop. For

simplicity, the outer competitors did not interact with each other.

Scenario 3 - Are longer loops more resistant to outer competitors than shorter loops?

In scenario 3, we examined the influence of one outer competitor on intransitive loops

of increasing lengths. As explained above, we focused here only on stabilising loops (i.e.,

odd-loops), and thus chose loops of 3, 5, 7, and 9 species (loops with more than 9 species

yielding qualitatively similar results to 9-species loops; results not shown). As in Scen-

arios 1, we varied independently the fitness difference within the loop, and between the

outer competitor and the species of the loop. For communities where the intransitive

loops contain more than 3 species, species not next to each other in the loop were set to

compete  symmetrically,  following  Gallien  et  al.  (2017).  Simulations  of  communities

without this symmetric competition can be found in Supp. Mat. (Fig. S2).

(iii) The intransitive stability measure:

We analysed the simulations by quantifying how coexistence of species within the in-

transitive loops is promoted or reduced by the intransitive nature of the interaction

based on ΔRi, an index tailored for this purpose (Gallien et al., 2017). ΔRi measures the

average difference between the invasion growth rate of a focal species i (i.e., the growth

rate of  i when it is at very low abundance) when all other species are present and at

equilibrium abundances, and the invasion growth rate of the same focal species when all

but one species of the loop and all competitors are present and equilibrated (i.e., the

loop is broken). In the first case (outer competitor(s) + full loop), the focal species can

benefit (or be harmed) by the intransitivity, while in the second (outer competitor(s) +

broken loop), intransitivity is broken by the removal of a species in the loop. ΔRi is thus

the difference between these growth rates averaged over the removal of each individual
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loop species, and provides a measure of the importance of the intransitivity for a given

focal species. Then averaging over the ΔRi of each loop species, ΔRi shows the average

change in invasion growth rate following the extinction of any species of the loop. ΔRi

>0 indicates that intransitivity contributes to coexistence: removing a loop species from

the community actually harms the rare species (even if they compete for resources).

Conversely, ΔRi<0 indicates that any positive effect of intransitivity is smaller than the

effects of niche overlap: removing a species helps the rare species. Note that the index is

a measure of stability provided by intransitive loops, and should not be computed when

outer competitor(s) remove species from the intransitive loop, as intransitivity is then

broken and the index loses its meaning (we highlight these cases with grey areas on the

figures).

RESULTS

Even a single weak outer competitor can break an intransitive loop

Our simulations repeat the earlier finding that, in the absence of an outer competitor, in-

transitive loops have beneficial effects on the stability of species coexistence, even under

moderate competition strength (Fig. 2b). However, this stabilising effect is rapidly lost

once an outer competitor is added to the system (Fig. 2d). To remain beneficial for spe -

cies coexistence, fitness differences in the loop must be strong (i.e., pairwise coexistence

between the species in the loop is nearly impossible) and fitness difference of the outer

competitor must be small (i.e.,  pairwise coexistence of X and A is possible).  In other

words, in this system, already moderate fitness differences between the competitor and

the loop species A lead to the exclusion of species A (even when X and A alone would co -

exist), and thus to the collapse of the loop, unless the stabilising effect of the loop is large

(i.e.,  fitness differences are so large that they would lead to competitive exclusion in
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pairwise interactions).

Figure 2. Scenario 1 - The influence of one outer competitor on intransitive loop dynamics. In (a-

b) the community contains only an intransitive loop composed of three species (A>B>C>A), and

in (c-d) an outer competitor (X) is added to the community and it affects only species A (X>A).

Panels  (a)  and (c)  indicate whether coexistence is  possible under pairwise competition only,

along a gradient of fitness differences (without (a) or with the outer competitor (c)). Weak fitness

difference (FD) allows coexistence of species pairs (FD<2, dashed arrows), whereas strong fit-

ness difference prevents coexistence of species pairs (FD>2, bold arrows), making coexistence at

the community level possible only through the intransitive loop. Panels (b) and (d) show results

of the simulations. The stabilising effect provided by the intransitive loop for its constituent spe-
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cies is measured with the ΔRi index. Grey areas indicate where at least one species of the loop

becomes extinct, and thus where the intransitive stability index cannot be defined. Stability gen-

erally increases with fitness differences within the loop (b), but with an outer competitor in the

system the final composition of the community depends on fitness differences among all species

(d). The small networks illustrate species that coexist at equilibrium (black dots: surviving spe -

cies, white dots: extinct species), and the direction of pairwise interactions is indicated by arrows

pointing toward the weaker competitors.

Multiple outer competitors have non-additive negative effects on intransitive loops

Introducing outer competitors into the system always reduces the stabilising effects of

intransitive loops (Fig. 3), compared to a system without any outer competitors (Fig.

2a). However, increasing the number of outer competitors has non-additive effects on

community persistence and stability (Fig. 3). Adding a second competitor has a clear

negative effect on the stability of the loop species, because it reduces both the conditions

for coexistence of all species in the community and the strength of the stabilising effect

of  intransitivity.  There,  only loops with very strong fitness differences together with

very weak outer competitors can coexist. The addition of a third competitor has various

effects depending on the strength of the competition between the different species. (i) If

the outer competitors are strong (FD>2), all species of the loop die. (ii) If the outer com-

petitors are weak (FD<2), the persistence and stability of the loop species decreases less

than when a single competitor is present because, by regulating the abundances of all

loop species, they also reduce their reciprocal negative influences. However, (iii) even

under the relatively favourable effect of three weak competitors,  for loops with very

strong fitness differences (FD>2.6) the whole system alternates between different stable

states (heteroclinic cycles), leading some species to near extinction for longer periods

over time, which would make them particularly vulnerable to stochastic extinctions in
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the real world. In the end, the persistence of the loop species in the community can

drastically and non-intuitively change depending on the number of outer competitors

and the strength of pairwise fitness differences: 1 competitor (X>A) can lead to the per -

sistence of either {A, B, C}, {B, C}, {B}, or {A, B}; 2 competitors (X>A, Y>B) can lead to {A,

B, C}, {B, C}, or {C}, 3 competitors can lead to {A, B, C}, {ø}, or {heteroclinic A, B, C}. Note

that a further increase of the number of outer competitors always leads to the extinction

of at least one species of the intransitive loop (see Fig. S3).

Figure 3: Scenario 2 - The influence of the number of outer competitors on intransitive loop dy-

namics. The intransitive loop is composed of three species (A>B>C>A), and the presence of outer

competitors (X, Y, Z) varies between: (a) one outer competitor (X>A), (b) two competitors (X>A,

Y>B), and (c) three competitors (X>A, Y>B, Z>C). Similarly to Fig. 2d, we varied independently the

strength of fitness differences within the loop, and between the outer competitor(s) and the loop

species. Pairwise fitness differences (FD) ranged from 1 (perfect symmetry of competition, i.e.,

α ij=α ji) to 3 (strong asymmetry, i.e.,  α ij≠α ji), with FD=2 being the threshold that separates

pairwise coexistence (FD<2) from competitive exclusion (FD>2). Each panel shows the results of

the simulations: either all species coexist and we represent the stabilisation level provided by the

intransitive loop for its constituent species (measured with the ΔRi index); or at least one spe-

cies of the loop becomes extinct, and thus ΔRi cannot be defined (grey area). The striped area in

(c) highlights conditions when the system oscillates between alternative stable states with spe-

cies nearing extinction for longer periods over time (heteroclinic cycles). The small networks il-
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lustrate which species coexist at equilibrium (black dots: surviving species, white dots: extinct

species), and the direction of pairwise interactions is indicated by arrows pointing toward the

weaker competitors.

Longer loops are more vulnerable to outer competitors than shorter loops

Long odd loops have been shown to provide a more stabilising effect on species coexist-

ence than short loops  (Gallien et al.,  2017).  However,  our simulations show that the

longer the loop, the more detrimental the effect of the outer competitor on the stability

of the loop (Fig. 4). Already, in the 5-species loops, the persistence of all species is pos -

sible only under narrow conditions, with both a very “weak” outer competitor and very

“strong” fitness differences in the loop (narrow blue area). In the 7-species loop, the con-

ditions for coexistence of all species are further reduced and rely on oscillations of spe-

cies abundances that create increasingly longer periods during which at least one spe-

cies nears extinction and is thus especially prone to demographic stochasticity and ex-

tinction (heteroclinic cycles). When species loops reach 9-species, the simple presence

of a unique competitor prevents the loop from persisting (regardless of its fitness differ -

ence). As intransitive loops get longer, each species has access to fewer resources, mak-

ing intransitive stabilisation more crucial for coexistence. When only intransitive inter-

actions are at play, the strong fitness differences between neighbouring species in the

loop compensate for limited resources (e.g., with fluctuating species abundances over

time). However, when an external competitor enters the system and fixes the abundance

of a species, it disrupts the regulation of negative frequency dependence (e.g., no rota-

tion of abundances over time). To sum it up, longer intransitive loops mean fewer re-

sources per species, making intransitive loops even more vital for coexistence. Locking

species at rare or zero abundances has more harmful effects on longer loops compared

to shorter ones.
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It is important to note that a single network configuration can lead to many different

community richness and compositions depending on the interaction strengths. For in-

stance, depending on the fitness difference between all species, an outer competitor act-

ing on a 5-species loop, can result in 6 outcomes (Fig. 4b): (1) all species coexist stably

(light blue area), (2) all species coexist but with oscillating abundances (darker blue area

of heteroclinic cycles), (3) species A dies because the stability provided by the intransit-

ive loop is too weak to counteract the effect of the outer competitor (left hand side), (4)

species E dies because the outer competitor has a “mild” effect on A that propagates until

E via strong within-loop interactions, (5) species C and E die because the outer compet-

itor (X) has a “moderate” effect on A, which propagates to C via strong within-loop inter -

actions, which then releases competition on D, which can then kill E, and (6) species A, C,

E die because the additive effects of X and E on species A kill A, which breaks the strong

intransitive loop and thus leads to the extinction of C and E.
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Figure 4. Scenario 3 - The influence of one outer competitor on intransitive loops of increasing

length. The intransitive loops are composed of 3, 5, 7, or 9 species, and a single outer competitor

(X) influences only one species in the loop (X>A). Similarly to Fig. 2-3, we varied independently

the strength of fitness differences within the loop, and between the outer competitor and the

loop species. Pairwise fitness differences (FD) ranged from 1 (perfect symmetry of competition,

i.e., α ij=α ji) to 3 (strong asymmetry, i.e., α ij≠α ji), with FD=2 being the threshold that separates

pairwise coexistence (FD<2) from competitive exclusion (FD>2). Each panel shows the results of

the simulations: either all species coexist and we represent the stabilisation level provided by the

intransitive loop for its constituent species (measured with the ΔRi index); or at least one spe-
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cies of the loop becomes extinct, and thus ΔRi cannot be defined (grey area, the identity of the

dead species is indicated with bold letters). The striped area in (b-c) highlights conditions when

the system oscillates between alternative stable states with species nearing extinction for longer

periods over time (heteroclinic cycles). The small networks illustrate which species coexist at

equilibrium (black dots: surviving species, white dots: extinct species), and the direction of pair-

wise interactions is indicated by arrows pointing toward the weaker competitors.

DISCUSSION

Past works have introduced intransitive competition as a potentially powerful mechan-

ism of coexistence, especially for large communities. However, we know little about how

competitive interactions with species from outside intransitive loops can affect this co-

existence mechanism (but see  Muyinda et al., 2020). Yet such weaving of intransitive

loops into larger biotic networks should be the norm rather than the exception in real

communities.

Here, using theoretical simulations, we show that intransitive loops are very sensitive to

external competition. Dominant competitors have negative impacts on the dynamics of

inferior intransitive loops in all simulations tested, which should reflect the response of

natural systems containing similar motifs. A single outer competitor acting on a single

species in the loop will result in the extinction of at least one species in the loop, thus

breaking the loop, unless the outer competitor is weak (i.e., small FD) and the loop is

short and fitness differences within the loop are strong. Increasing the number of outer

competitors further reduces species coexistence, unless all species in the loop are simil-

arly affected. Increasing the length of the loops leads to increasing destabilisation by

outer competitors. Importantly, a single network configuration can lead to many differ-

ent  community  richnesses and compositions,  depending on all  species  fitness  differ-

ences.  To  assess  whether  intransitive  loops  stabilise  species  coexistence,  one  must
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therefore not only identify the nature of intransitive loops, but also quantify the com-

plete network of interactions between species in the community.

In this work we have focused on intransitive loops (i) only located at the lowest posi-

tions in networks containing (ii) only competitive interactions. Inside complex, species-

rich networks of the real world, intransitive loops may also be observed at intermediate

positions (i.e., impacted by dominants and impacting inferior species), or even at the top

position (i.e., just impacting other species). In fact, intransitive loops at the top-position

have been shown to have potential stabilising effects on lower species (Vandermeer,

2011; Vandermeer and Perfecto, 2023; but see Alcántara et al., 2017). But it remains to

be shown whether  many competitive  networks  are  really  dominated by intransitive

loops. Additionally, here we focused on the part of the network that contains only com-

petitive interactions, but other types of interactions can impose a comparable abund-

ance decline on intransitive loop species (e.g., predation or parasitism). Thus a top-posi -

tion inside a competition network may not be a top-position inside the entire multi-

trophic network. Although this remains to be formally tested, in a rich multi-trophic sys -

tem, any species that would have negative effects on the abundance of species in an in -

transitive loop - such as predators, pathogenes, or parasites - may have similar detri-

mental effects as our dominant competitors on the dynamics of that intransitive loop.

Practically, our results also show that one cannot infer the effects of intransitive loops

on community composition and stability from the architecture of the network alone,

while neglecting the strength of fitness differences in both intransitive and transitive in-

teractions (e.g., four possible compositions of the community from Scenario 1; Fig. 2c).

Consequently, estimating intransitive effects based on either a mean level of intransitiv-

ity at the community scale or the number of loops in the community  (e.g., Feng et al.,

2020; Laird and Schamp, 2018; Ulrich et al., 2014), but without integrating information
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about dominant competitors (and potentially also other types of  biotic  interactions),

may lead to overestimating the contribution of intransitive loops to species coexistence

in a system. In the end, all these results call into question the importance of this cyclic

network motif for the coexistence and persistence of species in rich communities of the

real world.

SYNTHESIS & OUTLOOK

Combining the results of other studies with  our own, we conclude that intransitivity

does not always contribute to stability: (i) intransitivity  stabilises coexistence  only in

odd-numbered loops (Levine & Allesina 2011), (ii) intransitivity effects are highly vari-

able when multiple loops are intertwined (Gallien et al.2017), and (iii) intransitive loops

are highly vulnerable to competition from outer competitors (the present study).  It is

thus not sufficient to identify the number or proportion of intransitive loops in the sys-

tem, but we need to know their length, strength, and position in the overall network of

biotic interactions, to be able to infer their impacts on species coexistence and biod-

iversity maintenance.

Together, these findings call for greater caution when inferring the beneficial (or negat-

ive) effects of intransitivity on species coexistence in real world communities with a

multitude of biotic interactions. Most likely, intransitive loops are a very frequent motif

in competition networks, but their positive or negative effects remain extremely difficult

to quantify as long as the different types of biotic interactions are studied in isolation. It

is probable that more holistic studies of biotic interaction reveal that intransitivity is not

as important as previously thought for species coexistence in complex real world set-

tings (see also Losapio et al., 2021).

Finally, our findings also raise the broader question of how the outcome of species inter-

actions can change (and sometimes reverted) when neglecting parts of the full network
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of biotic interactions (e.g., upper competitors, and eventually other types of interactions

such as predation or parasitism). Exciting avenues are opening up for more integrative

research on biotic interactions at the scale of the multi-trophic network, and for finding

ways to translate and test these theoretical results into natural or experimental systems.
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SUPPLEMENTARY MATERIAL

More details on the simulation model

We used Lotka-Volterra (LV) model simulations to answer our three research

questions: (1) How strong should an outer competitor be to influence an intran-

sitive loop? (2) What happens when multiple competitors influence the loop? (3)

Are longer loops more resistant to outer competitors than shorter ones? 

For each question, we decided to focus on network structures (i.e. the arrange-

ment of transitive and intransitive interactions) that are the simplest in terms of

the number of species and interaction links. These three questions and associ-

ated scenarios explore minimalist network architectures as follows (also illus-

trated in Fig. 1 of the Main Text):

● Scenario 1 evaluates a 3-species loop + 1 outer competitor

● Scenario 2 evaluates a 3-species loop + 1-2-3 outer competitor(s)

● Scenario 3 evaluates 3-5-7-9 species loops + 1 outer competitor 

We opted for this simplicity for two main reasons. Firstly, species-rich communi-

ties often contain several loops of different lengths and degrees of interlocking.

By exploring the behavior of basic motifs independently of each other, we can

better disentangle the effects of competitive strength,  number of competitors,

and loop length (i.e., our research questions). Secondly, if the stabilization pro-

vided by intransitivity becomes negligible in this  minimalist  framework,  then

more complex communities (e.g., with more external competitors) are unlikely to

reverse these results.

Within each scenario, the influence of dominant competitors on intransitive loop

stability was evaluated across a large range of competition matrices, varying in

their strengths of fitness differences between species (121 different matrices per

network  architecture;  726  matrices  over  all  scenarios).  The  matrices  ranged

from symmetric  matrices  (all  interspecific  competition  coefficients  are  equal:

α ij=α ji) to asymmetric matrices with progressively increasing competitive domi-

nance between species  (i.e.,  increasing the difference in  pairwise competitive

abilities: α ij>α ji). 
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For scenario 1, for instance, the network architecture is composed of one intran-

sitive loop of 3 species (A>B>C>A) and one outer competitor X acting on species

A (X>A).  We used the  LV model  (see  equation  in  the  main  text)  to  simulate

species abundance dynamics across 11 levels of competitive symmetry within

the intransitive loop and 11 levels of competitive symmetry between the outer

competitor and the loop species (121 different competition matrices). For sim-

plicity, in all simulations the intrinsic growth rate of all species is identical and

set to 1, and the initial abundance are drawn at random in a normal distribution

of mean 170 and standard deviation of 20 (for our specific sets of network archi-

tecture, preliminary analyses revealed that the choice of starting number of indi-

viduals does not influence the equilibrium abundances, only the speed at which

it is reached). The only parameters that varied across (not during) simulations

are the intra- and interspecific competition coefficients (see below). The simula-

tions are run for 1,000,000 time steps to allow community abundances to reach

equilibrium, which was also confirmed visually for each simulation. 

Conceptually, the question that we want to explore is: “For each species pair with

a given resource niche, i.e., a given niche overlap, does increasing the competitive

dominance  of  one  species  over  the  other  (i.e.,  their  fitness  difference)  also

changes the stability of their coexistence?” This means that we want to keep the

niche overlap between species constant across simulations, and only change the

competitive dominance between species. In Lotka-Volterra models, niche over-

lap (NO) between species A and B can be measured as  NO=√ α ijα jiα iiα jj
 (Chesson

2012). And prior work has shown that pairwise competitive dominance is deter-

mined by species fitness difference, where the fitness difference (FD) of species

A over species B can be measured as FD=√ α jjα jiα iiα ij
 (Chesson 2012). The formula-

tions of niche overlap (NO) and fitness differences (FD) show that the two in-

dices are not independent from each other: modifying interspecific competition

coefficients (e.g., moving from αBA=α AB to αBA>αAB) not only impacts species fit-

ness differences, but also their niche overlap. To investigate a gradient of interac-
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tions with a fixed niche overlap and increasing competitive dominance (i.e., com-

petitive asymmetry),  we used the same parameter  ranges as  in  Gallien et  al.

(2017), where niche overlap is fixed to 0.5 and fitness differences range from 1

(competition between species is symmetric, and pairs of species can coexist) to 3

(competition is asymmetric and pairs of species cannot coexist). Given that  the

coexistence of species i and j requires αij< αjj and αji< αii, it has been shown that

these conditions can be translated into the following inequality: NO<FD<1/NO

(see the nice explanation in Letten et al. 2016). Given our choice of NO=0.5, this

means that pairwise coexistence is possible for 0.5<FD<2. Since we also do not

want to reverse the dominance between i and j (i.e. αij≤αji), then FD has a lower

bound of 1. This choice of parameters is rather realistic as it encompasses values

of niche overlaps and fitness differences that have been found in nature (e.g.,

Godoy and Levine 2014; Kraft et al. 2015; Bimler et al. 2018; Li et al. 2019).

In practice, first we used the approach of Gallien et al. (2017) to determine the

competition coefficients for the species within the intransitive loop (given our

choice of niche overlap NO=0.5 and fitness differences ranging between 1 and 3,

Gallien et al. 2017, Eq. 4). In this set up, the fitness differences (FD) between all

pairs of species change to the same value simultaneously (homogeneous fitness

differences within the loop), as it has been shown that heterogeneous FD within

the loop only decreases the stabilizing effects of intransitive interactions (Gallien

et al. 2017). Second, we used these competition coefficients of the species in the

intransitive loop to determine the coefficients for the outer competitor(s), e.g.,

α XX , αAX , αXA. The competition coefficient of the outer competitor X on the popu-

lation of species A is set as α AX=0.001, to be coherent with the competition coef-

ficients between the dominant and inferior loop species (as αBA=αCB=αAC=0.001

; see Gallien et al. 2017 Eq. 4). Then, given the constraints on NO, FD, and α AX, the

coefficient of intraspecific competition of the outer competitor (α XX) and its in-

terspecific one with species A (α AX) can be expressed as follows: α XX=
αAX

FD× NO

and α XA=
α AA× NO

FD
. This way we can estimate all coefficients along our FD gradi-

ent. 
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All matrices of competition coefficients and R scripts used for the simulations

can be found at https://doi.org/10.5281/zenodo.8340923.

It can be noted that the fitness differences between species in the intransitive

loop have the same value, interactions are thus “homogeneous” between species.

Heterogeneous  interactions  have  already  been explored in  the  literature  and

were shown to generally  decrease the stabilizing effects  of  intransitivity (see

supplementary materials in Gallien et al. 2017). We thus did not explore further

the influence of outer competitors on heterogeneous loops.

Additionally, in the main text simulations of long intransitive loops, we have as-

sumed that all species of the loop that are not next to each other interact sym-

metrically (following Gallien et al. 2017). To test the influence of this hypothesis

on our results we simulated the same scenarios but with no symmetric interac-

tion between species that are not next to each other in the intransitive loops. The

results are qualitatively similar (Figure S2).

All simulations were run on R v.4.1.2 (R Core Team 2021) with the package deS-

olve (Soetaert et al. 2010), and figures are drawn with the help of the packages

ggplot2 (Wickham 2009) and cowplot (Wilke 2020).
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Supplementary Figures

Figure S1. The influence of one outer competitor on multiple species of the intransitive loop

and their dynamics (Alternative to Scenario 2). The intransitive loop is composed of three species

(A>B>C>A), and the outer competitor (X) impacts either: (a) one species of the loop (X>A), (b)

two species of the loop (X>A, X>B), and (c) three species of the loop (X>A, X>B, X>C). We varied

independently the strength of fitness differences within the loop, and between the outer competi-

tor and the loop species. Pairwise fitness differences (FD) ranged from 1 (perfect symmetry of

competition, i.e.,  α ij=α ji) to 3 (strong asymmetry, i.e.,  α ij≠α ji), with FD=2 being the threshold

that  separates  pairwise  coexistence  (FD<2)  from  competitive  exclusion  (FD>2).  Each  panel

shows the results of the simulations: either all species coexist and we represent the stabilisation

level provided by the intransitive loop for its constituent species (measured with the  ΔRi in-

dex); or at least one species of the loop becomes extinct, and thus ΔRi cannot be defined (grey

area). The small networks illustrate which species coexist at equilibrium (black dots: surviving

species, white dots: extinct species), and the direction of pairwise interactions is indicated by ar-

rows pointing toward the weaker competitors.
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Figure S2. Scenario 3bis - The influence of one outer competitor on intransitive loops of in-

creasing length. The intransitive loops are composed of 3, 5, 7, or 9 species, and a single outer

competitor (X) influences only one species in the loop (X>A).  All pairs of species of the loop

that are not next to each other do not interact.  We varied independently the strength of fit-
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ness differences within the loop, and between the outer competitor and the loop species. Pair-

wise fitness differences (FD) ranged from 1 (perfect symmetry of competition, i.e., α ij=α ji) to 3

(strong asymmetry, i.e., α ij≠α ji), with FD=2 being the threshold that separates pairwise coexis-

tence (FD<2) from competitive exclusion (FD>2). Each panel shows the results of the simula -

tions: either all species coexist and we represent the stabilization level provided by the intransi -

tive loop for its constituent species (measured with the ΔRi index); or at least one species of the

loop becomes extinct, and thus ΔRi cannot be defined (gray area). The striped area in (b-c) high-

lights conditions when the system oscillates between alternative stable states with species near-

ing extinction for longer periods over time (heteroclinic cycles). The small networks illustrate

which species coexist at equilibrium (black dots: surviving species, white dots: extinct species),

and the direction of pairwise interactions is indicated by arrows pointing toward the weaker

competitors.
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Figure S3. The influence of 4, 5, and 6 outer competitors on intransitive loop dy-

namics (follow up to Scenario 2). The intransitive loop is composed of three spe-

cies (A>B>C>A), and the presence of outer competitors (X, X’, Y, Y’, Z, Z’) varies

between: (a) four outer competitor (X>A, X’>A, Y>B, Z>C), (b) five competitors

(X>A, X’>A, Y>B, Y’>B, Z>C), and (c) six competitors (X>A, X’>A, Y>B, Y’>B, Z>C,

Z’>C).  We varied independently  the strength of  fitness  differences within the

loop, and between the outer competitor and the loop species. Pairwise fitness

differences (FD) ranged from 1 (perfect symmetry of competition, i.e., α ij=α ji) to

3 (strong asymmetry, i.e., α ij≠α ji), with FD=2 being the threshold that separates

pairwise  coexistence  (FD<2)  from  competitive  exclusion  (FD>2).  Each  panel

shows the results of the simulations, here in all simulations at least one species

of the loop becomes extinct, and thus  ΔRi cannot be defined (grey area). The

small networks illustrate which species coexist at equilibrium (black dots: sur-

viving species, white dots: extinct species), and the direction of pairwise interac-

tions is indicated by arrows pointing toward the weaker competitors.
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