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Multimodal Graph Convolutional Network on Brain
Structure and Function in Adolescent Anxiety and

Depression
Sébastien Dam, Student Member, IEEE, Jean-Marie Batail, Pierre Maurel, and Julie Coloigner

Abstract—Multimodal analysis of Magnetic Resonance Imag-
ing (MRI) data enables leveraging complementary information
across multiple imaging modalities that may be incomplete when
using a single modality. For brain connectivity analysis, graph-
based methods, such as graph signal processing, are effective
for capturing topological characteristics of the brain structure
while incorporating neural activity signals. However, for tasks like
group classification, these methods often rely on traditional ma-
chine learning algorithms, which may not fully exploit the under-
lying graph topology. Recently, Graph Convolutional Networks
(GCN) have emerged as a powerful tool in brain connectivity
research, uncovering complex nonlinear relationships within the
data. Here, we develop a multimodal GCN model to jointly model
brain structure and function to classify anxiety and depression
in adolescents using the Boston Adolescent Neuroimaging of
Depression and Anxiety dataset. The graph’s topology is initial-
ized from structural connectivity derived from diffusion MRI,
while functional connectivity is incorporated as node features
to improve distinction between anxious, depressed patients and
healthy controls. Interpretation of key brain regions contributing
to classification is enabled through Gradient-weighted Class
Activation Mapping, revealing the influence of the frontal and
limbic lobes in the diagnosis of the conditions, which aligns with
previous findings in the literature. By comparing classification
results and the most discriminative features between multimodal
and unimodal GCN-based approaches, we demonstrate that our
framework improves accuracy in most classification tasks and
reveals significant patterns of brain alterations associated with
anxiety and depression.

Index Terms—Anxiety, depression, functional MRI, structural
connectivity, graph convolutional networks.

I. INTRODUCTION

ANXIETY and depression in adolescents are mental health
conditions that negatively affect the quality of life [1].

Our current knowledge of the biological mechanisms behind
those diseases is still limited, resulting in clinical diagnosis
primarily relying on symptomatic and behavioral assessments.
However, anxious and depressed patients display a broad
spectrum of heterogeneous symptoms, often leading to im-
precise and delayed diagnoses. Therefore, identifying precise
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biomarkers for the detection of these conditions could offer
better insights of the cerebral underpinnings behind them.

Brain connectivity has been extensively studied for inves-
tigating clinical biomarkers of psychiatric diseases, using the
so-called brain connectomics [2]–[4]. Structural connectivity
(SC) is derived from diffusion-weighted imaging (DWI), a
neuroimaging technique that enables the visualization of the
brain’s white matter tracts by highlighting the direction and
integrity of water diffusion along neural pathways. Using
tractography [5], these diffusion patterns are analyzed to map
the anatomical connections between different brain regions,
providing a detailed view of the brain’s structural network
and connectivity patterns [6]. Functional connectivity (FC)
captures the similarity between brain regions by measuring
the correlation of blood oxygenation level dependent (BOLD)
functional magnetic resonance imaging (fMRI) signals, ac-
quired in the resting-state (rs-fMRI) [7]. Many neuroimaging
studies have examined SC and FC to gain a deeper under-
standing of psychiatric disorders in adults [8], [9]. Among
these, several papers have explored structural and functional
brain connectomes of depression and reported disturbances in
brain networks such as the default mode network (DMN),
frontoparietal network (FPN) and cingulo-opercular network
[10]–[12]. Similarly, a recent review and meta-analysis of rs-
fMRI highlighted altered connectivity between the amygdala
and prefrontal regions in patients with anxiety [13]. Investigat-
ing depression and anxiety in adolescents is equally important,
as the onset of treatment-resistant conditions is often linked
to the diagnosis of these disorders during adolescence [14].
However, there is still a lack of research focused on identifying
biomarkers in adolescent populations. The main meta-analyses
so far have found changes in FC in the DMN, the FPN,
and the salience network [15], [16]. Although these findings
are important, most studies have analyzed different modalities
independently, which limits the overall understanding.

Integrating SC and FC allows for a more comprehensive
analysis of brain networks by capturing complementary infor-
mation measured by fMRI and DWI [17]–[19], particularly
when characterizing psychiatric disorders such as autism,
schizophrenia, and major depression [20], [21]. Several fusion
(concurrent analysis of modalities) and integration (use of
one modality to constrain another one) techniques have been
implemented to combine multiple modalities in psychiatric
research [22]. These methods include linked independent
component analysis, which identifies modes of variations
across modalities and disentangles independent sources of
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variation. For instance, it has been used to fuse measures of
cortical macrostructure, white matter diffusion properties and
rs-fMRI DMN amplitude to study depression [23]. Similarly,
multimodal independent vector analysis has been developed to
estimate linked independent sources across multiple modalities
[24]. Then, the outputs from these techniques are often used
as features in machine learning models. In [23], for example,
the authors submitted subject weights derived from linked
independent component analysis to classify depressed patients
and controls. However, these approaches not only rely on
linear models, which may not be fully adequate when dealing
with multimodal data where complexity arises from the inter-
action between different modalities, but they also overlook the
valuable information embedded in the topological properties
of brain connectivity.

Recently, graph structures have emerged as a promising way
to bridge the gap between brain structure and function. Frame-
works like Graph Signal Processing (GSP) attempt to project
brain functional data onto its structural network, offering a
more holistic view of brain organization [25]. Several studies
leveraged GSP to analyze the coupling strengths between rs-
fMRI time-series and SC for the classification of patients
with disorders such as depression [26], anxiety [27], and
Alzheimer’s disease [28]. However, the common approach is to
unroll graph-based measures extracted from each brain region
into a vector and then to apply a wide range of multivari-
ate classifiers, such as support vectors machines or random
forests. Although these works achieved significant success,
those machine learning approaches do not incorporate the
graph topology and geometrical properties of the connectome.
This limitation has spurred interest in researchers using deep
learning approaches, specifically graph-based ones, which
may be better suited for capturing the complex relationships
between brain regions.

Kipf and Welling [29] demonstrated the power of Graph
Convolutional Networks (GCN) to extend the convolutional
operations from regular Euclidean data to graph-structured
data and allowed the emergence of multiple applications of
GCN in neuroimaging and brain connectivity [30], [31]. By
leveraging the brain’s structural or functional connectome as
a graph, GCN exploit its topology to convey information
between brain regions, making them an effective tool for
understanding disruptions in brain networks associated with
disorders. For example, Ktena et al. [32] proposed a siamese
GCN, and employed spectral graph convolutions on brain
imaging data to classify autism spectrum disorder based on
fMRI data. The association of deep reinforcement learning
with GCN was adopted in [33] to learn an optimal graph neural
network (GNN) architecture, which was applied on multiple
datasets covering different neurological disorders, including
human immunodeficiency virus infection, bipolar disorder,
or attention deficit hyperactivity disorder. To predict mild
cognitive impairment, Zhang et al. [34] designed a cascaded
deep model that integrated temporal features from functional
activity using a recurrent neural network, alongside the brain
structural connectome as the graph topology of the GCN,
effectively fusing fMRI and diffusion tensor imaging data.

Based on these promising works, we propose a supervised

framework for classification tasks. The main objective is to
integrate FC with structural brain connectome and to identify
sub-networks with significantly connectivity differences in
binary classification. We hypothesize that a multimodal GCN-
based approach jointly modeling SC and FC will be able
to extract complementary information from both modalities,
and thus allow enhanced classification performance and iden-
tification of salient regions of interest (ROI). Thanks to the
GCN’s ability to capture higher-order information from the
neighborhoods of graph nodes representing ROIs in the SC,
and incorporate neural activity features from FC, we believe
that such a model will provide meaningful perspectives for
multimodal analysis.

The main contributions of this paper can be summarized as
follows:

• We develop a multimodal GCN-based model for clas-
sification tasks using SC and FC. Moreover, we adapt
the Gradient-weighted Class Activation Method (Grad-
CAM) [35] to our model in order to identify the sub-
networks exhibiting the most discriminant features among
two groups.

• We hypothesize that multimodal methods outperform
unimodal ones. To verify that, we test our model against
methods which take as input only a single modality, such
that structural or functional data are exclusively used.

• We train and test our model on clinical data for graph
classification, and design experiments on anxious and
depressed adolescent from the Boston Adolescent Neu-
roimaging of Anxiety and Depression (BANDA) open
dataset [36].

The remainder of the paper is structured as follows. First, we
present our multimodal multi-layer GCN model for our study
in Section II. Then, we describe our experiments in Section
III. We expose our classification performance and the salient
brain regions subsequently obtained in Section IV, which are
followed by their interpretation in a discussion in Section V.
Finally, we conclude the paper in Section VI.

II. METHODS

In this section, we introduce our multimodal GCN frame-
work for the classification of anxiety and depressed patients.
First, in Section II-A, we briefly present some key concepts
from GSP. Second, in Section II-B, extension of graph convo-
lution from GSP to our setting is presented. Then, Section II-C
is devoted to our multimodal GCN model for jointly modeling
FC and the underlying brain structure. Finally, in order to
interpret the salient features obtained from the trained model,
we extended the Grad-CAM technique to our graph setting in
Section II-D.

A. Graph Signal Processing

Let G = G(V, E ,A) be an undirected graph with N nodes,
where V is the set of nodes with each node representing a
distinct ROI and E is the set of undirected edges in G. The
matrix A is a symmetric weighted matrix representing the ad-
jacency matrix where each entry is the strength of connection
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between two ROIs. The graph normalized Laplacian matrix is
defined as

L = IN −D−1/2AD−1/2, (1)

where D is the diagonal matrix of node degrees, i.e.,
dii =

∑
j aij . Since it is real, symmetric, and posi-

tive semi-definite, it can be diagonalized via its eigende-
composition as L = UΛU⊤, where the columns of
U = [u1,u2, . . . ,uN ] are the orthonormal eigenvectors, and
Λ is the diagonal matrix that stores the non-negative eigen-
values Λ = diag(λ1, λ2, . . . , λN ). The kth eigenvalue λk

reflects a notion of frequency of the corresponding eigenvector
uk, which can be interpreted as a structural harmonic.

Let x ∈ RN be a graph signal, where xn denotes the
signal value at node n. The signal x can then be projected on
the structural harmonics through the graph Fourier transform
(GFT) to perform a frequency analysis of the graph signal, as
defined as

x̂ = U⊤x. (2)

B. Graph Convolutional Networks

Here, we introduce spectral graph convolution, which serves
as a fundamental operation in GCN. The latest extends
traditional convolutional techniques to graph-structured data,
allowing the aggregation of information from neighboring
nodes to learn efficient node representations for classification
tasks. Given a graph signal x and a filter Θ, graph convolution
can be defined as

Θ ∗ x =

K∑
k=0

θkL
kx, (3)

where Θ =
∑K

k=0 θkL
k is a graph filter with coefficients

θ = [θ0, . . . , θK]. The graph convolution operation aggre-
gates signal values from K-hop neighborhoods in the graph.
Filters designed this way are thus exactly localized, ensuring
that the convolution only influences nodes within a fixed range.
Based on the GFT, the filtered signal in (3) can be shifted in the
spectral domain to perform spectral graph convolution, such
that

UTΘx = UT
K∑

k=0

θk(L)kx = UT
K∑

k=0

θk(UΛUT )kx

=

(
K∑

k=0

θkΛ
k

)
x̂. (4)

For each frequency λi, the convolution is transformed into
an element-wise multiplication between the filter’s frequency
response θ̃i =

∑K
k=0 θkλ

k
i and the signal’s GFT coefficient x̂i.

To be able to define the filter θ̃ directly in the spectral
domain, the eigendecomposition of L is required. However,
its computational complexity can heavily impair the feasibility
for large graphs. To circumvent this limitation, ChebNet [37]
was proposed by introducing a filter defined by Chebyshev
polynomials of the diagonal matrix of eigenvalues, i.e. Λ,
instead of conventional polynomials as in 4. A first-order
polynomial graph convolution filter, which is used to define the

so-called GCN model, has been proposed in [29] by assigning
K = 1 and θ = θ0/2 = −θ1, so that (3) simplifies to

Θ ∗ x = θ
(
IN +D−1/2AD−1/2

)
x. (5)

A graph convolutional network can be built by stacking layers
of learnable graph convolutional filters of this form. This
further leads to the formulation of the GCN layer as:

H(l) = σ
(
ÃH(l−1)Θ(l)

)
, (6)

where σ is the nonlinear activation function, H(l) is the
learned representations at layer l, Θ(l) ∈ RFi×Fo contains the
learnable filter parameters, where Fi and Fo are the feature
sizes of input and output graph signals, respectively, and are
subject to the choice of the number of node features in the
GCN layers. We propose to use Ã = D̂−1/2ÂD̂−1/2, as in
[29], which is the normalized adjacency matrix following the
renormalization trick, where Â = A+IN and D̂ii =

∑
j Âij .

This has been shown to reduce some instability in training of
GCN [29]. By stacking multiple GCN layers, information from
distant neighbors can be transmitted across the graph. Fig. 1
depicts the principle of node features aggregation at different
layers in a multi-layer GCN.

C. Multimodal GCN based patient classification

In this paper, we perform a multimodal GCN-based su-
pervised framework, whose architecture is summarized in
Fig. 2, for classification tasks. The model is trained on a
cohort including two groups to capture population patterns in
the SC-FC relationship while also reflecting subject-specific
variability to discriminate among classes. The input graphs
for the multimodal GCN model are individual subject-level
brain graphs corresponding to the SC networks, which are
represented by the symmetric adjacency matrix A ∈ RN×N .
A graph signal matrix X ∈ RN×D from the FC can also
be input into the model as node attributes or graph signal
associated to each node n, where each graph signal is now a
vector of dimension D.

More explicitly, the multimodal GCN model consists of
three hidden layers, each parameterized with 64 filters, defined
in this work as:

H(l) =

{
σ
(
ÃH(l−1)Θ(l)

)
, l ≥ 1,

X, l = 0,
(7)

ReLu is chosen as the nonlinear activation function. Subse-
quently, to obtain the entire representation of the graph or
graph-level embedding H̄ , the output from the third layer is
fed into a global average pooling layer to reduce dimension-
ality and aggregate node information

H̄ =
1

N

N∑
i=1

H
(3)
i . (8)

Finally, the obtained graph-level embeddings are input into
a dense layer for patient classification, and the final prediction
z is expressed as

z = softmax(dense(H̄)), (9)
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Fig. 1. GCN layers propagate node information by aggregating features over an increasing number of hops. Starting from a central node (dark blue), each
additional layer expands the neighborhood by 1 hop, resulting in filters that are localized within k-hop supports. Nodes with the same color indicate those that
are equidistant from the central node in terms of the shortest path. As more GCN layers are stacked, information from more distant nodes is incorporated,
represented by the fading colors.

Fig. 2. The multimodal multi-layer GCN architecture. Based on the input brain graph represented by its weighted adjacency matrix, and the feature matrix,
a GCN layer generates a hidden representation for each node by aggregating features from its neighboring nodes based on the neurons’ weights. Following
this aggregation, a nonlinear activation function is applied to the resulting hidden representation. By stacking multiple GCN layers, information from distant
nodes are transmitted across the graph, until generating the final hidden representation, before being fed to a global average pooling layer and a dense layer.
Finally, a softmax is applied to output the predictive probability of the input classes. GAP: global average pooling.

where softmax(.) is used to normalize the raw output scores
of the dense layer into the predictive probability of the input
classes. For training, the cross-entropy loss is used as the loss
function, which is computed as

CE = − 1

M

∑
i

Z∑
c=1

yic log(zic), (10)

where M is the number of patients/graphs in the training set, C
is the number of patient classes, yic = 1 if the label of patient
i is equal to c, yic = 0 otherwise, and zic is the predicted
probability of patient i in class c.

D. Interpretability of GCN

With the growing use of deep learning, several explana-
tion methods have been proposed to interpret deep learning-
based models predictions, such as Gradient-weighted Class
Activation Mapping (Grad-CAM) [35]. Here, we adapt Grad-
CAM to our setting to interpret our multimodal GCN model
predictions and identify the ROIs that contribute the most to
the discrimination of the classes. This approach was originally
introduced to provide a localization map as a visualization
explanation for convolutional neural networks models for

tasks such as image classification, image captioning, or visual
question answering [38], [39]. It essentially exploits the last
convolutional layer and uses the gradient information flowing
into it during the training step to assign importance values for
each node. Let H

(l)
k ∈ RN be the kth graph convolutional

feature map at layer l:

H
(l)
k = σ

(
ÃH(l−1)Θ

(l)
k

)
, (11)

where Θ
(l)
k is the kth column of learnable matrix Θ(l). For

each node n, we can denote H
(l)
k,n as the kth feature at layer l.

Note that H(Γ)
k represents the feature map of the final graph

convolution layer. For each group c, the score (before softmax)
can then be calculated as

sc =
1

N

∑
k

wc
k

N∑
n=1

H
(Γ)
k,n, (12)

where wc
k is the weight of the kth feature map of the final

layer for predicting group c. To obtain a map containing the
most discriminative features, we compute the gradients of sc,
with respect to the kth feature map after the final convolutional
layer, i.e. ∂sc

∂H
(Γ)
k,n

. These gradients flowing back are averaged
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over the N nodes so as to obtain the Grad-CAM importance
weights αc

k:

αc
k =

1

N

N∑
n=1

∂sc

∂H
(Γ)
k,n

. (13)

Finally, the localization map Gc
n at the final GCN layer is

retrieved by performing a weighted combination of forward
feature maps, and followed by a ReLu in order to obtain the
ROIs that have a positive contribution on the classification:

Gc
n = ReLu(

∑
k

αc
kH

(Γ)
k,n). (14)

Grad-CAM was performed on each individual. Subse-
quently, we computed the Euclidean mean activation value
across all the individuals to reflect the contribution of each
ROI in the brain connectivity graph.

III. EXPERIMENTS

Data, preprocessing steps and experimental setting are de-
scribed in this section.

A. Data

The BANDA study is one of the projects funded by the
National Institute of Health to study a disease population
using Human Connectome Project protocols [36]. This cohort
includes 207 adolescents between 14 and 17 years old, with
brain imaging data (62 Control (CA), 80 Anxious (AA) and
65 Depressed Adolescents (DA)). We discarded 15 subjects
due to poor image quality, resulting in 192 subjects including
60 CA, 72 AA and 60 DA. Three modalities of brain imaging
data (T1-weighted MRI, rs-fMRI and DWI) were acquired for
each participant.

The T1-weighted MRI data was acquired with a field of
view (FoV) of 256 × 240 × 167 mm, 0.8 mm isotropic
voxel size and TR = 2400 ms. The DWI images have 183
gradient directions, sampled on 2 shells of b = 1500 s/mm2

and 3000 s/mm2, an FoV of 210 × 210 × 138 mm, 1.5
isotropic voxel size, TR = 3230 ms and TE = 89.20 ms.
The rs-fMRI data has 420 volumes, acquired with an FoV
of 208 × 208 × 144 mm, 2.0 mm isotropic voxel size,
TR = 800 ms, TE = 37 ms and flip angle = 52°.

B. Preprocessing

We preprocessed the data using QSIPrep [40] and
fMRIPrep [41]. The anatomical preprocessing workflows con-
tain intensity non-uniformity correction of the T1w image,
skull-stripping, and brain tissue segmentation of cerebrospinal
fluid, white-matter and gray-matter.

The DWI images were denoised using MP-PCA [42], then
corrected for Gibbs unringing using local subvoxel-shifts, B1
field inhomogeneity using ANT’s N4 algorithm, head motion
and Eddy current using FSL’s eddy [43]. Finally, the whole-
brain cortical and subcortical Tian-Schaefer atlas [44], [45]
with 400 cortical regions and 16 subcortical regions was
adopted to construct SC matrices. Whole-brain probabilistic

Fig. 3. Structural (left) and functional (right) connectivity matrices of a
sample subject. The entries of the structural connectivity correspond to the
number of fibers between two ROIs, and were log-transformed for visual-
ization purposes, while those of the functional connectivity were obtained by
computing the Pearson correlation coefficient of every pair of averaged BOLD
signals.

tractography including 10 million fibers was performed, us-
ing a spherical deconvolution approach and the Spherical-
deconvolution Informed Filtering of Tractograms (SIFT2) [46].
The entries with less than 10 fibers were removed for each
subject in an attempt to remove false-positive fibers.

For fMRI images, head-motion parameters (transformation
matrices and six corresponding rotation and translation pa-
rameters) were estimated using FSL’s mcflirt. A fieldmap
was estimated based on two echo-planar imaging references
with opposing phase-encoding directions, with FSL’s topup.
BOLD runs were also slice-time corrected using 3dTshift from
AFNI. The same brain atlas was adopted and regional mean
time-series were estimated by averaging the fMRI time-series
over all voxels within each ROI. We decided to calculate
the Pearson correlation coefficient of every pair of averaged
BOLD signals as P ∈ RN×N , which serves as the feature
matrix in (7). Each feature vector pn = (pn1, pn2, ..., pnN )
is thus the concatenation of correlations of node n to all the
other nodes. This choice for the feature matrix is also termed
connection profile, where each row in the Pearson matrix is
used as the node features, has often been made in other works
[47]. Similarly to SC matrices, we thresholded the correlations
so as to keep the ones greater than 0.2 in order to remove
spurious and weak correlations.

The SC and FC matrices of one subject are depicted in Fig.
3. The atlas was arranged such that the first ROIs correspond to
the subcortical regions, followed by the cortical regions of the
left and right hemispheres. Across the subjects, we note that
the anatomical connections are predominantly within the same
hemisphere, with fewer links across the left and right ones in
SC. Moreover, subcortical regions present a high number of
connections with all the brain regions, while cortical ones are
connected to fewer ones. In contrast, FC shows more scattered
correlations between hemispheres, suggesting that functional
links exist between ROIs even in the absence of anatomical
links. This observation motivates further exploration of the
complementarity between these two modalities.

C. Experimental setting

To further investigate this complementarity, we implemented
a multimodal GCN-based approach to assess how well it can
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leverage both SC and FC patterns for classification.
Implementation details. All the experiments were run via
10-fold cross validation such that the data was randomly
partitioned into 80% training, 10% validation and 10% test
set. To avoid class imbalance during the data splitting, we
carefully grouped the subjects in the sets so that they contain
approximately the same percentage of samples of each class in
each fold, using the stratified group k-fold technique. During
the training process, the parameters were initialized following
the Xavier scheme [48]. The models were trained for 250
epochs using the Adam optimizer with standard learning rate
0.001, β1 = 0.9, β2 = 0.999. The dropout rate was 0.3.
Batch normalization was also applied after each GCN layer,
with early stopping as well with a patience of 20 epochs. The
models were trained on a Linux machine with 32 GB of RAM,
and were implemented by using PyTorch Geometric extension
library based on PyTorch 2.3 (Python 3.10) [49].
Comparative tests. A major objective of this study was
to investigate whether integrating multimodal data in GCN
enhanced classification performance compared to relying on
unimodal data alone. To this end, we evaluated our multimodal
GCN model with two input configurations that serve as
comparative tests: the first used only DWI data and the second
only fMRI, which we named unimodal SC and unimodal
FC, respectively. For unimodal SC, for each participant, the
graph input was the weighted adjacency matrix containing
the number of fibers from tractography performed with the
DWI data, and the node features were computed using the
connection profile. For unimodal FC, for each participant, the
graph input was the thresholded Pearson matrix P computed
from the BOLD signals from fMRI data, and the node features
were also computed using the connection profile. The training
process remained unchanged, resulting in the learned represen-
tations capturing exclusively information related to either SC
or FC only. Grad-CAM was applied to these models as well to
compare the salient ROIs that were output when considering
a unique modality. Fig. 4 illustrates our experimental pipeline.
Evaluation metrics. In this study, we used common metrics
to assess the performance of our proposed multimodal model
and the comparative tests, including Accuracy, F1-score, and
Precision.

IV. RESULTS

A. Classification performance
We tested 3 different classification tasks including CA vs

AA, CA vs DA, and AA vs DA to examine the performance
of our approach. For each task, we compared the evaluation
metrics of our method and computed paired Student’s t-tests
on the metrics of the unimodal models previously described.
The results of the average evaluation metrics through the 10
folds are shown in Table I.

For the discrimination between CA and AA, our proposed
multimodal model outperforms the unimodal ones across all
evaluation metrics, with a 2.76% improvement in accuracy
over unimodal FC (95.51% vs 92.75%, p = 0.034), and a
larger increase compared to unimodal SC, which achieved
53.08% (p = 0.032). This pattern is consistent across F1-
score and precision. Similarly, in the AA vs DA classification,

TABLE I
CLASSIFICATION PERFORMANCE FOR ALL CLASSIFICATION TASKS

ACROSS MODALITIES

unimodal SC unimodal FC Proposed

CA vs AA
Accuracy 53.08 ± 14.62 92.75 ± 12.79 95.51 ± 7.90
F1-score 40.35 ± 16.91 92.82 ± 12.68 94.84 ± 9.72
Precision 44.10 ± 26.44 94.72 ± 9.44 95.44 ± 8.74
CA vs DA
Accuracy 64.81 ± 16.09 93.33 ± 6.24 86.11 ± 8.78
F1-score 55.43 ± 23.53 93.43 ± 6.22 86.37 ± 8.89
Precision 52.22 ± 28.80 94.59 ± 5.44 89.07 ± 7.96

AA vs DA
Accuracy 56.48 ± 17.54 88.57 ± 12.56 93.61 ± 11.55
F1-score 42.23 ± 22.21 87.76 ± 14.32 93.29 ± 12.46
Precision 34.98 ± 23.96 92.49 ± 7.16 95.99 ± 6.42

± represents the standard deviation of evaluation scores through the folds.
AA: Anxious Adolescents; CA: Control Adolescents; DA: Depressed Adoles-
cents; FC: Functional Connectivity; SC: Structural Connectivity.

our proposed multimodal model again outperforms both uni-
modal SC and unimodal FC. The accuracy is 5.04% higher
than unimodal FC (93.61% vs 88.57%, p = 0.016), and
significantly higher than unimodal SC, which achieved 56.48%
(p = 0.016). This trend is also observed in the F1-score and
precision metrics, similar to the CA vs AA discrimination.
For CA vs DA, the accuracy of unimodal FC is 7.22% greater
than the one in our multimodal model (p = 0.036), which
is contrary to our expectations. Nevertheless, we notice that
the scores with our multimodal approach in this task are
still relatively high, about 87%. It is worth noting that our
proposed multimodal model achieves the highest scores in
two of the three classification tasks across all modalities and
almost all metrics (95.51% and 93.61% for accuracies). On the
contrary, unimodal SC demonstrates consistently lower per-
formance across all classification tasks, with accuracy ranging
from 53.08% to 64.81% and with higher standard deviations.
These results suggest that integrating the complex relationship
between SC and FC in our multimodal approach induces
better classification performance as compared to the unimodal
models in most classification tasks. To gain deeper insights
into the underlying factors contributing to this, particularly
the ROIs driving the discrimination between the groups, we
further identify the most salient brain regions in the different
models.

B. Identification of salient ROIs

Fig. 5 shows the averaged localization maps for the top 30
salient ROIs of CA vs AA, CA vs DA, and AA vs DA for the
three approaches, computed with Grad-CAM as explained in
Section II-D. The names of the top 30 salient ROIs for each
classification task are listed in Table 2, Table 3, and Table 4
in the supplemental material.

For CA vs AA, our proposed multimodal approach iden-
tified several overlapping ROIs with unimodal FC, including
regions from the DMN, such as the prefrontal cortex (PFC)
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Fig. 4. Experimental pipeline. Structural connectivity is constructed based on diffusion MRI and averaged resting-state fMRI time-series of each brain region
(416 regions in total with the Tian-Schaefer atlas) are used to compute functional connectivity, via Pearson correlation coefficient. Then, structural connectivity
is used to initialize the graph topology, and functional connectivity is used as the node features. Unimodal approaches with unimodal SC and unimodal FC
are developed to enable comparisons with our multimodal approach. Finally, Gradient-weighted Class Activation Mapping is adapted to our graph setting to
identify the top brain regions that contribute the most for the classification tasks.

and the dorsal and medial prefrontal cortex (PFCdPFCm).
Visual network regions also emerged as key features in both
unimodal and multimodal approaches. In particular, 5 ROIs
were shared between unimodal FC and our multimodal model,
underscoring their importance in driving high classification
performance.

For CA vs DA, unimodal FC identifies frontal regions as
highly salient, in contrast to the ROIs highlighted in our
proposed multimodal model where other networks predomi-
nate, such as the visual network, the dorsal attention network
(DAN), the somatomotor network (SMN), and also limbic
regions with the oribital frontal cortex. Moreover, there is
no overlap in the salient ROIs between unimodal FC and
our multimodal method. This frontal region involvement and
the absence of overlapping ROIs may explain the better
performance of unimodal FC in classifying CA vs DA more
accurately than our multimodal model.

In the classification of AA vs DA, there is a notable dif-
ference in the number of overlapping ROIs between unimodal
approaches and our proposed multimodal model. Indeed, 14
ROIs overlap between unimodal SC and our multimodal ap-
proach, while this is the case for only one ROI with unimodal
FC. The overlapping ROIs between unimodal SC and our
multimodal model include key areas within the SMN, visual
network, and parts of the DAN. These regions are crucial
for distinguishing between AA and DA, contributing to the
improved performance observed in our multimodal approach.

For all classification tasks, subcortical regions—namely the
hippocampus, putamen, thalamus, and caudate nucleus—are
frequently highlighted in unimodal SC and our multimodal
model, particularly for CA vs DA. These regions contribute to
the model’s discriminatory power, especially when combined
with cortical regions involved in the DAN and SMN. When

considering unimodal methods, several salient ROIs are similar
with the ones previously mentioned for our multimodal model.
However, most of these ROIs are exclusively identified in
one of the unimodal approaches. For example, the subcortical
regions are identified in unimodal SC but none appears in
unimodal FC. Moreover, the ROIs identified in unimodal FC
are mainly part of the DMN, with the PFC, the PFCdPFCm
and the precuneus posterior cingulate cortex. Yet, very few
of them appear in the top salient ROIs in our proposed
multimodal model, but other ROIs are instead highlighted such
as the somatomotor cortex and regions from the DAN.

V. DISCUSSION

In this study, we developed a GCN-based framework using
graph-structured data combined with node features to classify
two groups. This model allows to combine multimodal data,
such that the brain graph and feature matrix correspond
to SC and the connectivity profile or FC, respectively. It
leverages its ability to capture higher-order information from
the neighborhoods of graph nodes representing ROI in the SC,
while incorporating neural activity from FC.

A. Classification results

Our study achieved an average accuracy of 91.74% in
the 3 classification tasks for our multimodal approach, thus
demonstrating a competitive classification performance for our
multimodal model, with respect to those recently reported
using classical machine learning approaches and multi-shell
data with the Human Connectome Project protocol [50].

However, the performance of unimodal SC was relatively
modest across all 3 classification tasks, suggesting that while
SC contributes some structural information, it may not fully
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Fig. 5. Localization maps of the 30 regions of interest that discriminate the most between two groups, for all the classification tasks, and across modalities.
The fist row corresponds to the classification between Control Adolescents and Anxious Adolescents, the second one between Control Adolescents and
Depressed Adolescents, and the third one between Anxious Adolescents and Depressed Adolescents. The first column corresponds to the classification with
only structural connectivity information, the second one with only functional connectivity, and the third one with both connectivities. The values on each
region were obtained based on Gradient-weighted Class Activation Mapping to reflect the contribution of each of them for the classification task, and were
thresholded at 0.5 for visualization purposes such that the values below it were set to 0.

capture the underlying patterns needed for effective classifica-
tion. This is in agreement with recent reviews that attempted
to classify depressed patients from controls, where the best
accuracies obtained were less than 60% using DWI [51]–[53].
These results could be attributed to the few structural changes
observed in DWI studies in depressed patients [54], [55] and
anxious patients [56]. In particular, only subtle alterations
were detected in young depressed and anxious populations
[57], which may imply that structural brain differences are
less pronounced at earlier stages of the disorders, potentially
evolving with chronicity or age. Moreover, diffusion models
still lack the precision needed to accurately estimate SC,
which could further contribute to its limited effectiveness
in classification tasks. These models may not fully depict
microstructural variations, especially when structural changes
are subtle or diffuse across brain regions [58]. Even with the
use of more advanced modeling and tracking methods in this
work, as presented in Section III, challenges remain, including
the reduction of false-positive fibers, the over representation of
simpler tracks and the under-representation of difficult ones,
leading to a density bias [59]. As such, relying solely on SC
may not provide a complete understanding of the complexities
involved in distinguishing between the groups.

In contrast, unimodal FC exhibited significantly higher
performance, suggesting that FC captures modifications of
brain activity that allows to classify the different groups. This
highlights the significance of FC in distinguishing connectivity
differences relevant to depression and anxiety. Indeed, FC
reflects neural activity within networks, which is crucial in
psychiatric disorders. Several studies [60], [61] that imple-

mented GCN to classify depressed patients using FC reported
classification accuracies around 85%, which is consistent with
our results. In comparison to SC, a recent systematic evalua-
tion of machine learning approaches for depression indicated
that features derived from fMRI generally outperformed SC in
distinguishing depressed patients and controls [51]. This aligns
with the idea that FC more closely tracks the brain’s real-time
communication patterns, whereas SC reflects static pathways,
which are less sensitive to transient mental states or disorders
like anxiety or depression.

The proposed multimodal approach effectively integrated
both SC and FC, allowing us to provide complementary
information, where SC defines the physical constraints within
which functional activity occurs. This integration enhanced
classification performance in specific classification tasks, as
evidenced by the results for CA vs AA and AA vs DA. Inter-
estingly, despite the moderate performance of unimodal SC,
combining SC with FC yielded higher classification accuracy
than using FC alone. This suggests that SC provides a kind
of ‘structural scaffold’ that supports and contextualizes the
functional interactions, leading to richer, more nuanced fea-
tures. For instance, while FC reflects neural activity between
brain regions, SC contributes crucial anatomical information
that clarifies and strengthens the functional relationships be-
tween these regions. This synergy between the two modalities
has been demonstrated in prior GCN studies of multimodal
brain graphs of SC and FC for classifying neuropsychiatric
disorders [62], mild cognitive impairment [63], or autism
spectrum disorder [64]. In these works, the inclusion of SC
allowed for richer data embeddings from FC, leading to more
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accurate clinical predictions. In the classification of CA vs
DA, although unimodal FC performed better, our proposed
multimodal model achieved high accuracies that were not
merely an average of SC and FC performances. On the one
hand, this indicates that our model effectively learns the
complex relationships between SC and FC, leading to a more
nuanced representation of brain connectivity. On the other
hand, this may also suggest that DA exhibits more variability
in SC patterns, which may hinder the GCN’s ability to surpass
its performance with AA in the discrimination from CA.
This variability in SC might be due to differences in the
structural integrity of white matter pathways associated with
different groups of depressed patients. Indeed, the literature
on depression phenotypes has increasingly highlighted its
heterogeneous nature [65], [66], which may influence their
SC patterns.

In summary, while SC alone may not provide sufficient
information for effective classification, FC offers a robust al-
ternative for clinical data on depression and anxiety. However,
the key takeaway is that combining SC and FC in a multi-
modal approach leverages the complementary strengths of both
modalities, resulting in enhanced classification performance
that neither modality can achieve alone in specific tasks. This
further motivates us to examine the top ROIs that contributed
to the discrimination between the groups in our classification
tasks, as understanding these key regions may provide deeper
insights into the underlying neural mechanisms involved.

B. Altered regions in anxiety and depression

To the best of our knowledge, this is the first investigation
using GCN combining structural and functional imaging data
to explore the differences between anxious and depressed ado-
lescents. Our study revealed a substantial overlap of networks
involved in both conditions (AA and DA) as compared to CA,
notably, the DMN that is involved in emotional regulation
and self-referential thinking [67]. This network has been com-
monly identified as associated with these disorders using both
structural and functional imaging. It is well known that anxiety
and depression share common clinical, and brain components
since both are associated with altered affective dimension
[68]. Also, it is worth noting that both disorders are highly
comorbid, and it is expected that from a pathophysiological
standpoint the regions identified with both structural and
functional analyses share key networks [69] - such as DMN
- involved in emotion regulation [68]. However, anxious and
depressed adolescents showed distinct alterations. On the one
hand, anxiety seemed to involve more right-lateralized activity
in the DMN and changes in visual processing. Although the
lateralization of emotion regulation is still debated, some stud-
ies have reported that trait anxiety could be associated with the
right PFC activation [70]. Consistent with our study, the visual
limbic pathway and visual network have been identified to be
associated with anxiety state [71] and thought to be involved in
abnormal perception of environment visual information [72].
However, the visual network has also been shown to play a role
in depressed adolescents in a study using SC-FC coupling [69].
Of note, the salience ventral attentional network (SVAN) has

been implicated in AA as compared to CA using multimodal
approach but not our depression group. This suggests that
disruptions in the SVAN – that has been linked to attention
bias - may be more characteristic of anxiety rather than
depression, which complements findings from a unimodal rs-
fMRI study [73]. Taken together, these abnormalities in the
anxious group might be associated with heightened awareness
or sensitivity to external stimuli [74]. Our depression group,
on the other hand, might be associated with more disruptions
in temporal regions of the DMN. These patterns have been
linked with rumination and altered emotional memory [75],
key aspects of depressive disorder. Even if the DMN – a
widely distributed network – seemed to be involved in both
depression and anxiety conditions, our study suggested that by
combining the two connectivity modalities, some subregions of
this network might be more characteristic of depression such
as temporal region of the DMN. The multimodal approach
might be of interest to have a better precision in exploring
some specific pathophysiological patterns related to either
anxiety or depressive disorders in adolescents.

C. Differences in salient ROIs between unimodal and multi-
modal methods

The use of multimodal methods to explore the brain physi-
ology associated with brain development and mental disorders
has recently been reported as a promising approach [76]. In
our work, our multimodal model tended to highlight more
distributed regions within both hemispheres that were related
to subcortical structures (like the hippocampus, thalamus, and
caudate nucleus), which play key roles in memory, emotion
and motivation. These regions are often implicated in de-
pression and anxiety, where structural deficits in regions like
the hippocampus correlate with impairments in memory and
emotional regulation. For example, studies [77] reported that
decreased hippocampal volume is associated with adolescent
depression, highlighting the hippocampus’s role in the neu-
ropathology of mood disorders. These regions are critical for
integrating different neural processes, but might require the
sensitivity of multimodal methods to be detected. Unimodal
FC highlighted more frequently regions within the DMN,
especially in the PFC and parietal cortex. These regions are
more involved in higher-order cognitive processes like self-
reflection and emotional evaluation, which may exhibit func-
tional changes independent of structural changes. These results
suggest that anxiety and depression affect DMN functioning
distinctly, which can be captured through FC alone. Unimodal
approaches, particularly functional imaging, tend to emphasize
activity within DMN regions, often revealing right-hemisphere
lateralization in anxiety. This lateralization aligns with ev-
idence that anxiety-related processing engages more right-
lateralized brain regions, involved in visual-spatial and threat-
related processing [78]. In contrast, structural deficits are
more broadly distributed and often encompass areas like the
hippocampus and PFC, underlying emotional regulation and
memory processes. This distinction in functional and structural
changes underscores the utility of multimodal methods to
capture a full spectrum of neural alterations across disorders
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[79], [80]. These findings collectively suggest that anxiety and
depression distinctly alter the DMN and associated networks,
with FC alone capable of capturing some disorder-specific pat-
terns. However, combining structural and functional imaging
enhances sensitivity, enabling a more nuanced understanding
of how these disorders uniquely impact adolescent brain
development.

D. Strategies for robust and generalizable models

In this work, we opted for several strategies to enhance
classification performance while enabling good generalizabil-
ity of our multimodal model. We chose the connection profile
as the node features for all the modalities. It is believed that
such feature encompasses the complete structural information
of the brain network, preserving extensive insights on pairwise
connections that reflect the full scope of connectivity patterns
[81]. Compared to other node features such as fMRI time-
series (when FC is considered) or graph topological metrics
computed from graph theory, the connection profile has been
shown to provide overall higher classification performance
in brain connectivity studies applied to clinical data [47].
Other than the choice for the input node features, we also
considered multiple techniques to improve generalization of
our multimodal model.

GCN, and deep neural networks in general, are highly
effective at learning complex relationships between clinical
data samples due to their multiple non-linear hidden layers.
However, when dealing with few data samples, the model
training can lead to overfitting issues. Therefore, a number
of strategies have been developed to cope with them. One
popular solution is data augmentation, that aims to artificially
generate new data based on existing training data [82], [83].
However, this process poses several challenges such as the
lack of common evaluation criteria, which sometimes leads
to the improvement of the model performance being the
only criterion to assess the effectiveness of the augmentation.
Another issue arises from the opacity of the models used for
data augmentation, making them difficult to interpret [84].
Considering the unknown impacts that augmented SC and FC
matrices may have on the interpretation of the salient ROIs,
we did not opt for this strategy in our experiments. Instead, we
adopted several other techniques and focused on the models’
architecture to prevent them from overfitting. First, in our
GCN architecture, we included batch normalization [85], a
regularization technique that normalizes the activations within
a layer by subtracting the batch mean from each activation
and dividing by the batch standard deviation. In addition to
speeding up the training process, it enhances model stability
and generalization. Thus, we applied batch normalization after
each GCN layer. Second, we adopted dropout as an additional
regularization technique to prevent overfitting. Dropout [86]
works by randomly setting a fraction of the neurons to zero
during training, forcing the model to rely on different subsets
of neurons in each iteration. This technique improves the
model’s robustness by reducing its dependency on specific
neurons and promoting better generalization. In our GCN
architecture, dropout was applied after the global average

pooling layer and the dense layer with a predefined dropout
rate equal to 0.3, ensuring that the model remained resilient
and did not overfit to the training data. Third, we implemented
early stopping [87], which monitors the model’s performance
on a validation set during training and halts the process if the
validation performance does not improve after a set number
of consecutive epochs. This approach helps avoid overtraining,
where the model begins to memorize the training data rather
than generalizing to unseen data. In our GCN architecture, we
applied early stopping with a patience of 20 epochs, ensuring
that training stopped at the optimal point to achieve the best
generalization.

E. Limitations and future directions

In terms of both performance and interpretation, the present
studies yielded strong results given the relatively straightfor-
ward structure of our multimodal GCN model. Indeed, the
multimodal GCN model and architecture that we considered
were relatively simple yet efficient. While effective for in-
tegrating SC and FC patterns in a unified framework and
extracting the complementary information of both modalities,
our proposed multimodal model may not fully exploit the
potential of more advanced architectures designed to capture
deeper, hierarchical relationships that could be applied to brain
networks. With the rapid development of deep learning, GNN
followed the trend and several works implemented sophis-
ticated neural network architectures including Long Short-
Term Memory [88], graph attention network [89], transformer-
based models [90], etc. However, only few works focused
on multimodal data in their frameworks, especially in the
neuroimaging field applied to neurodegenerative diseases. In-
vestigating these approaches could further allow to leverage
the full complexity of SC and FC relationships, potentially
enhancing classification performance, though interpretation of
the results should be warranted.

Moreover, although the groups of our data were balanced,
this study should be replicated in a larger population to assess
whether such analysis could provide clearer information on
brain changes across the groups and the modalities. Besides,
given the findings on our comparative tests with unimodal
SC, new tractography methods could enable construction of
more robust SC matrices. Studying approaches that add fibers
weighting between subcortical and cortical brain regions could
be beneficial to reduce the potential over-represented tracks in
the subcortical regions.

VI. CONCLUSION

In this work, we proposed a multimodal multi-layer GCN
framework to classify anxious and depressed adolescents with
controls by modeling brain spatial and temporal information
simultaneously. Despite the large number of previous works
that have focused on unimodal approaches with SC and FC to
explore the differences between brain connectomes of patients
and healthy controls, integrating SC and FC simultaneously
in a multimodal GCN model to represent their interactions
remains underexplored so far. Using SC as the graph and FC as
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the node features, our model effectively combined both modal-
ities and provided high classification performance. In addition,
through experimental comparisons with unimodal models, we
demonstrated that considering exclusively one modality often
output lower classification results, and highlighted salient
brain regions that were heavily subject to one only modality
as a consequence. In contrast, the joint modeling of SC
and FC efficiently exploited the complementary information
provided by both modalities, resulting in the identification of
brain regions that exhibited significant alterations in patients
compared to healthy controls, revealing patterns that aligned
more closely with the complexities of brain disorders such as
anxiety and depression. We believe that our approach opens
the door to a deeper understanding of those diseases, and thus
the exploration of new research avenues by clinicians.
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