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Neural network model compression is very important to achieve model deployment based on the memory

and storage available in different computing systems. Generally, the continuous drive for higher accuracy

in these models increases their size and complexity, making it challenging to deploy them on resource-

constrained computing environments. This article proposes various algorithms for model compression by

exploiting weight characteristics and conducts an in-depth study of their performance. The algorithms in-

volve manipulating exponents and mantissa in the floating-point representations of weights. In addition, we

also present a retraining method that uses the proposed algorithms to further reduce the size of pre-trained

models. The results presented in this article are mainly on BFloat16 floating-point format. The proposed

weight manipulation algorithms save at least 20% of memory on state-of-the-art image classification mod-

els with very minor accuracy loss. This loss is bridged using the retraining method that saves at least 30% of

memory, with potential memory savings of up to 43%. We compare the performance of the proposed methods

against the state-of-the-art model compression techniques in terms of accuracy, memory savings, inference

time, and energy.
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1 Introduction

The demand for artificial intelligence (AI) has pushed toward bigger and complex neural net-
work models with millions or billions of parameters. Such a large number of parameters has re-
quired megabytes of memory for on-chip or off-chip storage. The usage of more and more compute
and memory resources for neural networks is not aligned with resource-accuracy tradeoff, which
is one of the fundamental concepts in computing systems design. Hence, several research works
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have focused on reducing the model size (i.e., model compression). Additionally, such memory
or storage requirements can be a major limiting factor on mobile platforms, Internet of Things
(IoT) devices, and so forth, which are generally computationally much less powerful, and where
there is an ever-increasing interest in deploying AI models. Much commercial deployment on such
devices is restricted to keyword spotting [39], audio-visual wake word detection [42], simple clas-
sification tasks, and so on because of the complexity and size of the larger models. At the same
time, large compute environments consume high energy while processing neural network models.
Hence, there is a critical need to develop model compression methods which would help address
the challenges of deployment on smaller compute environments and energy dissipation.

The size and the complexity of a model depends on its number of layers, channels, weights,
and activation functions. The higher performance demand increases the number of layers and
complexity of the model architecture. Model training is typically done on high-end computers
with powerful CPUs/GPUs, associated large on-chip and off-chip memories, and continuous
power supply. Depending on the complexity of the model and performance requirements of the
end application, training can take weeks to complete. Hence, existing model compression methods
aim to reduce the model size with minimal error by modifying these elements. Model size can be
reduced during training or post-training (i.e., by processing a trained model). Many methods focus
on post-training compression because the generated inference models is still big, as we will see
in Section 2.

It is challenging to compress a model without having any impact on accuracy. There are already
known model compression techniques, as discussed in Sections 2.1, 2.2, and 2.3, that can be used to
reduce the size of the models. These techniques can also be combined to increase memory savings.
For example, in the work of Hong et al. [16], the size of the model is reduced to less than half with
a combination of quantization and pruning.

The main contributions of this article are as follows:

— Algorithms that reduce the size of models by exploiting the characteristics of exponent and
mantissa values in floating-point weights, and a systematic study and peer-comparison of
these algorithms with respect to performance and accuracy tradeoff.

— A new Exponent Share Aware Retraining (ESART) algorithm that retrains pre-trained
models, resulting in further reduction in model size.

— Comparison with prior work demonstrating that the proposed weight manipulation algo-
rithms save at least 20% of memory on state-of-the-art image classification models with
very minor accuracy loss. This loss is bridged using the retraining method that saves at least
30% of memory, with potential memory savings of up to 43%.

We believe that the systematic study of the proposed algorithms is important to identify the
relative performance of these algorithms, which then creates a well-defined path forward for im-
plementation.

The article is organized as follows. Section 2 provides a review of the existing techniques of
model compression methods. This section discusses the prominent methods of pruning (Sec-
tion 2.1), quantization (Section 2.2), and weight sharing (Section 2.3). In Section 3, the proposed
algorithms for weight approximation are discussed. To address the accuracy loss due to the
application of these algorithms, the proposed novel ESART approach is presented thereafter.
Section 4 presents the results of the experiments conducted on different models using the pro-
posed algorithms. A peer comparison among the proposed algorithms and with state-of-the-art
methods is also presented. Section 5 concludes the proposed work with a discussion on directions
for future work.
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2 Related Work on Model Size Reduction

The precision of weights in a trained model plays a significant role in its accuracy. To achieve
higher accuracy, the model needs to use higher precision, which, in turn, requires more storage
space. Many techniques have been developed to reduce the precision of weights while minimizing
the tradeoff with model performance. One way to reduce the model size is by reducing the number
of weights, neurons, and channels, or a combination of these. Various popular techniques like
weight sharing, quantization, weight pruning, knowledge distillation, and tensor decomposition
are used to achieve this goal. These techniques can be applied during or after training to reduce the
size of inference. The mainstream techniques that reduce model size are discussed in the following
subsections.

2.1 Pruning

Weight pruning is a useful technique for reducing the size of a model, but it can also lead to some
loss in accuracy. To mitigate this, fine-tuning the model after pruning is often necessary. One
potential benefit of weight pruning is that it can speed up the training process by reducing the
number of weights [13].

Different approaches propose various criteria to prune weights, such as energy-aware pruning
[43], quantization-aware pruning [11], or performance-aware pruning [33]. It is possible to use the
same pruning criteria for all layers in a model, but this general model-level pruning can lead to
significant accuracy loss. To address this issue, Carreira-Perpinán and Idelbayev [4] demonstrate
how to perform layer-wise pruning of weights. Weight pruning can be considered an optimization
problem, where the weight that has the least impact on accuracy is pruned, resulting in minimal
error after pruning.

In some approaches, filters that extract repetitive or less significant features with little impact
on the accuracy of the model are removed. However, removing a whole filter may result in greater
loss, which is why Meng et al. [28] propose a filter skeleton that divides filters into independent
strips and forms new filters with optimal shapes. While filter pruning is more hardware-friendly,
weight pruning results in a higher compression ratio.

Channel pruning is also used to reduce the model size. Other than selecting a fixed number
of channels per layer, selective channel pruning has been demonstrated in the work of Guo et al.
[12]. This reduces the drop in accuracy. This approach first prunes the network with other existing
compression techniques. It then assesses the impact on accuracy and, in a reverse engineering
manner, finds channels that have the least impact on accuracy. During the training phase, to reduce
channels, the significance of every channel is observed and the one with the least importance is
pruned in each epoch. This type of discrimination-aware channel pruning [25] during training
saves a lot of memory bandwidth during inference.

2.2 Quantization

Neural networks often use floating-point weights, which are complex and expensive to compute
with. To save memory and reduce complexity, weights can be quantized to low-bit fixed-point
weights, resulting in a platform-independent inference [16]. The existing research work could
quantize the weights to a single bit in a binary neural network [34], and such network can even
facilitate training on the edge due to reduced memory footprint [40].

During quantization, weights are divided into fixed-sized bins, leading to a loss in accuracy
during the reconstruction of original weights. This is because the fixed-size binning does not con-
sider the significance of different weights. An adaptive integer quantization [41] method suggests
selecting the best bin boundary instead of using a fixed-interval binning approach. This method
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has shown relatively less loss in accuracy while achieving a fourfold model compression. Convo-
lutional layers have higher redundancy in weights, and therefore they are less sensitive to quan-
tization than fully connected layers. The adaptive quantization approach [6] for different layers
that have dynamic shift and scale factors to reduce the accuracy loss can quantize state-of-the-art
models like ResNet18/34/50, MobileNetV2, and EfficientNet-B0 to 4 bits.

The weight matrix has a different distribution of weights in every row. For example, in a sparse
matrix, most of the weights are zero. In such cases, the quantization with fine granularity works
best as it applies different quantization schemes for different rows of the same weight matrix [5].
One similar technique proposed in the work of Mishchenko et al. [29] does quantization in the
column-wise manner, where every column in the weight matrix has its min-max range for quan-
tization. Additionally, the outputs of every input frame are quantized individually rather than
generalizing with specific hyper-parameters.

Post-training quantization results in models using parameters in fixed-point precision, whereas
during training, floating-point precision is used. This conversion incurs an accuracy drop which
can be prevented by training in fixed-point precision [27]. During training, such quantization re-
duces a lot of memory requirements for the weights. However, more memory is needed for ac-
tivation functions. Quantization of activation also reduces the memory footprint during training
significantly [24].

2.3 Weight Sharing

During training, there can be a lot of weight values close to each other. Such weight values can
be replaced by a single value. This is often referred to as weight sharing during training. Model
training time gets reduced with this type of weight sharing. Unlike pruning where weights are
pruned, weight sharing shares them. Hence post-training, there is relatively less accuracy loss in
weight sharing. Dupuis et al. [9] show how weight sharing can lead to more than four times the
compression rate on state-of-the-art models like ResNet18 and SqueezeNet.

Weight sharing also regularizes the weights, and hence there is a low chance of overfitting
during training. Like quantization, the weights are divided into different groups and the mean
value and the spread of values are determined [38]. Depending upon the accuracy impact, these
groups are altered. A different work by Dupuis et al. [8] proposes an automatic framework that
explores the design space for sharing weights and finds the best approximate version for a given
model.

3 Proposed Methods for Model Size Reduction

The size of the neural network model increases with an increase in the number of weights. These
are generally floating-point weights. These weights are stored in memory using IEEE floating-
point formats for different precisions as shown in Figure 1. Each floating-point weight is repre-
sented as a combination of sign, exponent, and mantissa.

A floating format with l bits of exponent can have 2l values for the exponent. Models generally
have millions of floating-point weights [31], whereas l is very small. Hence, there are many repet-
itive exponents. For example, Figure 2 shows the exponent frequency distribution in the weights
of GoogleNet trained on the CIFAR10 dataset. In this case, weights are stored in the IEEE single-
precision (Float32) floating-point format where the exponent is 8 bits wide. Out of 256 possible
values, we can see from Figure 2 that less than 20 distinct exponents dominate the frequency dis-
tribution across different layers.

It is a good idea to share exponents in a layer-wise fashion as proposed in previous work [22].
This method, called exponent sharing, can save up to 10% of memory when weights are stored in
Float32 precision, without affecting the accuracy of the model.
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Fig. 1. IEEE floating-point number representations for different precisions. BFloat16 floating-point format
is proposed by Google. It differs from IEEE Float32 only in terms of mantissa.

Fig. 2. Exponent frequency distribution in the weights of GoogleNet [37] trained on CIFAR10.

When using PyTorch for running models on processors, we rely on torch.ldexp() and pow(),
which are used to transcode the compressed components of weights back to the standard floating-
point formats. However, when using custom target hardware like field-programmable gate ar-

rays (FPGAs), we make use of the hardware architecture as proposed in our prior work [21],
where separate tables are maintained for sign, index, and mantissa. Using an indexing mechanism,
the values are read out from these tables and combined to form the floating-point weights which
are then used by the DSP blocks in FPGA for performing the multiplication. In custom hardware
like FPGA, it is possible to pipeline the combining of components into weight values and the multi-
plication operations such that the execution overhead during inference is very low, as can be seen
in Section 4.5.

The compression ratio can be increased by reducing the number of distinct exponents and
increasing their frequency. In this work, we propose several methods on top of the existing lossless
exponent sharing technique, to approximate weights based on their exponent values and to achieve
greater memory savings. We also discuss how mantissa approximation can boost memory savings
in combination with exponent sharing. Figure 3 shows the overview of all methods discussed in
this article. We discuss (1) exponent-based weight approximation by utilizing exponent magni-
tudes and exponent frequencies separately, (2) mantissa-based weight approximation, (3) exponent
sharing by using (1) and (2), and (4) ESART that exploits mantissa-based weight approximation
in (2).

3.1 Weight Approximation in Floating-Point Weights Using Exponents

Floating-point weights can be represented as a combination of sign, index, and mantissa, where
index refers to the exponent stored separately in an exponent table [22]. When there are e distinct
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Fig. 3. Overview of all model size reduction methods studied in this article.

Fig. 4. Iterative exponent approximation in the floating-point weights.

values in the exponent table, i = �loд2(e)� index bits are required. More memory is saved when e

is smaller.
Our proposed method involves an iterative approach to weight approximation. In each iteration,

we reduce the length of exponent table, as illustrated in Figure 4. This approach involves removing
a few exponents from the table and approximating weights corresponding to those exponents.
We focus primarily on approximating the smaller weights, as they have less impact on model
performance [44]. To achieve this, we initially sort the exponent table of a layer in descending
order. We then truncate this table in each iteration such that i = i − 1, where i is the number
of index bits. The exponents that remain in the table are referred to as salient exponents, and the
corresponding weights are referred to as salient weights. Our method focuses only on non-salient
weights that have non-salient exponents. We approximate these weights using different methods
shown in Algorithm 2, namely A1, A2, and A3. The illustration of all three methods is shown
in Figure 5. Algorithm 1 shows the proposed algorithm of weight approximation. The iterations
in Algorithm 1 consider one of the exponent-based weight approximation substitutes (A1/A2/A3)
at a time as shown on line 12. This algorithm approximates the weights per layer in such a way
that 1 bit less is required for indexing the exponent table after every iteration (lines 3–22). The
iterations continue until either the compression reaches its maximum (or user-defined threshold)
or the accuracy degradation exceeds a related user-defined threshold (line 18).

A1. Pruning Non-Salient Weights

From the sorted exponent table (e) in a layer, top 2 �loд2(e)�−1 salient exponents are selected. As like
in magnitude-based pruning [10], all non-salient weights corresponding to non-salient exponents
are made zero. This increases the sparsity in the weights of a layer.
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Fig. 5. Illustration of weight approximation using methods A1, A2, and A3 shown in Algorithm 2. The high-
lighted weights on the left are approximated by the three different methods on the right.

ALGORITHM 1: High-Level Description of Iterative Weight Approximation and Exponent Sharing

Input: Pre-Trained Model

Result: Compressed Model

1 Set the number of bits to reduce from the index field as k = 1 ;

2 Set memory savings (ms ) and accuracy drop (ad ) thresholds ;

3 while layers > 0 do

4 Find distinct exponents (e) and generate an exponent table ;

5 Find number of index bits i = �loд2(e)� to refer the exponent table ;

6 if i < 3 then

7 continue;

8 else

9 Sort the exponent table;

10 Choose top 2i−k salient exponents /* Weights having non-salient exponents are

non-salient Weights */

11 while non-salient weights > 0 do

12 Do weight approximation using method A1 or A2 or A3 from Algorithm 2;

13 end

14 end

15 end

16 Test the model and report the drop in accuracy (a) ;

17 Estimate memory saved (m) by model after exponent sharing using Algorithm 3 ;

18 if m <=ms or a > ad then

19 Stop;

20 else

21 k = k + 1 ;

22 Go to step 3 for the next iteration ;

23 end

A2. Weight Adjustment without Changing the Salient Exponents

Pruning the weights significantly degrades the accuracy with the increasing number of iterations
(related results are presented in Section 4.1.1). Instead of completely discarding the non-salient
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ALGORITHM 2: Description of Weight Approximation Methods

Input: Weights, Non-salient weights

Result: Approximated Weight Tensor

1 n = number of non-salient weights ;

2 Salient weights = Weights – Non-salient weights;

3 Select weight approximation method (A1/A2/A3);

4 if A1 then

5 while n > 0 do

6 non-salient weight = 0 ;

7 end

8 end

9 if A2 then

10 while n > 0 do

11 Find the root mean squared distance of the non-salient weight from other salient weights in a

tensor ;

12 p = Nearest salient weight for the given non-salient weight;

13 non-salient weight = p ;

14 end

15 end

16 if A3 then

17 while n > 0 do

18 Find the exponent of the non-salient weight ;

19 Replace the non-salient exponent with nearest salient exponent in a tensor ;

20 Make the mantissa zero ;

21 end

22 end

weights, they are altered to become the nearest salient weights in the same layer. To find the
nearest salient weights for every non-salient weight, the root mean square of the difference is
calculated with all salient weights in that layer. As non-salient weights have lower exponents
than salient weights, this approach results in every non-salient weight acquiring a value higher in
magnitude.

A3. Weight Replacement Using Exponent-Mantissa Adjustment

In this method, we find the nearest salient exponent for the exponent of non-salient weights. As the
exponent table is already sorted, the new exponent will be higher in magnitude. For any exponent,
the smallest value that a floating-point weight can have is when the mantissa is zero. Therefore,
we set the corresponding mantissa to zero to decrease the distance between the newly generated
weight and the original non-salient weight.

In the context of this work, we consider the accuracy degradation maximum up to 10% to study
the possible memory savings. After the last successful iteration of Algorithm 1, the weights are
stored as shown in Figure 6. Hence, if the j iterations (lines 3–23 of Algorithm 1) are successful,
then j bits are reduced from the index field. The memory saved after exponent sharing Mcomp is
given as

Mcomp = N × (s + i +m) + l × e, (1)

where N is the total weights in a layer, s is a sign bit, i are index bits, m are mantissa bits, e is
the number of distinct values in an exponent table, and l is the length of the exponent field in the
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Fig. 6. Flow of proposed weight approximations and exponents sharing. Iterations of Algorithm 1 reduce the
number of salient exponents as shown in Figure 4. The distinct exponents are shown with different color
highlights.

ALGORITHM 3: Exponent Sharing in the Weights of Trained Models [21]

Data: Weight Tensor (Wi )

Result: Tensors of Sign (So ), Index (Io ), Mantissa (Mo ), and Exponent List (Eo )

1 Calculate memory requirement (Mor iд ) forWi ;

2 while w inWi do

3 So ← sign of w ;

4 E← exponent of w ;

5 Mo ← mantissa of w ;

6 end

7 Select only distinct exponents from E and make an exponent table (Eo ) ;

8 while e in Eo do

9 Find Index i for e ; // i is an index of e in Eo

10 Place Index i in Io corresponding to e in E ;

11 end

12 Calculate memory requirement after exponent sharing (Mcomp ) using Equation (1) ;

13 Report memory savings (Mor iд - Mcomp ) ;

14 Return So , Io , Mo , and Eo

original floating-point format of the weight. The l will change with the precision of floating-point
storage format (i.e., l = 8 for Float32 or l = 5 for Float16) as shown in Figure 1.

If Mor iд is the memory required when the weights are stored in a standard floating-point format
and Mcomp is the memory required after exponent sharing, then the percentage of memory saved
is expressed as

Msavinдs = 100 × (Mor iд −Mcomp )/Mor iд . (2)

Let us consider that the weights are stored in BFloat16 format. It has 8 bits to store the exponents.
The maximum memory saved by exponent sharing happens when there are less than three distinct
exponents (e < 3, i = 1), among all of the weights, because the exponent table is smallest in this
case. Then the maximum percentage of memory saved (MmaxSavinдs ) is

MmaxSavinдs = 100 × ((16 × N ) − (N × (1 + 1 + 7) + 8 × 2)/16 × N , (3)

MmaxSavinдs = (43.75 − 100/N )%. (4)
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Fig. 7. Memory savings using exponent sharing in various precision formats. The maximum memory savings
possible in BFloat16 is 43.75%, in Float32 is 21.875%, in Float16 is 25%, and in Float64 is 15.625%. The number
of weights should be more than 2 for sharing exponents.

ALGORITHM 4: Exponent Share Aware Retraining

Input: Pre-Trained Model (M), number of epochs (E)

Result: Compressed Model

1 k = loд10(2
Mant ) − 1 // Mant = length(Mantissa of floating-point weights)

2 a = 0 // % Drop in accuracy

3 Set memory savings (ms ) and accuracy drop (ad ) user-defined thresholds

4 for layer ← 0 to L do

5 Share exponents using Algorithm 3

6 end

7 Estimate the memory saved by exponent sharing (Msavinдs )

8 if Msavinдs <=ms or a > ad then

9 Exit

10 else

11 for epoch ← 0 to E do

12 for layer ← 0 to L do

13 Change the number of digits after decimal in floating-point weights to k

14 end

15 Do training

16 end

17 Test the model and report a

18 k = k − 1

19 Go to step 4

20 end

The mantissa length of the floating-point standard restricts the compression achieved using
exponent sharing. In BFloat16, the memory savings cannot exceed 43.75% because of a fixed length
of mantissa (7 bits). Figure 7 shows the possible memory savings in different floating-point formats.

The worst case for exponent sharing is then when the exponent table has all possible distinct
values Additionally, exponent sharing is not beneficial when the number of weights is less than 3,
as it causes memory overhead to store the exponent table as shown in Figure 7.

3.2 Mantissa Approximation and ESART

The results of iterative weight approximation and its impact on the accuracy of different models
are shown in Section 4.1.1. The results, the detailed discussion of which we postpone to a later
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Table 1. Real Float v/s Float Value Stored in Memory

Real Float Value Stored as Float

No. of Decimal Digits

Matching between Real Float

and Value Stored as Float

0.1987376154 0.1987376213 7

1.987376154 1.987376213 6

19.87376154 19.87376213 5

198.7376154 198.7376099 4

1987.376154 1987.376099 3

19873.76154 19873.76172 2

198737.6154 198737.6094 1

stage, show that the weight-approximated models that use exponent sharing save more memory
with each iteration using Algorithm 1. However, the accuracy decreases as the number of iterations
increases.

Apart from exponent-based weight approximations, we study weight approximation by restrict-
ing the length of fraction (equivalently the length of mantissa) in weights to a fixed number of
decimal digits. This leads to changes in the range of weight values, which has the potential to
enhance the benefits of exponent sharing. For example, if we consider the IEEE Float32 format,
the mantissa is 23 bits long. The 23 bits of mantissa lead to 6.92 (loд10223) or ≈7 decimal digits of
precision. If we consider a real value 0.198737615384998654, the value stored in the float will be
0.198737621307373046875. Only the first 7 digits are stored as it is in memory. As the length of
the integer part increases, the fractional part goes on decreasing as shown in Table 1.

We also applied mantissa (fraction) approximation to pre-trained models in an iterative man-
ner where each iteration reduces the length of fraction in weights by 1 digit. We found that this
improved the memory savings in models discussed in Section 4.1.1. However, few models lose ac-
curacy with this approximation. For an example, the accuracy of ResNet18 drops to 83% from 91%
with mantissa approximation. We discuss related results in detail in Section 4.1.3.

To reduce this accuracy loss, an ESART method is proposed, which is shown in Algorithm 4.
This method is applied to the pre-trained models in the context of this article, and therefore it is
called retraining. ESART aims to generate a model that will save the maximum possible memory
after exponent sharing with the least or no impact on accuracy.

A pre-trained model is given as an input to Algorithm 4. The algorithm first calculates the
number of fractional digits in decimal format from the IEEE floating-point format of the weights
(line 1). Reducing mantissa length limits the range of floating-point weights and hence the
exponent distribution. Therefore, every iteration (lines 4–20) of Algorithm 4 reduces the precision
of decimal digits of weights by 1 digit (line 13). The training algorithm tries to minimize the error
for the given precision of decimal digits in each iteration of retraining. It may be noted that we
are not proposing any new training algorithm per se for loss minimization. Algorithm 4 uses the
loss minimization training algorithm in any given machine learning framework like PyTorch [30]
and TensorFlow [2], among others. The model is tested to check the accuracy impact during each
iteration (line 17). This process repeats until the user-defined thresholds for memory savings or
accuracy are met (lines 8 and 9). After the last successful iteration, the model will have the least
possible distinct exponents per layer. We discuss the results in Section 4.

4 Experiments and Results

We have demonstrated all of the proposed model size reduction methods that are shown in Figure 3
on the pre-trained models taken from the work of Phan [32]. The models discussed are ResNet18
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Fig. 8. Exponent frequency distribution in different models trained on CIFAR10.

[15], VGG11-BN [36], DenseNet121 [18], and MobileNetV2 [17]. The models are pre-trained on
the CIFAR10 dataset [23] and have their test accuracy as 91%, 91%, 91%, and 90%, respectively. We
performed our experiments on a Tesla T4 GPU from Google Colab [3]. The exponent frequency
distributions in the weights of these models are as shown in Figure 8. It is important to note that the
proposed methods can also be applied to any model in general, irrespective of whether the target
hardware needs model compression or not. Hence, they can also be used with larger models.

For exponent sharing in a model, we make an exponent table per layer that holds distinct
exponents in that layer. If there are e distinct exponents, then i = �loд2(e)� index bits are required
for referring it. During exponent sharing, the exponent field from the floating-point formats is
replaced by an index field. In the BFloat16 floating-point format, the exponent field is half of
its total length, whereas in the IEEE single-precision floating format, it is a quarter of its total
length. Thus, the BFloat16 format gains more memory savings with exponent sharing. We used
pre-trained models in BFloat16 format for the experiments related to Algorithm 1. For Algorithm 4,
we used pre-trained models in IEEE single precision as input and converted the output model to
BFloat16.

4.1 Approximation of Weights in Pre-Trained Models

4.1.1 Weight Approximation Using Exponent Magnitude. We have implemented Algorithm 1 of
weight approximation on pre-trained models. This algorithm approximates the weights per layer
in such a way that 1 bit less is required for indexing the exponent table. The iterations continue
until either the compression reaches its maximum or the accuracy degradation exceeds 10% (line 8
of Algorithm 4:ms = 0 or ad = 10%). Figure 9 shows the results of iterative weight approximation
on different models. For each model, we show the impact of exponent sharing (Algorithm 3) on
memory and accuracy followed by the impact of iterative weight approximations (Algorithm 1).

The different models have varying weights and sets of exponent values, and their distributions
are also different. Consequently, the benefit of sharing exponents varies for each model. Figure 9 il-
lustrates that exponent sharing on pre-trained models resulted in memory savings of around 15% to
19%, without affecting accuracy. Additionally, the outcomes of weight approximations carried out
using the methods proposed in Section 3.1 are presented. These approximations were performed
using one of the three substitutes (i.e., A1/A2/A3) at a time, as shown in line 12 of Algorithm 1.

In the case of substitute A1, which involves removing non-salient weights, the accuracy of all
models drops by more than 10%. Therefore, none of the models qualify for a second iteration.

For A2 as the substitute, which involves replacing non-salient weights with the nearest salient
weight in a layer, the accuracy of ResNet18, VGG11-BN, DenseNet121, and MobileNetV2 models
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Fig. 9. Impact of proposed iterative weight approximation methods (Algorithm 1) on the memory savings
and accuracy of different models.

became 90%, 90%, 90%, and 89%, respectively. All models qualified for the second iteration, as the
drop in accuracy was less than 1%. In the second iteration, the accuracy of ResNet18 remained
the same, whereas the accuracy of VGG11-BN and MobileNetV2 models dropped by 7.7% and
4.4%, respectively, qualifying them for the third iteration. However, the accuracy of DenseNet121
dropped by more than 10%, which stopped the algorithm in the second iteration. Finally, in the
third iteration, the accuracy of ResNet18, VGG11-BN, and MobileNetV2 models dropped by more
than 10%, which stopped further weight approximation.

In the case of substitute A3 (i.e., adjusting the exponent and mantissa of non-salient weights),
VGG11-BN and MobileNetV2 only qualified for the second iteration. However, in the second iter-
ation, their accuracy dropped to more than 10% and the algorithm stopped. We ran the algorithm
on a few models even after stopping criteria of Algorithm 1 was reached only to study the pos-
sible memory savings. Iteration 3 shows that accuracy degrades severely for these models with
A1/A2/A3.

In each iteration, the proposed method saves approximately 3% more memory for any substitute,
A1, A2, or A3. However, A2 showed the least accuracy drop when compared to A1 and A3. Since
frequency of exponents also plays a role, A2 is considered for further investigation in Section 4.1.2
and comparison between its magnitude-based version and the frequency-based version.

4.1.2 Weight Approximation Using Exponent Frequencies. We conducted a study on weight ap-
proximations using exponent frequencies similar to exponent magnitude. In this case, the salient
exponents (2 �loд2(e)�−1) were those with higher frequencies rather than higher magnitudes. We
used Algorithm 1 with weight adjustment without altering the important exponents (A2) for all
non-salient weights. We observed that taking exponent frequencies into account for weight ap-
proximations has a greater impact on the accuracy of all models, as demonstrated in Table 2.
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Table 2. Comparison of Weight Approximation by Method A2 Considering Exponent
Magnitudes and Exponent Frequencies

Case
ResNet18

% Memory
Saved

By Exponent Magnitude By Exponent Frequency

% Accuracy
% Weights

Approximated
% Accuracy

% Weights
Approximated

Original 91.48 None 91.48 None NA
Iteration 1 89.73 0.06 85.93 0.03 25.0
Iteration 2 89.5 15.28 80.95 2.85 31.25
Iteration 3 21.59 85.52 10.4 57.79 37.5

Case
VGG11-BN

% Memory
Saved

By Exponent Magnitude By Exponent Frequency

% Accuracy
% Weights

Approximated
% Accuracy

% Weights
Approximated

Original 91.07 None 91.07 None NA
Iteration 1 90.17 0.20 88.80 0.37 21.27
Iteration 2 84.29 6.15 42.69 10.35 27.52
Iteration 3 10.06 42.86 NA NA 33.77

Case
DenseNet121

% Memory
Saved

By Exponent Magnitude By Exponent Frequency

% Accuracy
% Weights

Approximated
% Accuracy

% Weights
Approximated

Original 91.49 None 91.49 None NA
Iteration 1 90.29 1.61 10 0.53 25.02
Iteration 2 67.34 61.13 NA NA 31.28

Case
MobileNetV2

% Memory
Saved

By Exponent Magnitude By Exponent Frequency

% Accuracy
% Weights

Approximated
% Accuracy

% Weights
Approximated

Original 90.22 None 90.22 None NA
Iteration 1 88.59 4.44 6.23 1.38 25.1
Iteration 2 86.39 57.23 NA NA 31.36
Iteration 3 12.77 78.86 NA NA 37.6

4.1.3 Mantissa Approximation in Weights. The mantissa approximation, due to the properties
shown in Table 1, is also done in an iterative manner. The first iteration starts by limiting the length
of fraction of decimal weights to 6 digits. We continue the iterations until the accuracy drops by
more than 10%. Each iteration narrows the range of real values, which reduces the distinctness
in exponents. The results are presented in Figure 10 along with ESART. With each iteration, the
precision of decimal digits in the weights of pre-trained models is reduced by 1. Restricting the
number of decimal digits to 3 (i.e., 7-bit mantissa) does not harm the accuracy. This is nothing
but a conversion of Float32 weights to BFloat16 [20]. Therefore, the accuracy of all models is not
compromised until the fourth iteration. Beyond that, there is degradation of accuracy. We study
ESART to reduce the accuracy loss.

4.2 Results of ESART

As discussed in Section 4.1, all proposed methods of weight approximation on the pre-trained
models save memory, but they do so at the cost of accuracy loss. Training generates a new set
of weights in each epoch, subsequently generating new exponents. It is crucial to minimize the
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Fig. 10. Iterative mantissa approximation and ESART. Each successful iteration reduces the precision of deci-
mal digits in weights by 1 digit (line 18 in Algorithm 4). The memory savings reported are for BFloat16 format
as discussed in Section 4.2.

number of distinct exponents to maximize memory savings. However, using exponent-based
weight approximations during training (i.e., A1/A2/A3 (Algorithm 2)) does not guarantee
that the weights learned will have a reduced number of exponents. Comparatively, mantissa
approximation showed higher memory savings.

In this section, we present the results of a study on improving accuracy through ESART pro-
posed in Algorithm 4. We apply this algorithm on the model stored in Float32 format. After each
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Fig. 11. Comparison of “Best Results” from exponent and mantissa-based weight approximations studied in
this article.

iteration of Algorithm 4, the precision was changed to BFloat16. The user-defined parameters in
line 3 of Algorithm 4 were set to ms = 0 (for memory savings) and ad = 10% (for accuracy drop).
The results are shown in Figure 10.

In the case of ResNet18, we saved 33.22% memory without any impact on accuracy. If a drop in
accuracy of more than 10% is acceptable, it could save up to 42.8% of memory. Similarly, VGG11-
BN saved 34.92% of memory without any impact on accuracy, whereas DenseNet121 saved 31.22%
of memory without any loss of accuracy and up to 38.8% of memory with a 27% drop in accu-
racy. In the case of MobileNetV2, we observed a 38.5% memory savings without affecting accuracy.
Additionally, this approach demonstrated an improvement in accuracy, which we attribute to re-
training, in all models compared to the mantissa approximation (Section 4.1.3) while achieving the
same or more memory savings. ESART still gives reasonable accuracy in iteration 5 (except for
VGG11-BN): 83% for ResNet18, 65% for DenseNet121, and 90% for MobileNetV2 with 35% or more
memory savings. However, only mantissa approximation is inferior to ESART in these iterations.

4.2.1 Comparison of Models Generated after the Proposed Exponent- and Mantissa-Based Weight

Approximations. Among the proposed exponent based weight approximation methods (Algo-
rithm 2), the weight approximation method that replaces non-salient weights with the nearest
salient weight (i.e., A2-magnitude based) proved to be the best. Therefore, we compared the mem-
ory savings and accuracy of the models with weight approximation (Algorithm 1) with the models
generated after ESART (Algorithm 4). The results are shown in Figure 11.
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Table 3. Accuracy Comparison with Other Methods

Model
Accuracy (%)

Original ESART (Alg:4) Static Pruning [14] Quantization [14]

ResNet18 91.48 93.00 62.30 91.40

VGG11-BN 91.00 92.00 64.01 90.52

DenseNet121 91.49 91.49 61.63 89.47

MobileNetV2 90.22 93.00 56.03 88.70

Table 4. Model Sizes in BFloat16 Format

Model
Model Size (MB)

Original ESART

ResNet18 21.30 14.22

VGG11-BN 53.66 34.89

DenseNet121 13.19 9.07

MobileNetV2 4.23 2.60

We found that ESART (Algorithm 4) resulted in the better memory savings without accuracy
loss in all models. Thus, we conclude that out of all algorithms studied in this article, ESART
(Algorithm 4) achieved the highest memory savings without any loss in accuracy compared to the
input pre-trained model.

4.3 Comparison with Other Model Compression Methods

We compared the model generated by ESART with the models generated by other model compres-
sion methods like pruning and quantization from PyTorch [30]. We observe the impact of these
methods on the following different factors.

4.3.1 Accuracy. The accuracy remains unchanged after ESART up to four iterations, as shown
in Figure 10. It even improves the accuracy slightly, as retraining is done on the top of a pre-trained
model. In the case of pruning, the accuracy drops beyond 30%. However, quantization shows less
than a 1% accuracy drop. Table 3 shows the accuracy loss in different cases.

4.3.2 Memory Savings. When only exponent sharing [22] is applied on the models, then
memory savings of 18.75%, 15.02%, 18.77%, and 18.84% are observed in ResNet18, VGG11-BN,
DenseNet121, and MobileNetV2, respectively. However, the memory savings are significantly
improved by ESART. The memory savings become 33.22%, 34.97%, 31.22%, and 38.48% in
ResNet18, VGG11-BN, DenseNet121, and MobileNetV2, respectively, without any accuracy loss.
The difference in the size of the new compressed models is shown in Table 4. Higher memory
savings are also possible with some loss in accuracy, as shown in Figure 10 (refer to iteration 5).

For comparison with pruning, the pre-trained models were pruned to save memory equivalent
to that saved by models after ESART. For example, ResNet18 was pruned by 33.22% and VGG11-BN
by 34.97%. Quantization saved 50% memory in all models, as it changed the precision of weights
from BFloat16 to Int8. However, as discussed in Section 4.3.1, it resulted in a loss of some accuracy.

4.4 Execution Time and Energy at Inference

In our experiments with PyTorch (in Google Colab), we stored the weight values per layer into
the proposed floating-point storage format. This format requires different components such as
sign, index, mantissa, and also an exponent table, as shown in Figure 6. When our method is
not applied, a pre-trained model requires a single read to access the floating-point weights. With
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Fig. 12. Comparison of inference time and energy consumed during inference (batch size 256) in models
generated after different model compression methods.

Table 5. Execution Time of ResNet18 Inference of a Single Image

Name
Pre-Trained ESART Processed Model

Original Cache Flush Original Cache Flush

Self CPU time total 8.224 ms 11.648 ms 12.706 ms 13.008 ms

Self CUDA time total 4.157 ms 4.157 ms 7.450 ms 7.459 ms

the proposed format, each layer of a model now reads separately stored components. Indices are
used to retrieve exponents from the exponent table. We used the function “torch.ldexp(mantissa,
exponent)” from PyTorch to transcode individual reads into the original floating-point weight.
In the upcoming sections, we compare the time and energy required by a batch of input images
during inference. During testing, we compared the time required for inference in two cases: (1)
when it is a normal pre-trained model, and (2) when such exponent sharing is implemented.
We ran this simulation 15 times for both cases and took the average to show the execution
impact.

4.4.1 Inference Time. The proposed ESART technique takes slightly more time for inference,
as shown in Figure 12(a), but it is still comparable to the original (within 1%) (i.e., pre-trained
model). This technique ensures that there is no or very little loss in accuracy, which is not the case
for models generated after pruning and quantization. As illustrated in Figure 6, exponent sharing
requires three additional reads to form a floating-point number from its sign, index, and mantissa.
During sequential execution on processors, the execution time is affected by exponent sharing.
We implement exponent sharing on top of model generated after ESART. Therefore, there is an
overhead in execution cycles in our experiments. The impact shown here is without any software
optimization. Indeed, we explicitly cleared the cache memory to observe the impact on inference
time when the reads are happening from memory every time. If explicit cache flushing is not done,
then there is some advantage in terms of inference time. For example, consider the inference of
ResNet18 with and without caching. There is approximately a 2.35% reduction in execution time
when caching is utilized in PyTorch, as shown in Table 5. These execution times are obtained using
PyTorch Profiler. On detailed profiling, one can see that the overhead is mainly caused by functions
torch.ldexp() and pow(), which are used to transcode the compressed components of weights back
to the standard floating-point formats.

4.4.2 Energy Consumption. Due to the greater number of reads happening after exponent shar-
ing, the energy consumption is slightly increased (within 5%). Figure 12(b) shows the results on
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Table 6. Time Overhead for ESART in FP32

Model
Time (Minutes) Precision of

Decimal

Digits (k)

Training

(100 Epochs )

ESART

(10 Epochs)

Overhead

(%)

ResNet18 17.733 2.619 14.772 2

VGG11-BN 14.717 2.057 13.978 3

DenseNet121 42.876 9.07 21.154 3

MobileNetV2 35.067 7.513 21.425 2

energy consumption by models compressed after different compression methods. We used the
CodeCarbon [35] framework to analyze the energy consumption in PyTorch. Currently, we are
calculating the memory savings from proposed weight approximations in PyTorch. The underly-
ing bitwidths for each field are still the standard ones (Float32). Therefore, the impact on energy
consumption does not account for variable bit lengths for different components in the proposed
storage format, in the case of processors. A detailed optimized software implementation that would
exploit parallel reads or reads overlapping with computation would definitely reduce the overhead
in processors as well. Yet, we will consider such an optimized implementation for future work, as it
would require exploiting processor characteristics for memory coalescing and so forth. However,
Section 4.5 presents the implementation of LeNet on FPGA using the proposed ESART method
where we observe both a reduction in overall power dissipation and appropriate memory savings.

4.4.3 Execution Overhead of ESART. The training time overhead of ESART on different models
is shown in Table 6. The time for ESART is recorded for the smallest value of k (line 1 of Algo-
rithm 4) that does not affect the accuracy of the model. We report the overhead for 10 epochs
because when the batch size is 256, there is only minor variation in accuracy up to 10 epochs, as
shown in Figure 13, which displays the changes in accuracy and execution time during each epoch
of ESART.

4.5 Results on FPGA

The proposed exponent sharing method departs from standard floating-point storage formats by
employing a variable-length index field, unlike the fixed-size exponent field in standard floating-
point formats. This necessitates specialized hardware that can efficiently handle this variability on
a per-layer basis. In our previous work [21], we explored the implementation of exponent sharing
on FPGAs due to their ability to perform parallel reads and accommodate variable bitwidths. We
proposed a model for statically analyzing the impact of exponent sharing on clock cycles and
introduced a specialized hardware structure (depicted in Figure 14). Experiments using Vivado
tools demonstrated a negligible impact on clock cycles across all tested layers of various models,
with the maximum observed increase being less than 1% when parallel reading happens.

In this section, we present the results of applying ESART on a LeNet model trained on the MNIST
dataset, which initially had an accuracy of 97.64% and is stored in Float32 floating-point standard.
The model achieved a 15% reduction in memory usage with 97.16% accuracy in the fifth iteration of
ESART (the sixth iteration encountered the stopping criteria of ESART, with accuracy degrading
to 10%). Table 7 illustrates the impact on factors such as clock cycles, power, and resources after
implementing ESART. The model, compressed by ESART, is implemented using pipelining (with
an initiation interval of 1), which further reduces the impact on clock cycles through parallel reads.
However, unlike on CPU, the power impact is less after ESART. These results were obtained using
Vivado tools, targeting the Zynq SoC FPGA on Zed Board [1] as the underlying hardware.
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Fig. 13. Study of accuracy and execution time in each epoch during a single iteration of ESART.

Fig. 14. Hardware architecture diagram for transcoding and exponent sharing (applicable to floating-point
formats like IEEE Float32 format) [21].

Table 7. Performance of LeNet on FPGA

Name Original ESART with Pipeline

Clock Cycles 6,090,756 5,336,520

Power (W) 0.249 0.24

Resource Utilization
on Zynq

BRAM_18K 29 28
DSP48E 25 28

FF 6,447 6,277
LUT 5,693 5,866
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5 Conclusion and Future Work

We proposed different methods to approximate weights and a retraining method that uses weight
approximation, to improve the memory savings with exponent sharing without any loss in accu-
racy. Although results were presented on models that would not be considered large, the proposed
methods can be easily applied to large models as well. Figure 3 shows the various methods pro-
posed. We presented a systematic study of these methods to identify a performance-compression
tradeoff. Among exponent-based weight approximation, the method that approximates weights
by changing non-salient weights to the nearest higher salient weight (Section 4.1.1: A2) results
in more memory savings compared to other proposed methods (A1/A2). The accuracy loss is also
relatively less using A2. The proposed ESART (Algorithm 4) on top of a trained model saves more
memory without any loss in accuracy. This retraining restricts the range of weights in a layer,
which in turn reduces the distinct exponent but increases their frequency, allowing for greater
sharing of exponents.

Exponent sharing (Algorithm 3) is a part of ESART (Algorithm 4) in this work. We compared
models generated using ESART with the models generated by other state-of-the-art methods of
model compression in terms of accuracy, inference time, and energy. There is some time and energy
overhead, as exponent sharing adds three more reads for every weight. However, this overhead
can be acceptable with other methods, as the proposed method preserves the accuracy of models.
Moreover, this overhead can be reduced by software optimization methods like memory coalesc-
ing [7, 19] and on parallel hardware like FPGAs. During ESART, we currently limit the number
of decimal digits in the weights to a fixed length in all layers. In our future research, we plan to
investigate the optimal precision of decimal digits for each layer, aiming to minimize the impact
on accuracy while maximizing memory savings.

It may be noted that knowledge distillation, as one other popular method for model compression,
requires defining our own smaller student model, and during transfer learning, the training of this
student model happens. There can be various architectures of student models that can undergo
knowledge distillation before a model is finalized. This creates a large design space to explore to
get a properly trained student model. It is thus clear that knowledge distillation, while it leads to
smaller models, is orthogonal in approach to our proposed methods and a fair comparison would
not be possible. To be more specific, when LeNet undergoes compression through weight quan-
tization or static pruning in PyTorch, the model’s structure remains largely unchanged. Only the
weights in the model differ after compression. However, when knowledge distillation, as proposed
in the work of Lopes et al. [26], is applied, layers of the model are removed, resulting in a reduction
of the model size. It then needs to be retrained using the knowledge obtained from the original pre-
trained LeNet. Our methods can be applied once a suitable student model is available for further
reduction in model size.
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