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Structure of Riemann solvers on networks

(preliminary version 2)

R. Monneau∗

January 11, 2025

Simplicity is the ultimate improvement.

Abstract
In this paper we consider scalar Riemann solvers on networks, associated to scalar conservation laws. A junction

is a particular network which is a finite set of half lines glued together at the origin. Riemann solvers solve uniquely
the Riemann problem on the junction. We also assume that Riemann solutions are stable by passage to the limit.

In part I of the paper, we only address fundamental questions concerning Riemann problems on junctions. We
show a characterization of Riemann solvers either by their set of stationary solutions (the germ), or equivalently by
their Godunov flux at the junction. Moreover, we show that the gluing of two junctions with Riemann solvers is
well defined and leads to a new junction with a new Riemann solver. Our theory encompasses in particular Kruz̆kov
germs, Hamilton-Jacobi germs, monotone germs, conservative and non-conservative germs.

In part II of the work, we give an existence and uniqueness theory for conservation laws on networks in the special

case where Riemann solvers are associated to Kruz̆kov germs.
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1 Introduction

In part I of this paper, we consider scalar conservations laws on a junction. A junction of type n : m consists
in a set of N := n +m half lines (branches) glued together at the origin, with n ingoing branches and m
outgoing branches. We consider fluxes f = (f1, . . . , fN ), with one flux on each branch. We assume that the
solution at the origin (the junction point) is given by a Riemann solver. Recall that the Riemann problem
consists to solve the problem with initial data which is constant on each branch. By definition, a Riemann
solver allows to solve uniquely the Riemann problem on the junction. Moreover, by definition, the germ is
the set G ⊂ RN of stationary solutions for this Riemann problem on the junction. We show that Riemann
solvers are characterized by their germ G. We assume moreover that the Riemann solver is stable, i.e. that
the set of solutions to the G-Riemann problem is closed by passage to the limit.
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We show that there is a 1-1 correspondence between any germ G and its associated Godunov flux f̂G

at the junction, such that G =
{
f̂G = f

}
. We also show that the Godunov flux f̂G enjoys a certain Rie-

mann monotonicity property which implies for instance that f̂G + εId is injective for all positive ε, where
Id : RN → RN is the identity. This monotonicity property allows to define the gluing G1♯G2 of two Riemann
germs Gγ for junctions of type nγ : mγ for γ = 1, 2. We glue together two branches with the same flux, one
outgoing branch from germ G1 with one ingoing branch of germ G2. Then the glued set G1♯G2 is again a
Riemann germ and is of type (n1 + n2 − 1) : (m1 +m2 − 1).

This paper is the result of a project that we started more than ten years ago, strongly inspired by the
work of Andreianov, Karlsen, Risebro in [3]. There, the convenient notion of (what we call Kruz̆kov)
germ was introduced in order to describe the transmission condition between two domains. We were also
motivated by problems coming from traffic on networks (see for instance the book of Garavello, Piccoli
[12]). Notice that in the present paper we do not address at all the further difficulties that arise when
drivers’ turning preferences are transported by the traffic itself (see Bressan, Fang Yu [6]). The notion
of (Kruz̆kov) germs has been recently generalized by Musch, Fjordholm, Risebro in [18] to the case of
networks (see also the recent work Cardaliaguet, Forcadel, Monneau [7] for an application of [18] to
Kruz̆kov germs for traffic). Our reflection reached a certain maturity that allows us to deliver a quite general
theory of germs/Riemann solvers, that we develop in the present paper.

Let us call G-entropy solution any entropy solution with traces in G at the origin. Then our work opens
the door to the following natural question.

Open question: for which Riemann germ G, is there existence and/or uniqueness of G-entropy solutions?

There are potentially as many open problems as Riemann germs. This question is largely open, and we
will try to provide partial answers in future works. For instance, a satisfactory theory can be developed for
Hamilton-Jacobi germs (see Forcadel, Monneau [11] and Forcadel, Imbert, Monneau [29]).

In part II of this paper, we provide an existence and uniqueness theory for PDE solutions associated to
germs in the special class of Kruz̆kov germs. A subclass of Kruz̆kov germs is the one of monotone Kruz̆kov
germs. For this subclass, we show that a theory of subsolutions/supersolutions is available, with a natural
L1-comparison principle.

2 Framework and main results

2.1 Preliminaries

2.1.1 Riemann germ on a junction

Let N ≥ 1. A branch is an oriented half line. We describe a junction of type m : n, i.e. with m ingoing
branches (−∞, 0) and n outgoing branches (0,+∞), where N = m + n. Precisely, consider branches
Jk ≃ (0,+∞) or (−∞, 0) for k = 1, . . . , N , and the following junction set

J := {0}
⋃

k=1,...,N

Jk

with the topology of N branches glued together at the junction point 0. For later use, we also define the
orientation of the branch

(2.1) −σj =

{
−1 if Jj ≃ (−∞, 0)
+1 if Jj ≃ (0,+∞)

For a = (a1, . . . , aN ), b = (b1, . . . , bN ) ∈ R̄N with R̄ := R ∪ {−∞,+∞}, we write a < b if ak < bk for all
k, and a ≤ b if ak ≤ bk for all k. Then we consider a box [a, b] defined as follows and a vectorial flux function
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f satisfying
(2.2)

[a, b] :=
∏

k=1,...,N

[ak, bk] ⊂ RN , with a < b

the function f = (fk)k=1,...,N , s.t.


fk : [ak, bk] → R is locally Lipschitz continuous

and
there exists θk ∈ {±1} s.t.
θkfk(pk) → +∞ if |pk| → +∞ and pk ∈ [ak, bk] (coercivity)

where we take the convention in the whole paper that for all c, d ∈ R̄ with c ≤ d, we set

(2.3)

 [c, d] := R ∩
{
x ∈ R̄, c ≤ x ≤ d

}
(c, d] := R ∩

{
x ∈ R̄, c < x ≤ d

}
[c, d) := R ∩

{
x ∈ R̄, c ≤ x < d

} (box convention)

We mainly have in mind this convention for c, d finite, but allow more generally convention c, d ∈ {±∞}. In
particular, coercivity assumption in (2.2) is useful only when ak = −∞ and/or bk = +∞.

Even if the local Lipschitz continuity of f seems technical in assumption (2.2), it is very useful, because
this insures that the velocity of propagation is always finite. For p = (p1, . . . , pN ), we will also denote

fk(p) := fk(pk)

by abuse of notation.
We then consider functions uk : [0,+∞)×Jk → [ak, bk], with uk(t, x) solution of scalar conservation laws

on the branch Jk

(2.4)

{
∂tu

k + ∂x(f
k(uk)) = 0 on (0,+∞)× Jk, k = 1, . . . , N

u(t, 0) ∈ G for a.e. time t ∈ (0,+∞)

and where the junction condition satisfied by the trace of u = (u1, . . . , uN ) on {x = 0}, is encoded by a given
set G ⊂ [a, b]. We will see later why the trace is well defined in the case of a Riemann problem.

The box [a, b] where the solutions take their values presents the advantage to be preserved by the PDE,
under suitable conditions. Moreover, even if the box is equal to RN , we will see that under our assumptions,
if the initial data is bounded, then there is a general procedure that allows to replace RN by a bounded box
[a, b] (see Proposition 6.1).

We now want to recall the definition of Kruz̆kov entropy solutions (see Kruz̆kov [16]). For x ∈ R,
we set sign(x) := 1{x>0} − 1{x<0}. We recall that the Kruz̆kov pairs (entropy/ flux of entropy) for u =
(u1, . . . , uN ), v = (v1 . . . , vN ) ∈ RN are given by

(2.5) ηk(u, v) := ηk(uk, vk) := |uk − vk| and ψk(u, v) := ψk(uk, vk) := sign(uk − vk) ·
{
fk(uk)− fk(vk)

}
Then we recall the following standard notion.

Definition 2.1 (Kruz̆kov entropy solution, [16])
We say that uk ∈ L∞([0,+∞) × Jk; [ak, bk]) is a Kruz̆kov entropy solution of the first line of (2.4), with
initial data uk0 ∈ L∞(Jk; [ak, bk]), if for any constant c = (c1, . . . , cN ) ∈ RN , and for any (test) function
0 ≤ φk ∈ C1

c ([0,+∞)× Jk), we have∫
(0,+∞)×Jk

{
ηk(u, c)φk

t + ψk(u, c)φk
x

}
dtdx+

∫
{0}×Jk

ηk(u0, c)φ
k dx ≥ 0

Definition 2.2 (G-entropy solution)
Under assumption (2.2), we say that u = (uk)k=1,...,N is a G-entropy solution, if each component uk is a
Kruz̆kov entropy solution of the first line of (2.4), and the trace u(·, 0) (when it is defined) satisfies the second
line of (2.4).

We introduce the following definition.
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Definition 2.3 (G-Riemann problem)
Assume (2.2). Given any p = (p1, . . . , pN ) ∈ [a, b], we say that u = (uk)k=1,...,N is a G-entropy solution to
the G-Riemann problem with initial data p, if uk : [0,+∞)× Jk → [ak, bk] is a Kruz̆kov entropy solution of
(2.4) such that for all k, we have
(2.6)

uk(t, x) = uk
(
1,
x

t

)
for all (t, x) ∈ (0,+∞)× Jk (0-homogeneity)

uk = pk on {0} × Jk, (initial data)
uk(t, 0) = p̂k for a.e. time t ∈ (0,+∞) (trace at the origin along Jk)

for some p̂ = (p̂1, . . . , p̂N ) ∈ G. The solution is then denoted by u = uGp,p̂.

Notice that the meaning of the trace is the following

ess lim
Jj∋x→0

∫
(0,T )

|uj(t, x)− p̂j | dt = 0 for all index j and all T > 0

Still, in part I of this paper, we will never have to use such a delicate notion of trace; here the notion will be
much more elementar. Indeed, for classical Riemann problem (and then also for our G-Riemann problem), it
is known that each component map x 7→ uk(t, x) is monotone (see Lemma 9.1), and then the trace uk(t, 0)
is well-defined without requiring further assumptions on f which are usually required to get strong traces.

We have the following result.

Proposition 2.4 (L1 estimate for Riemann problem)
Assume (2.2) and let p ∈ [a, b] and some set G ⊂ [a, b] such that there exists p̂ ∈ G and a G-entropy solution
u := uGp,p̂. Then for all t ≥ 0 and j = 1, . . . , N , we have

(2.7)

∫
{t}×Jj

(uj − pj) = t
{
f j(p̂j)− f j(pj)

}
and

∫
{t}×Jj

|uj − pj | = t
∣∣f j(p̂j)− f j(pj)

∣∣
Definition 2.5 (Generalized Riemann germ, Godunov flux, Riemann germ)
Assume (2.2).
i) (Generalized Riemann germ and the projection πG)
A set G ⊂ [a, b] is called a generalized Riemann germ (with respect to (J, f)) if for any initial data p ∈ [a, b],
there exists a unique G-entropy solution uGp,p̂ to G-Riemann problem (2.6) with some trace p̂ ∈ G at x = 0.
Then it defines a map π := πG

πG : [a, b] → G
p 7→ π(p) := p̂

which is a nonlinear projection, i.e. satisfies π ◦ π = π.
ii) (Godunov flux)

Given a generalized Riemann germ G, we define the Godunov flux at the junction f̂ := f̂G as

f̂G : [a, b] → RN

p 7→ f̂G(p) := (f ◦ πG)(p)

iii) (Stability and Riemann germ)
Given a generalized Riemann germ G, we say that G-Riemann problem (2.6) is stable if for any sequence
(pn)n∈N with [a, b] ∋ pn → p∞ ∈ [a, b], we have

uGpn,π(pn)
→ uGp∞,π(p∞) in L1

loc([0,+∞)× J) as n→ +∞

By abuse of terminology, we will say that G is stable. In such a case, G is called a Riemann germ (with
respect to (J, f)).

Remark 2.6 The (generalized) Riemann solver is the map p 7→ uGp,π(p). By abuse of terminology (in the

literature), the map π itself is sometimes also called a (generalized) Riemann solver.

The Godunov flux at the junction f̂G has to be distinguished from the standard Godunov flux Gfj

.
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Definition 2.7 (Standard Godunov flux)
Assume (2.2). The standard Godunov flux associated to the flux f j is given by

Gj(pj , qj) := Gfj

(pj , qj) :=


inf

[pj ,qj ]
f j if pj ≤ qj

sup
[qj ,pj ]

f j if pj ≥ qj

with monotonicities (not in the strict sense) indicated by the arrows Gj(↑, ↓).

We introduce the following.

Definition 2.8 (Subclasses of germs)
Assume (2.2). Let G ⊂ [a, b] be a generalized Riemann germ.
i) (Kruz̆kov germs = D-germs)
We say that G is a Kruz̆kov germ (also called a D-germ), if it satisfies

Df (p, q) ≥ 0 for all p, q ∈ G

where the dissipation is defined by

(2.8) Df (p, q) :=
∑

k=1,...,N

Dfk

(p, q) = IN−OUT with Dfk

(p, q) := σk · sign(pk − qk) ·
{
fk(pk)− fk(qk)

}
(which is a Kruz̆kov entropy production at the junction point).
i’) (Monotone Kruz̆kov germs = D+-germs)
We say that G is a D+-germ, if it satisfies

Df
+(p, q) ≥ 0 for all p, q ∈ G

where the semi-dissipation is defined by

(2.9) Df
+(p, q) :=

∑
k=1,...,N

Dfk

+ (p, q) = IN−OUT with Dfk

+ (p, q) := σk ·sign+(pk−qk)·
{
fk(pk)− fk(qk)

}
(which is a Kruz̆kov semi-entropy production at the junction point).
ii) (HJ germs)
We say that G is a Hamilton-Jacobi germ (HJ germ for short) if there exists a scalar function h : G → R
such that

f = (h, . . . , h) on G
(with our convention f j(p) := f j(pj)).
iii) (Monotone germs)
We say that G is a monotone germ if for all p, q ∈ [a, b] we have

(2.10) p ≥ q implies πG(p) ≥ πG(q)

iv) (Conservative germs)
We say that G is a conservative germ if IN = OUT, i.e. if∑

Jj≃(−∞,0)

f j(p) =
∑

Jj≃(0,+∞)

f j(p) for all p ∈ G

For later use, we also define the Rankine-Hugoniot function

RHf (p) :=
∑

j=1,...,N

σjf j(p) = IN−OUT

which vanishes on conservative germs.

Notice that Kruz̆kov, monotone Kruz̆kov, HJ, monotone and conservative germs G can equivalently (and

conveniently) be defined by the properties of their Godunov flux f̂G (see Lemma 5.5). We will see that the
terminology ”monotone Kruz̆kov” germs is justified for D+-germs, because we have exactly

{Kruz̆kov germs} ∩ {monotone germs} = {D+-germs}

as shows Theorem 2.23.
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2.1.2 Basin of Attraction

We will need the following key notion of basin of attraction of a point p̂ ∈ [a, b]. As we will see later, the
basin of attraction of p̂ is the set of initial data p ∈ [a, b] such that Riemann problem (2.6) can reach the
value p̂ at the junction point x = 0. It turns out that this notion is independent on the germ G, and indeed
reduces to the question for each component j. Hence the basin of attraction of p̂, is simply given by the
product of the basins of attraction of each component p̂j . The basin of attraction of p̂j depends on the
orientation of the branch Jj . For a single branch Jj with flux f j , the ”Basin of Attraction” around p̂j is
called BA(Jj ,fj)(p̂j) and is pictured in the generic case on the associated figure.

j

p

f

p

j

p j jj

(J ,f )

p
j

BA    (    )

j j

p

(a) Basin of Attraction for an ingoing branch
Jj ≃ (−∞, 0)

j

p pp

f

j j j

p j

j

(J ,f )
BA     (    )p

j
j

(b) Basin of Attraction for an outgoing branch
Jj ≃ (0,+∞)

The limit cases correspond to pj = p̂j , aj or pj = p̂j , bj . For Jj ≃ (−∞, 0), the Basin of Attraction of p̂j

is itself given by the largest interval Ij := BA(Jj ,fj)(p̂j) containing p̂j , such that for λj := f j(p̂j), we have
Ij ∩

{
f j = λj

}
=
{
p̂j
}
with f j strictly bigger than λj on the left of p̂j and f j strictly less than λj on the

right of p̂j . In the case where f j is increasing, then Ij is reduced to the singleton
{
p̂j
}
.

The basin of attraction of p̂ is simply given by the product of the basins of attraction for each component
p̂j . We now give the precise definition.

Definition 2.9 (Basin of attraction 1)
Assume (2.2) and let p̂ ∈ [a, b].
Then the Basin of Attraction of the point p̂ is the set

BA(p̂) =
∏

j=1,...,N

BA(Jj ,fj)(p̂j)

i) (Case A: Jj ≃ (−∞, 0))
Then

BA(Jj ,fj)(p̂j) := BAj
−(p̂

j) ∪
{
p̂j
}
∪BAj

+(p̂
j)

with for λj := f j(p̂j) {
BAj

−(p̂
j) :=

{
qj ∈ [aj , pj), f j > λj on [qj , pj)

}
BAj

+(p̂
j) :=

{
qj ∈ (pj , bj ], f j < λj on (pj , qj ]

}
where the intervals BAj

+(p̂
j) = BAj(p̂j) ∩ (p̂j ,+∞) and BAj

−(p̂
j) = BAj(p̂j) ∩ (−∞, p̂j) may be empty.

ii) (Case B: Jj ≃ (0,+∞))
Then

BA(Jj ,fj)(p̂j) := BA(−Jj ,−fj)(p̂j) with − Jj ≃ (−∞, 0)

1In case Jj ≃ (−∞, 0), we have more precisely

pj :=

{
inf BAj

−(p̂j) if BAj
−(p̂j) ̸= ∅

p̂j otherwise

∣∣∣∣ and BAj
−(p̂j) =

{
[aj , p̂j) if pj = aj and fj(aj) > λj

(pj , p̂j) otherwise

and

pj :=

{
supBAj

+(p̂j) if BAj
+(p̂j) ̸= ∅

p̂j otherwise

∣∣∣∣ and BAj
+(p̂j) =

{
(p̂j , bj ] if pj = bj and fj(bj) < λj

(p̂j , pj) otherwise
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In both Cases A or B, and when there will be no ambiguity, we will denote the basin of attraction simply by
BAj(p̂j), or BAj(p̂).

2.1.3 Riemann monotonicity and local constancy

We now introduce certain properties of functions which will be satisfied by the the projection πG and the
Godunov flux f̂G , under natural conditions. To this end, we first need to recall the following definition.

Definition 2.10 (Hadamard product of two vectors)
Assume N ≥ 1. For p, q ∈ RN , we define p ⋄ q ∈ RN as the vector of components given by the product of
components

(p ⋄ q)k = pkqk

Then we introduce the following.

Definition 2.11 (Riemann monotonicity)
Assume (2.2) and consider a function h : [a, b] → RN for N ≥ 1. We set [h]pq := h(p)− h(q).
We say that h is Riemann monotone if it satisfies for all p, q ∈ [a, b]

(2.11) (p− q) ⋄ [h]pq ≤ 0 =⇒ [h]pq = 0

Notice that condition (2.11) means max
j=1,...,N

(pj − qj) ·
{
hj(p)− hj(q)

}
≤ 0 implies h(p) = h(q).

Notice in particular that if h is Riemann monotone, then the map pj 7→ hj(p) is nondecreasing. Moreover,
for every ε > 0, the map h+ εId : [a, b] → RN is injective (see Lemma 5.3).

Definition 2.12 (Local constancy)
Assume (2.2) and consider a map h : [a, b] → RN . Let (e1, . . . , eN ) be the canonical basis of RN . Then we
say that h is locally constant on {h ̸= f}, if
(2.12)

for all p ∈ [a, b] and Kp :=
{
j ∈ {1, . . . , N} , hj(p) ̸= f j(p)

}
, there exists ε > 0

such that for Qε(p) := p+
∑
j∈Kp

(−ε, ε)ej, we have

h = const on [a, b] ∩Qε(p) (Constant on a local box)

2.2 Main results of Part I

2.2.1 Fundamental results: properties and gluing of Riemann germs

Proposition 2.13 (Properties of generalized Riemann germs)
Assume (2.2). Let G ⊂ [a, b] be a generalized Riemann germ in the sense of Definition 2.5. Let π := πG be

the projection map and f̂ := f̂G be the Godunov flux at the junction, as introduced in Definition 2.5). Then
the following holds true.
i) (Inverse of π)
We have

π−1(p̂) = BA(p̂) for all p̂ ∈ G

where BA(p̂) is the basin of attraction of p̂ given in Definition 2.9. In particular π is locally constant on
{π ̸= Id}.
ii) (Dissipation)
We have

Df (q, p̂) < 0 for all q ∈ BA(p̂)\ {p̂}

where the dissipation Df is defined in (2.8).
iii) (Riemann monotonicity of π)
The map π is Riemann monotone.
iv) (Local constancy of f̂)

The function f̂ is locally constant on
{
f̂ ̸= f

}
.

9



v) (Germ as a level set)
The generalized Riemann germ G can be recovered as follows

(2.13) G = Gf̂ where Gf̂ :=
{
p ∈ [a, b], f̂(p) = f(p)

}
(Germ as a level set)

vi) (Partial relaxation formula)
Moreover fix some p ∈ [a, b] and some index j, and define the map

f̂ jp (q
j) := f̂ j(ιjp(q

j)) for all qj ∈ [aj , bj ], with ιjp(q
j) := (p1, . . . , pj−1, qj , pj+1, . . . , pN )

Then this map satisfies the following partial relaxation formula

{
f̂ jp (p

j)
}
=



⋃
qj∈[aj ,bj ]

{
f̂ jp (q

j)
}
∩
{
Gj(qj , pj)

}
if Jj ≃ (0,+∞)

⋃
qj∈[aj ,bj ]

{
Gj(pj , qj)

}
∩
{
f̂ jp (q

j)
}

if Jj ≃ (−∞, 0)

∣∣∣∣∣∣∣∣∣∣∣
(partial relaxation formula)

where Gj is the standard Godunov flux associated to the function f j.
vii) (Partial Lipschitz estimate and basic monotonicity)

Moreover for any p ∈ [a, b] and any index j, the map f̂ jp : [aj , bj ] → R is locally Lipschitz continuous and

satisfies with σj ∈ {±1}

σj(∂j f̂
j) ◦ ιjp = σj(f̂ jp )

′ ∈
{
0, max

{
0, σj(f j)′

}}
a.e. on [aj , bj ] if Jj ≃ σj(−∞, 0)

Notice that π is not a continuous map in general. We have the following structure result.

Theorem 2.14 (Structure of generalized Riemann germs)
Assume (2.2) and consider a set G ⊂ [a, b].
i) (First characterization)
The set G is a generalized Riemann germ if and only if (BA(p̂))p̂∈G is a partition of [a, b].
ii) (Second characterization)
The set G is a generalized Riemann germ if and only if G = Gf̂ with Gf̂ given in (2.13) for some function

f̂ : [a, b] → RN which is locally constant on
{
f̂ ̸= f

}
and satisfying for all j the following additional

conditions:

(2.14)

{
pj 7→ σj f̂ j(p) is nondecreasing on [a, b] (Basic monotonicities)

f− ≤ f̂ ≤ f+ (Monotone bounds)

where σj is defined in (2.1) and
(2.15)

f j−(p
j) := inf

[aj ,pj ]
f j = Gj(aj , pj) and f j+(p

j) := sup
[pj ,bj ]

f j = Gj(bj , pj) if Jj ≃ (0,+∞), σj = −1

f j−(p
j) := inf

[pj ,bj ]
f j = Gj(pj , bj) and f j+(p

j) := sup
[aj ,pj ]

f j = Gj(pj , aj) if Jj ≃ (−∞, 0), σj = +1

When it is the case, then we necessarily have f̂ = f̂G where f̂G is defined in Proposition 2.13.

Remark 2.15 Notice that the second line of (2.14) means simply

inf
[pj ,bj ]

σjf j ≤ σj f̂ j(p) ≤ sup
[aj ,pj ]

σjf j for all p ∈ [a, b]

For N = 1, it is a fact that G must be a closed set and the function f̂ must be continuous (see Theorem
2.25 for N = 1). For N ≥ 2, this is no longer the case (see counter-examples in Lemma 8.1).

We now introduce the following
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Theorem 2.16 (Riemann germs)
Assume (2.2) and let G be a generalized Riemann germ.
i) (Characterization of Riemann germs)

Then G is a Riemann germ if and only if the Godunov flux f̂ = f̂G is continuous.
ii) (Characterization of f̂ for Riemann germs)

If G is a Riemann germ, then the Godunov flux f̂G : [a, b] → RN is then fully characterized as a continuous

function f̂ , locally constant on
{
f̂ ̸= f

}
and satisfying G =

{
f̂ = f

}
.

Notice that the continuity of f̂G implies in particular the closedness of Riemann germs G in [a, b].

Theorem 2.17 (Riemann monotonicity of σ ⋄ f̂)
Assume (2.2) with N ≥ 1 and recall that σ ∈ {±1}N encodes the orientations of the branches. Assume
moreover that f satisfies
(2.16)
fk : [ak, bk] → R is not constant on any nondegenerate interval, for all k = 1, . . . , N (Nondegeneracy)

i) (General result)

Then for any Riemann germ G, the Godunov flux f̂G : [a, b] → RN is such that σ ⋄ f̂G is Riemann monotone
in the sense of Definition 2.11.
ii) (Case of Kruz̆kov germs)
If G is a Kruz̆kov germ, then the conclusion of point i) still holds true, without assuming nondegeneracy
condition (2.16).

Remark 2.18 Notice that Riemann monotonicity of σ ⋄ f̂G means that for two distinct points p, q of the
germ, the entropy flux can not be negative for each components, at the junction point. In other words, at
least one branch must dissipate a positive entropy flux at the junction point.

Notice that without condition (2.16), there exist Riemann germs G such that σ ⋄ f̂G is not Riemann
monotone (see counter-example Lemma 8.3). Moreover Riemann monotonicity is required for gluing of
Riemann germs, as shows Lemma 8.4.

Theorem 2.19 (Gluing of Riemann germs along Jjα
α and J

jβ
β )

For γ = α, β, consider Riemann germs Gγ ⊂ [aγ , bγ ] for junctions of type nγ : mγ with Nγ := nγ +mγ , and
assume (2.2) with Jj

γ = σj
γ · (−∞, 0).

For each γ = α or β, assume either 1) nondegeneracy condition (2.16) for the flux function fγ : [aγ , bγ ] →
RNγ , or 2) that Gγ is a Kruz̆kov germ. We allow mixing cases for α and β.

Define [a, b]jγ := [ajγ , b
j
γ ]. Fix jγ ∈ {1, . . . , Nγ} such that
f jαα = f

jβ
β =: f0 and σjα

α = −σjβ
β

with f0 : [a0, b0] → R where [a0, b0] := [a, b]jαα = [a, b]
jβ
β

Define the gluing G := Gα♯Gβ of the germs Gα and Gβ along Jjα
α and J

jβ
β as

G := Gα ♯
jα:jβ

Gβ :=

(p′α, p
′
β) ∈ [a, b]′α × [a, b]′β , there exists rα, rβ ∈ [a0, b0] s.t.

∣∣∣∣∣∣
(rα, p

′
α) ∈ Gα,

(rβ , p
′
β) ∈ Gβ ,

f0(rα) = Gf0

(rα, rβ) = f0(rβ)


where Gf0

is the standard Godunov flux associated to the function f0, and where we use the abuse of notation

(rγ , p
′
γ) := (p1γ , . . . , p

jγ−1
γ , rγ , p

jγ+1
γ , . . . , p

Nγ
γ ), and

[a, b]′γ :=
∏

j∈{1,...,Nγ}\{jγ}

[a, b]jγ

i) (Glued Riemann germ)
Then G is a Riemann germ for a junction (nα + nβ − 1) : (mα +mβ − 1).
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ii) (Associativity of gluing)
The gluing of germs is associative.
iii) (Identity element of gluing)
For general gluing, the identity element is the standard Godunov germ for 1 : 1 junction

Gf0

:=
{
(r, s) ∈ [a0, b0]2, f0(r) = Gf0

(r, s) = f0(s)
}

i.e.
Gα♯Gf0

= Gα and Gf0

♯Gβ = Gβ

iv) (Nature of the glued germs)
Moreover if Gγ are Kruz̆kov germs (resp. HJ germs, resp. monotone germs, resp. conservative germs), then
G is a Kruz̆kov germ (resp. HJ germ, resp. monotone germ, resp. conservative germ).

Notice that the identity element Gf0

is a conservative germ for 1 : 1 junctions and then by Theorem 2.29,
it is also a Kruz̆kov, HJ and monotone germ. Moreover, from i) of Definition 2.5, there exists the Godunov

projection map π := πGf0 : [a0, b0]2 → Gf0

with π = (πα, πβ) =: (πL, πR), such that the standard Godunov
flux satisfies

Gf0

(pL, pR) = (f0 ◦ πL)(pL, pR) = (f0 ◦ πR)(pL, pR) for all (pL, pR) ∈ [a0, b0]2

and π is monotone in the sense of (2.10). Already for the standard Godunov flux Gf0

, this result seems new.

Remark 2.20 In Theorem 2.19, with abuse of notation, we have formally the gluing along the axis of flux
f0 as follows

Gα♯Gβ ∋ (p′α, p
′
β) =

∈Gα︷ ︸︸ ︷
(p′α, ︸ ︷︷ ︸

∈Gf0

rα)♯

∈Gβ︷ ︸︸ ︷
(rβ , p

′
β)

α

ε

J
β

J

Figure 1: Illustration of a gluing of two particular junctions, formally as ε→ 0

2.2.2 Applications to Kruz̆kov, Hamilton-Jacobi, monotone or conservative germs

We have the following results.

Theorem 2.21 (Properties of Kruz̆kov germs)
Assume (2.2) with N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ with respect to (J, f).
i) (Characterization of Kruz̆kov germs)

12



Then G is a Kruz̆kov germ if and only if G =
{
p ∈ [a, b], f̂(p) = f(p)

}
for some locally Lipschitz continuous

function f̂ : [a, b] → RN whose Jacobian matrix satisfies the following column diagonally dominant inequality

σi∂if̂
i ≥

∑
j∈{1,...,N}\{i}

|∂if̂ j | a.e. on [a, b], for all i = 1, . . . , N

When it is the case, then we have f̂ = f̂G.
ii) (D-maximality)
If G is a Kruz̆kov germ, then it satisfies the following D-maximality property: for all p ∈ [a, b](

Df (p, q) ≥ 0 for all q ∈ G
)

=⇒ p ∈ G

Theorem 2.22 (Characterization of monotone germs)
Assume (2.2) with N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ with respect to (J, f), and let

f̂ := f̂G be its associated Godunov flux. Then G is monotone if and only if

(2.17) p 7→ σj f̂ j(p) is nonincreasing in pk for all k ̸= j

Theorem 2.23 (Characterization of D+-germs)
Assume (2.2) with N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ with respect to (J, f).
Then we have as a germ

G is a D+-germ ⇔ (G monotone and G Kruz̆kov)

Theorem 2.24 (Properties of conservative Riemann germs)
Assume (2.2) with N ≥ 1. Let G ⊂ [a, b] be a Riemann germ with respect to (J, f).
Assume that G is conservative. Then we have

G monotone ⇔ G Kruz̆kov ⇔ G D+-germ

Notice that even for N = 2, there exist monotone and nonmonotone nonconservative Kruz̆kov germs (see
ii) of Lemma 8.6).

Notice also that for conservative germs G, the fact that the monotonicity of G is equivalent to the fact
that G is Kruz̆kov (which can itself be seen as equivalent to the fact that G generates a L1-contraction
semi-group), can be interpreted as a version of Crandall-Tartar’s Lemma (see Proposition 1 in [8]).

Notice also that there exist monotone Kruz̆kov germs which are not necessarily conservative, as it is
already the case for all non-conservative germs for N = 1 branch.

Theorem 2.25 (Properties of HJ germs)
Assume (2.2) with N ≥ 1.

i) (Regularity of f̂)

Every HJ germ G is a Riemann germ, i.e. f̂ = f̂G is continuous. Moreover there exists a function ĥ such
that

(2.18)


ĥ : [a, b] → R is continuous

p 7→ σj ĥ(p) is nondecreasing in pj for all j = 1, . . . , N,

f̂ := (ĥ, . . . , ĥ) satisfies the monotone bounds given in the second line of (2.14).

ii) (HJ-relaxation formula)
Then for each p ∈ [a, b], we have
(2.19){
ĥ(p)

}
=

⋃
q∈[a,b]

{ĥ(q)} ∩
⋂

Jj≃(−∞,0)

{
Gj(pj , qj)

}
∩

⋂
Jj≃(0,+∞)

{
Gj(qj , pj)

} (HJ-relaxation formula)

Remark 2.26 Notice that HJ-relaxation formula (2.19) can be used to define some HJ-relaxation operator
(see Lemma 6.7) which computes the analogue for N ≥ 1 of the effective boundary condition that was obtained
for N = 1 by Andreianov, Sbihi in [4].
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Definition 2.27 (Characteristic subset of a HJ germ)
Assume (2.2) with N ≥ 1. Let G be a generalized Riemann germ which is a HJ germ. We introduce the
characteristic subset of the HJ germ G as the set χG defined by

χG := χG ∪ χG with


χG :=

{
p̂ ∈ G, BAj

σj ̸= ∅ for all j = 1, . . . , N
}

χG :=
{
p̂ ∈ G, BAj

−σj (p̂
j) ̸= ∅ for all j = 1, . . . , N

}
with BAj

+(p̂
j) := BAj(p̂j) ∩ (p̂j ,+∞) and BAj

−(p̂
j) := BAj(p̂j) ∩ (−∞, p̂j).

Theorem 2.28 (HJ germ determined by its characteristic subset)
Assume (2.2) with N ≥ 1. Let G,G0 be two generalized Riemann germs which are both HJ germs. Then we
have

χG ⊂ G0 implies G0 = G

Theorem 2.28 is very important, because in many practical situations, the characteristic subset χG is
usually a finite set (see for instance example given in Lemma 8.10, where the characteristic subset is a set
of four points for a HJ germ on a 1 : 1 junction).

Notice that monotone germs have less good properties than Kruz̆kov or HJ germs. For instance there
exist monotone germs which are not Riemann germs (see Lemma 8.1 for N = 2).
Notice also that for any Kruz̆kov or HJ germs, the Godunov flux at the junction is indeed always locally
Lipschitz (see Theorem 2.21 for Kruz̆kov germs, and see Proposition 6.9 for HJ germs). On the contrary,

there exists monotone germs G such that f̂G is continuous but not locally Lipschitz (see Lemma 8.2).

Notice also that for N = 1, all generalized Riemann germs are indeed Kruz̆kov germs, HJ germs and
monotone germs (but not conservative germs in general). This result extends to conservative germs for
N = 2 in the case of 1 : 1 junctions.

Theorem 2.29 (Properties of conservative germs on 1 : 1 junctions)
Assume (2.2) for N = 2 and 1 : 1 junctions with J1 ≃ (−∞, 0) and J2 ≃ (0,+∞). Let G ⊂ [a, b] be a
generalized Riemann germ.
i) (Nature of the germ)
Then G is conservative if and only if it is a HJ germ. Moreover in that case, G is determined by its
characteristic subset χG given in Definition 2.27, and G is a D+-germ. Moreover we have

(2.20) G =
{
p ∈ [a, b], RHf (p) = 0, Df (p, q) ≥ 0 for all q ∈ χG

}
ii) (HJ-relaxation formula)

When G is conservative, then the Godunov flux satisfies (f̂1, f̂2) = (ĥ, ĥ) with ĥ : [a, b] → R with monotonic-

ities ĥ(↑, ↓). And for any p ∈ [a, b], there exists some q ∈ [a, b] (possibly non unique) such that

(2.21) ĥ(p) = Gf1

(p1, q1) = ĥ(q) = Gf2

(q2, p2)

Moreover we have

(2.22) max

{
inf

[p1,b1]
f1, inf

[a2,p2]
f2
}

≤ ĥ(p) ≤ min

{
sup

[a1,p1]

f1, sup
[p2,b2]

f2

}

Notice that for 1 : 1 junctions, there are examples of Kruz̆kov germs which are not conservative (see
for instance ii) of Lemma 8.6 for 2 : 0 junctions). Notice also that HJ-relaxation formula (2.21) allows to
construct all conservative germs for 1 : 1 junctions (see for instance the Relaxation operator in Lemma 6.7).

Proposition 2.30 (Germ product property for several conservative lines with concave fluxes)
Assume (2.2) for N = 2n with n : n junctions, and call f jL and f jR respectively the j-th ingoing and j-the
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outgoing fluxes for j = 1, . . . , n. Assume that each f jα is strictly concave with maximum at cjα ∈ (ajα, bjα).
Let G ⊂ [a, b] be a closed generalized Riemann germ satisfying for p = (p1L, p1R, . . . , pnL, pnR)

G ⊂
⋂

j=1,...,n

Σj , with Σj :=
{
p ∈ [a, b], f jL(pjL) = f jR(pjR)

}
which means that each j-th line JjL ∪ {0} ∪ JjR ≃ R is conservative. Then

G =
∏

j=1,...,n

Gj with Gj ⊂
{
(pjL, pjR) ∈ [ajL, bjL]× [ajR, bjR], f jL(pjL) = f jR(pjR)

}
⊂ R2

where each Gj is a conservative Riemann germ with respect to (f jL, f jR) for a 1 : 1 junction with JjL ≃
(−∞, 0) and JjR ≃ (0,+∞).

This result has implications in the theory of traffic on networks. In particular, if two conservative lines
Li for i = 1, 2 cross each other, then the flux limiter on line L1 only depends on the structure of the junction
(between the two lines), but not on the state of the traffic on line L2.

Notice that more generally, for bell-shaped fluxes, Godunov fluxes have a polar decomposition (see Propo-
sition 7.23).

As a straightforward corollary of Theorem 2.19, we get the following result.

Corollary 2.31 (Semigroup of germs for the gluing of 1 : 1 junctions with the same flux)

Assume (2.2) and nondegeneracy assumption (2.16) for N = 2 and 1 : 1 junctions J = {0} ∪
⋃

j=1,2

Jj with

J1 ≃ (−∞, 0) and J2 ≃ (0,+∞) and the same flux function

f1 = f2 =: f0, [a1, b1] = [a2, b2] =: [a0, b0], [a, b] := [a0, b0]2

Let G(J,f) be the set of Riemann germs G ⊂ [a, b] with respect to (J, f). Let

Gf0

:=
{
(r, s) ∈ [a0, b0], f0(r) = Gf0

(r, s) = f0(s)
}

where Gf0

is the standard Godunov flux associated to the flux f0 : [a0, b0] → R.
Then (G(J,f), ♯) is a semigroup, with identity element equal to Gf0

. We have

♯ : G(J,f) ×G(J,f) → G(J,f)

(G2,G1) 7→ G2♯G1

where we recall that G2♯G1 is the germ obtained by gluing of the outgoing branch J2 ≃ (0,+∞) of G2 with
the ingoing branch J1 ≃ (−∞, 0) of G1.

Notice that this semigroup can be not commutative (see Lemma 8.11 for an example).

2.3 Comments on Part II

2.3.1 Preliminaries: G-entropy solutions, semi-solutions, strong traces

In part I of the paper we were focusing on self-similar solutions of Riemann problems on a junction. On the
contrary, in Part II, we consider general Kruz̆kov entropy solutions/subsolutions/supersolutions, for which
we will need to be able to define the trace at the junction point. This will be done using the work of Panov [35].

For functions uk : [0,+∞) × Jk → [ak, bk], with uk(t, x), we consider the equation of the first line of
(2.4), namely the scalar conservation laws on the branch Jk

(2.23) ∂tu
k + ∂x(f

k(uk)) = 0 on (0,+∞)× Jk, k = 1, . . . , N.
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We want to recall the definition of Kruz̆kov entropy solutions, subsolutions and supersolutions (see
Kruz̆kov [16]). For x ∈ R, we set sign(x) = 1{x>0} − 1{x<0}. We recall that the Kruz̆kov pairs (entropy/
flux of entropy) for u = (u1, . . . , uN ), v = (v1 . . . , vN ) ∈ RN are given by (2.5), i.e.

(2.24) ηk(uk, vk) := |uk − vk| and ψfk

(uk, vk) = ψk(uk, vk) := sign(uk − vk) ·
{
fk(uk)− fk(vk)

}
Similarly, for x ∈ R, we set |x|± := max(0,±x) and sign±(x) = 1{±x>0}. We recall that the Kruz̆kov pairs
(semi-entropy/ flux of semi-entropy) given by

(2.25) ηk±(u
k, vk) := |uk − vk|± and ψfk

± (uk, vk) = ψk
±(u

k, vk) := sign±(uk − vk) ·
{
fk(uk)− fk(vk)

}
We will also use shorthands notations ηk(u, v) := ηk(uk, vk) and ψfk

(u, v) = ψk(u, v) := ψk(uk, vk) and

similarly for ηk± and ψk
±, ψ

fk

± . Then we recall the following standard notion (which recalls and contains
Definition 2.32 for Kruz̆kov entropy solutions).

Definition 2.32 (Kruz̆kov entropy solution, subsolution and supersolution)
We say that uk is a Kruz̆kov entropy solution (resp. subsolution, resp. supersolution) of (2.23), with initial
data uk0 ∈ L∞(Jk; [ak, bk]), if uk ∈ L∞([0,+∞) × Jk; [ak, bk]) and for any constant c = (c1, . . . , cN ) ∈ RN ,
and for any (test) function 0 ≤ φk ∈ C1

c ([0,+∞)× Jk), we have∫
(0,+∞)×Jk

{
ηk(u, c)φk

t + ψk(u, c)φk
x

}
dtdx+

∫
{0}×Jk

ηk(u0, c)φ
k dx ≥ 0

(
resp.

∫
(0,+∞)×Jk

{
ηk±(u, c)φ

k
t + ψk

±(u, c)φ
k
x

}
dtdx+

∫
{0}×Jk

ηk±(u0, c)φ
k dx ≥ 0

)
with + for subsolutions and − for supersolutions.
For subsolutions uk, we write

∂tu
k + ∂x(f

k(uk)) ≤
Kruz̆kov

0 on (0,+∞)× Jk

and for supersolutions uk, we write

∂tu
k + ∂x(f

k(uk)) ≥
Kruz̆kov

0 on (0,+∞)× Jk

Notice that the box [a, b] is where all the values of the function u stay confined.

The standard Kruz̆kov theory on the real line (hence without junctions) shows that BV norm of the initial
data is preserved by the evolution. As it has been shown in an important counter-example by Adimurthi,
Ghoshal, Dutta, Veerappa Gowda [21], already for 1 : 1 junctions with convex fluxes on each branch
the space BV norm of the solution may blow-up in finite time. For this reason, the notion of trace of the
solution at the junction point can not be based on BV bounds which do not exist in general.

Fortunately, under suitable conditions on the fluxes, the notion of strong trace of the solution has first
been shown to exist by Vasseur [37]. Then it has been generalized by Panov [35], in a way which is convenient
for our work. We now recall this result, which plays a fundamental role in our analysis in Part II.

Theorem 2.33 (Existence of a strong trace; Theorem 1.1 in Panov [35])
Assume (2.2) for N ≥ 1 and that f satisfies the nondegeneracy condition (2.16). Let u be a Kruz̆kov entropy
solution (resp. subsolution, supersolution) of (2.23) in the sense of Definition 2.32. Then for each index
j = 1, . . . , N , there exists a function uj(·, 0) ∈ L1

loc(0,+∞) satisfying

(2.26) ess lim
Jj∋x→0

∫
(0,T )

|uj(t, 0)− uj(t, x)| dt = 0 for all index j and all T > 0

Such function is called the strong trace of uj on (0,+∞)t × {0}x.

Recall that without the nondegeneracy condition (2.16), the strong trace does not exist in general, but only
a notion of quasi-trace is defined.
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Definition 2.34 (Notion of GSUB and GSUP )

Assume (2.2) for N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ, and let f̂ := f̂G be its associated
Godunov flux. Then we define

GSUB :=
{
p ∈ [a, b], σ ⋄ (f̂ − f)(p) ≤ 0

}
and GSUP :=

{
p ∈ [a, b], σ ⋄ (f̂ − f)(p) ≥ 0

}
Then we give the following definition (which recalls and contains Definition 2.2 for G-entropy solutions).

Definition 2.35 (G-entropy solution/subsolution/supersolution)
Assume (2.2) for N ≥ 1 and that f satisfies the nondegeneracy condition (2.16). Let us consider some initial
data u0 = (u10, . . . , u

N
0 ) with uk0 ∈ L∞(Jk; [ak, bk]). We say that u = (u1, . . . , uN ) is a G-entropy solution

(resp. subsolution, resp. supersolution) of (2.23) with initial data u0, if each u
k is a Kruz̆kov entropy solution

(resp. subsolution, resp. supersolution) of (2.23) with initial data uk0 in the sense of Definition 2.32, and if
the strong trace u(t, 0) = (u1(t, 0), . . . , uN (t, 0)) of u given by Theorem 2.33 satisfies

u(t, 0) ∈ G for a.e. time t ∈ (0,+∞)(
resp. u(t, 0) ∈ GSUB for a.e. time t ∈ (0,+∞)

)
(
resp. u(t, 0) ∈ GSUP for a.e. time t ∈ (0,+∞)

)
If G is a generalized Riemann germ, then a function u is naturally a G-entropy solution if and only if it

is both a G-entropy subsolution and supersolution (see Lemma 10.1). The point with G-entropy subsolu-
tions/supersolutions is that we do not expect them to be interesting, except for certain subclasses of germs,
like the subclass of monotone Kruz̆kov germs, as we will see below.

2.3.2 Main results of Part II: existence, uniqueness, contraction, comparison

Notice that we have a natural isomorphism L1(J) := L1(J ;R) ≃
∏

j:=1,...,N

L1(Jj ;R) with the norm

∫
J

|u0|dx :=
∑

k=1,...,N

∫
Jk

|uk0 |dx for u0 = (u10, . . . , u
N
0 )

that we use constantly.

Theorem 2.36 (Theory for Kruz̆kov germs)
Assume (2.2) for N ≥ 1, nondegeneracy condition (2.16), and that G ⊂ [a, b] ∋ 0RN is a Kruz̆kov germ in
the sense of i) of Definition 2.8. Let u0 be an initial data satisfying

(2.27) uk0 ∈ (BV ∩ L1)(Jk;
[
ak, bk

]
) for all index k = 1, . . . , N

where here BV denotes the space of functions with bounded variations.
i) (Existence and uniqueness)
Then there exists a unique G-entropy solution u of (2.23) with initial data u0. Moreover we have

(2.28) u ∈ C0([0,+∞);L1(J∗)) ∩ Lip([0,+∞);M(J∗)) with J∗ := J\ {0}

where M(J∗) is the set of measures on J∗. For a measure w = (w1, . . . , wN ), we set |w|M(J∗) :=∑
j=1,...,N

|wj |M(Jj), where M(Jj) is the set of (real valued) measures on Jj and | · |M(Jj) is the total variation

of the measure.
ii) (A priori bounds)
Either the box [a, b] is bounded and we set [ā, b̄] := [a, b], or the box [a, b] is not bounded and there exists a
bounded box [ā, b̄] ⊂ [a, b] such that

u0(J
∗) ⊂ [ā, b̄] and G ∩ [ā, b̄] is a Riemann germ on the bounded box [ā, b̄]
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Then we have the following bounds for a.e. t > 0

(2.29) |ut(t, ·)|M(J∗) ≤ L|(u0)x|M(J∗) +K0 with


L := sup

j=1,...,N
Lip(f j ; [āj , b̄j ])

K0 :=
∑

j=1,...,N

|(f j − f̂ j)(u0(0))|

where f̂ := f̂G is Godunov flux associated to the germ G, and

(2.30) |ux(t, ·)|M(J\B̄2δ) ≤ (1 + δ−1L)|(u0)x|M(J∗) + δ−1K0 for all δ ∈ (0, 1)

iii) (L1-contraction)
Moreover if u0, v0 are two initial data satisfying (2.27), and if u, v are respectively their associated G-entropy
solutions, then we have the following L1-contraction property∫

{t}×J

|u− v|(t, ·) dx ≤
∫
J

|u0 − v0| dx for all time t > 0

Remark 2.37 Notice that our BV assumption (2.27) on the initial data is technical, and indeed simplifies
our proof of existence, and allows regularity (2.28) of the solutions, and gives nice a priori bounds. Moreover
the condition 0RN ∈ [a, b] is only here to allow the initial data to belong to L1(J). Obviously any shift from
0RN can also be considered.

Notice that prior to Theorem 2.36, only a few existence and uniqueness results were available in several
important and pionnering works. Existence results were available for complete and conservative D-maximal
L1-dissipative sets G (see [3], [22], [18] and [27]). Nevertheless completeness was not fully understood, and
it was not understood that D-maximality is an automatic consequence of completeness and L1-dissipative
properties.

Most of the time, existence was proved only for some particular Riemann solvers. Some nice uniqueness
results were also obtained for Riemann solver RS2 in [30]. We indeed show (see Corollary 14.12) that this
is due to the fact that Riemann solver RS2 is associated to a Kruz̆kov germ. As a consequence of Theorem
2.36, we also get existence of a solution in a systematic way. From this perspective point of view, it seems
that Theorem 2.36 provides a new progress in the understanding of scalar conservation laws on junctions.

We also have the following result.

Theorem 2.38 (Properties of semisolutions for monotone Kruz̆kov germs)
Assume (2.2) for N ≥ 1, nondegeneracy condition (2.16), and that G ⊂ [a, b] ∋ 0RN is a monotone Kruz̆kov
germ in the sense of i’) of Definition 2.8. We consider G-entropy subsolutions/supersolutions of (2.23).
i) (Stability of sub/supersolutions)
Let (un)n∈N be a sequence of G-entropy subsolutions (resp. supersolutions) such that

un → u in L1
loc([0,+∞)× J)

Then u is a G-entropy subsolution (resp. supersolution).
ii) (Max/Min for sub/supersolutions)
Let u,w be two G-entropy subsolutions (resp. supersolutions). Then max {u,w} (resp. min {u,w}) is a
G-entropy subsolution (resp. supersolution).
iii) (L1-comparison principle)
Let u (resp. v) be a G-entropy subsolution (resp. supersolution). Then for all 0 < s < t, we have∑

j=1,...,N

∫
Jk

|uk − vk|+(t, x) dx ≤
∑

j=1,...,N

∫
Jk

|uk − vk|+(s, x) dx

We end this presentation with a known, but key result. This is classically the following result which
garantees the stability of G-entropy solutions for Kruz̆kov germs (see for instance [18]).
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Proposition 2.39 (Equivalent characterization of G-entropy solutions for Kruz̆kov germs)
Assume (2.2) with N ≥ 1 and let G ⊂ [a, b] ∋ 0RN be a Kruz̆kov germ. Then u = (u1, . . . , uN ) is G-entropy
solution of (2.4) with initial data u0 with u0 ∈ BV (J), if and only if uj : [0,+∞)×Jj → [aj , bj ] is a Kruz̆kov
entropy solution of the first line of (2.4), and the trace condition in the second line of (2.4) is replaced by
the following condition. For all test functions 0 ≤ φj ∈ C1

c ([0,+∞)× J̄j) with J̄j = {0} ∪ Jj ≃ [0,+∞) or
(−∞, 0] with

φj(t, 0) = φk(t, 0) =: φ(t, 0) for all t ∈ [0,+∞) and all indices j, k

and for all elements c = (c1, . . . , cN ) ∈ G, we have

(2.31)
∑
k

{∫
(0,+∞)×Jk

{
ηk(u, c)φk

t + ψk(u, c)φk
x

}
dtdx+

∫
{0}×Jk

ηk(u0, c)φ dx

}
≥ 0

for (ηk, ψk) given in (2.5).

2.4 Organization of the paper

The paper is organized in fifteen sections. The main results of Parts I and II presented in Section 2 are
proved as indicated in the following table.
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Main results topics proof for N = 1 proof for N ≥ 1

Proposition 2.4 L1 estimate for Riemann problem Subsection 4.2
Proposition 2.13 properties of gen. Riemann germs

i) inverse of π ii) of Proposition 3.6 ii) of Proposition 4.10
ii) dissipation Lemma 3.4 Lemma 3.4
iii) Riemann monotonicity of π vi) of Proposition 3.6 Proposition 5.1

iv) local constancy of f̂ i) of Proposition 3.6 i) of Proposition 4.10
v) germ as a level set iii) of Proposition 3.6 iii) of Proposition 4.10
vi) partial relaxation formula Proposition 3.10 Proposition 4.15

vii)

{
partial Lipschitz estimate
and basic monotonicity

Proposition 3.8 Proposition 4.13

Theorem 2.14 character. of gen. Riemann germs Subsection 3.4 Subsection 4.5
i) 1rst characterization ii) of Lemma 3.5 ii) of Lemma 4.9
ii) 2nd characterization Proposition 3.9 Proposition 4.14

Theorem 2.16 Riemann germs Subsection 4.7

Theorem 2.17 Riemann monotonicity of σ ⋄ f̂ Proposition 3.8 Subsection 5.4
i) general result Proposition 3.8 Proposition 5.8
ii) Kruz̆kov case Corollary 5.10

Theorem 2.19 gluing of Riemann germs Subsection 5.5

i) gluing and iv) nature of glued germs

{
Proposition 5.11
i) of Corollary 5.12

ii) associativity Lemma 5.13
iii) identity element ii) of Corollary 5.12

Theorem 2.21 properties of Kruz̆kov germs Subsection 6.2
i) characterization Proposition 6.4
ii) D-maximality Lemma 6.2

Theorem 2.22 characterization of monotone germs iii) of Lemma 5.5

Theorem 2.23 characterization of D+-germs

{
Proposition 6.6
i’) and iii) of Lemma 5.5

Theorem 2.24 conservative Riemann germs Subsection 6.4
Theorem 2.25 properties of HJ germs Subsection 6.5

i) regularity of f̂

{
i) of Proposition 6.9
ii) of Theorem 2.14

ii) relaxation formula ii) of Proposition 6.9
Theorem 2.28 HJ germ G determined by χG Subsection 6.6
Theorem 2.29 properties of conservative 1 : 1 germs Subsection 6.7

i) nature of the germs

{
Lemma 6.11
Theorem 2.28

ii) relaxation formula ii) of Proposition 6.9
i) relation (2.20) Lemma 7.17

Proposition 2.30 germ product property Subsection 6.8

Theorem 2.38 properties of semisolutions Subsection 10
i) Stability Lemma 10.2
ii) Max/Min Lemma 10.3
iii) L1-comparison Lemma 10.4

Theorem 2.36 theory for Kruz̆kov germs
i) existence and uniqueness Proposition 11.8
ii) L1-contraction Lemma 10.4

For the precise material of the subsections, we refer the reader to the content given at the beginning of
the paper. We insist below on the general structure/spirit of the paper.

In Section 3, we develop the theory for a single branch (N = 1) in the case of 1 : 0 junctions. The

fundamental concepts (like basins of attraction BA(p̂), the nonlinear projection πG , the Godunov flux f̂G ,
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generalized Riemann germs, level set formulation of the germ Gĝ, relaxation formula, Riemann monotonicity,
local constancy) introduced in this paper can already easily be understood in this section. Only the gluing
requires the understanding of the case N > 1. For N = 1, the flux is denoted by g, while for N ≥ 1, the flux
vector is denoted by f = (f1, . . . , fN ), in order to avoid any confusion between these cases.

In Section 4, we extend the theory to the case of N ≥ 1 branches, and focus on the case of N : 0
junctions. We start the section, showing that the general case of n : m junctions can always be reduced to
the case of N : 0 junctions with N := n+m, and furthermore with coercive fluxes satisfying f j(pj) → +∞
as |pj | → +∞. This reduction can be done using certain commutative transforms which are very convenient.

It turns out that there are two types of transforms that are interesting: the reversions (changing a
branch (−∞, 0) into (0,+∞) and vice versa, and changing the sign of the flux) and the inversions (keeping
the orientation of the branches unchanged, but changing the sign of the flux and of its arguments).

In the case N ≥ 1, the key tool appears to be the slicing Lemma 4.12, which allows to reduce a germ from
N branches to a germ with N − k branches. Obviously any germ G can not be sliced in a naive way. But
using its Godunov flux p 7→ f̂G(p), we can freeze the last k components of p, and then define a frozen flux
which is associated to a new germ for N − k branches. The slicing lemma is used in many ways to analyse
generalized Riemann germs, and then to deduce their fundamental properties, similar to the case N = 1.

In Section 5, we excavate a fundamental property of germs: their Riemann monotonicity. Except for
pathological fluxes (for instance fluxes which are constant on some intervals), this property is satisfied by
any Riemann germ. Riemann monotonicity may be seen as a property coming from nowhere, but this is not
the case. This property is very natural and necessary, once we are interested in the gluing of germs. This is
the careful study of the gluing of germs that made this property to appear as a natural property. We show
that the natural projection πG is already Riemann monotone, and in some sense, this implies that σ ⋄ f̂G is
also Riemann monotone, where σ encodes the orientations of the branches. With this key property in hands,
it becomes then easy to glue Riemann germs together (when their fluxes and branch orientations agree in
a suitable way). Again, we first perform the gluing on the Godunov fluxes, and then deduce from it and
justify the natural gluing of the germs.

Still in Section 5, we show that gluing preserves certain classes of germs (Kruz̆kov, HJ, monotone, con-
servative). Again, we first show it at the level of the associated Godunov fluxes, and then deduce these
properties at the level of germs.

In Section 6, we give some applications of the theory mainly to the cases of Kruz̆kov germs and of HJ
germs. For both, we show that all generalized Riemann germs have necessarily continuous Godunov fluxes,
and then are Riemann germs, just by definition. A key result for HJ germs is that they are completely char-
acterized by a characteristic subset χG, which is a finite set in many applications. A culminating application
is the case of 1 : 1 junctions with conservative (generalized) Riemann germs. Such germs have all the best
properties that we can expect: they are at the same time Kruz̆kov, HJ, monotone and conservative germs.
They are characterized by their characteristic subset χG which is finite in many applications. And their
Godunov flux f̂G =: (ĥ, ĥ) is such that the function ĥ : [a, b] → R satisfies the best relaxation formula that
we can expect.

Section 7 provides complementary results. The main contributions concern duality for monotone Kruz̆kov
germs, and polar decomposition for bell-shaped fluxes.

Section 8 gives various exemples and counter-examples to illustrate the general theory.

Section 9 is an appendix. In the first subsection, we mainly recall the theory for solving the standard
scalar Riemann problem on the real line, with initial data p involving two constant values (pL, pR), one on
the left, and one on the right. The explicit expression of the solution involving concave/convex envelopes of
the flux, is here a key ingredient. This ingredient allows us, say for a solution defined on (0,+∞)t×(0,+∞)x,
to decide which trace p̂ the solution may reach on the axis {x = 0}, given its constant initial data p := pR

on the set {0}t × (0,+∞)x. This allows us to study the set P̂p of such values p̂. Indeed we can then see that

the basin of attraction BA(p̂) for JR = (0,+∞), is nothing else than the set of p such that p̂ ∈ P̂p.
In Section 9, the second subsection gives some important (independent) results about reduction of test

functions for Hamilton-Jacobi equations. This is a key result which allows us to show that any HJ germ G
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is determined completely by its characteristic subset χG.

Part II of the paper is composed of six sections.

Finally the bibliography is quite reduced for part I. This is in particular due to the novelty of the notion
of germ, and to the new point of view that we develop here. The bibliography of Part II provides additional
materials which are either works of fundamental interest, either useful illustrations for some examples, or
useful results that we need for technical proofs.
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2.5 Main notations

(e1, . . . , eN ) = canonical basis of RN

Jj ≃ (0,+∞) or (−∞, 0) = j-th (oriented) branch
σj = ±1 = ”orientation” of j-th branch Jj ≃ σj · (−∞, 0)
f j : [aj , bj ] → R = j-th flux

[a, b] :=
∏

j=1,...,N

[aj , bj ] = the box (with box convention (2.3))

f = (f j)j=1,...,N : [a, b] → RN = the flux function
f j(p) := f j(pj) = abuse of notation, for p = (p1, . . . , pN )

p = (p1, . . . , pN ) ≤ 0 = means pj ≤ 0 for all j
p = (p1, . . . , pN ) < 0 = means pj < 0 for all j

G ⊂ [a, b] = set or germ
π = πG : [a, b] → G = natural projection on G
f̂ = f̂G = f ◦ πG = Godunov flux at the junction

Gf̂ :=
{
f̂ = f

}
= level set formulation of the germ

f± = (f1±, . . . , f
N
± ) = monotone bounds

BAj(p̂j) = BA(Jj ,fj)(p̂j) = Basin of Attraction of the point p̂j ∈ [aj , bj ]

BAj
−(p̂

j), BAj
+(p̂

j) = lower, upper Basins of Attraction

BA(p̂) =
∏

j=1,...,N

BAj(p̂j) = Basin of Attraction of the point p̂ ∈ G

Gj = Gfj

: [aj , bj ]2 → R = standard Godunov flux associated to f j

Dj = Dfj

= σjψfj

: [aj , bj ]2 → R = j-th dissipation (see (2.8))

Df =
∑

j=1,...,N

Dfj

= dissipation

Dj
+ = Dfj

+ = σjψfj

+ : [aj , bj ]2 → R = j-th semi-dissipation (see (2.9))

Df
+ =

∑
j=1,...,N

Dfj

+ = semi-dissipation

RH f̂ (p) =
∑

j=1,...,N

σj f̂ j(p) = Rankine-Hugoniot function

up,p̂ = (u1p1,p̂1 , . . . , uNpN ,p̂N ) = solution with initial data p and trace p̂

uGp,p̂ = G-entropy solution up,p̂, i.e. with p̂ ∈ G
P̂j
pj = set of

{
p̂j = p̂jλ,pj

}
for solutions upj ,p̂j (see (4.7))

P̂p =
∏

j=1,...,N

P̂j
pj = set of p̂ for solutions up,p̂

p ⋄ q = Hadamard product of two vectors[
f̂
]p
q
:= f̂(p)− f̂(q) = bracket of f̂

Gp′′
0

= slicing of germ G w.r.t. p′′0 (see (4.12))
ιjp(q

j) = injection of j-th coordinate
G1♯G2 = gluing of germs
χG, χG, χG = sub/super/characteristic subset of HJ germ G
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Recall that Section 3 focuses on the case N = 1. Then the index j is dropped everywhere, and f is
replaced by g in order to avoid any confusion.

Part I

Structure of germs

3 Riemann problem on a single branch N = 1

3.1 Characterization of trace values on a junction 1 : 0

In this section, we work with a single branch with N = 1 which is a junction 1 : 0. Then we drop the index
k = 1 everywhere and use the notation g := f1, a := a1, b := b1 and J1 := (−∞, 0) and work on the junction
J := (−∞, 0]. We assume
(3.1) g : R ⊃ [a, b] → R is Lipschitz continuous with −∞ ≤ a < b ≤ +∞, with box convention (2.3)

and
g(p) → +∞ if |p| → +∞ and p ∈ [a, b] (coercivity)

which at this stage are conditions slightly less general than in (2.2), because we impose the orientation of
the junction, and also the direction of the coercivity.

We want to understand the G-Riemann problem for G := {p̂} with p̂ ∈ [a, b] and initial data p ∈ [a, b],
namely we look for Kruz̆kov entropy solutions v(t, x) = v of the following Riemann problem

(3.2)



v : [0,+∞) ×(−∞, 0] → [a, b]

v(t, x) = v
(
1,
x

t

)
on (0,+∞) ×(−∞, 0)

vt + (g(v))x = 0 on (0,+∞) ×(−∞, 0)
v(0, ·) = p on {0} ×(−∞, 0)

v(·, 0−) = p̂ a.e. on (0,+∞) ×{0}

where the last condition arises in the sense of traces. We want to determine the set of p such that such a
solution does exist.

To this end, we recall that the Godunov flux G(↑, ↓) : [a, b]2 → R associated to g is given by

(3.3) G(q, r) :=


inf
[q,r]

g if q ≤ r

sup
[r,q]

g if q ≥ r

We set the following nondecreasing functions of p

(3.4) g−(p) := inf
[p,b]

g = G(p, b) ≤ g+(p) := sup
[a,p]

g = G(p, a)

and for λ ∈ [g−(p), g+(p)], we define the following element of [a, b]

(3.5) p̂λ,p :=

 p if g(p) = λ
sup {q ∈ (p, b], g > λ on (p, q)} if g(p) > λ
inf {q ∈ [a, p), g < λ on (q, p)} if g(p) < λ

which is nonincreasing in λ. We then define the following set

(3.6) P̂p := {p̂λ,p ∈ [a, b], λ ∈ [g−(p), g+(p)]}

Precisely we have the following result

Lemma 3.1 (Set of p̂’s for which {p̂}-Riemann solutions exist with initial data p)
Assume (3.1). For any p, p̂ ∈ [a, b], there exists an entropy solution v = vp,p̂ of (3.2) if and only if p̂ ∈ P̂p,

with P̂p given in (3.6).
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Proof of Lemma 3.1
Step 1: Equivalence

Let v be an entropy solution to (3.2). We set p̄ := p̂ and extend v as ṽ(t, x) :=

{
v(t, x) for x < 0
p̄ for x ≥ 0

.

Notice that for J = (−∞, 0], J1 = (−∞, 0) and φ ∈ C1
c (([0,+∞)× J1) with φ ≥ 0, we have for all k ∈ R∫

(0,+∞)×J

|ṽ − k|φt + sign(ṽ − k) · {g(ṽ)− g(k)}φx +

∫
{0}×J

|ṽ0 − k|φ ≥ 0.

In particular, we have for all k ∈ R

|ṽ − k|t + ∂x (sign(ṽ − k) · {g(ṽ)− g(k)}) ≤ 0 in D′((0,+∞)× (R\ {0}))

Using the fact that ṽ(t, x) is bounded in L∞ and has trace p̄ at x = 0, it is then easy to check that ṽ is an
entropy solution to the following standard Riemann problem

(3.7)

 ṽt + (g(ṽ))x = 0 on (0,+∞)× R

ṽ(0, x) = ṽ0(x) :=

{
p̄ if x > 0
p if x < 0

i.e. for all φ ∈ C1
c ([0,+∞)× R) with φ ≥ 0, we have for all k ∈ [a, b]∫
(0,+∞)×R

|ṽ − k|φt + sign(ṽ − k) · {g(ṽ)− g(k)}φx +

∫
{0}×R

|ṽ0 − k|φ ≥ 0.

Then we see that v solves (3.2), if and only if ṽ solves (3.7) and satisfies ṽ(t, 0−) = p̄ for a.e. t > 0.
Step 2: Characterization
From Lemma 9.1, we know that the solution ṽ to Riemann problem (3.7) is unique and has to satisfy
ṽ(t, x) = U(x/t) with U given in (9.2) and (pL, pR) := (p, p̄). In particular, when it makes sense, we have
p̄ = ṽ(t, 0−) = ((g̃|I)

′)−1(0−), where I := [min(pL, pR),max(pL, pR)] and g̃ is the convex (resp. the concave)
envelope of g on the interval I if pL − pR < 0 (resp. pL − pR > 0).
Case 1: p < p̄
This means pL < pR. Then (ξL, ξR) = (g̃′(p+L), g̃

′(p−R)) with ξL ≤ ξR, and we can not have ξR > 0. Hence
g̃′(p−R) = ξR ≤ 0. Either ṽ(t, 0−) = pR if ξR < 0. Or ξR = 0 and (using the fact that g̃ is the convex envelop
of g on some interval) we get

g(q) ≥ g(p−R) + ξR(q − pR) = g(p−R) for all q ∈ [pL, pR]

Then either there exists some ε > 0 such that g̃′ = ξR = 0 on [pR − ε, pR], and then pR = p̄ is not the trace
of ṽ from the left side {x < 0}, because there is a jump just at the place x = 0. Or g̃′ < 0 = ξR = g̃′(p−R) on
[pL, pR), and the fact that g̃′ is nondecreasing implies that ṽ(t, 0−) = ((g̃|I)

′)−1(0−) = pR. In this case, we
conclude that p̄ = ṽ(t, 0−) if and only if g̃′(p̄−) < 0 or g̃′(p̄−) = 0 > g̃′ on [p, p̄). This means that

p̄ = ṽ(t, 0−) if and only if g̃′ < 0 on [p, p̄)

Case 2: p > p̄
This case is very similar to Case 1 with g̃ concave instead of convex. Again, we conclude that

p̄ = ṽ(t, 0−) if and only if g̃′ < 0 on (p̄, p]

Case 3: p̄ = p
Then the unique solution is ṽ ≡ p, and then the trace condition p̄ = ṽ(t, 0+) is obviously satisfied.
Conclusion

We conclude that p̄ = ṽ(t, 0−) iff

 p̄ = p
p̄ < p and g̃′ < 0 on (p̄, p] (with g̃ concave)
p̄ > p and g̃′ < 0 on [p, p̄) (with g̃ convex)

, i.e.

(3.8) p̄ = ṽ(t, 0−) iff

 p̄ = p
p̄ < p with g̃ concave decreasing on [p̄, p]
p̄ > p with g̃ convex decreasing on [p, p̄]
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Let us call P̄p the set of p̄ ∈ [a, b] characterized by the right hand side of (3.8). Still because of Lemma 9.1,
we see that such a solution ṽ does exist in each case covered in (3.8).
Step 3: Equivalent characterization
For p̄ ∈ [a, b] and λ := g(p̄), it is easy to see from (3.8) that p̄ = p̂λ,p and λ ∈ [g−(p), g+(p)]. This shows that

p̄ ∈ P̂p and then P̄p ⊂ P̂p. The reverse inclusion is also straightforward to check. This shows P̄p = P̂p and
ends the proof of the lemma.

3.2 Basin of attraction: the map p̃ 7→ BA(p̃)

The main result of this subsection is the following inverse characterization of the map p 7→ P̂p.

Lemma 3.2 (Inverse characterization of the map p 7→ P̂p)

Assume (3.1) with J = (−∞, 0]. Let p ∈ [a, b] and some p̃ ∈ P̂p.
Then for all p′ ∈ [a, b], we have

p̃ ∈ P̂p′ if and only if p′ ∈ BA(p̃)

where

(3.9) BA(p̃) := BA−(p̃) ∪ {p̃} ∪BA+(p̃)

and BA± = BA±(p̃) are relative open sets of [a, b] given for λ := g(p̃) by

{
BA+ := {q ∈ (p̃, b], g < λ on (p̃, q]}
BA− := {q ∈ [a, p̃), g > λ on [q, p̃)} .

Proof of Lemma 3.2
Let p ∈ [a, b] and p̃ ∈ P̂p. Notice that it is much more simple to make the reasoning on a picture (see Figure
just before Subsubsection 2.1.2).
Step 1: proof that p′ ∈ BA(p̃) implies p̃ ∈ P̂p′

Consider some p′ ∈ BA(p̃). Then whatever is the position of p′ with respect to p̃, we get

g−(p
′) = inf

[p′,b]
g ≤ g(p̃) = λ ≤ sup

[a,p′]

g = g+(p
′)

Therefore, we can consider the quantity p̂λ,p′ , and whatever is the position of g(p′) with respect to λ = g(p̃),

we easily get from its definition (3.5) that p̂λ,p′ = p̃. Therefore p̃ = p̂λ,p′ ∈ P̂p′ .

Step 2: proof that p′ ∈ BA(p̃) is implied by p̃ ∈ P̂p′

Now consider some p′ ∈ [a, b] such that p̃ ∈ P̂p′ . Hence p̃ = p̂λ′,p′ for some λ′ ∈ [g−(p
′), g+(p

′)]. Now
whatever is the position of λ′ = g(p̃) with respect to g(p′), we easily get from (3.9) that p′ ∈ BA(p̃).
This ends the proof of the lemma.

Then we get immediately

Corollary 3.3 (Set of p’s for which {p̂}-Riemann solutions exist with initial data p)
Assume (3.1). For any p, p̂ ∈ [a, b], there exists an entropy solution v = vp,p̂ of (3.2) if and only if p ∈ BA(p̂),
with BA(p̂) given in (3.9).

3.3 Dissipation property of basins of attraction

We have the following result.

Lemma 3.4 (Dissipation property of basins of attraction, N = 1, junction 1 : 0)
Assume (3.1). Let p̂, q̂ ∈ [a, b] be such that BA(p̂) ∩BA(q̂) ̸= ∅. Then we have

(3.10) Dg(q̂, p̂) ≤ 0 with Dg(q̂, p̂) := sign(q̂ − p̂) · {g(q̂)− g(p̂)}

Moreover

(3.11) either Dg(q̂, p̂) < 0, or p̂ = q̂
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Proof of Lemma 3.4
Notice that Dg(p̂, q̂) = Dg(q̂, p̂). Assume by symmetry that p̂ ≤ q̂, and set q := inf BA(q̂), p := supBA(p̂),
and let us show that

(3.12) g(q̂) < g(p̂) or p̂ = q̂

We first notice that for all p ∈ BA(p̂), we have Dg(p, p̂) ≤ 0, with moreover Dg(p, p̂) = 0 if and only if p = p̂.
Therefore if p̂ ∈ BA(q̂) or q̂ ∈ BA(p̂), this implies (14.11).
If q = q̂, then q̂ ∈ BA(p̂). Similarly, if p = p̂, then p̂ ∈ BA(q̂).

Assume now that p̂ < p and q < q̂. If p = b, and g(b) < g(p̂), then BA(p̂) ∩ [p̂, b] = [p̂, b] and then
q̂ ∈ BA(p̂). Otherwise, we have BA(p̂) ∩ [p̂, b] = [p̂, p) and g(p) = g(p̂).

Similarly, if q = a and g(a) > g(q̂), then BA(q̂) ∩ [a, q̂] = [a, q̂] and then p̂ ∈ BA(q̂). Otherwise, we have
BA(q̂) ∩ [a, q̂] = (q, q̂] and g(q) = g(q̂).

Now BA(p̂) ∩ BA(q̂) ̸= ∅ implies q < p. Now if q < p̂, then p̂ ∈ BA(q̂). Similarly, if q̂ < p, then
q̂ ∈ BA(p̂). Hence we can now assume that p̂ ≤ q < p ≤ q̂ with g(p̂) = g(p) and g(q) = g(q̂). Now recall
that we have

g < g(p̂) = g(p) on (p̂, p) ⊃ (q, p) which implies g(q) < g(p)

Hence g(q̂) < g(p̂) which implies (14.11).
Finally, we conclude that in all cases, we have (14.11) which implies both (3.10) and (3.11). This ends

the proof of the lemma.

3.4 Characterizations of generalized Riemann germs

The following result follows immediately from the definitions and Lemma 3.2.

Lemma 3.5 (First characterizations of generalized Riemann germs, N = 1)
Assume (3.1) and let G ⊂ [a, b] be a set.
i) (First characterization)
The set G is a generalized Riemann germ if and only if for all p ∈ [a, b], we have the singleton property
G ∩ P̂p = {p̂} where P̂p is defined in (3.6).
ii) (Equivalent characterization)
The set G is a generalized Riemann germ if and only if (BA(p̂))p̂∈G is a partition of [a, b].

Proposition 3.6 (First properties of generalized Riemann germs, N = 1)
Assume (3.1) and let G ⊂ [a, b] be a generalized Riemann germ for a junction 1 : 0 with J = (−∞, 0] and
f := g. Given p ∈ [a, b], the unique G-entropy solution of (2.6) writes uGp,p̂ with π(p) := πG(p) := p̂ ∈ G and
π : [a, b] → G which satisfies π ◦ π = π. We set ĝ := ĝG := g ◦ π.
i) (Local constancy): The map ĝ is locally constant on {ĝ ̸= g}.
ii) (Inverse of π): For all p̂ ∈ G, we have π−1(p̂) = BA(p̂).
iii) (Level set formulation of the germ): We have G = Gĝ := {p ∈ [a, b], ĝ(p) = g(p)}.
iv) (Characterization of ĝ): The function ĝ : [a, b] → R is fully characterized as a continuous function
which is locally constant on {ĝ ̸= g} such that G = Gĝ.
v) (Monotone bounds): We have g− ≤ ĝ ≤ g+ with g± defined in (3.4).
vi) (Monotonicity of π): The map π is nondecreasing on [a, b].
vii) (Continuity): The map ĝ is continuous.

Remark 3.7 Notice that the monotonicity of ĝ is not proved in Proposition 3.6. This seems to be a delicate
property. It will be proved later, using the locally Lipschitz properties of ĝ in order to clean the possible
accumulation of basins of attraction.

Proof of Proposition 3.6
Step 1: proof of vi)
Let p ≤ q. Assume by contradiction that π(p) = p̂ > q̂ = π(q). If BA(p̂) ∩BA(q̂) = ∅, then

BA(q̂) < BA(p̂)
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where for sets A,B ⊂ R, for A < B, we mean a < b for all (a, b) ∈ A × B. This implies that q < p.
Contradiction. Hence BA(p̂) ∩ BA(q̂) ̸= ∅, and the partition property in Lemma 3.5 shows that p̂ = q̂.
Again contradiction. Therefore, we conclude that p̂ ≤ q̂, and the map π is nondecreasing.
Step 2: proof of ii)
From i) of Lemma 3.5 and Lemma 3.2, we deduce that π−1(p̂) = BA(p̂) for any p̂ ∈ G.
Step 3: proof of iii)
Recall that ĝ = g ◦ π. Because π−1(p̂) = BA(p̂) for any p̂ ∈ G, we see that ĝ is constant on each BA(p̂)
with value ĝ(p) = g(p̂) for every p ∈ BA(p̂). This implies G ⊂ Gĝ. Conversely, let q ∈ Gĝ. Then g(q) =
ĝ(q) = g(q̂) for the unique q̂ ∈ G such that q ∈ BA(q̂). Because g ̸= g(q̂) on BA(q̂)\ {q̂}, we deduce that
q ∈ {ĝ = g} ∩BA(q̂) = {q̂} ⊂ G, which shows that Gĝ ⊂ G. Therefore we have equality Gĝ = G.
Step 4: proof of i)
Let p ∈ [a, b]∩{ĝ ̸= g} and let p̂ ∈ G such that p ∈ BA(p̂). Then p belongs to BA(p̂)\ {p̂} which is a relative
open set of [a, b]. We deduce the existence of some ε > 0 such that

ω := Qp ∩ [a, b] ⊂ BA(p̂) with Qp := (p− ε, p+ ε)

Because ĝ = const = g(p̂) on ω, this shows the local constancy of the map ĝ.
Step 5: proof of v)
Consider p ∈ [a, b] and let p̂ ∈ G such that p ∈ BA(p̂). From Lemma 3.2, we deduce that p̂ ∈ P̂p, and then
there exists λ = g(p̂) ∈ [g−(p), g+(p)] such that p̂ = p̂λ,p. Because ĝ(p̂) = g(p̂), this shows point v).
Step 6: proof that G is closed
Consider a sequence (p̂n)n∈N with p̂n ∈ G such that p̂n → p̂∞ ∈ [a, b]. We set p̃∞ := π(p̂∞) ∈ G. Either
p̂∞ = p̃∞ and the proof is done, or

(3.13) p̂∞ ∈ BA(p̃∞)\ {p̃∞}

Then Step 3 shows that

(3.14) (p̂∞ − ε, p̂∞ + ε) ∩ [a, b] ⊂ BA(p̃∞)

Therefore p̂n ∈ BA(p̃∞) for n large enough, i.e. p̂n = π(p̂n) = p̃∞. This implies that p̂∞ = p̃∞ ∈ G.
Contradiction. Hence we always have p̂∞ = p̃∞ ∈ G, and then G is closed.
Step 7: proof of vii)
The continuity of ĝ is not straightforward because we may have accumulation of basins of attraction.
Consider a sequence (pn)n∈N with pn ∈ [a, b] such that we assume by contradiction that

(3.15) pn → p∞, ĝ(pn) ̸→ ĝ(p∞)

We set p̂n = π(pn) and p̃∞ = π(p∞), and then have g(p̂n) = ĝ(pn) ̸→ ĝ(p∞) = g(p̃∞). Using the continuity
of g, and up to extract a subsequence, we can assume furthermore (from the closedness of G) that there
exists p̂∞ ∈ G such that

(3.16) pn → p∞, p̂n → p̂∞ ̸= p̃∞

We exhaust the different possible cases.
Case A: p∞ ̸= p̃∞
Then p∞ ∈ BA(p̃∞)\ {p̃∞}, and from the definition of the basin of attraction, we deduce that pn ∈ BA(p̃∞),
and then π(pn) = p̂n = p̃∞. Contradiction with (3.16).
Case B: p∞ = p̃∞
From (3.16), we can assume that p̂∞ < p̃∞ (the case p̂∞ > p̃∞ can be dealt in a similar way). Hence we
have p̂n → p̂∞ < p̃∞ = lim

n→+∞
pn. Therefore [p̂n, pn) ⊂ BA(p̂n) with (p̂n, pn) → (p̂∞, p̃∞). The fact that

the family (BA(p̂)p̂∈G forms a partition of [a, b] implies that the sequence (p̂n)n is stationary for large n, i,e.
that p̂n = p̂∞. Then

(3.17) [p̂∞, p̃∞) ⊂ BA(p̂∞) ̸∋ p̃∞

By definition of the basin of attraction, we deduce that

g(p̃∞) = g(p̂∞) or (p̃∞ = b and g(p̃∞) < g(p̂∞))
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Case B.1: g(p̃∞) = g(p̂∞)
Then ĝ(pn) = g(p̂n) = g(p̂∞) = g(p̃∞) = ĝ(p∞). Contradiction with (3.15).
Case B.2: p̃∞ = b and g(p̃∞) < g(p̂∞)
The strict inequality and the construction of BA(p̂∞), imply that p̃∞ ∈ BA(p̂∞), which gives a contradiction
with (3.17). We conclude that (3.15) is impossible, and then ĝ is continuous.
Step 8: proof of iv)
Assume that g̃ : [a, b] → R is continuous which is locally constant on {g̃ ̸= g} such that G = Gg̃. Then we
have g̃ = g = ĝ on G, where G = Gĝ is a closed set, because ĝ is continuous. Moreover, we have g̃′ = 0 on
[a, b]\G. By continuity of g, g̃ and the structure of each basin on attraction, we deduce that g̃ = g(p̂) = ĝ
on BA(p̂) for all p̂ ∈ G. Because the family of basins of attraction forms a partition of [a, b], we deduce that
g̃ = ĝ. This ends the proof of the proposition.

Proposition 3.8 (Monotonicity of ĝ, N = 1)
We work under assumptions of Proposition 3.6. Then ĝ is nondecreasing and locally Lipschitz continuous,
satisfying

(3.18) max(0, g′) ≥ ĝ′ ≥ 0 a.e. on [a, b].

and

(3.19) (ĝ′ ∈ {0,max(0, g′)} and ĝ′ = g′ > 0 implies ĝ = g) holds a.e. on [a, b]

Proof of Proposition 3.8
Step 1: Lipschitz continuity of ĝ
Consider two points p, q ∈ (a, b) such that p < q, and set p̂ = π(p), q̂ = π(q). From the monotonicity of π,
we deduce that p̂ ≤ q̂. Assume moreover that

p̂ < q̂

With notation of Lemma 3.2, we can then write BA+(p̂) = (p̂, p), BA−(q̂) = (q, q̂), where we recall that

{
BA+(p̂) := {r ∈ (p̂, b], g < g(p̂) on (p̂, r]}
BA−(q̂) := {r ∈ [a, q̂), g > g(q̂) on [r, q̂)} and


p :=

{
p̂ if BA+(p̂) = ∅
supBA+(p̂) if BA+(p̂) ̸= ∅

q :=

{
q̂ if BA−(q̂) = ∅
inf BA−(q̂) if BA−(q̂) ̸= ∅

Because BA(p̂) ∩BA(q̂) = ∅, we deduce that p̂ ≤ p < q ≤ q̂. Moreover p ∈ BA(p̂), q ∈ BA(q̂) imply that

a < p ≤ p < q ≤ q < b with g(p) = g(p̂), g(q) = g(q̂)

We deduce that ĝ(p)− ĝ(q) = g(p̂)− g(q̂) = g(p)− g(q). Hence

|ĝ(p)− ĝ(q)|
|p− q|

=
|g(p)− g(q)|

|p− q|
≤

|g(p)− g(q)|
|p− q|

≤ Lip(g;K)

for any compact interval K ⊂ [a, b] containing p and q. This implies that Lip(ĝ;K) ≤ Lip(g;K) and then
ĝ is locally Lipschitz continuous on [a, b]. Moreover, consider a point p0 ∈ (a, b) where both ĝ and g have a
derivative. Then choosing p := p0 < q or p < q := p0, we see in the limit |p− q| → 0 that |ĝ′(p0)| ≤ |g′(p0)|.
In particular, we get

(3.20) |ĝ′| ≤ |g′| a.e. on [a, b]

Step 2: Monotonicity of ĝ
Assume by contradiction that ĝ is not nondecreasing on [a, b]. Then, because ĝ and g are Lipschitz continuous,
by Rademacher’s theorem, there exists at least a point p0 ∈ (a, b) where both ĝ and g are differentiable, such
that

(3.21) ĝ′(p0) < 0
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Because ĝ′ = 0 on the open set [a, b]\ {ĝ = g}, we deduce that ĝ(p0) = g(p0), i.e. p0 ∈ G, and then
p0 = p̂0 := π(p0).
Case A: p0 is an accumulation point of G
Then along the accumulation sequence, we get g = ĝ and then g′(p0) = ĝ′(p0) < 0. Then the structure of
each basin of attraction implies that p0 = p̂0 satisfies for some small ε > 0

(3.22) Q := (p̂0 − ε, p̂0 + ε) ⊂ BA(p̂0)

Case B: p0 is an isolated point of G
Again, the structure of each basin of attraction implies that p0 = p̂0 satisfies (3.22).
Conclusion in both cases
Then (3.22) implies that ĝ = const on Q. Therefore ĝ′(p0) = ĝ′(p̂0) = 0. Contradiction with (3.21). This
finally shows that ĝ is nondecreasing on [a, b]. This implies with (3.20) that we have |g′| ≥ ĝ′ ≥ 0 a.e. on
[a, b]. Now recall that G is a closed set, and ĝ′ = 0 on (a, b)\G, with ĝ = g on G. Therefore ĝ′ = g′ a.e. on
G. We deduce that max(0, g′) ≥ ĝ′ ≥ 0 a.e. on [a, b], which shows (3.18). Moreover we also get (3.19).
This ends the proof of the proposition.

Proposition 3.9 (Second characterization of (generalized) Riemann germs, N = 1)
Assume (3.1). Let G ⊂ [a, b] be a set. Then G is a generalized Riemann germ with respect to (J, f) =
((−∞, 0], g) if and only we have

(3.23) G = Gg̃ with Gg̃ := {p ∈ [a, b], g̃(p) = g(p)}

for some function g̃ satisfying

(3.24) g̃ : [a, b] → R nondecreasing, locally constant on {g̃ ̸= g}, and satisfying g− ≤ g̃ ≤ g+

Moreover, when this is the case, the function g̃ is continuous and G is a Riemann germ.

Proof of Proposition 3.9
Part I: proof that G = Gg̃ with g̃ := ĝ
Assume that G is a generalized Riemann germ. Then from iii), iv) and v) of Proposition 3.6 and from
monotonicity property of ĝ given in Proposition 3.8, we deduce that ĝ satisfies (3.23) with (3.24). Moreover
vii) of Proposition shows that ĝ is continuous.
Part II: proof that (3.23)-(3.24) implies that G is a generalized Riemann germ
We want to check that G := Gg̃ is a generalized Riemann germ, i.e. satisfies the following singleton property

G ∩ P̂p = {p̂} for all p ∈ [a, b]

Step 1: nonemptyness of G ∩ P̂p

Recall that g− ≤ g̃ ≤ g+. We first define p̂ = π(p) for p ∈ [a, b]. Setting λ := g̃(p), we define

p̂ := π(p) :=

 p if g(p) = λ
sup {q ∈ [p, b], g > λ on (p, q]} if g(p) > λ
inf {q ∈ [a, p], g < λ on [q, p)} if g(p) < λ

Because g̃ is locally constant where it differs from g, we deduce the following.
If g(p) > λ, then either g(p̂) = λ = g̃(p̂) or g(p̂) > λ = g̃(p̂) and p̂ = a. In the second case, we conclude that
g̃(p̂) = g̃(a) ≤ g+(a) = g(a) = g(p̂). Contradiction. Therefore only the first case arises, i.e. g(p̂) = λ = g̃(p̂)
and p̂ ∈ G. Moreover with p̂λ,p defined in (3.5), we have

p̂ = p̂λ,p with g−(p) ≤ g(p) < λ = g̃(p̂) ≤ g̃(p) ≤ g+(p)

Similarly, if g(p) < λ, then either g(p̂) = λ = g̃(p̂) or g(p̂) < λ and p̂ = b, and we exclude the second case.
Hence in all cases, this defines G ∋ p̂ = p̂λ,p with λ ∈ [g−(p), g+(p)]. Hence G ∩ P̂p ⊃ {p̂}.
Step 2: G ∩ P̂p is reduced to a singleton

Consider any p̂α ∈ G ∩ P̂p for α = 1, 2. Then there exists λα ∈ [g−(p), g+(p)] such that λα = g(p̂α) and
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moreover p̂α = p̂λα,p. Hence we have g̃(p̂α) = g(p̂α) = λα. Notice that the definition of G := Gg̃ and the fact
that g̃ is locally constant on {g̃ ̸= g} imply that

g̃ = const = g̃(p̂α) = g(p̂α) = λα on BA(p̂α)

Because p ∈ BA(p̂1) ∩BA(p̂2), this implies that λ1 = g̃(p) = λ2 and then p̂1 = p̂2, which shows that G ∩ P̂p

is reduced to a singleton. We conclude that Gf̃ is a generalized Riemann germ.
Part III: getting a Riemann germ
Moreover, from Proposition 3.6, we have ĝGg̃ = g̃ which is continuous. Hence G is a Riemann germ.
This ends the proof of the proposition.

3.5 Basic relaxation formula

Proposition 3.10 (Basic relaxation formula, N = 1, junction 1 : 0)
Assume (3.1). Let g0 be a function satisfying

(3.25)

{
g0 : [a, b] → R is continuous nondecreasing (Monotonicity)
g− ≤ g0 ≤ g+ with g± defined in (3.4) (Bounds)

i) (Basic relaxation formula)
Then the following formula defines uniquely a map g1 : [a, b] → R

(3.26) {g1(p)} =
⋃

q∈[a,b]

{G(p, q)} ∩ {g0(q)} for all p ∈ [a, b]

where G is the standard Godunov flux associated to the function g, defined in (3.3).
ii) (Application to generalized Riemann germs)
Moreover the map g1 satisfies condition (3.25), and is such that Gg1 = {g1 = g} is a generalized Riemann
germ, and g1 is the Godunov flux associated to Gg1 on a junction 1 : 0, i.e. g1 = ĝGg1

.
Conversely, if G is a generalized Riemann germ, then the associated function ĝ := ĝG satisfies (3.25) and
(3.26) with g1 = g0 = ĝ.

Proof of Proposition 3.10
Step 1: g1 is well-defined, nondecreasing, continuous and satisfies (3.25)
Let g0 : [a, b] → R satisfying (3.25). Given p, q ∈ [a, b], we define Φp(q) := G(p, q) − g0(q) where we recall
the monotonicities g0(↑) and G(↑, ↓). Recall that we have g−(p) = G(p, b) ≤ g0(p) ≤ g+(p) = G(p, a).
Step 1.1: discussion for a, b finite or not
Case A: finite a and b
Hence Φp(a) ≥ 0 ≥ Φp(b) for finite a, b.
Case B: infinite a or b
If a = −∞, then

lim
q→a

Φp(q) = lim
q→a

{G(p, q)− g0(q)} = lim
q→a

{
sup
[q,p]

g − g0(q)

}
= +∞

where we have used the coercivity of g (as assumed in (3.1)) and the monotonicity of g0.
If b = +∞, then

lim
q→b

Φp(q) = lim
q→b

{G(p, q)− g0(q)} ≤ lim
q→b

{G(p, q)− g−(q)} = lim
q→b

{
inf
[p,q]

g − inf
[q,b]

g

}
= −∞

where we have used again the coercivity of g.
Step 1.2: remaining part of the argument
Because Φp is continuous nonincreasing, we deduce that there exists at least some c ∈ [a, b] such that
Φp(c) = 0. Now even if c is non unique, the common value g0(c) = G(c, p) is unique, because of the
monotonicities of g0 and G(p, ·). This defines uniquely the value g1(p) in (3.26). Consider p′ ≥ p. Then
there exists c, c′ ∈ [a, b] such that

g1(p) = g0(c) = G(p, c) ≤ G(p′, c), g1(p
′) = g0(c

′) = G(p′, c′)
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Hence Φp′(c) ≥ 0 = Φp(c). This shows that we can always choose c′ ≥ c, and then g1(p
′) = g0(c

′) ≥ g0(c) =
g1(p), which shows that g1 is nonincreasing, and moreover, we can always choose a map p 7→ c = c(p) which
is nondecreasing such that Φp(c(p)) = 0. Moreover, the continuity of g0, G and the uniqueness of the value
g1(p) imply the continuity of g1.
Finally, by construction, for p ∈ [a, b] we have g1(p) = g0(c) = G(p, c) ∈ [G(p, b), G(p, a)] = [g−(p), g+(p)],
which shows (3.25).
Step 2: local constancy of g1

Assume that g1(p) ̸= g(p) and recall that g(p) ̸= g1(p) = g0(c) = G(p, c) =


sup
[c,p]

g = sup
[c,p)

g if c < p

inf
[p,c]

g = inf
(p,c]

g if c > p
,

where we have used the fact that the inf / sup can not be reached at p, because g(p) ̸= g1(p). Notice also
that we can not have c = p, otherwise we would get g1(p) = g0(p) = G(p, p) = g(p), which is impossible by
assumption. This shows now that for pε close to p, we also have (by continuity of g, g1, g0)

g(pε) ̸= g1(pε) = g0(c) = G(pε, c) =


sup
[c,pε]

g = sup
[c,p)

g if c < pε

inf
[pε,c]

g = inf
(p,c]

g if c > pε

 = g1(p)

This justifies a posteriori that we can choose cε := c in g1(pε) = g0(cε) = G(pε, cε). Hence g1 is locally
constant on {g1 ̸= g}.
Step 3: conclusion for g1
From Proposition 3.9, we deduce that Gg1 is a Riemann germ on a junction 1 : 0 and g1 = ĝGg1

.
Step 4: conclusion for ĝ
Consider a generalized Riemann germ G ⊂ [a, b]. Let ĝ := ĝG be the Godunov flux associated to G on
a junction 1 : 0. Then we have G = Gĝ := {ĝ = g}. From Propositions 3.6, 3.8, the function ĝ satisfies
(3.25). Consider g1 given by formula (3.26) for g0 := ĝ. Now if p̂ ∈ G, then we check immediately that
g1(p̂) = ĝ(p̂) = g(p̂). Therefore G ⊂ Gg1 := {g1 = g}. Because the family (BA(p̂))p̂∈G is already a partition
of [a, b], where ĝ and g1 coincide, we deduce that g1 = ĝ, and then Gg1 = Gĝ = G. Moreover, this shows that
(3.26) holds true with g1 = g0 = ĝ. This ends the proof of the lemma.

3.6 Proposition 2.13, Theorem 2.14 and their proofs on a junction 1 : 0

Proof of Proposition 2.13 for 1 : 0 junction
For the proof we refer to the table of Subsection 2.4. Notice that for 1 : 0 junctions, Riemann monotonicities
of π and f̂ reduces to the fact that those functions are nondecreasing. Then the result of Proposition 2.13 for
1 : 0 junction follows from Propositions 3.6, 3.8, 3.10 (respectively first properties of gen. Riemann germs,
monotonicity, relaxation formula) and Lemma 3.4 (dissipation property).

Proof of Theorem 2.14 for 1 : 0 junction
For the proof we refer to the table of Subsection 2.4. Point i) of Theorem 2.14 follows from ii) of Lemma 3.5
(first character. of gen. Riemann germs). Point ii) of Theorem 2.14 follows from Propositions 3.9 (second
character. of (gen.) Riemann germs).

3.7 Weak stability of the Riemann problem

Lemma 3.11 (Weak stability of Riemann problem on a single branch 1 : 0)
Assume (3.1). Let pn ∈ [a, b] and pn ∈ BA(p̂n). We call vn = vpn,p̂n

the unique entropy solution of (3.2)
with (p, p̂) := (pn, p̂n). Assume that (pn, p̂n) → (p∞, p̂∞) ∈ [a, b]2 as n → ∞. Then, up to extraction of a
subsequence (still denoted by vn), there exists p̃∞ ∈ [a, b] such that p∞ ∈ BA(p̃∞) and

vpn,p̂n = vn → v∞ := vp∞,p̃∞ in L1
loc([0,+∞)× (−∞, 0])

Here p̃∞ is the trace of the limit, while p̂∞ is the limit of the trace. Moreover, we have

(3.27) g(p̃∞) = g(p̂∞) with p̃∞ ∈ {p∞, p̂∞}
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(even if p̂n may not converge towards p̃∞, and p∞ may not belong to BA(p̂∞)).
In other words, for self-similar solutions on a half line, if the limit is not constant in space and time, then
the trace of the limit is equal to the limit of the trace.

Proof of Lemma 3.11
Step 1: first results
Recall that vn(t, x) = Vn(x/t) with Vn monotone and bounded in L∞((−∞, 0]; [a, b]). By classical Helly’s
theorem for monotone functions, we know that, up to extract a subsequence, we have Vn → V∞ a.e. on
(−∞, 0], and then vn → v∞ in L1

loc([0,+∞) × (−∞, 0]) with v∞(t, x) := V∞(x/t). By stability of entropy
solutions and of their initial data, we have that v∞ is a solution of (3.2) with initial data p := p∞. Because
V∞ is monotone, it also has a trace p̃∞ ∈ [a, b] at x = 0−. Hence v∞ = vp∞,p̃∞ with p∞ ∈ BA(p̃∞).

Moreover, we have

{
p̂n := p̂λ̂n,pn

, with λ̂n := g(p̂n) and λ̂∞ := g(p̂∞)

p̃∞ := p̂λ̃∞,p∞
with λ̃∞ := g(p̃∞)

.

Step 2: proof that λ̃∞ = λ̂∞
Case A: p∞ ̸= p̃∞
Because BA(p̃∞)\ {p̃∞} is a relative open set of [a, b], we deduce that pn ∈ BA(p̃∞)\ {p̃∞} for n large

enough. Hence p̂n = p̃∞, and then p̃∞ = p̂∞ and λ̃∞ = λ̂∞.
Case B: p∞ = p̃∞
If p̂∞ = p∞, then we get immediately that λ̂∞ = λ̃∞. Assume therefore that p̂∞ ̸= p∞. Precisely assume
that p̂∞ < p∞ (the case p̂∞ > p∞ is similar).

Because (p̂n, pn) → (p̂∞, p∞), this implies for n large enough that

(3.28) g < λ̂n = g(p̂n) on (p̂n, pn]

Let us call the interval In := [p̂n, pn]. Then from the proof of Lemma 3.1, Step 2, Case 2, we have

g̃n := concave envelope of gIn with gIn(a) :=

{
g(a) if a ∈ In
−∞ if a ∈ R\In

Hence g̃n(p̂n) = g(p̂n) = λ̂n and g̃n(pn) < λ̂n, and from (3.28), we deduce that the concave function g̃n
satisfies

(3.29) g̃n < λ̂n on (p̂n, pn]

We deduce (see Lemma 9.1) that

(3.30) (ξnL, ξ
n
R) := (g̃′n(p

−
n ), g̃

′
n(p̂

+
n )) satisfies ξnL ≤ ξnR ≤ 0

and get

(3.31) Vn(ξ) =

 pn if ξ < ξnL
p̂n if ξnR < ξ ≤ 0
((g̃n|In)

′)−1(ξ) if ξ ∈ [ξnL, ξ
n
R]

which is well defined for almost every ξ > 0. Moreover Vn is nonincreasing.
We deduce that λ̂n > g(pn) → g(p∞) and then

(3.32) λ̂∞ ≥ g(p∞)

Assume by contradiction that

(3.33) λ̂∞ > g(p∞)

Setting I∞ := [p̂∞, p∞], we see that g̃n → g̃∞ locally uniformly on [p̂∞, p∞], where g̃∞ is the concave envelope

of gI∞ . Then passing to the limit in (3.29), we get

{
g̃∞ ≤ λ̂∞ = g(p̂∞) on [p̂∞, p∞]
g̃∞ = g on ∂[p̂∞, p∞]

. Because of

(3.33) and the concavity of g̃∞, we deduce that g̃∞ is above its chord on [p̂∞, p∞] and then

(3.34) g̃∞ > g(p∞) on [p̂∞, p∞)
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Then is is easy to check that Vn converges almost everywhere (by Helly’s theorem for sequences of
monotone functions) towards V∞ which is given by (3.30)-(3.31) for n = ∞. Moreover (3.34) insures that
V∞ ̸= const a.e. on (−∞, 0). On the other hand, notice that v∞ = vp∞,p̃∞ = vp∞,p∞ and then this function
is uniquely given by v∞ ≡ p∞. Therefore V∞ ≡ p∞ = const. Contradiction. Hence (3.33) is false, and we

conclude from (3.32) that λ̂∞ = g(p∞) = g(p̃∞) = λ̃∞, where we have used our assumption p∞ = p̃∞. This
shows (3.27). This ends the proof of the lemma.

4 Riemann problem on a junction with N ≥ 1 branches

4.1 Two families of transformations and reduction to N : 0 junctions

Given assumption (2.2), there are naturally two families of transformations with actions on (J, f,G) where
J is a junction with N ≥ 1 branches, f j : [aj , bj ] → R are maps for j = 1, . . . , N and G ⊂ [a, b] is a set.
Those are I-inversions and I ′-reversions where I, I ′ ⊂ {1, . . . , N} are subsets of indices. The first family of
I-inversions does not modify the junction J , but only modify (f,G). On the contrary the second family of
I-reversions modifies (J, f) but does not modify the set G.

4.1.1 I-inversions

We will need the following partial inversion transform defined for a subset I of indices.

Definition 4.1 (I-inversion)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Given a subset I ⊂ {1, . . . , N}, we define

the I-inversion with respect to I as the map (̄·) : (J, f,G) 7→ (J̄ , f̄ , Ḡ) defined for ε̄j :=

{
−1 if j ∈ I
+1 otherwise

as

(4.1)


J̄ := J

f̄ j(p̄j) := ε̄jf j(ε̄j p̄j) for p̄j ∈
[
āj , b̄j

]
= ε̄j

[
aj , bj

]
Ḡ :=

{
p̄ ∈ [ā, b̄], p ∈ G

}
with p̄j := ε̄jpj

If f̂ : [a, b] → RN is any map, we also define the action of the I-inversion (̄·) on f̂ as

(4.2)
¯̂
f
j
(p̄) := ε̄j f̂ j(p) with p̄ defined in (4.1)

Remark 4.2 Notice that the notation for ā, b̄ is not consistent with the general definition of p̄ as a function
of p. But this inconsistency will not bring any confusion.

Then we have the following result

Lemma 4.3 (I-inversion of a germ)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Given a subset I ⊂ {1, . . . , N}, consider
the I-inversion which maps (J, f,G) to (J̄ , f̄ , Ḡ) with (J̄ , f̄) satisfying (2.2).
i) (Case of a generalized Riemann germ)
Then G is a generalized Riemann germ with respect to (J, f), if and only if Ḡ is also a generalized Riemann
germ with respect to (J̄ , f̄). Moreover for p̄ defined in (4.1), we have

(4.3)

{
BA(J̄j ,f̄j)(p̄j) = ε̄jBA(Jj ,fj)(pj)

πj

Ḡ(p̄) = ε̄jπj
G(p)

ii) (Case of a set with special expression)

Assume that there exists some function f̂ : [a, b] → RN such that the set G satisfies G =
{
p ∈ [a, b], f̂(p) = f(p)

}
.

Given
¯̂
f in (4.2), we have Ḡ =

{
p̄ ∈ [ā, b̄],

¯̂
f(p̄) = f̄(p̄)

}
.
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Proof of Lemma 4.3
It is straightforward to check point ii). Let us now prove point i). Consider an entropy solution u of
ujt + ∂x(f

j(uj)) = 0 on (0,+∞)× Jj . We set

ūj(t, x) := ε̄juj(t, x)

Then ū is an entropy solution u of ūjt + ∂x(f̄
j(ūj)) = 0 on (0,+∞) × J̄j . Moreover ū is self-similar if u is,

and
u(t, 0) ∈ G is equivalent to ū(t, 0) ∈ Ḡ

This implies that Ḡ is generalized Riemann germ with respect to (J̄ , f̄), if G is with respect to (J, f). It is
is indeed an equivalence. Moreover, under I-inversion, the properties (4.3) of the basins of attraction and of
the natural projection follow from the definitions. This ends the proof of the lemma.

4.1.2 I-reversions

We will need the following partial reversion transform defined for a subset I of indices.

Definition 4.4 (I-reversion)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Given a subset I ⊂ {1, . . . , N}, we define

the I-reversion with respect to I as the map (̃·) : (J, f,G) 7→ (J̃ , f̃ , G̃) defined for ε̃j :=

{
−1 if j ∈ I
+1 otherwise

as 

J̃ := {0} ∪
⋃

j=1,...,N

J̃j with J̃j := ε̃jJj

f̃ j(pj) := ε̃jf j(pj)

G̃ := G

If f̂ : [a, b] → RN is any map, we also define the action of the I-reversion (̃·) on f̂ as

(4.4)
˜̂
f
j

(p) := ε̃j f̂ j(p)

We see that for indices in I, the I-reversion transform changes outgoing branches into ingoing branches,
and vice versa.

Then we have the straightforward result.

Lemma 4.5 (I-reversion of germ)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Given a subset I ⊂ {1, . . . , N}, consider
the I-inversion which maps (J, f,G) to (J̃ , f̃ , G̃) with (J̃ , f̃) satisfying (2.2).
i) (Case of a generalized Riemann germ)
Then G is a generalized Riemann germ with respect to (J, f), if and only if G̃ is also a generalized Riemann
germ with respect to (J̃ , f̃). Moreover, for all q ∈ [a, b] we have

(4.5)

{
BA(J̃,f̃)(q) = BA(J,f)(q)

πG̃ = πG

ii) (Case of a set with special expression)

Assume that there exists some function f̂ : [a, b] → RN such that the set G satisfies G =
{
p ∈ [a, b], f̂(p) = f(p)

}
.

Given
˜̂
f in (4.4), we have G̃ =

{
p ∈ [a, b],

˜̂
f(p) = f̃(p)

}
.

Proof of Lemma 4.5
It is straightforward to check point ii). Let us now prove point i). Consider an entropy solution u of
ujt + ∂x(f

j(uj)) = 0 on (0,+∞)× Jj . We set

ũj(t, x) := uj(t, ε̃jx)
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Then ũ is an entropy solution u of ũjt + ∂x(f̃
j(ũj)) = 0 on (0,+∞) × J̃j . Moreover ũ is self-similar if u is,

and
u(t, 0) ∈ G is equivalent to ũ(t, 0) ∈ G̃

This implies that G̃ is generalized Riemann germ with respect to (J̃ , f̃), if G is with respect to (J, f). More-
over it is an equivalence. Moreover, under I-reversion, the properties (4.5) of the basins of attraction and of
the natural projection follow from the definitions. This ends the proof of the lemma.

It is straightforward to check the following result.

Lemma 4.6 (Commutativity of inversions and reversions)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Given two subsets Ī , Ĩ ⊂ {1, . . . , N},

consider the Ī-inversion (̄·)Ī and the Ĩ-reversion (̃·)
Ĩ
. Then we have the commutativity (̄·)Ī ◦ (̃·)

Ĩ
= (̃·)

Ĩ
◦ (̄·)Ī .

4.1.3 Reduction to N : 0 junctions

The following result is a straightforward corollary of Lemma 4.5.

Corollary 4.7 (Reduction to N : 0 junctions)
Let (J, f) satisfying (2.2) with N ≥ 1, and let G ⊂ [a, b] be a generalized Riemann germ with respect to (J, f).
Set

I :=
{
j ∈ {1, . . . , N} , σj = −1

}
The action of a I-reversion on (J, f,G) defines (J̃ , f̃ , G̃). Then G̃ is a generalized Riemann germ with respect
to (J̃ , f̃) with J̃j ≃ (−∞, 0) = σ̃j · (−∞, 0) for all j = 1, . . . , N , i.e. with σ̃j = 1 for all j. This means that
J̃ is a junction of type N : 0.

This way, we see that we reduce the problem of n : m junctions with N := n +m, to the case n = N
and m = 0. Such junctions are then called N : 0 junctions. In the remaining part of the section, we will
work which such junctions which have more symmetries. The result for the original problem can then be
obtained easily by the inverse of the reverse transform.

4.2 Proof of Proposition 2.4: L1 estimate for Riemann problem

We can do the proof of Proposition 2.4 in two steps.
Step 1: reduction
We first notice that the problem reduces to a single branch N = 1 and using a reversion, we can assume
that we work on a 1 : 0 junction.
Step 2: the computation
We now compute formally for j = 1 with Jj = (−∞, 0)

d

dt

∫
Jj

(uj(t, ·)− pj) =

∫
Jj

ujt (t, ·)

= −
∫
Jj

∂x
{
f j(uj(t, ·))

}
dx

= −[f j ]p
j

p̂j

= f j(p̂j)− f j(pj)

This computation can easily be justified (in the sense of distributions), and this implies the first equality of
(2.7), because uj(0, ·) = pj . The second equality of (2.7) follows from the fact that the sign of uj − pj only
depends on j, for self-similar solutions (see Lemma 9.1). This ends the proof of the proposition.

4.3 First results on generalized Riemann germs

Assume (2.2) with N ≥ 1 branches ≃ (−∞, 0). We recall briefly some definitions/notations. For
j ∈ {1, . . . , N}, we recall that the Godunov flux Gj : [aj , bj ]2 → R associated to f j , is Gj(q, r) :=
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
inf
[q,r]

f j if q ≤ r

sup
[r,q]

f j if q ≥ r
. We also define the following nondecreasing functions of pj ∈ [aj , bj ]

(4.6) f j−(p
j) := inf

[pj ,bj ]
f j = Gj(pj , bj) ≤ f j+(p) := sup

[aj ,pj ]

f j = Gj(pj , aj)

and for λ ∈ [f j−(p
j), f j+(p

j)], we define the following element of [aj , bj ]

(4.7) p̂jλ,pj :=


pj if f j(pj) = λ
sup

{
qj ∈ (pj , bj ], f j > λ on (pj , qj)

}
if f j(pj) > λ

inf
{
qj ∈ [aj , pj), f j < λ on (qj , pj)

}
if f j(pj) < λ

which is nonincreasing in λ. For p = (p1, . . . , pN ) ∈ [a, b], we also define the following subset of [a, b]

(4.8) P̂p :=
∏

j=1,...,N

P̂j
pj with P̂j

pj :=
{
p̂jλ,pj ∈ [aj , bj ], λ ∈ [f j−(p

j), f j+(p
j)]
}

We also recall the basins of attraction defined for all p ∈ [a, b] by

(4.9) BA(p) :=
∏

j=1,...,N

BAj(pj) with BAj(pj) := BAj
−(p

j) ∪
{
pj
}
∪BAj

+(p
j)

where BAj
± = BAj

±(p
j) are given for λj := f j(pj) by

{
BAj

+ :=
{
qj ∈ (pj , bj ], f j < λj on (pj , qj ]

}
BAj

− :=
{
qj ∈ [aj , pj), f j > λj on [qj , pj)

} .

Then from Lemma 3.2 and the definitions, we get immediately

Lemma 4.8 (Inverse characterization of the map p 7→ P̂p)
Assume (2.2) with N ≥ 1 and a N : 0 junction. Then for two arbitrary vectors p, p̂ ∈ [a, b], we have

p̂ ∈ P̂p if and only if p ∈ BA(p̂)

The following result follow immediately from the definitions and Lemma 3.1.

Lemma 4.9 (Generalized Riemann germ characterization, N ≥ 1)
Assume (2.2) with N ≥ 1 and let G ⊂ [a, b] be a set.
i) (First characterization)
The set G is a generalized Riemann germ if and only if for all p ∈ [a, b], we have the singleton property
G ∩ P̂p = {p̂}, where P̂p is defined in (4.8).
ii) (Equivalent characterization)
The set G is a generalized Riemann germ if and only if (BA(p̂))p̂∈G is a partition of [a, b].

Proposition 4.10 (First properties of generalized Riemann germs, N ≥ 1)
Assume (2.2) with N ≥ 1 and let G ⊂ [a, b] be a generalized Riemann germ for a junction N : 0. Given
p ∈ [a, b], the unique G-entropy solution of (2.6) writes uGp,p̂ with π(p) := πG(p) := p̂ ∈ G and π : [a, b] → G
which satisfies π ◦ π = π. We set f̂ := f̂G := f ◦ π.
i) (Local constancy): The map f̂ is locally constant on

{
f̂ ̸= f

}
.

ii) (Inverse of π): For all p̂ ∈ G, we have π−1(p̂) = BA(p̂).

iii) (Level set formulation of the germ): We have G = Gf̂ :=
{
p ∈ [a, b], f̂(p) = f(p)

}
.

iv) (Characterization of f̂): Assume that f̂ : [a, b] → RN is continuous. Then f̂ is fully characterized as

the continuous function which is locally constant on
{
f̂ ̸= f

}
such that G = Gf̂ .

v) (Monotone bounds): We have f− ≤ f̂ ≤ f+ with f± defined in (4.6).

Remark 4.11 Notice that the monotonicity properties of f̂ are not proved in Proposition 4.10. Again it
seems to be a delicate result. We will prove it later using as a key step a slicing lemma which reduces to
germs for a single branch, for which we already have proved some monotonicity.
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Proof of Proposition 4.10
Step 1: proof of ii)
From i) of Lemma 4.9 and Lemma 4.8, we have π−1(p̂) = BA(p̂) for all p̂ ∈ G.
Step 2: proof of iii)
From b) in hands, then Step 3 of the proof of Proposition 3.6 applies word by word.
Step 3: proof of i)

Let p ∈ [a, b] ∩
{
f̂ ̸= f

}
and let p̂ = π(p) ∈ G such that p ∈ BA(p̂). We set

(4.10) Ip(f̂) :=
{
j ∈ {1, . . . , N} , f̂ j(p) ̸= f j(pj)

}
Because f̂ = f ◦ π, we deduce that for all j ∈ Ip(f̂) that pj ∈ BA(p̂j)\

{
p̂j
}
, which is a relative open set

of [aj , bj ]. We deduce the existence of some ε > 0 small enough such that [aj , bj ] ∩ Qj
pj ⊂ BAj(p̂j) with

Qj
pj := (pj − ε, pj + ε). This means that

(4.11) [a, b] ∩Qf̂
ε (p) ⊂ BA(p̂) with Qf̂

ε (p) := p+
∑

j∈Ip(f̂)

(−ε, ε)ej

with the convention that Qf̂
ε (p) = {p} when Ip(f̂) = ∅. Then f̂ = const = f̂(p) = f(p̂) on [a, b] ∩ Qf̂

ε (p),

which means exactly that f̂ is locally constant on
{
f̂ ̸= f

}
.

Step 4: proof of v)
Consider p ∈ [a, b]. We know that p ∈ BA(p̂) with p̂ ∈ G. Hence for each index j, we have p̂j = p̂jλj ,pj with

f̂ j(p) = f j(p̂j) = λj ∈ [f j−(p
j), f j+(p

j)] (by assumption). This gives the monotone bounds.
Step 5: proof of iv)

Assume that f̂ is continuous. Now consider some continuous function f̃ : [a, b] → R which is locally constant

on
{
f̃ ̸= f

}
such that G = Gf̃ . We want to show that f̃ = f̂ .

We already know that f̃ = f = f̂ on G, where G = Gf̂ is a closed set, because f̂ is continuous. Moreover,

we have for all p ∈ [a, b]\G, there exists ε > 0 such that

∂f̃

∂pj
= 0 in [a, b] ∩Qf̃

ε (p) for all j ∈ Ip(f̃)

where Ip(f̃) and Q
f̃
ε (p) are defined respectively in (4.10) and (4.11). By continuity of f , f̃ and the structure

of each basin on attraction, we deduce that f̃ = f(p̂) = f̂ on BA(p̂) for all p̂ ∈ G. Because the family of

basins of attraction forms a partition of [a, b], we deduce that f̃ = f̂ .
This ends the proof of the proposition.

4.4 Slicing lemma and basic monotonicities

The following simple lemma is a key tool.

Lemma 4.12 (Slicing lemma)
Assume (2.2) with N ≥ 2, and let G ⊂ [a, b] be a generalized Riemann germ for a N : 0 junction. Let
1 ≤ n < N . Then for p ∈ [a, b], we write

p = (p′, p′′) with p′ = (p1, . . . , pn) ∈ [a′, b′] and p′′ = (pn+1, . . . , pN ) ∈ [a′′, b′′].

Given some p′′0 ∈ [a′′, b′′], we set Π := [a′, b′]× {p′′0} and define the slicing of the germ G with respect to p′′0 :

Gp′′
0
:= {p̂′ ∈ [a′, b′], s.t. there exists p̂ = (p̂′, p̂′′) ∈ G with BA(p̂) ∩Π ̸= ∅}

Then Gp′′
0
⊂ [a′, b′] is a generalized Riemann germ for a n : 0 junction. Moreover

(4.12) Gp′′
0
=
{
p′ = (p1, . . . , pn) ∈ [a′, b′], f̂ j(p′, p′′0) = f j(pj) for j = 1, . . . , n

}
and the effective flux function associated to Gp′′

0
is

(4.13) f̂Gp′′0
= (f̂ j(·, p′′0))j=1,...,n
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Proof of Lemma 4.12
Recall that BA(p̂) is given in (4.9) and that in the present case all branches satisfy Jj ≃ (−∞, 0).
With GΠ := {p̂ ∈ G, BA(p̂) ∩Π ̸= ∅}, we can write

Gp′′
0
:= {p̂′ ∈ [a′, b′], s.t. there exists p̂ = (p̂′, p̂′′) ∈ GΠ}

Because (BA(p̂))p̂∈G is a partition of [a, b], we see that Π is covered exactly once by the family (BA(p̂))p̂∈GΠ
.

Hence (Π ∩BA(p̂))p̂∈GΠ
is a partition of Π. This implies that Gp′′

0
⊂ [a′, b′] is a generalized Riemann germ.

Now define
G̃p′′

0
:=
{
p′ = (p1, . . . , pn) ∈ [a′, b′], f̂ j(p′, p′′0) = f j(pj) for j = 1, . . . , n

}
For any p̂′ ∈ Gp′′

0
, we set p̂ := π(p̂′, p′′0) ∈ GΠ, where π = πG : [a, b] → G is the natural projection associated

to G. Then p̂ writes p̂ = (p̂′, p̂′′). Moreover f̂ = const = f(p̂) on BA(p̂), and BA(p̂) ∩ Π ∋ (p̂′, p′′0). This
shows in particular that Gp′′

0
⊂ G̃p′′

0
.

Conversely, consider p′ ∈ G̃p′′
0

and set π(p′, p′′0) =: p̂ = (p̂′, p̂′′) ∈ GΠ with p′ ∈ BA′(p̂′) (with ob-

vious notation). Hence f j(pj) = f̂ j(p′, p′′0) = f j(p̂) = f j(p̂j) for j = 1, . . . , n. Because we have
BAj(p̂j) ∩

{
f j = f j(p̂j)

}
=
{
p̂j
}

for all j = 1, . . . , N , we deduce that p′ = p̂′ with (p̂′, p̂′′) ∈ GΠ. This

implies the reverse inclusion Gp′′
0
⊃ G̃p′′

0
. This shows (4.12). Moreover, we get that f̂Gp′′0

= (f̂ j(·, p′′0))j=1,...,n,

i.e. (4.13). This ends the proof of the lemma.

We now state the following result.

Proposition 4.13 (Basic monotonicities of f̂ , N ≥ 1)
We work under assumptions of Proposition 4.10. Then we have on [a, b]

p 7→ f̂ j(p)
p 7→ πj(p)

}
are nondecreasing in pj, for all j (Basic monotonicities)

Moreover we have

(4.14)


for all index j, the function f̂ j is locally Lipschitz continuous in the variable pj ,

and for all q0 ∈ [a, b] and for all j, we have with ιjq0(p
j) := (q10 , . . . , q

j−1
0 , pj , qj+1

0 , . . . , qN0 )

max(0, (f j)′) ≥ (f̂ jq0)
′ ≥ 0 a.e. on [aj , bj ] with f̂ jq0 := f̂ j ◦ ιjq0

and for all q0 ∈ [a, b] and all index j we have(
(f̂ jq0)

′ ∈
{
0,min(0, (f j)′)

}
and (f̂ jq0)

′ = (f j)′ > 0 implies f̂ jq0 = f j
)

holds a.e. on [aj , bj ]

Proof of Proposition 4.13
Applying the Slicing Lemma 4.12 with n = 1, we get for j = 1, that f̂ jq0 is the flux function at the junction
1 : 0 associated to a generalized Riemann germ. Applying vi) of Proposition 3.6 and Proposition 3.8, we
deduce the result for j = 1. Up to relabel the indices, we get the result for all indices j = 1, . . . , N . This
ends the proof of the lemma.

4.5 Theorem 2.14 and its proof: characterization of generalized Riemann germs

We first start with the following result and then give the proof of Theorem 2.14.

Proposition 4.14 (Generating generalized Riemann germs, N ≥ 1)
Assume (2.2) for a N : 0 junction with N ≥ 1 and let G ⊂ [a, b] be a set.

Then G is a generalized Riemann germs if and only if G = Gf̂ :=
{
f̂ = f

}
for some function f̂ : [a, b] → RN

which is locally constant on
{
f̂ ̸= f

}
and satisfying for all j

(4.15)

{
pj 7→ f̂ j(p) is nondecreasing on [a, b] (Basic monotonicities)

f− ≤ f̂ ≤ f+ (Monotone bounds)

with f± defined in (4.6).
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Proof of Proposition 4.14
Part I: properties of generalized Riemann germs
Notice that if G is a generalized Riemann germ, then Proposition 4.10 and Proposition 4.13 shows that
f̂ := f̂G satisfies all the required conditions.
Part II: constructing a generalized Riemann germ

Conversely, assume that f̃ : [a, b] → RN is locally constant on
{
f̃ ̸= f

}
and satisfies (4.15) for all index j.

Then let G := Gf̃ :=
{
f̃ = f

}
. Let us check that G is a generalized Riemann germ, i.e. that G satisfies the

following singleton property G ∩ P̂p = {p̂} for all p ∈ [a, b].

Step 1: nonemptyness of G ∩ P̂p

Recall that f− ≤ f̃ ≤ f+. We first define π(p) := p̂ for p ∈ [a, b]. For each index j, setting λ := f̃ j(p), we
define

p̂j := πj(p) :=


pj if f j(pj) = λ
sup

{
qj ∈ [pj , bj ], f j > λ on (pj , qj ]

}
if f j(pj) > λ

inf
{
qj ∈ [aj , pj ], f j < λ on [qj , pj)

}
if f j(pj) < λ

Exactly as in Step 1 of the proof of Proposition 3.9, we conclude that G ∩ P̂p ⊃ {p̂}.
Step 2: G ∩ P̂p is reduced to a singleton

Exactly as in Step 2 of the proof of Proposition 3.9, we conclude that G ∩ P̂p = {p̂}. which shows that G is
a generalized Riemann germ. This ends the proof of the proposition.

Proof of Theorem 2.14
For the proof we refer to the table of Subsection 2.4. Point i) of Theorem 2.14 follows from ii) of Lemma 4.9,
while point ii) of Theorem 2.14 follows from follows from Proposition 4.14. This ends the proof of the theorem.

4.6 Partial relaxation formula

Proposition 4.15 (Partial relaxation formula, N ≥ 1)

Assume (2.2) for a N : 0 junction with N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ and f̂ := f̂G.
For any p ∈ [a, b] and index j, we define for all qj ∈ [aj , bj ]

f̂ jp := f̂ j ◦ ιjp with ιjp(q
j) := f̂ j(p1, . . . , pj−1, qj , pj+1, . . . , pN )

Then for all index j, the function f̂ jp satisfies

(4.16)



f̂ jp : [aj , bj ] → R is continuous nondecreasing (Monotonicity)

f̂ jp,− ≤ f̂ jp ≤ f̂ jp,+ (Bounds)

f̂ jp,−(q
j) = inf

[qj ,bj ]
f̂ jp ,

f̂ jp,+(q
j) = sup

[aj ,qj ]

f̂ jp

and we have the following partial relaxation formula

(4.17)
{
f̂ jp (p

j)
}
=

⋃
qj∈[aj ,bj ]

{
Gj(pj , qj)

}
∩
{
f̂ jp (q

j)
}

Proof of Proposition 4.15

The result follows from the slicing lemma 4.12, considering Gj
p :=

{
qj ∈ [aj , bj ], f̂ jp (q

j) = f j(qj)
}
, which is

a generalized Riemann germ in [aj , bj ]. Moreover the associated effective flux function is f̂Gj
p
= f̂ jp . Then

(4.16) and (4.17) follow from Proposition 3.10. This ends the proof of the lemma.

4.7 Theorem 2.16 and its proof: characterization of Riemann germs

Before to start the proof of Theorem 2.16, recall that we consider Kruz̆kov entropy solution

uGp,p̂ := (u1p1,p̂1 , . . . , uNpN ,p̂N ) ∈ L1
loc ([0,+∞)× (−∞, 0))

N ≃ L1
loc ([0,+∞)× J)
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to the G-Riemann problem (2.6).

Proof of Theorem 2.16
Part I: proof of i)
We only do the proof for N : 0 junctions. The general case of junctions n : m is recovered from N : 0 with
N := n+m, using suitable I-reversions (see Lemma 4.5).
Step 1: necessary condition
Assume that G ⊂ [a, b] is a Riemann germ. For pn → p∞, we set p̃∞ :=: π(p∞), and up to extract a
subsequence (still denoted by pn), we have p̂n := π(pn) → p̂∞ ∈ [a, b]. By Definition 2.5 of Riemann germs,
we have

uGpn,p̂n
→ uGp∞,p̃∞

in L1
loc([0,+∞)× J), as n→ +∞

Hence for pn ∈ BA(p̂n) and from the weak stability Lemma 3.11, we conclude that f(p̂∞) = f(p̃∞). By

definition, this shows that f̂(pn) = f(p̂n) → f(p̂∞) = f(p̃∞) = f(π(p∞)) = f̂(p∞), which shows the

continuity of f̂ .
Step 2: sufficient condition
Let G be a generalized Riemann germ and assume that f̂ : [a, b] → RN is continuous. We want to show that

G is a Riemann germ. Because G =
{
f̂ = f

}
, we deduce that G is a closed set. Now if pn ∈ [a, b] satisfies

pn → p∞ ∈ [a, b], then, up to extract a subsequence, we have G ∋ π(pn) =: p̂n → p̂∞ ∈ G. From the weak
stability Lemma 3.11, there exists p̃∞ ∈ [a, b] with p∞ ∈ BA(p̃∞) such that, up to extract a subsequence,
we have

un := uGpn,p̂n
→ u∞ := up∞,p̃∞ in L1

loc([0,+∞)× J), as n→ +∞

and we want to show that up∞,p̃∞ = uGp∞,π(p∞), i.e. that p̃∞ = π(p∞). From Lemma 3.11, we also know that

(4.18) f(p̂∞) = f(p̃∞) with p̃∞ ∈ {p∞, p̂∞}

Up to extract a subsequence (still denoted by pn), we can assume that there exists s = (sj)j=1,...,N ∈ {±1}N

such that for all index j, we have

(4.19) sj(p̂jn − pjn) ≤ 0 for all n

We set I :=
{
j ∈ {1, . . . , N} , sj = −1

}
. Then, up to use the I-inversion and (4.19), we can assume that

p̂n ≤ pn. Hence
f̂ = λ̂n := f(p̂n) on BA(p̂n) ⊃ [p̂n, pn)

Passing to the limit, we get from the continuity of f̂ that

f̂ = λ̂∞ = f(p̂∞) on [p̂∞, p∞] ⊃ {p̃∞}

where we have used (4.18) for the last inclusion. Using again (4.18), we get f(p̃∞) = f(p̂∞) = λ̂∞ = f̂(p̃∞).
This shows that p̃∞ ∈ G. Hence p∞ ∈ BA(p̃∞) implies p̃∞ ∈ G ∩ P̂p∞ = {π(p∞)}, and then p̃∞ = π(p∞)
which shows u∞ = up∞,p̃∞ = uGp∞,π(p∞). This shows that the limit u∞ is unique, and independent of the

extracted subsequence. Therefore, the full sequence un converges towards u∞. This establishes that G is a
Riemann germ.
Part II: proof of ii)
The result follows from iv) of Proposition 4.10. This ends the proof of the proposition.

4.8 Dissipation properties for N : 0 junctions

Lemma 4.16 (Dissipative points are in the germ)
Assume (2.2) for N : 0 junction with N ≥ 1. Assume that G ⊂ [a, b] is a generalized Riemann germ, and let

f̂ be its associated effective flux function. Let p̂, q̂ ∈ G and p ∈ BA(p̂), q ∈ BA(q̂). Recall that σj = +1,

Dfj

(p, q) := sign(pj − qj) ·
{
f j(p)− f j(q)

}
and Dfj

+ (p, q) := sign+(pj − qj) ·
{
f j(p)− f j(q)

}
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i) (Dissipative points are in the germ)
We have for all index j

(4.20) Dfj

(p, p̂) ≤ 0

and ∑
j=1,...,N

Dfj

(p, p̂) =: Df (p, p̂) ≥ 0 =⇒ p = p̂ ∈ G

ii) (Properties of Df̂j

and Df̂j

+ )
We have for all index j

(4.21) Df̂j

(p, q) ≥ Dfj

(p̂, q̂) and Df̂j

+ (p, q) ≥ Dfj

+ (p̂, q̂)

Proof of Lemma 4.16
Step 1: proof of i)
This is a corollary of Lemma 3.4.
Step 2: proof of ii)
We only do the proof for D+, because D(p, q) = D+(p, q) +D+(q, p) then implies the result for D.

We set λp := f̂(p), λq := f̂(q), and p̂j = p̂j
λj
p,pj

, q̂j = p̂λj
q,qj

. Recall that (here with σj = +1)

Dj
+ := Df̂j

+ (p, q) =
{
sign+(pj − qj)

}
·
{
f̂ j(p)− f̂ j(q)

}
and let us set

D̂j
+ := Dfj

+ (p̂, q̂) =
{
sign+(p̂j − q̂j)

}
·
{
f j(p̂)− f j(q̂)

}
Because f̂(p) = f̂(p̂) and the same for q, we deduce that only the change of value of sign+(pj − qj) ̸=
sign+(p̂j − q̂j) can affect the difference Dj

+ − D̂j
+. We then distinguish the only two cases where this

happens.
Case A: pj > qj and p̂j ≤ q̂j

This means that p̂j = p̂λj
p,pj ≤ p̂λj

q,qj
= q̂j . Then either p̂j < q̂j or p̂j = q̂j , and from the monotonicities of

the map (λj , pj) 7→ p̂jλj ,pj which are (↓, ↑), we deduce that

λjp > λjq or
(
p̂j = q̂j and λjp = λjq

)
i.e.

Dj
+ > 0 = D̂j

+ or Dj
+ = 0 = D̂j

+

Case B: pj ≤ qj and p̂j > q̂j

From the monotonicities, we deduce that λjp < λjq. Hence Dj
+ = 0 > D̂j

+.
Conclusion
In all cases, we deduce that Dj

+ ≥ D̂j
+ which shows (4.21).

This ends the proof of the lemma.

4.9 Characterization of dissipative functions and technical approximations

Notice that while Dfj

is a continuous function, Df̂j

is not continuous in general. For later use, we will need
the following technical result.

Lemma 4.17 (Approximation of Df̂ and Df̂
+)

Assume (2.2) with N ≥ 1. Consider the relative open set Ω of [a, b]2 defined by

(4.22) Ω :=
{
(p, q) ∈ [a, b]2, pj ̸= qj for all j = 1, . . . , N

}
and any continuous function f̂ : [a, b] → RN . Then for all (p, q) ∈ [a, b]2, there exists a sequence (pδ, qδ) ∈ Ω
such that (pδ, qδ) → (p, q) as δ → 0+ and

(4.23) Df̂ (p, q) ≥ lim inf
δ→0+

Df̂ (pδ, qδ)
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and

(4.24) Df̂
+(p, q) ≥ lim inf

δ→0+
Df̂

+(pδ, qδ)

Proof of Lemma 4.17
We only do the proof for 0 : N junctions (because the signs of the present computation are then more natural
than for N : 0 junctions). The general case can be recovered using reversion transforms. We first notice that

Df̂ is continuous on Ω. Assume now that (p, q) ∈ [a, b]2\Ω, and define the sets

I± :=
{
j ∈ {1, . . . , N} , ±(pj − qj) > 0

}
, I0 :=

{
j ∈ {1, . . . , N} , (pj − qj) = 0

}
and

I0,± :=
{
j ∈ I0, ±

{
f̂ j(p)− f̂ j(q)

}
> 0
}
, I0,0 :=

{
j ∈ I0,

{
f̂ j(p)− f̂ j(q)

}
= 0
}

We set
h := p− q, h̄ :=

∑
j∈I0,+∪I0,0

ej −
∑

j∈I0,−

ej

Notice that for δ > 0, we have

(4.25) p− q + δh̄ = h+ δh̄ ∈ EK := EK+
+ EK− ⊂ RN with EK± := ±

∑
j∈K±

(0,+∞)ej

and

K+ ∩K− = ∅, K+ ∪K− = {1, . . . , N} with K+ := I+ ∪ I0,+ ∪ I0,0, K− := I− ∪ I0,−

If p, q belong to the interior of the box [a, b], then we can consider the couple (p + δh̄, q) ∈ Ω for δ > 0
small enough. In general, we may have a, b ∈ ∂[a, b]. Nevertheless in all cases, we can find p̄, q̄ ∈ RN such
that p̄− q̄ = h̄, and for δ > 0 small enough, we have

pδ := p+ δp̄, qδ := q + δq̄, satisfy pδ, qδ ∈ [a, b]

Because pδ − qδ = h+ δh̄ ∈ EK , we deduce that (pδ, qδ) ∈ Ω, and then

lim
δ→0+

Df̂ (pδ, qδ) = −

 ∑
j∈K+

{
f̂ j(p)− f̂ j(q)

}
−
∑

j∈K−

{
f̂ j(p)− f̂ j(q)

}
= Df̂ (p, q)−

∑
j∈I0,+∪I0,0

[f̂ j ]pq +
∑

j∈I0,−

[f̂ j ]pq

≤ Df̂ (p, q)

where we have used the definition of I0,± and I0,0 in the last line. This shows (4.23).
Similarly, we have

lim
δ→0+

Df̂
+(pδ, qδ) = −

∑
j∈K+

{
f̂ j(p)− f̂ j(q)

}
= Df̂

+(p, q)−
∑

j∈I0,+∪I0,0

[f̂ j ]pq

≤ Df̂
+(p, q)

which shows (4.24). This ends the proof of the lemma.

Lemma 4.18 (A property of dissipative functions for 0 : N junctions)

Assume (2.2) with N ≥ 1 for some 0 : N junction. Consider a continuous function f̂ : [a, b] → RN .
i) (Dissipative functions)

Then f̂ satisfies

(4.26) Df̂ ≥ 0 on [a, b]2
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if and only if in the sense of distributions in D′(a, b) with (a, b) :=
∏

j=1,...,N (aj , bj)

(4.27)

 S̄K :=
∑

j∈K f̂ j −
∑

j ̸∈K f̂ j

∂kS̄K ≤ 0 for all k ∈ K
∂kS̄K ≥ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

ii) (Semi-dissipative functions)

Then f̂ satisfies

(4.28) Df̂
+ ≥ 0 on [a, b]2

if and only if in D′(a, b)

(4.29)

 SK :=
∑

j∈K f̂ j

∂kSK ≤ 0 for all k ∈ K
∂kSK ≥ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

Proof of Lemma 4.18
We first do the proof in part I, assuming more regularity on f̂ , and then in Part II for f̂ only continuous.
Part I: assuming f̂ locally Lipschitz continuous
Step 1: proof of i)
Step 1.1: (4.26) implies (4.27)

Let us consider two subsets K± ⊂ {1, . . . , N} such that K+ ∩K− = ∅, a point p ∈ (a, b) :=
∏

j=1,...,N

(aj , bj)

and h ∈ E := EK++EK− ⊂ RN with EK± := ±
∑

j∈K±
(0,+∞)ej and ε > 0 small enough such that we have

pε := p+ εh ∈ (a, b). Then we have 0 ≤ Df̂ (pε, p) = −

 ∑
j∈K+

{
f̂ j(pε)− f̂ j(p)

}
−
∑

j∈K−

{
f̂ j(pε)− f̂ j(p)

}.

Setting SK+,K− :=
∑

j∈K+

f̂ j −
∑

j∈K−

f̂ j , we get

h ·DSK+,K− ≤ 0 a.e. on (a, b), for all h ∈ E

Now choosing

h := ±ek + δ

 ∑
j∈K+

ej −
∑

j∈K−

ej

 if k ∈ K±

then in the limit δ → 0+, we get ±∂kSK+,K− ≤ 0 for all k ∈ K±. If moreover we choose K± such that
K := K+ = {1, . . . , N} \K−, then we get relation (4.27).
Step 1.2: (4.27) implies (4.26)
Conversely, assume that (4.27) holds true with K := K+ := {1, . . . , N} \K−. With the same notation as in
Step 1 with ε := 1 and q := pε = p+ h, and h ∈ E := EK+

+ EK− , we get

Df̂ (q, p) = −
{
S̄K(q)− S̄K(p)

}
= −

∫ 1

0

h ·DS̄K(p+ th) dt ≥ 0 with h := q − p ∈ E = EK+
+ EK−

For Ω defined in (4.22), this implies Df̂ ≥ 0 on Ω. From Lemma 4.17, we deduce that Df̂ ≥ 0 on Ω = [a, b]2,
which is (4.26).
Step 2: proof of ii)
The proof follows the same lines as the one of point i).
Step 2.1: (4.28) implies (4.29)
As in Step 1.1, we consider a point p ∈ (a, b), h ∈ E := EK+ + EK− ⊂ RN and pε := p+ εh ∈ (a, b). Then
we get 

0 ≤ Df̂
+(pε, p) = −

∑
j∈K+

{
f̂ j(pε)− f̂ j(p)

}
0 ≤ Df̂

+(p, pε) = −
∑

j∈K−

{
f̂ j(p)− f̂ j(pε)

}
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Hence for SK± :=
∑

j∈K±
f̂ j , we get

±h ·DSK± ≤ 0 a.e. on (a, b), for all h ∈ E

Now choosing h as in Step 1.1, in the limit δ → 0+, we get (4.29) with K := K+ = {1, . . . , N} \K−.
Step 2.2: (4.29) implies (4.28)
Conversely, assume that (4.29) holds true with K := K+ = {1, . . . , N} \K−. With the same notation as in
Step 1.2 with ε := 1 and q := pε = p+ h, we get

Df̂
+(q, p) = −

∑
j∈K+

{
f̂ j(q)− f̂ j(p)

}
= −

∫ 1

0

h·D

 ∑
j∈K+

f̂ j(p+ th)

 dt ≥ 0 with h := q−p ∈ E = EK+
+EK−

For Ω defined in (4.22), this implies Df̂
+ ≥ 0 on Ω. From Lemma 4.17, we deduce that Df̂

+ ≥ 0 on Ω = [a, b]2,
which is (4.28).

Part II: general continuous f̂
We now only assume f̂ continuous. Let 0 ≤ ρε := ε−Nρ(ε−1·) be a mollifier with supp(ρ) ⊂ [−1, 1]N .

Extending f̂ (for instance by zero outside the box [a, b]), and for p, q in the interior of the box [a, b], and

integrating Df̂ (p+ξ, q+ξ) ≥ 0 (resp. Df̂
+(p+ξ, q+ξ) ≥ 0) over the measure ρε(ξ)dξ and setting f̂ε := f̂ ⋆ρε,

we get Df̂ε ≥ 0 (resp. Df̂ε

+ ≥ 0) on [a, b]ε := [a+ ε(1, . . . , 1), b− ε(1, . . . , 1)].

Defining S̄ε
K (resp. Sε

K) as S̄K (resp. SK) with f̂ε instead of f̂ , we see that Steps 1 and 2 do apply, and in

the limit ε→ 0, we recover the desired result, using the continuity of f̂ .
This ends the proof of the lemma.

As a straightforward application of a reversion transform, we get

Corollary 4.19 (A property of dissipative functions for N : 0 junctions)

Assume (2.2) with N ≥ 1 for some N : 0 junction. Consider a continuous function f̂ : [a, b] → RN .
i) (Dissipative functions)

Then f̂ satisfies

(4.30) Df̂ ≥ 0 on [a, b]2

if and only if in D′(a, b) with (a, b) :=
∏

j=1,...,N (aj , bj)

(4.31)

 S̄K :=
∑

j∈K f̂ j −
∑

j ̸∈K f̂ j

∂kS̄K ≥ 0 for all k ∈ K
∂kS̄K ≤ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

ii) (Semi-dissipative functions)

Then f̂ satisfies

(4.32) Df̂
+ ≥ 0 on [a, b]2

if and only if in D′(a, b)

(4.33)

 SK :=
∑

j∈K f̂ j

∂kSK ≥ 0 for all k ∈ K
∂kSK ≤ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

5 Gluing and Riemann monotonicity

5.1 Riemann monotonicity

Proposition 5.1 (The map π is Riemann monotone on N : 0 junctions)
Assume (2.2) for a N : 0 junction with N ≥ 1. Let G be a generalized Riemann germ, and let π := πG its
associated projection. Then the map π is Riemann monotone in the sense of Definition 2.11.
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Proof of Proposition 5.1
For all p, q ∈ [a, b], we set p̂ := π(p), q̂ := π(q) and [π]pq := π(p) − π(q) = p̂ − q̂. Assume by contradiction
that π is not Riemann monotone, i.e. that we have

(5.1) (p− q) ⋄ [π]pq ≤ 0 and [π]pq ̸= 0

Recall that
BA(p̂) ∩BA(q̂) ̸= ∅ =⇒ p̂ = q̂ ⇐⇒ [π]pq = 0

From (5.1), we then deduce

(5.2) BA(p̂) ∩BA(q̂) = ∅

We set
I :=

{
k ∈

{
1, . . . , N, pk ≥ qk

}}
, Ī :=

{
k ∈

{
1, . . . , N, pk < qk

}}
and then I ∪ Ī = {1, . . . , N}. Up to apply a Ī-inversion (see Definition 4.1), we can assume that

(5.3) p ≥ q, p̂ ≤ q̂, p̂ ̸= q̂

We now do the proof by recurrence on N ≥ 1.
Step 1: Case N = 1
Then we get p ≥ q, π(p) ≤ π(q). Because π is nondecreasing (see vi) of Proposition 3.6), we get p̂ = π(p) =
π(q) = q̂. Contradiction.
Step 2: Case N ≥ 2, and Proposition 5.8 holds true for N ′ := N − 1
Step 2.1: Case of the hyperplane intersection
Step 2.1.1: setting of the problem
Assume by contradiction that there exists an index k0 ∈ {1, . . . , N} and pk0

0 ∈ [ak0 , bk0 ] such that the

”hyperplane” intersection with the box [a, b] defined as Πk0 :=
{
p ∈ [a, b], pk0 = pk0

0

}
satisfies

(5.4)

{
Πk0

∩BA(p̂) ̸= ∅
Πk0

∩BA(q̂) ̸= ∅

Up to relabel the indices, we can assume that k0 = N , and then (5.4) means

(5.5) BA(p̂N ) ∩BA(q̂N ) ̸= ∅

From the slicing Lemma 4.12, we know that the flux function f̂G restricted to ΠN ∩ [a, b] is associated

to a generalized Riemann germ GpN
0

⊂ Q̃ :=
∏

k=1,...,N−1

[ak, bk], and we set the associated projection map

π̃ : Q̃→ GpN
0

defined as π̃ := πG
pN0

:= π′(·, pN0 ) for π = (π′, πN ). Moreover, writing

p̂ = (p̂′, p̂N ), q̂ = (q̂′, q̂N ), p = (p′, pN ), q = (q′, qN )

ans using (p′, pN0 ) ∈ BA(p̂) and (q′, pN0 ) ∈ BA(q̂), we get that p̂′ = π̃(p′), q̂′ = π̃′(q′) ∈ GpN
0
. Then (5.3)

implies (p′ − q′) ⋄ [π̃]p
′

q′ ≤ 0. By recurrence assumption, notice that π̃ is Riemann monotone, and then

[π̃]p
′

q′ = 0, i.e. p̂′ = q̂′.
Step 2.1.2: consequences
Hence we get BA(p̂) = Q′ ×BAN (p̂N ), BA(q̂) = Q′ ×BAN (q̂N ) with Q′ := BA(p̂′) = BA(q̂′). Hence (5.2)
means BAN (p̂N ) ∩ BAN (q̂N ) = ∅. Contradiction with (5.5). This implies there is no index k0 such that
(5.4) holds true, which is the next case.
Step 2.2: Case of no hyperplane intersection
We now assume that there is no index k0 such that (5.4) holds true. Then this implies that BA(p̂) and
BA(q̂) are well separated in all directions, and then in particular we have p ≥ q, p̂ < q̂. Again, because
BA(p̂) and BA(q̂) are well separated in all directions, we deduce that

pk ∈ BA(p̂k) < BA(q̂k) ∋ qk

which implies pk < qk. Contradiction.
Step 3: conclusion
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Therefore (5.1) is false and we conclude that π is Riemann monotone. This ends the proof of the proposition.

Notice that if f̂ is Riemann monotone on [a, b], then f is in particular Riemann monotone on G. Con-
versely, we also have

Lemma 5.2 (Transfer of Riemann monotonicity, N : 0 junctions)
Assume (2.2) for N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ.

Assume that f is Riemann monotone on G. Then f̂ := f̂G is Riemann monotone on [a, b].

Proof of Lemma 5.2
Assume that f is Riemann monotone on G. This means that for all p̂, q̂ ∈ G, we have

(5.6) (p̂− q̂) ⋄ [f ]p̂q̂ ≤ 0 =⇒ [f ]p̂q̂ = 0

Now consider any p ∈ BA(p̂) and q ∈ BA(q̂), and assume that (p− q) ⋄ [f̂ ]pq ≤ 0. From ii) of Lemma 4.16 on

dissipation properties, we deduce that (p̂− q̂) ⋄ [f ]p̂q̂ ≤ 0 and then (5.6) shows that 0 = [f ]p̂q̂ = [f̂ ]pq , i.e. that

f̂ is Riemann monotone. This ends the proof of the lemma.

We finish this subsection with the following results.

Lemma 5.3 (Injectivity of perturbed Riemann monotone functions for N : 0 junctions)
Assume (2.2) for N ≥ 1. Assume that h : [a, b] → RN is Riemann monotone.
Then for any ε > 0, the function hε := h+ εId : [a, b] → RN is injective.

Proof of Lemma 5.3
First, up to a reversion transform (see Definition 4.4), we can assume that σj = 1 for all indices j. Let ε > 0
and consider p, q ∈ [a, b] such that hε(p) = hε(q). Set

I :=
{
j ∈ {1, . . . , N} , pj < qj

}
Then up to a I-inversion (see Definition 4.1), we can assume that p ≥ q and hε(p) = hε(q). Hence

(pj − qj) · [hj ]pq = (pj − qj) · [hjε]pq − ε(pj − qj)2 = −ε(pj − qj)2 ≤ 0

Therefore (p− q) ⋄ [h]pq ≤ 0 and the Riemann monotonicity of h implies that [h]pq = 0. Therefore

ε[Id]pq = [hε]
p
q − [h]pq = 0

i.e. p = q, which shows the injectivity of hε. This ends the proof of the lemma.

Remark 5.4 All results of Subsection 5.1 generalize to junctions of type n : m. This follows from the use
of suitable I-reversions (see Definition 4.4 and Lemma 4.5).

5.2 Proposition 2.13 and its proof: properties of generalized Riemann germs

We are now ready to give the proof of Proposition 2.13.

Proof of Proposition 2.13
The result follows from Propositions 4.10, 4.13, 5.1, 4.10 and Lemma 3.4. This ends the proof of the propo-
sition.

5.3 Subclasses of germs and effect of slicing

Lemma 5.5 (Flux properties of subclasses of germs)

Assume (2.2) for N ≥ 1. Let G ⊂ [a, b] be a generalized germ. Let f̂ := f̂G. Then the following holds.
i) (Kruz̆kov germs)
Then G is a Kruz̆kov germ if and only if

(5.7) Df̂ ≥ 0 on [a, b]2
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with
Df̂ (p, q) =

∑
j=1,...,N

Df̂j

(p, q) with Df̂j

(p, q) = σj · sign(pj − qj) ·
{
f̂ j(p)− f̂ j(q)

}
i’) (D+-germs)
Then G is a D+-germ if and only if

(5.8) Df̂
+ ≥ 0 on [a, b]2

with
Df̂

+(p, q) =
∑

j=1,...,N

Df̂j

+ (p, q) with Df̂j

+ (p, q) = σj · sign+(pj − qj) ·
{
f̂ j(p)− f̂ j(q)

}
ii) (HJ germs)

Then G is a HJ germ if and only if there exists some function ĥ : [a, b] → R such that

(5.9) f̂ j = ĥ for all j = 1, . . . , N

iii) (Monotone germs)
Then G is a monotone germ if and only if

(5.10) p 7→ σj f̂ j(p) is nonincreasing in pk for all k ̸= j

iv) (Conservative germs)
Then G is a conservative germ if and only if

(5.11)
∑

Jj≃(−∞,0)

f̂ j =
∑

Jj≃(0,+∞)

f̂ j on [a, b].

This means
RH f̂ = 0 on [a, b], with RH f̂ (p) :=

∑
j=1,...,N

σj f̂ j(p) = IN−OUT.

v) (Effect of reversion tranform)
Moreover Kruz̆kov germs, monotone germs and conservative germs are preserved by reversion transform of
Definition 4.4, while HJ germs are not preserved in general by reversion transforms.
vi) (Effect of inversion transforms)
Moreover Kruz̆kov germs are preserved by any inversion of Definition 4.1, while HJ germs, monotone germs
and conservative are not preserved in general by inversion transforms.

Proof of Lemma 5.5
We mainly to the proof in the case of N : 0 junctions, the general case following by reversion transforms.
Step 1: proof of i)
Recall that G is a Kruz̆kov germ, i.e.

(5.12) Df ≥ 0 on G2

and f̂ = f ◦ π. Hence for all p, q ∈ [a, b], and p̂ := π(p) and q̂ := π(q), and f j(p̂) = f j(p̂j), we have from

(4.21) that Df̂ (p, q) ≥ Df (p̂, q̂) ≥ 0, which shows (5.7). Conversely it is straightforward that (5.7) implies
(5.12). This shows point i).
Step 1’: proof of i’)
Recall that G is a D+-germ, i.e.

(5.13) Df
+ ≥ 0 on G2

and f̂ = f ◦ π. Hence for all p, q ∈ [a, b], and p̂ := π(p) and q̂ := π(q), and f j(p̂) = f j(p̂j), we have from

(4.21) that Df̂
+(p, q) ≥ Df

+(p̂, q̂) ≥ 0, which shows (5.8). Conversely it is straightforward that (5.8) implies
(5.13). This shows point i’).
Step 2: proof of ii)
Recall that G is a HJ germ, i.e. there exists some function h : G → R such that

(5.14) f j = h on G, for all j = 1, . . . , N
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Setting ĥ := h ◦ π, we see that (5.14) is equivalent to (5.9) which shows point ii).
Step 3: proof of iii)
Recall that a generalized Riemann germ G is monotone if and only if

(5.15) for all p, q ∈ [a, b], (p ≥ q implies π(p) ≥ π(q))

and we want to show that it is equivalent to (5.10). Fix some k ∈ {1, . . . , N}, consider p, q ∈ [a, b] such that
p− q = εek for some ε ≥ 0, and call p̂ := π(p), q̂ := π(q).

On the one hand, recall from Proposition 5.1 that π is Riemann monotone, and then that πk(p) ≥ πk(q),
i.e. that p̂k ≥ q̂k is always satisfied. On the other hand, (even if it is not used in this proof), notice that the

monotonicity in (2.14) shows that σkf̂k(p) ≥ σkf̂k(q) is also always satisfied.
Now in order to show equivalence between (5.15) and (5.10), we see that it is sufficient to show that for

all j ∈ {1, . . . , N} \ {k}, inequality p̂j ≥ q̂j is equivalent to σj f̂ j(p) ≤ σj f̂ j(q). We now focus on the case

σj = 1 (the reasoning is similar for σj = −1). Because f̂ j(p) = f j ◦ π(p) = f j(p̂j), it remains to show that

(5.16) p̂j ≥ q̂j is equivalent to f j(p̂j) ≤ f j(q̂j), for Jj ≃ (−∞, 0)

Recall that BAj = BA(Jj ,fj). Because pj = qj , we deduce that BAj(p̂j) ∩ BAj(q̂j) ̸= ∅. Then Definition
2.9 of BAj for Jj ≃ (−∞, 0) (see also the associated figure) implies (5.16). This ends the proof of the
equivalence of (5.15) with (5.10).
Step 4: proof of iv)

Recall that G is a conservative germ, i.e.
∑

Jj≃(−∞,0)

f j =
∑

Jj≃(0,+∞)

f j on G. For f̂ j = f j ◦ π, this shows that

this is equivalent to (5.11), and this proves iv).
Step 5: proof of v) and vi)
The result is straightforward. This ends the proof of the lemma.

Lemma 5.6 (Nature of germs after slicing)
Assume (2.2) for N ≥ 2. Let G ⊂ [a, b] be a generalized germ. Let 1 ≤ n < N . Then for p ∈ [a, b], we write

p = (p′, p′′) with p′ = (p1, . . . , pn) ∈ [a′, b′] and p′′ = (pn+1, . . . , pN ) ∈ [a′′, b′′].

Given some p′′0 ∈ [a′′, b′′], let Gp′′
0
be the sliced germ defined in Lemma 4.12.

If G is a Kruz̆kov (resp. HJ, resp. monotone) germ, then the sliced germ Gp′′
0
is also a Kruz̆kov (resp.

HJ, resp. monotone) germ.

Proof of Lemma 5.6
From the definitions and Lemma 5.5, the result follows from the following property

Gp′′
0
=
{
p′ = (p1, . . . , pn) ∈ [a′, b′], f̂ j(p′, p′′0) = f j(pj) for j = 1, . . . , n

}
which is provided by the slicing Lemma 4.12. This ends the proof of the lemma.

Remark 5.7 In Lemma 5.6, if G is a conservative germ, then Gp′′
0
satisfies the following relation∑

Jj≃(−∞,0)

f j(p) =
∑

Jj≃(0,+∞)

f j(p) for all p = (p′, p′′0) ∈ Gp′′
0
× {p′′0}

which is the memory at the level of the sliced germ Gp′′
0
of the Rankine-Hugoniot relation satisfied by G.

5.4 Theorem 2.17 and its proof: Riemann monotonicity of σ ⋄ f̂
The proof of Theorem 2.17 is done at the end of the subsection as a corollary of the following more general
proposition.
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Proposition 5.8 (The map h ◦ π is Riemann monotone on N : 0 junctions)
Assume (2.2) for a N : 0 junction with N ≥ 1. Let G be a generalized Riemann germ, and let π := πG its
associated projection. Let h = (h1, . . . , hN ) : [a, b] → RN be a continuous map with for k = 1, . . . , N

(5.17) each component hk : [ak, bk] → R is non constant on any nondegenerate interval

Assume that the map ĥ := h ◦ π : [a, b] → RN is continuous and satisfies

(5.18)

{
p 7→ ĥk(p) is nondecreasing in pk, for each k = 1, . . . , N

ĥ is locally constant on
{
ĥ ̸= h

}
Then ĥ satisfies

(5.19) (p− q) ⋄ [ĥ]pq ≤ 0 =⇒ ĥ = const on co (BA(p̂) ∪BA(q̂))

where co(A) is the convex hull of a set A ⊂ RN . In particular ĥ is Riemann monotone.

Proof of Proposition 5.8
The proof follows the one of Proposition 5.1 with ĥ instead of π, and with some adaptations.
For all p, q ∈ [a, b], we set p̂ := π(p), q̂ := π(q) and [ĥ]pq := ĥ(p)− ĥ(q). Assume by contradiction that ĥ does
not satisfy (5.19), i.e. that we have

(5.20) (p− q) ⋄ [ĥ]pq ≤ 0 and ĥ ̸= const on co (BA(p̂) ∪BA(q̂))

Recall that

BA(p̂) ∩BA(q̂) ̸= ∅ =⇒ p̂ = q̂ =⇒ ĥ = const on co (BA(p̂) ∪BA(q̂)) = BA(p̂) = BA(q̂)

From (5.20), we then deduce BA(p̂) ∩ BA(q̂) = ∅ and up to apply an inversion, we can assume that p ≥ q,
p̂ ≤ q̂, p̂ ̸= q̂. We now do the proof by recurrence on N ≥ 1.
Step 1: Case N = 1
Then (5.20) means

ĥ(p) ≤ ĥ(q) and ĥ ̸= const on co (BA(p̂) ∪BA(q̂))

Because ĥ is nondecreasing, we get ĥ(p) = ĥ(q), and then ĥ = const on co (BA(p̂) ∪BA(q̂)). Contradiction.
Step 2: Case N ≥ 2, and Proposition 5.8 holds true for N ′ := N − 1
Step 2.1: Case of the hyperplane intersection
Step 2.1.1: setting of the problem
Assume by contradiction that there exists an index k0 ∈ {1, . . . , N} and pk0

0 ∈ [ak0 , bk0 ] such that the

”hyperplane” intersection with the box [a, b], defined as Πk0 :=
{
p ∈ [a, b], pk0 = pk0

0

}
, satisfies

(5.21)

{
Πk0

∩BA(p̂) ̸= ∅
Πk0

∩BA(q̂) ̸= ∅

Up to relabel the indices, we can assume that k0 = N , and then (5.21) means

(5.22) BA(p̂N ) ∩BA(q̂N ) ̸= ∅

From the slicing Lemma 4.12, we know that the flux function f̂G restricted to ΠN ∩ [a, b] is associated

to a generalized Riemann germ GpN
0

⊂ Q̃ :=
∏

k=1,...,N−1

[ak, bk], and we set the associated projection map

π̃ : Q̃→ GpN
0

defined as π̃ := πG
pN0

:= π′(·, pN0 ) for π = (π′, πN ). Moreover, we write

p̂ = (p̂′, p̂N ), q̂ = (q̂′, q̂N ), p = (p′, pN ), q = (q′, qN ), h = (h′, hN ), ĥ = (ĥ′, ĥN )

and (on the model of f̂G
pN0

:= f̂G(·, pN0 )) we set
ˆ̃
h := ĥ′(·, pN0 ) = h′ ◦ (π̃, pN0 ) = (hk ◦ π̃k)k=1,...,N−1 = h′ ◦ π̃,

where we use our usual abuse of notation for the argument of h or h′, and where p′ 7→ (h′ ◦ π̃)k(p′) is
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nondecreasing in p′k for every k = 1, . . . , N − 1.
Using (p′, pN0 ) ∈ BA(p̂) and (q′, pN0 ) ∈ BA(q̂), we get that p̂′ = π̃(p′), q̂′ = π̃′(q′) ∈ GpN

0
and

ĥ′(p) = ĥ′(p′, pN ) = h′ ◦ π(p′, pN ) = h′ ◦ π(p′, pN0 ) =
ˆ̃
h(p′) and ĥ′(q) =

ˆ̃
h(q′)

Hence (5.20) implies (p′ − q′) ⋄ [
ˆ̃
h]p

′

q′ ≤ 0. Notice that by construction,
ˆ̃
h is locally constant on

{
ˆ̃
h ̸= h′

}
and such that p 7→ ˆ̃

hk(p) is nondecreasing in pk for k = 1, . . . , N − 1. This shows that
ˆ̃
h satisfies (5.18) for

N ′ := N − 1. Then by recurrence assumption, we know that
ˆ̃
h = h′ ◦ π̃ satisfies (5.19) for N ′ := N − 1. We

deduce that

h′ ◦ π̃ =
ˆ̃
h = const = λ′ := h′(p̂′) = h′(q̂′) on Q′ :=

∏
k=1,...,N−1

Qk with Qk := co
(
BA(p̂k) ∪BA(q̂k)

)
where we recall that co(A) is the convex hull of A.
Step 2.1.2: consequences

Let Ω′ :=
∏

k=1,...,N−1

Ωk with Ωk :=
{
pk ∈ [ak, bk], hk(pk) ̸= λ′k

}
. From (5.17), hk is non constant on any

nondegenerate interval. Hence Ωk is a relative open set of [ak, bk], which is also dense in Qk. By assumption

ĥ is locally constant on
{
ĥ ̸= h

}
. This implies that ĥN (·, pN0 ) is locally constant on Ω′ ⊂

{
λ′ = ĥ′ ̸= h′

}
.

Notice that Ω′ ∩Q′ is a relative open set of Q′. Now Ω′ ∩Q′ is dense in Q′, and ĥN is continuous and locally
constant on Ω′ ∩Q′. Therefore we deduce that ĥN (·, pN0 ) = const on Q′. Therefore

hN (p̂N ) = hN (πN (p′, pN0 )) = ĥN (p′, pN0 ) = const = ĥN (q′, pN0 ) = hN (q̂N )

From (5.22), we deduce that BA(p̂N ) ∩ BA(q̂N ) ̸= ∅ with hN (p̂N ) = hN (q̂N ), which from the structure of
the Basins of Attraction, implies that p̂N = q̂N , and then we can choose any pN0 ∈ BA(p̂N ) = BA(q̂N ),
which shows that

ĥ = const = h(p̂) = h(q̂) on co(BA(p̂) ∪BA(q̂)) = Q′ ×BA(p̂N )

Contradiction with (5.20). This implies there is no index k0 such that (5.21) holds true, which is the next
case.
Step 2.2: Case of no hyperplane intersection
We now assume that there is no index k0 such that (5.21) holds true. Then this implies that BA(p̂) and
BA(q̂) are well separated in all directions, and we get p̂ < q̂ and then p > q, and also p ∈ BA(p̂) < BA(q̂) ∋ q,
which implies p < q. Contradiction.
Step 3: conclusion
Therefore (5.20) is false and this implies (5.19). This ends the proof of the proposition.

We will need the following proposition

Proposition 5.9 (Riemann monotonicity of dissipative functions)

Assume (2.2) with N ≥ 1, and recall that σ ∈ {±1}N encodes the orientations of the branches. Assume that
h : [a, b] → RN is a continuous map. Assume also that the map p 7→ hj(p) is locally Lipschitz continuous in
pj uniformly in the other coordinates pk for k ̸= j, and for all j = 1, . . . , N .

If h satisfies

(5.23) Dh(p, q) =
∑

j=1,...,N

σj · sign(pj − qj) ·
{
hj(p)− hj(q)

}
≥ 0 for all p, q ∈ [a, b]

then σ ⋄ h is Riemann monotone on [a, b].

and its straightforward corollary.

Corollary 5.10 (Riemann monotonicity for Kruz̆kov germs)

Assume (2.2) with N ≥ 1, and recall that σ ∈ {±1}N encodes the orientations of the branches. Let G ⊂ [a, b]

be a Kruz̆kov germ, and f̂G be its associated Godunov flux. Then the map σ ⋄ f̂G is Riemann monotone.
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Proof of Proposition 5.9
Up to apply some suitable reversions, we can assume that we work with σj = 1 for all indices j, i.e. for N : 0
junctions. By assumption, we consider a continuous dissipative function h : [a, b] → RN , i.e. satisfying

(5.24) Dh(p, q) =
∑

j=1,...,N

sign(pj − qj) ·
[
hj
]p
q
≥ 0 for all p, q ∈ [a, b] .

and such that the map p 7→ hj(p) is locally Lipschitz continuous in pj uniformly in the other coordinates pk

for k ̸= j, and for all j = 1, . . . , N .
Now assume that p, q ∈ [a, b] satisfy (p − q) ⋄ [h]

p
q ≤ 0. Then (5.24) implies (p − q) ⋄ [h]

p
q = 0. Up to

apply suitable inversions, we can assume that (p− q) ≥ 0. We then set I :=
{
i ∈ {1, . . . , N} , (p− q)i > 0

}
,

Ī := {1, . . . , N} \I. In particular, we get

(5.25)

{ [
hi
]p
q
= 0 for all i ∈ I

(p− q)i = 0 for all i ∈ Ī

Moreover, consider the set Ω :=
{
ξ ∈ RN , p+ ξ, q + ξ ∈ [a, b]

}
and consider the quantity

T j(ξ, t) := ∂jh
j(q + ξ + t(p− q))−

∑
i∈{1,...,N}\{j}

|∂jhi(q + ξ + t(p− q))| ≥ 0

which is defined for a.e. ξ and is nonnegative from ii) of Proposition 6.4. Then we get for a.e. ξ ∈ Ω∑
i∈I

[
hi
]p+ξ

q+ξ

=
∑
i,j∈I

∫ 1

0

dt ∂jh
i(q + ξ + t(p− q)) · (p− q)j

=
∑
j∈I

(p− q)j ·
∫ 1

0

dt

{∑
i∈I

∂jh
i(q + ξ + t(p− q))

}

≥
∑
j∈I

(p− q)j ·
∫ 1

0

dt

∂jhi(q + ξ + t(p− q))−
∑

i∈I\{j}

|∂jhi(q + ξ + t(p− q))|


=

∑
j∈I

(p− q)j ·
∫ 1

0

dt

T j(ξ, t) +
∑
i∈Ī

|∂jhi(q + ξ + t(p− q))|


≥

∑
j∈I

(p− q)j ·
∫ 1

0

dt

∑
i∈Ī

|∂jhi(q + ξ + t(p− q))|


=

∑
i∈Ī

∫ 1

0

dt

∑
j∈I

(p− q)j · |∂jhi(q + ξ + t(p− q))|


≥

∑
i∈Ī

∣∣∣∣∣∣
∫ 1

0

dt

∑
j∈I

(p− q)j · ∂jhi(q + ξ + t(p− q))


∣∣∣∣∣∣

=
∑
i∈Ī

∣∣∣∣∣∣
∫ 1

0

dt

 ∑
j∈{1,...,N}

(p− q)j · ∂jhi(q + ξ + t(p− q))


∣∣∣∣∣∣

=
∑
i∈Ī

∣∣∣[hi]p+ξ

q+ξ

∣∣∣
i.e. ∑

i∈I

[
hi
]p+ξ

q+ξ
≥

∑
i∈Ī

∣∣∣[hi]p+ξ

q+ξ

∣∣∣ for a.e. ξ ∈ Ω

By continuity of both sides, we deduce for ξ = 0 that
∑
i∈I

[
hi
]p
q

≥
∑
i∈Ī

∣∣∣[hi]p
q

∣∣∣. From (5.25), we deduce

[h]
p
q = 0. Hence we have shown that (p − q) ⋄ [h]pq ≤ 0 implies [h]

p
q = 0, i.e. that h is Riemann monotone.
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This ends the proof of the proposition.

Proof of Theorem 2.17
We want to show that σ ⋄ f̂G is Riemann monotone. We only do it for N : 0 junctions, and then show that
f̂ := f̂G is Riemann monotone. For the general case of junctions n : m with N := n +m, we use suitable
I-reversions (see Lemma 4.5).
Step 1: proof of i)
For junctions N : 0 and under nondegeneracy assumption (2.16), it follows from Proposition 5.8 with h := f

and ĥ := f̂ which is continuous.
Step 2: proof of ii)

For Kruz̆kov germs G, we know from Lemma 5.5 that h := f̂G satisfies (5.23). We know moreover that
|∂jhj(p)| ≤ |f j ′(pj)| for all j, as do all Godunov fluxes. Then the result follows from Corollary 5.10. This
ends the proof of the theorem.

5.5 Theorem 2.19 and its proof: gluing Riemann germs

The proof of Theorem 2.19 is mainly based on Proposition 2.19, where we first glue the fluxes. Then in
Corollary 5.12, we show that this is equivalent to glue the germs. Finally in Lemma 5.13, we check the
associativity of the gluing. The proof of Theorem 2.19 is done at the end of this subsection, as a consequence
of those three results.

Proposition 5.11 (Gluing of flux functions f̂γ for nγ : mγ junctions)
For γ = α, β, assume that fγ satisfies (2.2) for Nγ = nγ+mγ and nγ : mγ junctions Jγ with Jj

γ ≃ σj
γ ·(−∞, 0)

and σγ ∈ {±1}Nγ , and consider Riemann germs Gγ with respect to (Jγ , fγ).
For γ = α or β, assume either that 1) fγ satisfies nondegeneracy condition (2.16), or that 2) Gγ is a

Kruz̆kov germ. We allow mixing cases for α and β.
We set [a, b]jγ := [ajγ , b

j
γ ]. We assume that for each γ = α, β, there exists one index jγ ∈ {1, . . . , Nγ} such

that

(5.26) f jαα = f
jβ
β =: f0 on [a, b]jαα = [a, b]

jβ
β =: [a0, b0] with Jjα

α ≃ (0,+∞) and J
jβ
β ≃ (−∞, 0)

and we glue those two branches. To simplify the notation, up to relabel the indices, we now assume that
jα = 0 = jβ, and the indices now go through the values {0, . . . , Nγ − 1}. Hence we now have

fγ = (f0γ , . . . , f
Nγ−1
γ )

Gγ ⊂ [a, b]γ :=
∏

i=0,...,Nγ−1

[a, b]
i
γ

[a, b]
′
γ :=

∏
i=1,...,Nγ−1

[a, b]
i
γ

J0
α ≃ (0,+∞) and J0

β ≃ (−∞, 0)

and consider f̂γ = (f̂0γ , . . . , f̂
Nγ−1
γ ) the associated flux. Let the new junction after gluing be defined by

J := {0} ∪

 ⋃
j=1,...,Nα−1

Jj
α

 ∪

 ⋃
k=1,...,Nβ−1

Jk
β


and

σI :=

{
σk
α if I = (k, α)
σk
β if I = (k, β)

For pγ = (p1γ , . . . , p
nγ−1
γ ) ∈ [a, b]′γ (avoiding notation p′γ to keep light notations), let us consider the set

R :=
{
r ∈ [a0, b0], f̂0α(r, pα) = f̂0β(r, pβ)

}
with f̂0α(↓, pα), f̂0β(↑, pβ)
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Then R is non empty, and define the set

Λ :=
{
λ = f̃(r, pα, pβ) ∈ RNα+Nβ−2, r ∈ R

}
with

f̃(r, pα, pβ) := (f̂1α(r, pα), . . . , f̂
Nα−1
α (r, pα); f̂

1
β(r, pβ), . . . , f̂

Nβ−1
β (r, pβ)) ∈ RNα+Nβ−2

Then Λ is reduced to a singleton Λ = {λ}, and this defines the following map

f̂ : [a, b]′α × [a, b]′β → RNα+Nβ−2

(pα, pβ) 7→ f̂(pα, pβ) := λ

and we set the map

f := (f1α, . . . , f
Nα−1
α ; f1β , . . . , f

Nβ−1
β ) : [a, b]′α × [a, b]′β → RNα+Nβ−2

0) (Gluing Riemann germs)

Then f̂ is continuous, the map σ ⋄ f̂ is Riemann monotone, and the set

G :=
{
P ∈ [a, b]′α × [a, b]′β , f̂(P ) = f(P )

}
is a Riemann germ with respect to (J, f) and f̂ is the associated Godonuv flux at the junction (nα+nβ −1) :
(mα +mβ − 1), i.e.

f̂ = f̂G

i) (Gluing Kruz̆kov germs)
Assume that Gγ are Kruz̆kov germs for γ = α, β. Then G is also a Kruz̆kov germ.
ii) (Gluing HJ germs)
Assume that Gγ is a HJ germ for γ = α, β. Then G is also a HJ germ.
iii) (Gluing monotone germs)
Assume that Gγ are monotone germs for γ = α, β. Then G is also a monotone germ.
iv) (Gluing conservative germs)
Assume that Gγ are conservative germs for γ = α, β. Then G is also a conservative germ.

Proof of Proposition 5.11
Step 1: nonemptyness of R
We set p := pα, q := pβ and for P := (p, q), and r ∈ [a0, b0], we set

(5.27) g : [a0, b0] → R with g(r) := g̃(r, p, q) := f̂0α(r, p)− f̂0β(r, q) with f̂0α(↓, p), f̂0β(↑, q)

Recall that using (5.26) and (2.15), we get

g(a0) = f̂0α(a
0, p)− f̂0β(a

0, q) ≥ (f0α)−(a
0)− (f0β)+(a

0) = Gf0

(a0, a0)−Gf0

(a0, a0) = 0

g(b0) = f̂0α(b
0, p)− f̂0β(b

0, q) ≤ (f0α)+(b
0)− (f0β)−(b

0) = Gf0

(b0, b0)−Gf0

(b0, b0) = 0

Therefore g(a0) ≥ 0 ≥ g(b0), and by continuity of g, we get R ̸= ∅.
Step 2: Λ is a singleton
From the monotonicities of f̂0γ (·, pγ) given in (5.27), we deduce that g is nonincreasing. Assume that there
exists r, r′ ∈ R with r < r′. Then this implies that g is constant (and vanishes) on [r, r′], and we deduce

that R is a closed interval. Moreover, both maps f̂0γ (·, pγ) for γ = α, β are also constant on R ⊃ [r, r′]. From

nondegeneracy condition (2.16), we deduce that Ω0 :=
{
f̂0γ (·, pγ) ̸= f0γ

}
is (relatively) open and dense in the

interval R. Because f̂0γ is locally constant on
{
f̂γ ̸= fγ

}
and is continuous on [a, b]γ , we deduce that not

only the 0-component of f̂γ(·, pγ) is constant, but the full function satisfies f̂γ(·, pγ) = const on R, and then

f̃(·, pα, pβ) is constant on R. This shows that Λ is reduced to a singleton.
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Step 3: Continuity of f̂
Consider a sequence (rn, pα,n, pβ,n) → (r, pα, pβ) as n→ +∞, such that{

λn := f̂(pα,n, pβ,n) = f̃(rn, pα,n, pβ,n) → f̃(r, pα, pβ) =: λ0,

0 = g(rn) = f̂0α(rn, pα,n)− f̂0β(r, pβ,n) → 0 = g(r) = f̂0α(r, pα)− f̂0β(r, pβ)

The second line shows that r ∈ R, and then λ0 = f̃(r, pα, pβ) = f̂(pα, pβ). This shows the continuity of f̂ .

Step 4: bounds on f̂
For I ∈ I := {(1, α), . . . , (nα − 1, α); (1, β), . . . , (nβ − 1, β)}, we set

f I =

{
fkα if I = (k, α)
fkβ if I = (k, β)

and cI =

{
ckα if I = (k, α)
ckβ if I = (k, β)

for c = a, b

By definition of f̂ , we still get that f I− ≤ f̂
I
≤ f I

+
for all I ∈ I, i.e. f− ≤ f̂ ≤ f

+
.

Step 5: local constancy of f̂

Consider P = (pα, pβ) ∈ [a, b]′α × [a, b]′β be such that f(P ) ̸= f̂(P ) = f̃(r, P ), and let us set KP :={
I ∈ I, f̂

I
(P ) ̸= f I(P )

}
. Recall that f̃(·, P ) = f̂(P ) on R. In particular, for Qε := P +

∑
I∈KP

(−ε, ε)eI ,

we get from the continuity of f̃ that for ε > 0 small enough, we have f̃ = const = f̂(P ) on

R ×
((

[a, b]′α × [a, b]′β

)
∩Qε

)
. Therefore f̂ = const = f̂(P ) on

(
[a, b]′α × [a, b]′β

)
∩ Qε, which shows the

local constancy of f̂ .

Step 6: Riemann monotonicity of σ ⋄ f̂
Step 6.1: preliminary
We know that σγ ⋄ f̂γ are Riemann monotone from Theorem 2.17 in Case 1) and from Corollary 5.10 in Case
2). Precisely, we know that for P = (pα, pβ) and p := pα, q := pβ , we have

(5.28)

{
((r̄, p̄)− (r, p)) ⋄ σα ⋄ [f̂α](r̄,p̄)(r,p) ≤ 0 =⇒ [f̂α]

(r̄,p̄)
(r,p) = 0

((r̄, q̄)− (r, q)) ⋄ σβ ⋄ [f̂β ](r̄,q̄)(r,q) ≤ 0 =⇒ [f̂β ]
(r̄,q̄)
(r,q) = 0

and consider (p̄, q̄) and (p, q) such that ((p̄, q̄)− (p, q))⋄σ ⋄ [f̂ ](p̄,q̄)(p,q) ≤ 0, and we want to show that [f̂ ]
(p̄,q̄)
(p,q) = 0.

Here we set f̂(p̄, q̄) = f̃(r̄, p̄, q̄), f̂(p, q) = f̃(r, p, q). Hence
max

k∈{1,...,Nα−1}
(p̄k − pk) · σk

α ·
{
f̂kα(r̄, p̄)− f̂kα(r, p)

}
≤ 0

max
k∈{1,...,Nβ−1}

(q̄k − qk) · σk
β ·
{
f̂kβ (r̄, q̄)− f̂kβ (r, q)

}
≤ 0

Step 6.2: core of the argument
Recall that g̃(r̄, p̄, q̄) = 0 = g̃(r, p, q), and then

(5.29)
{
f̂0α(r̄, p̄)− f̂0β(r̄, q̄)

}
−
{
f̂0α(r, p)− f̂0β(r, q)

}
= 0

which implies (multiplying by −(r̄ − r))

(5.30) −(r̄ − r) ·
{
f̂0α(r̄, p̄)− f̂0α(r, p)

}
+ (r̄ − r) ·

{
f̂0β(r̄, q̄)− f̂0β(r, q)

}
= 0

Hence

(5.31) −(r̄ − r) ·
{
f̂0α(r̄, p̄)− f̂0α(r, p)

}
≤ 0 with σ0

α = −1

or

(5.32) (r̄ − r) ·
{
f̂0β(r̄, q̄)− f̂0β(r, q)

}
≤ 0 with σ0

β = +1

If (5.31) holds true, then (5.28) implies [f̂α]
(r̄,p̄)
(r,p) = 0. Therefore equation (5.30) implies that inequality (5.32)

also hods true, and then [f̂β ]
(r̄,q̄)
(r,q) = 0. This implies [f̂ ]

(p̄,q̄)
(p,q) = 0 This shows that σ ⋄ f̂ is Riemann monotone.

55



Step 7: conclusion
In particular, the Riemann monotonicity of σ ⋄ f̂ implies the directional monotonicity σ ⋄ f̂ , i.e. for P :=

(pα, pβ), we deduce that P I 7→ σI f̂
I
(P ) is nondecreasing on [a, b]I := [aI , bI ]. We conclude that G :={

P ∈ [a, b]′α × [a, b]′β , f̂(P ) = f(P )
}
is a Riemann germ (because f̂ is continuous), and f̂ = f̂G .

Step 8: additional argument for Kruz̆kov germs
Recall from Lemma 5.5 that for Kruz̆kov germs Gγ , we have

IN−OUT =
∑

k=0,...,Nγ−1

σk
γ · sign(pkγ − qkγ) ·

{
f̂kγ (pγ)− f̂kγ (qγ)

}
≥ 0 for all pγ , qγ ∈ [a, b]γ

which means in particular that
−sign(r̄ − r) ·

{
f̂0α(r̄, p̄)− f̂0α(r, p)

}
+ S′

α ≥ 0 with S′
α :=

∑
k=1,...,Nα−1

σk
α · sign(p̄k − pk) ·

{
f̂kα(r̄, p̄)− f̂kα(r, p)

}

sign(r̄ − r) ·
{
f̂0β(r̄, q̄)− f̂0β(r, q)

}
+ S′

β ≥ 0 with S′
β :=

∑
k=1,...,Nβ−1

σk
β · sign(q̄k − qk) ·

{
f̂kβ (r̄, q̄)− f̂kβ (r, q)

}
Because we have g̃(r̄, p̄, q̄) = 0 = g̃(r, p, q) which implies (5.29), we can now take the sum of both inequalities
and get that S′

α + S′
β ≥ 0, i.e. for P̄ := (p̄, q̄) and P = (p, q), that∑

I∈I
σI · sign(P̄ I − P I) ·

{
f̂
I
(P̄ )− f̂

I
(P )
}
≥ 0

which shows exactly that G is a Kruz̆kov germ.
Step 9: additional argument for HJ germs
Recall from Lemma 5.5 that for HJ germs Gγ , there exists ĥγ : [a, b]γ → R such that f̂kγ = ĥγ for all

k = 0, . . . , Nγ − 1. Recall that 0 = g(r) = g̃(r, p, q) = f̂0α(r, p)− f̂0β(r, q) with{
f̂0α(r, p) = ĥα(r, p) = f̂ jα(r, p) for all j ∈ {1, . . . , Nα}
f̂0β(r, q) = ĥβ(r, q) = f̂kβ (r, q) for all k ∈ {1, . . . , Nβ}

Hence defining ĥ(p, q) := f̂0α(r, p) = f̂0β(r, q), we see from Step 2 that this quantity is the same for r′ such

that g(r′) = 0, and then is well defined. Moreover, we also have f̂
I
= ĥ for all I ∈ I. This shows that G is

a HJ germ.
Step 10: additional argument for monotone germs
Recall that Gγ are monotone germs, i.e. that

(5.33) p 7→ σj
γ f̂

j
γ(p) is nonincreasing in pk for all k ̸= j

Assume by contradiction that G is not a monotone germ, i.e. that

(5.34) P 7→ σI f̂
I
(P ) is NOT nonincreasing in pK for all K ̸= I

i.e. that there exists P, P̃ such that P − P̃ ∈ (0,+∞) · eK and σI f̂
I
(P ) > σI f̂

I
(P̃ ).

Case A: I := (α, j) and K := (α, k) with k ̸= j
Then we can write

(5.35) P = (p, q), P̃ = (p̃, q), p− p̃ ∈ (0,+∞) · ek, σj
αf̂

j
α(r, p) > σj

αf̂
j
α(r̃, p̃)

with{
0 = g(r) = f̂0α(r, p)− f̂0β(r, q)

0 = g(r̃) = f̂0α(r̃, p̃)− f̂0β(r̃, q)
and

{
f̂0α(↓, p̃), f̂0β(↑, q)
z 7→ σ0

αf̂
0
α(r̃, p̃+ zek) nonincreasing with σ0

α = −1

We deduce that r ≥ r̃, p ≥ p̃ with pj = p̃j , and then monotonicity (5.33) implies σj
αf̂

j
α(r, p) ≤ σj

αf̂
j
α(r̃, p̃),

which is in contradiction with (5.35).

56



Case A’: I := (β, j) and K := (β, k) with k ̸= j
This case is symmetric to case A (up to a reversion transform (see Definition (4.4)) on component f0β).
Case B: I := (α, j) and K := (β, k)
Then we can write

(5.36) P = (p, q), P̃ = (p, q̃), q − q̃ ∈ (0,+∞) · ek, σj
αf̂

j
α(r, p) > σj

αf̂
j
α(r̃, p̃)

with{
0 = g(r) = f̂0α(r, p)− f̂0β(r, q)

0 = g(r̃) = f̂0α(r̃, p)− f̂0β(r̃, q̃)
and

{
f̂0α(↓, p), f̂0β(↑, q̃)
z 7→ σ0

β f̂
0
β(r̃, q̃ + zek) nonincreasing with σ0

β = +1

we get that r ≥ r̃, q ≥ q̃, and then monotonicity (5.33) implies σj
αf̂

j
α(r, p) ≤ σj

αf̂
j
α(r̃, p), which is in

contradiction with (5.36).
Conclusion
Therefore (5.34) is false and this shows that G is a monotone germ.
Step 11: additional argument for conservative germs
Recall from Lemma 5.5 that Gγ are conservative germs, i.e.∑

Jj
α≃(−∞,0)

f̂ jα(r, p) = f̂0α(r, p) +
∑

j ̸=0, Jj
α≃(0,+∞)

f̂ jα(r, p) for all (r, p) ∈ [a0, b0]× [a, b]′α

and
f̂0β(r, q) +

∑
j ̸=0, Jj

β≃(−∞,0)

f̂ jβ(r, q) =
∑

Jj
β≃(0,+∞)

f̂ jβ(r, q) for all (r, q) ∈ [a0, b0]× [a, b]′β

For r such that f̂0α(r, p) = f̂0β(r, q), we deduce that
∑

JI≃(−∞,0)

f̂
I
(p, q) =

∑
JI≃(0,+∞)

f̂
I
(p, q), which shows that

G is conservative. This ends the proof of the lemma.

Then we have the following corollary of Proposition 5.11.

Corollary 5.12 (Gluing of Riemann germs Gγ for nγ : mγ junctions)
For γ = α, β, assume that fγ satisfies (2.2) for Nγ = nγ+mγ and nγ : mγ junctions Jγ with Jj

γ ≃ σj
γ ·(−∞, 0)

and σγ ∈ {±1}Nγ , and consider Riemann germs Gγ with respect to (Jγ , fγ).
For γ = α or β, assume either that 1) fγ satisfies nondegeneracy condition (2.16), or that 2) Gγ is a

Kruz̆kov germ. We allow mixing cases for α and β.
We set [a, b]jγ := [ajγ , b

j
γ ]. We assume that for each γ = α, β, there exists one index jγ ∈ {1, . . . , Nγ} such

that

f jαα = f
jβ
β =: f0 on [a, b]jαα = [a, b]

jβ
β =: [a0, b0] with Jjα

α ≃ (0,+∞) and J
jβ
β ≃ (−∞, 0)

and we glue those two branches. We call f̂γ : [a, b]γ → Rnγ the associated fluxes. We set
f ′γ := (f1γ , . . . , f

jγ−1
γ , f

jγ+1
γ , . . . , f

Nγ
γ )

f̂ ′γ := (f̂1γ , . . . , f̂
jγ−1
γ , f̂

jγ+1
γ , . . . , f̂

Nγ
γ )

(r, pγ) := (p1γ , . . . , p
jγ−1
γ , r, p

jγ+1
γ , . . . , p

Nγ
γ )

with an abuse of notation for the last line. Then we define

f̂ := f̂α♯f̂β : [a, b]′α × [a, b]′β → RNα+Nβ−2 with [a, b]′γ :=
∏

j∈{1,...,Nγ}\{jγ}

[a, b]jγ

where for any pα ∈ [a, b]′α and pβ ∈ [a, b]′β (avoiding notation p′α, p
′
β to keep light notations) and{

f(pα, pβ) := (f ′α; f
′
β)(pα, pβ)

f̂(pα, pβ) := (f̂ ′α; f̂
′
β)(r, pα, pβ) for some r ∈ [a0, b0] such that f̂ jαα (r, pα) = f̂

jβ
β (r, pβ)
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Here such r does exist, and when it is not unique, it does not change the value of f̂(pα, pβ).

We define G := Gα♯Gβ, the gluing of germs Gα with Gβ along branches Jjα
α and J

jβ
β , as

(5.37) G := Gα ♯
jα:jβ

Gβ :=
{
P ∈ [a, b]′α × [a, b]′β , f̂(P ) = f(P )

}
Moreover the following holds.
i) (Gluing germs)
Then we have
(5.38)

G :=

(p̂α, p̂β) ∈ [a, b]′α × [a, b]′β , there exists r̂α, r̂β ∈ [a0, b0] s.t.


(r̂α, p̂α) ∈ Gα

(r̂β , p̂β) ∈ Gβ

f0(r̂α) = Gf0

(r̂α, r̂β) = f0(r̂β)


where we recall that the standard Godunov flux is given by

Gf0

(r̂α, r̂β) =


min

[r̂α,r̂β ]
f0 if r̂α ≤ r̂β

max
[r̂β ,r̂α]

f0 if r̂α ≥ r̂β

ii) (identity element: gluing with standard Godunov flux)

a) Assume that Nβ = 2 with 1 : 1 junction Jβ with f̂ jβ(r, s) = Gf0

(r, s) for j = 0, 1. Then f̂ = f̂α and
G = Gα.
b) Assume that Nα = 2 with 1 : 1 junction Jα with f̂ jα(r, s) = Gf0

(r, s) for j = 0, 1. Then f̂ = f̂β and G = Gβ.

Proof of Corollary 5.12
Step 1: proof of i)
From definition given in (5.37), we see that

(pα, pβ) ∈ G ⇐⇒ ∃ r ∈ [a, b]jαα = [a, b]
jβ
β s.t.



(r̂α, p̂α) = πGα(r, pα)
(r̂β , p̂β) = πGβ

(r, pβ)

f ′α(p̂α) = f ′α(r̂α, p̂α) = f̂ ′α(r, pα) = f ′α(pα)

f ′β(p̂β) = f ′β(r̂β , p̂β) = f̂ ′β(r, pβ) = f ′β(pβ)

f0(r̂α) = f jαα (r̂α) = f̂ jαα (r, pα) = f̂
jβ
β (r, pβ) = f

jβ
β (r̂β) = f0(r̂β)

Notice that pα ∈ BA(p̂α), pβ ∈ BA(p̂β), r ∈ BA
((0,+∞),fj

α)
α (r̂α) ∩ BA

((−∞,0),fj
β)

β (r̂β). From the basins of
attraction, we then deduce that

pα = p̂α, pβ = p̂β , f0(r̂α) = Gf0

(r̂α, r̂β) = f0(r̂β), r̂α, r̂β ∈ [a0, b0]

and it is straighforward to check that conversely this implies that (pα, pβ) ∈ G. Therefore this shows
characterization (5.38) of G.
Step 2: proof of ii)

We only prove a) (the proof of b) is similar). Assume that f̂ jβ = Gf0

. Then

f̂(pα, pβ) = f̃(r, pα, pβ) for any r ∈ [a0, b0] s.t. f̂0α(pα, r) = Gf0

(r, pβ)

In particular, if P = (pα, pβ) ∈ Gα, then we can choose r = pβ , and we see that f̂(P ) = f(P ), i.e. P ∈ G.
This shows that Gα ⊂ G. Because both are generalized Riemann germs, we deduce that we have equality,
i.e. Gα = G, and then moreover f̂ = f̂G = f̂Gα

= f̂α. This ends the proof.

Lemma 5.13 (Associativity of the gluing)
For δ = α, β, γ, assume that fδ satisfies (2.2) for Nδ = nδ + mδ and nδ : mδ junctions Jδ with Jj

δ ≃
σj
δ · (−∞, 0) and σδ ∈ {±1}Nγ , and consider Riemann germs Gδ with respect to (Jδ, fδ).
For δ = α, β or γ, assume either 1) that fδ satisfies nondegeneracy condition (2.16), or 2) that Gδ is a

Kruz̆kov germ. We allow mixing cases for α, β and γ.
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We set [a, b]jδ := [ajδ, b
j
δ]. We also assume that there exists jα, jβ , kγ , kβ , with jδ, kδ ∈ {1, . . . , Nδ} such

that{
f jαα = f

jβ
β =: fA, [a, b]jαα = [a, b]

jβ
β =: [a, b]A −σjα

α = 1 = σ
jβ
β , Jjα

α ≃ (0,+∞), J
jβ
β ≃ (−∞, 0),

f
kβ

β = f
kγ
γ =: fB , [a, b]

kβ

β = [a, b]
kγ
γ =: [a, b]B −σkβ

β = 1 = σ
kγ
γ , J

kβ

β ≃ (0,+∞), J
kγ
γ ≃ (−∞, 0), kβ ̸= jβ

With notation of Corollary 5.12, we glue

(Gα♯Gβ)♯Gγ := (Gα ♯
jα:jβ

Gβ) ♯
kβ :kγ

Gγ gluing first Jjα
α with J

jβ
β , and then J

kβ

β with J
kγ
γ

and also glue

Gα♯(Gβ♯Gγ) := Gα ♯
jα:jβ

(Gβ ♯
kβ :kγ

Gγ) gluing first J
kβ

β with J
kγ
γ , and then Jjα

α with J
jβ
β

Then we have

(5.39) (Gα♯Gβ)♯Gγ = Gα♯(Gβ♯Gγ)

Proof of Lemma 5.13
We set 

[a, b]
′
δ :=

∏
j∈{1,...,Nδ}\{jδ}

[a, b]
j
δ for δ = α, β

[a, b]
∗
δ :=

∏
k∈{1,...,Nδ}\{kδ}

[a, b]
k
δ for δ = β, γ

[a, b]
′′
β :=

∏
j∈{1,...,Nβ}\{jβ ,kβ}

[a, b]
j
β

Step 1: first computation
We simply compute

Gαβ := Gα♯Gβ :=


(p̂α, p̂β) ∈ [a, b]′α × [a, b]′β ,

there exists r̂α, r̂β ∈ [a, b]A s.t.


(p̂α, r̂α) ∈ Gα

(p̂β , r̂β) ∈ Gβ

fA(r̂α) = GfA

(r̂α, r̂β) = fA(r̂β)


with abuse of notation for (p̂α, r̂α) and (p̂β , r̂β), and similarly

Gαβ♯Gγ :=


(p̂αβ , p̂γ) ∈

(
[a, b]′α × [a, b]′′β

)
× [a, b]∗γ ,

there exists r̂′β , r̂γ ∈ [a, b]B s.t.


(p̂αβ , r̂

′
β) ∈ Gαβ

(p̂γ , r̂γ) ∈ Gγ

fB(r̂′β) = GfB

(r̂′β , r̂γ) = fB(r̂γ)


Hence for p̂αβ = (p̂α, p̂

′
β) we get

Gαβ♯Gγ :=



(p̂α, p̂
′
β , p̂γ) ∈ [a, b]′α × [a, b]′′β × [a, b]∗γ ,

{
there exists r̂α, r̂β ∈ [a, b]A

there exists r̂′β , r̂γ ∈ [a, b]B
s.t.


(p̂α, r̂α) ∈ Gα

(p̂′β , r̂
′
β , r̂β) ∈ Gβ

(p̂γ , r̂γ) ∈ Gγ

fA(r̂α) = GfA

(r̂α, r̂β) = fA(r̂β)

fB(r̂′β) = GfB

(r̂′β , r̂γ) = fB(r̂γ)


Step 2: second computation
We simply compute

Gβγ := Gβ♯Gγ :=


(p̂β , p̂γ) ∈ [a, b]∗β × [a, b]∗γ ,

there exists r̂′β , r̂γ ∈ [a, b]B s.t.


(p̂β , r̂

′
β) ∈ Gβ

(p̂γ , r̂γ) ∈ Gγ

fB(r̂′β) = GfB

(r̂′β , r̂γ) = fB(r̂γ)


59



and then for p̂βγ = (p̂′β , p̂γ)

Gα♯Gβγ :=


(p̂α, p̂βγ) ∈ [a, b]′α × [a, b]′′β × [a, b]∗γ ,

there exists r̂α, r̂β ∈ [a, b]A s.t.


(p̂α, r̂α) ∈ Gα

(p̂′β , r̂β , p̂γ) ∈ Gβγ

fA(r̂α) = GfA

(r̂α, r̂β) = fA(r̂β)


i.e.

Gα♯Gβγ :=



(p̂α, p̂
′
β , pγ) ∈ [a, b]′α × [a, b]′′β × [a, b]∗γ ,

{
there exists r̂α, r̂β ∈ [a, b]A

there exists r̂′β , r̂γ ∈ [a, b]B
s.t.


(p̂α, r̂α) ∈ Gα

(p̂′β , r̂
′
β , r̂β) ∈ Gβ

(p̂γ , r̂γ) ∈ Gγ

fA(r̂α) = GfA

(r̂α, r̂β) = fA(r̂β)

fB(r̂′β) = GfB

(r̂′β , r̂γ) = fB(r̂γ)


Step 3: conclusion
Hence Gα♯Gβγ = Gαβ♯Gγ , which shows (5.39). This ends the proof of the lemma.

Proof of Theorem 2.19
For the proof, we refer to the table of Subsection 2.4. The result follows from Proposition 5.11, Corollary
5.12 and Lemma 5.13. This ends the proof.

5.6 Self-gluing of Kruz̆kov germs and more

Proposition 5.14 (Self-gluing of a flux function f̂γ for nγ : mγ junction, for a Kruz̆kov germ)
Let γ be a fixed index. Assume that the function fγ satisfies (2.2) with Nγ = nγ +mγ with nγ ,mγ ≥ 1 and

Nγ ≥ 3. We consider some nγ : mγ junction Jγ with Jj
γ ≃ σj

γ · (−∞, 0) and σγ ∈ {±1}Nγ , and a Kruz̆kov

germ Gγ with respect to (Jγ , fγ). We set [a, b]jγ := [ajγ , b
j
γ ]. Up to relabel the indices, we assume that the

indices go through the values {0, . . . , Nγ − 1}.
We now assume that there exists two indices j1, j2 ∈ {0, . . . , Nγ − 1} such that

(5.40) f j1γ = f j2γ =: f0 on [a, b]j1γ = [a, b]j2γ =: [a0, b0] with Jj1
γ ≃ (0,+∞) and Jj2

γ ≃ (−∞, 0)

and we glue those two branches. To simplify the notation, we also assume that j1 = 0 and j2 = Nγ − 1.
Hence we now have

(5.41)



fγ = (f0γ , . . . , f
Nγ−1
γ )

Gγ ⊂ [a, b]γ :=
∏

i=0,...,Nγ−1

[a, b]
i
γ

[a, b]
′′
γ :=

∏
i=1,...,Nγ−2

[a, b]
i
γ

J0
γ ≃ (0,+∞) and J

Nγ−1
γ ≃ (−∞, 0)

f0γ = f
Nγ−1
γ =: f0 on [a, b]0γ = [a, b]

Nγ−1
γ =: [a0, b0]

Let the new junction after gluing be defined by

J := {0} ∪

 ⋃
j=1,...,Nγ−2

Jj
α

 and σk := σk
γ for k = 1, . . . , Nγ − 2

We consider f̂γ : [a, b]γ → RNγ the Godunov flux associated to the germ Gγ , and with notation pγ =

(p1γ , . . . , p
Nγ−2
γ ) ∈ [a, b]′′γ (avoiding notation p′′γ to keep light notations), we consider the set

R :=
{
r ∈ [a0, b0], f̂0γ (r, pγ , r) = f̂Nγ−1

γ (r, pγ , r)
}

with f̂0γ (↓, pγ , r), f̂Nγ−1
γ (r, pγ , ↑)
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Then R is non empty, and define the set

Λ :=
{
λ = f̃(r, pγ) ∈ RNγ−2, r ∈ R

}
with f̃(r, pγ) := (f̂1γ (r, pγ , r), . . . , f̂

Nγ−2
γ (r, pγ , r))

Then Λ is reduced to a singleton Λ = {λ}, and this defines the following map

f̂ : [a, b]′′γ → RNγ−2

pγ 7→ f̂(pγ) := λ

and we set the map

(5.42) f := (f1γ , . . . , f
Nγ−2
γ ) : [a, b]′′γ → RNγ−2

Moreover, the map f̂ is continuous and the set

G :=
{
P ∈ [a, b]′′γ , f̂(P ) = f(P )

}
is a Kruz̆kov germ with respect to (J, f) and f̂ is the associated Godunov flux at the junction (nγ − 1) :
(mγ − 1), i.e.

f̂ = f̂G .

Proof of Proposition 5.14
Step 1: nonemptyness of R
We set p := pγ , and for r ∈ [a0, b0], we set (with some abuse of notation)

g : [a0, b0] → R with g(r) := g̃(r, p) := f̂0γ (r, p, r)− f̂Nγ−1
γ (r, p, r)

Using the last line of (5.41) and (2.15), we get

g(a0) = f̂0γ (a
0, p, a0)− f̂Nγ−1

γ (a0, p, a0) ≥ f0γ,−(a
0)− f

Nγ−1
γ,+ (a0) = f0γ (a

0)− fNγ−1
γ (a0) = 0

g(b0) = f̂0γ (b
0, p, b0)− f̂Nγ−1

γ (b0, p, b0) ≤ f0γ,+(b
0)− f

Nγ−1
γ,− (b0) = f0γ (b

0)− fNγ−1
γ (b0) = 0

Therefore g(a0) ≥ 0 ≥ g(b0) and by continuity of g, we get R ̸= ∅.
Step 2: Λ is a singleton
Step 2.1: getting g vanishing on R ⊃ [r, r̄]
Because Gγ is a Kruz̆kov germ, recall that the map

(5.43) [a0, b0]2 ∋ (r, r′) 7→ (f̂0γ (r, p, r
′), f̂Nγ−1

γ (r, p, r′))

satisfies for all (r̄, r̄′), (r, r′) ∈ [a0, b0]2 and all frozen p ∈ [a, b]′′γ (with σ0
γ = −1 and σ

Nγ−1
γ = 1)

(5.44) −sign(r̄ − r) ·
{
f̂0γ (r̄, p, r̄

′)− f̂0γ (r, p, r
′)
}
+ sign(r̄′ − r′) ·

{
f̂Nγ−1
γ (r̄, p, r̄′)− f̂Nγ−1

γ (r, p, r′)
}
≥ 0

For r̄ = r̄′ > r = r′, we get g(r̄)− g(r) ≤ 0, which shows that g is nonincreasing. Hence g is constant (and
vanishes) on [r, r̄], if r, r̄ ∈ R. We deduce that R is closed interval where g vanishes.

Step 2.2: coincidence of f̂0γ and f̂
Nγ−1
γ

For frozen p, inequality (5.44) shows that the map defined in (5.43) is itself associated to a Kruz̆kov germ
1 : 1, and then its flux is such that the matrix

−
∂f̂0γ
∂r

−
∂f̂0γ
∂r′

∂f̂
Nγ−1
γ

∂r

∂f̂
Nγ−1
γ

∂r′

 (r, p, r′)
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has nonnegative diagonal and is diagonal column-dominant, i.e.

(
−
∂f̂0γ
∂r

−

∣∣∣∣∣∂f̂
Nγ−1
γ

∂r

∣∣∣∣∣
)
(r, p, r′) ≥ 0

(
−

∣∣∣∣∣∂f̂0γ∂r′

∣∣∣∣∣+ ∂f̂
Nγ−1
γ

∂r′

)
(r, p, r′) ≥ 0

for a.e. (r, r′) ∈ [a0, b0]2

Setting
ḡ(r, r′) := f̂0γ (r, p, r

′)− f̂Nγ−1
γ (r, p, r′)

we deduce that the map r 7→ ḡ(r, r′) is nonincreasing for a.e. r′ and the map r′ 7→ ḡ(r, r′) is nonincreasing
for a.e. r. By continuity of ḡ, we deduce that ḡ is nonincreasing everywhere in both variables r, r′. Now
if r < r̄ with r, r̄ ∈ R, we deduce that ḡ(r, r) = ḡ(r̄, r̄) = 0. From the monotonicities of ḡ, we deduce that
ḡ = 0 on [r, r̄]2. This implies more generally that

(5.45) f̂0γ (·, p, ·) = f̂Nγ−1
γ (·, p, ·) on R2

Step 2.3: concluding that Λ is reduced to a singleton

Because Gγ is a Kruz̆kov germ, we know that f̂γ satisfies Df̂γ ≥ 0 on [a, b]2γ . We deduce from Proposition

5.9, that σ ⋄ f̂γ is Riemann monotone. If R is reduced to a singleton than Λ is also a singleton. Then assume

that r, r̄ ∈ R with r̄ > r. Then from (5.45), we deduce that {(r̄, p, r̄)− (r, p, r)} ⋄ σ ⋄
[
f̂γ

](r̄,p,r̄)
(r,p,r)

= 0 and the

Riemann monotonicity of σ ⋄ f̂γ implies
[
f̂γ

](r̄,p,r̄)
(r,p,r)

= 0. This shows in particular that f̃(r̄, p) = f̃(r, p), and

implies that Λ is reduced to a singleton.
Step 3: Continuity of f̂
Consider a sequence (rn, pn) → (r, p) such that{

λn := f̂(pn) = f̃(rn, pn) → f̃(r, p) =: λ0,

0 = g(rn) = f̂0γ (rn, pn, rn)− f̂
Nγ−1
γ (rn, pn, rn) → 0 = g(r) = f̂0γ (r, p, r)− f̂

Nγ−1
γ (r, p, r)

The second line shows that r ∈ R, and then λ0 = f̃(r, p) = f̂(p) =: λ. This shows the continuity of f̂ .

Step 4: bounds on f̂

We consider f as defined in (5.42). By definition of f̂ , we still get that f I− ≤ f̂
I
≤ f I

+
for all I ∈ I :=

{1, . . . , Nγ − 2}, i.e. f− ≤ f̂ ≤ f
+
.

Step 5: local constancy of f̂

Let P := p ∈ [a, b]′′γ be such that f(P ) ̸= f̂(P ) = f̃(r, P ), and let us set KP :=
{
I ∈ I, f̂

I
(P ) ̸= f I(P )

}
.

Recall that f̃(·, P ) = f̂(P ) on R. In particular, for Qε := P +
∑

I∈KP

(−ε, ε)eI , we get from the continuity

and the local constancy of f̂γ that for ε > 0 small enough, we have f̃ = const on R ×
(
[a, b]′′γ ∩Qε

)
. Hence

f̂ = const on [a, b]′′γ ∩Qε, which shows the local constancy of f̂ .

Step 6: directional monotonicity of f̂
For P := p, we want to show that

(5.46) P I 7→ σI f̂
I
(P ) is nondecreasing on [a, b]I := [aI , bI ]

To this end, we have to take into account the fact that f̂(P ) = f̃(r, P ) with the dependence r = r(P ). To
reach our goal, it is more convenient to use directly that Gγ is a Kruz̆kov germ. This means that

(5.47)

0 ≤ −sign(r̄ − r) ·
{
f̂0γ (r̄, p̄, r̄)− f̂0γ (r, p, r)

}
+ sign(r̄ − r) ·

{
f̂Nγ−1
γ (r̄, p̄, r̄)− f̂Nγ−1

γ (r, p, r)
}

+
∑

k=1,...,Nγ−2

σk
γ · sign(p̄k − pk) ·

{
f̂kγ (r̄, p̄, r̄)− f̂kγ (r, p, r)

}
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Using g̃(r̄, p̄) = 0 = g̃(r, p), we see that (5.47) implies∑
k=1,...,Nγ−2

σI · sign(p̄k − pk) ·
{
f̂
k
(p̄)− f̂

k
(p)
}
≥ 0

which means that f̂ is associated to a Kruz̆kov germ. In particular, this implies the directional monotonicity

(5.46) of f̂ .
Step 7: conclusion

We conclude that G :=
{
P ∈ [a, b]′′γ , f̂(P ) = f(P )

}
is a Riemann germ (because f̂ is continuous), and

f̂ = f̂G . Moreover G is a Kruz̆kov germ. This ends the proof of the Proposition.

Corollary 5.15 (Self-gluing of a Kruz̆kov germ for a nγ : mγ junction)
Let γ be a fixed index. Assume that the function fγ satisfies (2.2) with Nγ = nγ + mγ with nγ ,mγ ≥ 1

and Nγ ≥ 3. We consider some nγ : mγ junction Jγ with Jj
γ ≃ σj

γ · (−∞, 0) and σγ ∈ {±1}Nγ , and a
Kruz̆kov germ Gγ with respect to (Jγ , fγ). To simplify the presentation, assume that the indices go through

i = 0, . . . , Nγ − 1, i.e. fγ = (f0γ , . . . , f
Nγ−1
γ ) and [a, b]γ :=

∏
i=0,...,Nγ−1

[a, b]iγ with [a, b]iγ := [aiγ , b
i
γ ]. We call

f̂γ : [a, b]γ → RNγ the Godunov flux associated to Gγ . Assume also that f j1γ = f j2γ =: f0 defined on [a, b]
j1
γ = [a, b]

j2
γ =

[
a0, b0

]
Jj1
γ = (0,+∞), Jj2

γ = (−∞, 0)

in order to glue branch Jj1
γ with branch Jj2

γ . Then we define for j1 := 0 and j2 := Nγ − 1

f̂ := (f̂γ)
♯

j1:j2 : [a, b]′′γ → RNγ−2 with [a, b]′′γ :=
∏

i=1,...,Nγ−2

[a, b]iγ

where for any p ∈ [a, b]′′γ , we have

f̂(p) := (f̂1γ , . . . , f̂
Nγ−2
γ )(r, p, r) for some r ∈ [a, b]0γ = [a, b]

Nγ−1
γ =: [a0, b0] such that f̂0γ (r, p, r) = f̂

Nγ−1
γ (r, p, r)

where such r does exist, and when it is not unique, it does not change the value of f̂(p).
We also define

f(p) = (f1γ , . . . , f
Nγ−2
γ )(p)

We define

(5.48) G := (Gγ)
♯

j1:j2 :=
{
P ∈ [a, b]′′γ , f̂(P ) = f(P )

}
Then G is a Kruz̆kov germ and satisfies

(5.49) G :=

{
p̂ ∈ [a, b]′′γ , there exists r̂, r̂′ ∈ [a0, b0] s.t.

{
(r̂, p̂, r̂′) ∈ Gγ

f0(r̂) = Gf0

(r̂, r̂′) = f0(r̂′)

}
where we recall that the standard Godunov flux is given by

Gf0

(r̂, r̂′) =


min
[r̂,r̂′]

f0 if r̂ ≤ r̂′

max
[r̂′,r̂]

f0 if r̂ ≥ r̂′

Proof of Corollary 5.15
Notice that by definition, the function f̂ is equal to f̂ given by Proposition 5.14.
From definition (5.48), we have

p ∈ G ⇐⇒


there exists r ∈ [a, b]0γ = [a, b]

Nγ−1
γ s.t.{

f̂ iγ(r, p, r) = f iγ(p), i = 1, . . . , Nγ − 2

f̂0γ (r, p, r) = f̂
Nγ−1
γ (r, p, r)


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and then (using the fact that fγ(r̂, p̂, r̂
′) = f̂γ(r̂, p̂, r̂

′) = f̂γ(r, p, r) for (r̂, p̂, r̂
′) = πGγ (r, p, r))

p ∈ G ⇐⇒


there exists r ∈ [a, b]0γ = [a, b]

Nγ−1
γ s.t.

(r̂, p̂, r̂′) = πGγ
(r, p, r)

f(p̂) = f(p)

f0(r̂) = f0γ (r̂) = f
Nγ−1
γ (r̂′) = f0(r̂′)


Notice that

p ∈ BA(p̂), r ∈ BA((0,+∞),f0
γ )(r̂) ∩BA((−∞,0),fNγ−1)(r̂′)

From the basins of attraction with f0γ = f
Nγ−1
γ = f0, we then deduce that

(5.50) p = p̂, f0(r̂) = Gf0

(r̂, r̂′) = f0(r̂′), r̂, r̂′ ∈ [a0, b0], with (r̂, p̂, r̂′) ∈ Gγ

and it is straighforward to check that conversely (5.50) implies that p ∈ G in the sense of definition (5.48).
Therefore this shows characterization (5.49) of G. This ends the proof.

Similarly to Lemma 5.13, we show the following results

Lemma 5.16 (Associativity of self-gluing for Kruz̆kov germs)
Let γ be a fixed index. Assume that fγ satisfies (2.2) for Nγ = nγ + mγ ≥ 5 with nγ ,mγ ≥ 2 and some
nγ : mγ junction Jγ . Assume that Gγ is a Kruz̆kov germ with respect to (Jγ , fγ). We also assume that there
exists four distinct indices j1, j2, k1, k2 ∈ {1, . . . , Nγ} such that{

f j1γ = f j2γ =: fA, Jj1
γ ≃ (0,+∞), Jj2

γ ≃ (−∞, 0)
fk1
γ = fk2

γ =: fB , Jk1
γ ≃ (0,+∞), Jk2

γ ≃ (−∞, 0)

Then with notation of Corollary 5.15, we have the germ equality(
(Gγ)

♯
j1:j2

) ♯
k1:k2 =

(
(Gγ)

♯
k1:k2

) ♯
j1:j2

which is associated to a (nγ − 2) : (mγ − 2) junction.

and

Lemma 5.17 (Associativity of the gluing and the self-gluing for Kruz̆kov germs)
For γ = α, β, assume that fγ satisfies (2.2) for Nγ = nγ +mγ for junctions Jγ of type nγ : mγ . We consider
Kruz̆kov germs Gγ with respect to (Jγ , fγ).
We also assume that there exists j1 ∈ {1, . . . , Nα} and three distinct indices j2, k1, k2 ∈ {1, . . . , Nβ} such
that {

f j1α = f j2β =: fA, Jj1
α ≃ (0,+∞), Jj2

β ≃ (−∞, 0)

fk1

β = fk2

β =: fB , Jk1

β ≃ (0,+∞), Jk2

β ≃ (−∞, 0)

Then with notation of Corollaries 5.12 and 5.15, we have the germ equality

Gα ♯
j1:j2

(
(Gβ)

♯
k1:k2

)
=

(
Gα ♯

j1:j2

Gβ

) ♯
k1:k2

which is associated to a (nα + nβ − 2) : (mα +mβ − 2) junction.

6 Applications

6.1 Restriction of Riemann germs to bounded boxes - a priori L∞ bounds

We also have the following result (which can also be used to derive a priori L∞ bounds on solutions with
initial values in a bounded set K).
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Proposition 6.1 (Restriction of Riemann germs to bounded boxes)
For N ≥ 1, assume (2.2) and nondegeneracy condition (2.16), and let G ⊂ [a, b] be a Riemann germ with
respect to (J, f). Let K ⊂ [a, b] ∩ RN be a compact set.
i) (Bounded box)
Then there exists a box [ā, b̄] such that

(6.1) K ⊂ [ā, b̄] ⊂ [a, b] with [ā, b̄] bounded and πG([ā, b̄]) ⊂ [ā, b̄].

Moreover, for the inclusion there exists a minimal box [ā∗, b̄∗] satisfying (6.1).
ii) (Restricted Riemann germ)
For any box [ā, b̄] satisfying (6.1), then the set G′ := G ∩ [ā, b̄] is a Riemann germ with respect to (J, f|[ā,b̄]).

Proof of Lemma 6.1
Up to use reversion transforms, we can assume that the junction is of type 0 : N . Up to use inversion
transforms, we can also assume that θk = +1 in (2.2) for each index k. Moreover, up to increase the
compact set K, we can assume that K = [a, b] ⊂ [a, b] ∩ RN with ā, b̄ ∈ RN with ā < b̄.
Part 1: case b = (+∞, . . . ,+∞)
Step 1: construction of ā
For each index j, we have the following dichotomy. Either aj > −∞, and then we set āj := aj . Or we have
aj = −∞, and using the coercivity of f j at −∞, we choose āj ∈ (−∞, aj ] such that f j(āj) = inf

(−∞,āj ]
f j .

Then (2.14) implies for all index j that

f̂ j(p) ≥ f j−(p) = inf
(−∞,pj ]

f j = inf
[āj ,pj ]

f j for all p ∈ [ā, b]

Hence, up to replace G by G ∩ [ā, b] which is again a Riemann germ (from ii) of Theorem 2.14 and the

continuity of f̂), we can assume that a = ā ∈ RN .
Step 2: bound on G towards +∞
We claim that there exists some

(6.2) there exists some b∗ ∈ [b, b] ∩ RN such that G ∩
(
b∗ + [0,+∞)N

)
= ∅

Assume by contradiction that (6.2) is false. Then we deduce that we can construct a sequence (pn)n∈N with

(6.3) pn ∈ G, pn < pn+1, pjn → +∞ as n→ +∞ for all index j

Setting p̂n := π(pn) = pn, and using the fact that each f j is coercive, we see that up to extract a subsequence

(still denoted by n), we can assume that p̂n ≤ p̂n+1 and f̂(p̂n) < f̂(p̂n+1) (using also that f̂ = f on G). This
means that

(6.4) (p̂n+1 − p̂n) · [f̂ ]p̂n+1

p̂n
≥ 0 with [f̂ ]

p̂n+1

p̂n
:= f̂ j(p̂n+1)− f̂ j(p̂n) > 0

From Theorem 2.17, we know that σ ⋄ f̂ = −f̂ is Riemann monotone with σj = −1 for all j. Therefore

−(p̂n+1 − p̂n) · [f̂ ]p̂n+1

p̂n
≤ 0 implies [f̂ ]

p̂n+1

p̂n
= 0

Contradiction with (6.4). Therefore (6.3) is false, and this implies (6.2).

Step 3: bound from above on f̂ on [ā, b]
We claim that

(6.5) sup
j=1,...,N

sup
[ā,b]

f̂ j < +∞

We do the proof by recurrence on the number N ≥ 1 of branches, using (6.2).
Step 3.1: case N = 1
For b∗ given in (6.2) for N = 1, recall that b∗ ∈ [b,+∞) , and consider b̂∗ := πG(b∗) ∈ G ⊂ [a, b]. Then (6.2)

implies that b̂∗ < b∗ and BA(b̂∗) ⊃ b̂∗ + [0,+∞) ∋ b∗. Hence f̂ = const on [b∗,+∞). By assumption, G is

a Riemann germ, and then f̂ is continuous, and then bounded on [ā, b∗]. This implies that sup
[ā,b]

f̂ < +∞,
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which shows (6.5) for N = 1.
Step 3.2: case N = n+ 1 for n ≥ 1
Given n ≥ 1, assume that (6.5) is true for N − 1 = n, and let us show it for N := n+1. To this end, we use
the slicing lemma 4.12.
We first freeze the last coordinate āN of ā = (ā′, āN ). We consider the germ

G′
āN :=

{
p′ := (p1, . . . , pN−1) ∈ [a′, b′], f̂ ′āN (p′) = f ′(p′)

}
with

{
f ′ := (f1, . . . , fN−1)

f̂ ′āN (p′) := (f̂1, . . . , f̂N−1)(p′, āN ),

Then from assumption (6.5) at the level N − 1, we deduce that

(6.6) sup
j=1,...,N−1

sup
[ā′,b′]

f̂ j
āN < +∞

Because G′
āN =

{
p′ ∈ [ā′, b′], f̂ ′āN (p′) = f ′(p′)

}
and f ′ is coercive, we deduce from (6.6) that there exists

some R > 0 such that G′
āN ⊂ ā′ + [0, R]N−1. Now for any p ∈ [ā′, b′] ×

{
āN
}
and p̂ := πG(p), using the

fact that the function f̂N is nonincreasing in pN for 0 : N junctions, we deduce that f̂N (p) = f̂N (p̂) ≤
f̂N (p̂′, āN ) = f̂NāN (p̂′) with p̂′ ∈ G′

āN . Therefore

(6.7) f̂N (p) ≤ sup
[ā′,ā′+(R,...,R)]

f̂NāN ≤ CR

Hence, using again the monotonicity of f̂N , we get sup
[ā,b]

f̂N ≤ sup
[ā′,b′]×{āN}

f̂N ≤ CR. Similarly, up to increase

the constant CR, we deduce
sup

j=1,...,N
sup
[ā,b]

f̂ j ≤ CR.

Step 4: construction of b̄
Using the coercivity of f j at +∞, we choose b̄j ∈ [bj ,+∞) such that sup

[ā,b]

f̂ j ≤ f j(b̄j) = sup
[āj ,b̄j ]

f j . Then we

have
f̂ j(p) ≤ sup

[ā,b̄]

f̂ j ≤ sup
[ā,b]

f̂ j ≤ f j(b̄j) ≤ sup
[pj ,b

j
]

f j for all p ∈ [ā, b̄]

We conclude that
inf

[āj ,pj ]
f j ≤ f̂ j(p) ≤ sup

[pj ,b
j
]

f j for all p ∈ [ā, b̄]

and from ii) of Theorem 2.14, we conclude that G′ := G∩ [ā, b̄] is a generalized germ with respect to (J, f|[ā,b̄])

with f̂G′ = (f̂G)|[ā,b̄]. Because f̂ = f̂G is continuous, we also deduce that G′ is a Riemann germ.

Step 5: a further property of [ā, b̄]
Consider any p ∈ [ā, b̄], and define p̃ := πG′(p) ∈ G′ ⊂ G. Then we have (from the definition of the basins of
attraction) p ∈ BAJ,f|[ā,b̄](p̃) = BAJ,f (p̃) ∩ [ā, b̄], and then p ∈ BAJ,f (p̃) with p̃ ∈ G. Hence p̃ = p̂ := πG(p).
In other words, this shows that (πG)|[ā,b̄] = πG′ with G′ = G ∩ [ā, b̄]. In particular, we see that if G ∩ [ā, b̄] is

a Riemann germ, then the box [ā, b̄] satisfies πG([ā, b̄]) ⊂ [ā, b̄].
Step 6: converse property
We now want to show that, under our assumption (2.2), for any bounded box [ā, b̄] ⊂ [a, b] such that
πG([ā, b̄]) ⊂ [ā, b̄], then G ∩ [ā, b̄] is a Riemann germ. From ii) of Theorem 2.14, we only have to show that
for all j

(6.8) inf
[āj ,pj ]

f j ≤ f̂ j(p) ≤ sup
[pj ,b̄j ]

f j for all p ∈ [ā, b̄]

Indeed, let p ∈ [ā, b̄]. By assumption, we have p̂ := πG(p) ∈ [ā, b̄]. From the definition of the basin of

attraction BA(p̂) ∋ p ∈ [ā, b̄], and for a junction of type 0 : N , we have

{
f j(pj) ≥ f j(p̂j) if pj ≥ p̂j

f j(pj) ≤ f j(p̂j) if pj ≤ p̂j
.

Because pj ∈ BA(p̂j) ∩ [āj , b̄j ] ∋ p̂j , we deduce that

sup
[pj ,b̄j ]

f j ≥
{
f j(pj) ≥ f j(p̂j) if pj ≥ p̂j

f j(p̂j) if pj ≤ p̂j
, and inf

[āj ,pj ]
f j ≤

{
f j(p̂j) if pj ≥ p̂j

f j(pj) ≤ f j(p̂j) if pj ≤ p̂j
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which implies that inf
[āj ,pj ]

f j ≤ f j(p̂j) = f̂ j(p̂) = f̂ j(p) ≤ sup
[pj ,b̄j ]

f j , which is exactly (6.8).

Step 7: minimal box
Given the compact set K, consider the set S :=

{
[ā, b̄] ⊂ RN , K ⊂ [ā, b̄] and πG([ā, b̄]) ⊂ [ā, b̄]

}
. Then

define the set KG :=
⋂

[ā,b̄]∈S

[ā, b̄]. By construction, this set is closed and is a box which contains K, i.e. we

have KG = [ā∗, b̄∗] ⊃ K. Moreover, we have πG(K
G) ⊂ KG , and then KG ∈ S which shows that KG is the

minimal element of S for the inclusion.

Part 2: case b ̸= (+∞, . . . ,+∞)
This part is an easy adaptation of Part 1. Step 1 is unchanged. If b ∈ RN , then we can choose b̄ := b.
Assume now that b ̸∈ RN . Then, in Step 2, relation (6.2) has to be replaced by

(6.9) there exists some b∗ ∈ [b, b] ∩ RN such that G ∩

b∗ + ∑
bj=+∞

[0,+∞)ej

 = ∅

where (e1, . . . , eN ) is the canonical basis of RN . Step 3.1 is unchanged. In Step 3.2, relation (6.7) has to be
modified in

(6.10) f̂N (p) ≤ sup
[ā′,ā′+(R,...,R)]∩[ā′,b′]

f̂NāN ≤ CR

Finally in Step 4, we have to redefine b̄j := bj only when bj ∈ R. The remaining part of the proof is
unchanged. This ends the proof of the proposition.

6.2 Theorem 2.21 and its proof: Kruz̆kov germs

Theorem 2.21 will be a corollary of the following two lemmata.

Lemma 6.2 (D-maximality of Kruz̆kov germs)
Assume (2.2) with N ≥ 1 with G ⊂ [a, b] a generalized Riemann germ. Consider the set

G′ :=
{
p ∈ [a, b], Df (p, q̂) ≥ 0 for all q̂ ∈ G

}
for Df defined in (2.8)

If G is a Kruz̆kov germ, then it satisfies the following D-maximality property: G′ = G.

Proof of Lemma 6.2
Recall that by definition of the Kruz̆kov germ G, it satisfies Df ≥ 0 on G × G. Hence G ⊂ G′. Assume
that there exists p ∈ G′\G. From Lemma 3.4, we deduce that Df (p, p̂) < 0 for p̂ := π(p). Contradiction.
Therefore G′ = G, and this ends the proof.

Lemma 6.3 (Stability of Kruz̆kov germs)
Assume (2.2). Let G ⊂ [a, b] be a generalized Riemann germ.

If G is a Kruz̆kov germ, then f̂G is continuous.

Proof of Lemma 6.3
We will show the result using Theorem 2.16. We will indeed show that the G-Riemann problem is stable.
Let [a, b] ∋ pn → p∞ as n → +∞. From Lemma 3.11, we have for p̂n = π(pn), that there exists p̃∞ such
that p∞ ∈ BA(p̃∞) and

un := uGpn,p̂n
→ u∞ := up∞,p̃∞ in L1

loc([0,+∞)× J)

where we do not know yet that p̃∞ belongs to G. This is what we want to prove. For any 0 ≤ φk ∈
C1

c ([0,+∞)× J̄k) with J̄k := {0} ∪ Jk ≃ [0,+∞), we define

Ik(φ, un, c) :=

∫
(0,+∞)×Jk

{
ηk(ukn, c

k)φk
t + ψk(ukn, c

k)φk
x

}
dtdx+

∫
{0}×Jk

ηk(pn, c
k)φk dx
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From Definition 2.32 of Kruz̆kov entropy solutions, we have for any c ∈ G (which can be seen as a constant
G-entropy solution), we have

Ik(ϕ, un, c) ≥ 0 for any 0 ≤ ϕk ∈ C1
c ([0,+∞)× Jk)

Now for 0 ≤ φk ∈ C1
c ([0,+∞)× J̄k), and using the continuity of ψk(·, ck), and the notion of trace at x = 0

(which is automatically well-defined for Riemann problem, because of the monotonicity of ukn in x), we get
(which can be justified, by approximation from C1 to Lipschitz continuous, with ϕkε := φk − φk(t, 0)θε(x)
with θε(x) := max

{
0, 1− ε−1x

}
in the limit ε→ 0), that

Ik(φ, un, c) ≥
∫
(0,+∞)×{0}

−ψk(p̂n, c
k)φk

Choosing φk = φj =: φ0 on (0,+∞)× {0}, we get

I(φ, un, c) :=
∑

k=1,...,N

Ik(φ, un, c) ≥
∫
(0,+∞)×{0}

Df (pn, c)φ
0 ≥ 0

where the last inequality follows from Df (pn, c) ≥ 0 because pn, c ∈ G and G is a Kruz̆kov germ. Passing
to the limit, we get I(φ, u∞, c) ≥ 0. Now choosing φj

ε(t, x) = φ0(t, 0)θε(x) for all index j (up to use again
approximations from C1 to Lipschitz continuous), we get in the limit ε→ 0 that

0 ≤ I(φε, u∞, c) →
∫
(0,+∞)×{0}

D(p̃∞, c)φ
0 = D(p̃∞, c)

{∫
(0,+∞)×{0}

φ0

}

Because this is true for all 0 ≤ φ0 ∈ C1
c ([0,+∞)), we get D(p̃∞, c) ≥ 0 for all c ∈ G. From Lemma 6.2,

we deduce that p̃∞ ∈ G with u∞ = up∞,p̃∞ . Hence p̃∞ ∈ G ∩ P̂p∞ = {π(p∞)}, i.e. p̃∞ = π(p∞) and
u∞ = uGp∞,π(p∞). This shows the stability of G-Riemann problem. Hence from Theorem 2.16, we deduce

that f̂ is continuous. This ends the proof of the lemma.

Proposition 6.4 (Characterization of Kruz̆kov germs among generalized Riemann germs)
Assume (2.2) with N ≥ 1.
i) (Kruz̆kov germs)

Let G ⊂ [a, b] be a generalized Riemann germ, and let f̂ := f̂G be its associated Godunov germ. Then G is a

Kruz̆kov germ if and only if f̂ is locally Lipschitz continuous on [a, b] and its Jacobian matrix is diagonally
dominant, i.e. precisely

(6.11) σi∂if̂
i ≥

∑
j∈{1,...,N}\{i}

|∂if̂ j | a.e. on [a, b], i = 1, . . . , N

ii) (General continuous dissipative functions)
Assume that h : [a, b] → RN is a continuous map. Assume also that the map p 7→ hj(p) is locally Lipschitz
continuous in pj uniformly in the other coordinates pk for k ̸= j, and for all j = 1, . . . , N .

Then Dh ≥ 0 on [a, b]2 if and only if h is locally Lipschitz continuous and satisfies

(6.12) σi∂ih
i ≥

∑
j∈{1,...,N}\{i}

|∂ihj | a.e. on [a, b], i = 1, . . . , N

Proof of Proposition 6.4
Part I: proof of i)
We first recall that from Lemma 5.5, the generalized Riemann germ G is a Kruz̆kov germ if and only if it

satisfies Df̂ ≥ 0 on [a, b]2 for f̂ := f̂G . We only do the proof for N : 0 junctions. The general case then
follows by reversion transforms.
Step 1: necessary condition
Step 1.1: interior regularization
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Consider a Kruz̆kov germ G. Then recall that Df̂ ≥ 0 implies for all points p, q in the interior of the box
[a, b] with σj = 1 for all j

(6.13) Df̂ (p+ ξ, q + ξ) =
∑

j=1,...,N

sign(pj − qj) ·
{
f̂ j(p+ ξ)− f̂ j(q + ξ)

}
≥ 0

Let 0 ≤ ρε := ε−Nρ(ε−1·) be a mollifier with supp(ρ) ⊂ [−1, 1]N . Extending f̂ (for instance by zero outside

the box [a, b]), and integrating (6.13) over the measure ρε(ξ)dξ and setting f̂ε := f̂ ⋆ ρε, we get Df̂ε ≥ 0 on
[a, b]ε := [a+ ε(1, . . . , 1), b− ε(1, . . . , 1)].
Step 1.2: application
Recall that Corollary 4.19 holds for N : 0 juntions, and (4.31) means for f̂ε that a.e. on [a, b]ε

(6.14)

 S̄K :=
∑

j∈K(f̂ε)j −
∑

j ̸∈K(f̂ε)j

∂kS̄K ≥ 0 for all k ∈ K
∂kS̄K ≤ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

Fix a point p ∈ [a, b] where f̂ε has a derivative, and fix the index 1. LetK−(p) :=
{
j ∈ {2, . . . , N} , ∂1(f̂

ε)j(p) ≤ 0
}
.

Then for K := K(p) := K−(p) ∪ {1}, we get from (6.14)

∂1(f̂
ε)1(p) +

∑
j∈K−(p)

∂1(f̂
ε)j(p)−

∑
j∈{2,...,N}\K−(p)

∂1(f̂
ε)j(p) ≥ 0

i.e.

(6.15) ∂1(f̂
ε)1 ≥

∑
j∈{2,...,N}

|∂1(f̂ε)j | a.e. on [a, b]ε

The same result holds true for all other index than 1, which shows that f̂ε satisfies (6.11) on [a, b]ε.
Step 1.3: the limit ε→ 0
We also know that 0 ≤ ∂j f̂

j ≤ |(f j)′| a.e. for N : 0 junctions. Joint to (6.15), this shows that f̂ε is locally

Lipschitz continuous, uniformly in ε in the interior of the box [a, b]. From Lemma 6.3, we know that f̂ is

continuous on [a, b]. Hence f̂ε → f̂ locally uniformly in the interior of the box [a, b], and we conclude that f̂
is locally Lipschitz continuous in the interior of the box [a, b]. Then, inside the interior of the box [a, b], we

can apply Corollary 4.19 to f̂ as in Step 1.2. This shows (6.11) for σj = 1 for all j. Finally, the continuity

of f̂ on [a, b] implies that f̂ is locally Lipschitz continuous on the whole box [a, b].
Step 2: sufficient condition
Assume now that f̂ is locally Lipschitz continuous on [a, b] and satisfies (6.11) for σj = 1 for all j. Then this

implies immediately (6.14), which from Corollary 4.19 is a characterization of Df̂ ≥ 0 for a N : 0 junctions.
Finally recall that Lemma 5.5 shows that G is a Kruz̆kov germ.
Part II: proof of ii)
The same argument as in Part I applies and give the result. This ends the proof of the proposition.

Proof of Theorem 2.21:
For the proof, we refer to the table of Subsection 2.4. This follows from Lemmata 6.2 and Proposition 6.4.
This ends the proof of the theorem.

We end this subsection with the following result.

Lemma 6.5 (Convergence of Godunov flux for Kruz̆kov germs)
Assume (2.2) with N ≥ 1. Let Gn ⊂ [a, b] for n ∈ N be a sequence of Kruz̆kov germs with respect to (J, f),

with associated Godunov flux f̂n := f̂Gn
. Then, up to extract a subsequence (still denoted by n), there exists

a Kruz̆kov germ G∞ ⊂ [a, b] with respect to (J, f) and f̂∞ := f̂G∞ such that

f̂Gn
→ f̂G∞ as n→ +∞

Proof of Lemma 6.5
We know from i) of Proposition 6.4 and vii) of Proposition 2.13 that the sequence f̂n is locally uniformly
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Lispchitz. Hence from Ascoli-Arzela theorem, we can extract a convergent subsequence and call f̂∞ the

limit. We define the set G∞ :=
{
f̂∞ = f

}
, which is a closed subset of [a, b]. Notice that we have Df̂n ≥ 0

on [a, b]2. Passing to the limit, we recover Df̂∞ ≥ 0 on [a, b]2. Hence Df ≥ 0 on G∞×G∞, which shows that
G∞ is a Kruz̆kov germ, once we know that G∞ is a generalized Riemann germ.

Now recall that f̂n satisfy (2.14), and also (2.12) which is

(6.16)


For all p ∈ [a, b] and Kn,p :=

{
j ∈ {1, . . . , N} , f̂ jn(p) ̸= f j(p)

}
, there exists εn > 0

such that for Qn,εn(p) := p+
∑

j∈Kn,p

(−εn, εn)ej , we have

f̂n = const on [a, b] ∩Qn,εn(p)

Then it is easy to see that condition (6.16) is closed. This follows from the Lipschitz continuity of f which

allows to bound from below εn for n large enough as f̂n → f̂∞, starting from K∞,p defined similarly for f̂∞.

We conclude that f̂∞ satisfies (2.12) and (2.14). Then Theorem 2.14 ii) implies that G∞ is a generalized

Riemann germ and that f̂∞ is the Godunov flux associated to G∞. We conclude that G∞ is a Kruz̆kov germ
with f̂G∞ = f̂∞. This ends the proof of the lemma.

6.3 Theorem 2.23 and its proof: D+-germs

Proposition 6.6 (Characterization of D+-germs among generalized Riemann germs)

Assume (2.2) with N ≥ 1. Let G ⊂ [a, b] be a generalized Riemann germ, and let f̂ := f̂G be its associated

Godunov germ. Then G is a D+-germ if and only if f̂ is locally Lipschitz continuous on [a, b] and satisfies
a.e. on [a, b]

(6.17) ∂i(σ
if̂ i) ≥

∑
j∈{1,...,N}\{i}

|∂if̂ j |, for all i = 1, . . . , N

and

(6.18) ∂i(σ
j f̂ j) ≤ 0, for all i ̸= j

Proof of Proposition 6.6
The proof follows part of the lines of the proof of Proposition 6.4.
We first recall that from Lemma 5.5, the generalized Riemann germ G is a D+-germ if and only if it satisfies

Df̂
+ ≥ 0 on [a, b]2 for f̂ := f̂G . We only do the proof for N : 0 junctions. The general case then follows by

reversion transforms.
Step 1: necessary condition
Step 1.1: preliminary
We first notice that a D+-germ is in particular a Kruz̆kov germ (i.e. a D-germ) because D(p, q) = D+(p, q)+

D+(q, p). Then Proposition 6.4 implies that f̂ is locally Lipschitz continuous on [a, b] and satisfies (6.17).
Step 1.2: application
Recall that Corollary 4.19 holds for N : 0 juntions, and (4.33) means for f̂ that a.e. on [a, b] we have

(6.19)

 SK :=
∑

j∈K f̂ j

∂kSK ≥ 0 for all k ∈ K
∂kSK ≤ 0 for all k ̸∈ K

∣∣∣∣∣∣ , for all K ⊂ {1, . . . , N}

Hence for K := {j}, this gives (6.18) with σℓ = 1 for all ℓ = 1, . . . , N .
Step 2: sufficient condition
Assume now that f̂ is locally Lipschitz continuous on [a, b] and satisfies (6.17) and (6.18) for σj = 1 for all
j. Then (6.17) implies immediately the second line of (6.19), while (6.18) implies the third line of (6.19).

Therefore (6.19) holds true, and then Corollary 4.19 implies that Df̂
+ ≥ 0 for a N : 0 junctions. Finally

recall that Lemma 5.5 shows that G is a D+-germ. This ends the proof of the proposition.

Proof of Theorem 2.23
For the proof, we refer to the table of Subsection 2.4. The result follows from Proposition 6.6 and i’) and
iii) of Lemma 5.5. This ends the proof of the theorem.
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6.4 Theorem 2.24 and its proof: conservative Riemann germs

Proof of Theorem 2.24
Recall that we assume that G is a Riemann germ which is conservative. From Lemma 5.5, this means f̂ := f̂G
is continuous and satisfies

RH f̂ = 0 with RH f̂ (p) :=
∑

j=1,...,N

σj f̂ j(p)

Still from Lemma 5.5, recall that G is monotone if and only if

(6.20) p 7→ σj f̂ j(p) is nonincreasing in pk for all k ̸= j, and nondecreasing in pj

and G is Kruz̆kov if and only if Df̂ ≥ 0. We first notice that up to apply a suitable reversion transform, we
can assume that the junction is of type N : 0, i.e. that Jj ≃ (−∞, 0) with σj = 1 for all j.
Step 1: monotone implies Kruz̆kov
Assume that f̂ satisfies (6.20) and let us show that it satisfies (4.33). To this end, consider a set K ⊂
{1, . . . , N}, and call SK :=

∑
j∈K

f̂ j . Then (6.20) implies

(6.21) ∂ℓSK ≤ 0 for all ℓ ̸∈ K

We also have SK = RH f̂ −
∑
j ̸∈K

f̂ j = −
∑
j ̸∈K

f̂ j . Hence for all ℓ ∈ K and j ̸∈ K, we have ∂ℓf̂
j ≤ 0, and then

(6.22) ∂ℓSK ≥ 0 for all ℓ ∈ K

Therefore (6.21)-(6.22) show (4.33). From ii) of Lemma 4.18, this implies Df̂
+ ≥ 0, and then Df̂ ≥ 0 and G

is a Kruz̆kov germ.

Step 2: Kruz̆kov implies monotone

Assume that G is Kruz̆kov. Then Df̂ ≥ 0, and from i) of Lemma 4.18, this implies that S̄K satisfies
(6.21)-(6.22), with

S̄K :=
∑
j∈K

f̂ j −
∑
j ̸∈K

f̂ j = −RH f̂ + 2
∑
j∈K

f̂ j = 2
∑
j∈K

f̂ j = 2SK

Therefore SK also satisfies (6.21)-(6.22). Given an index k and K := {k} and ℓ ̸∈ K or ℓ ∈ K, we deduce

from (6.21)-(6.22) applied to SK that ∂ℓf̂
k ≤ 0 for all ℓ ̸= k and ∂kf̂

k ≥ 0, which is nothing else than
condition (6.20). Therefore G is monotone.
Step 3: equivalence with D+-germs
Using Theorem 2.23, we deduce that monotone is equivalent to Kruz̆kov which is also equivalent to D+-germ.
This ends the proof of the lemma.

6.5 Theorem 2.25 and its proof: Hamilton-Jacobi germs and HJ-relaxation
operator

The proof of Theorem 2.25 requires two intermediate results: first Lemma 6.7 shows the existence of some
HJ-relaxation operator, which in particular has an action on locally constant functions. Then Proposition
6.9 presents important properties of HJ germs. Finally, we conclude the section with the proof of Theorem
2.25.

Lemma 6.7 (HJ-relaxation operator)
Assume (2.2) with N ≥ 1. Let h0 be such that

(6.23)

 h0 : [a, b] → R is continuous
p 7→ σjh0(p) is nondecreasing in pj for all j = 1, . . . , N,
f0 := (h0, . . . , h0) satisfies the monotone bounds given in the second line of (2.14).

Assume moreover that either [a, b] ⊂ RN is compact, or [a, b] ∩ RN = RN , or

(6.24) f0 := (h0, . . . , h0) is locally constant on {f0 ̸= f}
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Then the following formula defines uniquely h1(p) for each p ∈ [a, b]

(6.25) {h1(p)} =
⋃

q∈[a,b]

{h0(q)} ∩
⋂

Jj≃(−∞,0)

{
Gj(pj , qj)

}
∩

⋂
Jj≃(0,+∞)

{
Gj(qj , pj)

} .

Then we set

(6.26) Rh0 := h1

and h1 satisfies (6.23) and moreover f1 := (h1, . . . , h1) is locally constant on {f1 ̸= f}.

Remark 6.8 Notice that in Lemma 6.7 and in the special case of assumption (6.24), we do not have to
require the continuity of h0 in (6.23). Indeed the continuity of h0 is then automatic, as it will be independently
shown later in i) of Proposition 6.9, for the HJ germ Gf0 = {f0 = f}.

Proof of Lemma 6.7
Step 1: h1 is well-defined with good properties
Step 1.1: non emptyness of the intersection
We consider h0 satisfying (6.23). In particular, for f0 := (h0, . . . , h0) we have f− ≤ f0 ≤ f+, which means

(6.27)

{
f j−(q) = Gfj

(qj , bj) ≤ h0(q) ≤ f j+(q) = Gfj

(qj , aj) if Jj ≃ (−∞, 0)

f j−(q) = Gfj

(aj , qj) ≤ h0(q) ≤ f j+(q) = Gfj

(bj , qj) if Jj ≃ (0,+∞)

Recall that the monotonicities of h0 are opposite for ingoing and outgoing branches. It is more convenient
to have the same monotonicities on each variable. To this end, we define

p̄j := σjpj , [āj , b̄j ] := σj [aj , bj ] f̄ j(p̄) = f j(p), J̄j := σj(−∞, 0) for j = 1, . . . , N and h̄0(p̄) := h0(p)

(which can be seen as a composition of some inversion transform and the reversion transform) which satisfies
h̄0(↑, . . . , ↑) and

(6.28) f̄ j−(q̄) = Gf̄j

(q̄j , b̄j) ≤ h̄0(q̄) ≤ f̄ j+(q̄) = Gf̄j

(q̄j , āj) and J̄j ≃ (−∞, 0) for all j

We also set J̄ := {0} ∪
⋃

j=1,...,N

J̄j . Then (J̄ , f̄) satisfies (2.2), with possible coercivity assumption for some

θ̄k ∈ {±1}. Up to apply some inversion, we can furthermore assume that θ̄k = 1.
We distinguish cases.
Case A: ā, b̄ ∈ RN

Then f̄ j−(ā) = inf
[āj ,b̄j ]

f̄ j and f̄ j+(b̄) = sup
[āj ,b̄j ]

f̄ j , j = 1, . . . , N . We define the functions

Φj
p̄(q̄) := Gf̄j

(p̄j , q̄j)− h̄0(q̄), j = 1, . . . , N

For any p̄ ∈ [ā, b̄] and using the monotonicity of Φj
p̄, we get for ιjq̄(ā

j) := (q̄1, . . . , q̄j−1, āj , q̄j+1, . . . , q̄N ) and
for all q̄ ∈ [ā, b̄] that

Φj
p̄(ι

j
q̄(ā

j)) = Gf̄j

(p̄j , āj)− h̄0(ι
j
q̄(ā

j)) ≥ Gf̄j

(p̄j , āj)− f̄ j+(ā
j) = sup

[āj ,p̄j ]

f̄ j − f̄ j(āj) ≥ 0

We also get

Φj
p̄(ι

j
q̄(b̄

j)) = Gf̄j

(p̄j , b̄j)− h̄0(ι
j
q̄(b̄

j)) ≤ Gf̄j

(p̄j , b̄j)− f̄ j−(b̄
j) = inf

[p̄j ,b̄j ]
f̄ j − f̄ j(b̄j) ≤ 0

Recall that the map q̄ 7→ Φp̄(q̄) is continuous. Hence we deduce from Poincaré-Miranda theorem (see [17])
that there exists q̄ ∈ [ā, b̄] such that

(6.29) Φp̄(q̄) = 0
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This implies that

(6.30)
{
h̄0(q̄)

}
∩

⋂
j=1,...,N

{
Gf̄j

(p̄j , q̄j)
}
̸= ∅

Case B: −āj = b̄j = +∞ for all j
Here we do not use Poincaré-Miranda theorem, but make a direct proof. We first notice that (6.28) implies

for the special choice q̄ := p̄ Gf̄j

(p̄j , b̄j) ≤ h̄0(p̄) ≤ Gf̄j

(p̄j , āj) for all j, i.e. (using the coercivity of f̄ j to
bound λp̄ from below)

−∞ < λp̄ := max
j=1,...,N

Gf̄j

(p̄j , b̄j) = max
j=1,...,N

f̄ j−(p̄
j) ≤ h̄0(p̄) ≤ min

j=1,...,N
f̄ j+(p̄

j) = min
j=1,...,N

Gf̄j

(p̄j , āj) =: λp̄ = +∞

Consider now for ε > 0, the functions

Gf̄j

ε (p̄j , q̄j) := Gf̄j

(p̄j , q̄j)− ε(q̄j − p̄j), j = 1, . . . , N

Then q̄j 7→ Gf̄j

ε (p̄j , q̄j) is locally Lipschitz continuous and satisfies
∂

∂q̄j
Gf̄j

ε (p̄j , q̄j) ≤ −ε a.e.. Moreover

Gf̄j

ε (p̄j , āj) ≥ λ̄p̄ − ε(āj − p̄j) ≥ λ̄p̄ = +∞ and Gf̄j

ε (p̄j , b̄j) ≤ λp̄ − ε(b̄j − p̄j) ≤ λp̄. Hence for any λ ∈ R,
there exists a unique q̄jε(λ) ∈ R such that

(6.31) Gf̄j

ε (p̄j , q̄jε(λ)) = λ

and moreover the map λ 7→ q̄jε(λ) is nonincreasing and continuous. Now define Θε(λ) := λ − h̄0(q̄ε(λ)),
which by construction is also nondecreasing in λ, and satisfies Θε(λp̄) ≤ 0 ≤ Θε(λp̄) = +∞. By continuity
of Θε, we deduce that there exists λε ∈ [λp̄,+∞) such that

(6.32) Θε(λ
ε) = 0

Up to extract a subsequence assume that λε → λ∗ ∈ [λp̄,+∞] as ε → 0. Assume by contradiction that
λ∗ = +∞. From (6.31) and (6.32), we have

h̄0(q̄
ε) = Gf̄j

(p̄j , q̄ε,j)− ε(q̄ε,j − p̄j) = λε → +∞ with q̄ε,j := q̄jε(λ
ε)

where the second equality implies that q̄ε,j → −∞. This is in contradiction with the first equality and the
monotonicity of h̄0. We conclude that λ∗ ∈ [λp̄,+∞) and then q̄ε → q̄∗ which satisfies h̄0(q̄

∗) = Gf̄j

(p̄j , q̄∗,j)
for all j, which is (6.30) for q̄ := q̄∗.

Case C: f̄0 := (h̄0, . . . , h̄0) is locally constant on
{
f̄0 ̸= f̄

}
From ii) of Theorem 2.14, we deduce that G ˆ̄f0

:=
{
ˆ̄f0 = f̄

}
is a generalized Riemann germ. Setting π := πG ˆ̄f0

,

we define
ˆ̄p := π(p̄), p̄ ∈ BA(J̄,f̄)(ˆ̄p), λ0 := h̄0(ˆ̄p) = h̄0(p̄)

where in the last equality we have used the fact that h̄0 is constant on BA(J̄,f̄)(ˆ̄p). Notice now that ˆ̄p ∈ Gf̄0

and then Gf̄j

(p̄j , ˆ̄pj) = f̄ j(ˆ̄pj) = h̄0(ˆ̄p) = λ0 which is (6.30) with q̄ := ˆ̄p.
Step 1.2: uniqueness of the common value

Now assume that there exist two values q̄, q̄′ ∈ [ā, b̄] such that

{
λ = h̄0(q̄) = Gf̄j

(p̄j , q̄j)

λ′ = h̄0(q̄
′) = Gf̄j

(p̄j , q̄′j)
. Assume by

contradiction that λ ̸= λ′. Up to exchange q̄ and q̄′, we can assume λ′ > λ. From the monotonicities of the
standard Godunov fluxes, we deduce that q̄′j < q̄j . From the monotonicies of h̄0(↑, . . . , ↑), we deduce that
λ′ = h̄0(q̄

′) ≤ h̄0(q̄) = λ. Contradiction. Hence λ′ = λ, and we have uniqueness of the value λ and we call
h̄1(p̄) := λ. We also define h1(p) := h̄1(p̄).
Step 2: h1 satisfies condition (6.23)
It is sufficient to check that h̄1 satisfies condition (6.23) with h0 replaced by h̄0 and σj = 1 for all j.
Step 2.1: continuity of h̄1
The continuity of h̄1 follows from the compactness of the set of solutions q̄ to (6.29). Indeed consider a
sequence [ā, b̄] ∋ p̄n → p̄ ∈ [ā, b̄] as n→ +∞, and an associated sequence q̄n ∈ [ā, b̄] such that

(6.33) h̄1(p̄n) = h̄0(q̄n) = Gf̄j

(p̄jn, q̄
j
n) for all j
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If [ā, b̄] ⊂ RN is compact, then the result follows from the continuity of h̄0, f̄ .
We will use coercivity in assumption (2.2) in order to show compactness of the sequence q̄n. Then assume
by contradiction that |q̄kn| → +∞ as n→ +∞ for at least some index k. Notice that

Gf̄k

(p̄kn, q̄
k
n) = inf

[p̄k
n,q̄

k
n]
f̄k ≤ f̄k(p̄kn) and h̄0(q̄n) ≥ f̄k−(q̄n) = inf

[q̄kn,b̄
k]
f̄k → +∞ if q̄kn → +∞

and this leads to a contradiction with equality (6.33). Therefore we deduce that q̄kn → −∞, and then

h̄0(q̄n) = Gf̄k

(p̄kn, q̄
k
n) = sup

[q̄kn,p̄
k
n]

f̄k → +∞. Now (6.33) implies that q̄jn → −∞ for all j = 1, . . . , N .

Consider any c̄ ∈ [ā, b̄]. The monotonicitiy of h̄0 then implies that h̄0(c̄) ≥ h̄0(q̄n) → +∞. Contradiction.
Therefore we conclude that q̄n stays bounded, and we can extract a convergent subsequence that we still
denote (q̄n)n such that q̄n → q̄. Using the continuities of h̄, f̄ , we can pass to the limit in (6.33) which gives

h̄1(p̄n) → h̄0(q̄) = Gf̄j

(p̄j , q̄j) = h̄1(p̄) for all j, which shows the continuity of h̄1.
Step 2.2: checking other properties of h̄1
Let us now show the monotonicities of h̄1. We write h̄1(p̄) = λ = h̄0(q̄) = Gf̄j

(p̄j , q̄j), j = 1, . . . , N , and

consider p̄′ with p̄′1 = p̄1 and p̄′ ≥ p̄, and h̄1(p̄
′) = λ′ = h̄0(q̄

′) = Gf̄j

(p̄j , q̄′j).
Assume by contradiction that λ′ < λ. Then the monotonicities of the standard Godunov fluxes imply

q̄′ > q̄ and the monotonicity of h̄0 implies λ′ = h̄0(q̄
′) ≥ h̄0(q̄) = λ. Contradiction. We deduce that λ′ ≥ λ,

and then h̄1 is nonincreasing in p̄1. Similarly, we show that h̄1 is nondecreasing in each coordinate p̄j .
We now check that h̄1 satisfies the bounds given in the second line of (2.14) for h0 replaced by h̄0 and

σj = 1 for all j. Recall that h̄0 satisfies (6.28), i.e.

f̄ j−(q̄) = Gf̄j

(q̄j , b̄j) ≤ h̄0(q̄) ≤ f̄ j+(q̄) = Gf̄j

(q̄j , āj) for all j

Then for h̄1(p̄) = λ = h̄0(q̄) = Gf̄j

(p̄j , q̄j) for all j, we get

f̄ j−(p̄
j) = Gf̄j

(p̄j , b̄j) ≤ λ = Gf̄j

(p̄j , q̄j) ≤ Gf̄j

(p̄j , āj) = f̄ j+(p̄
j)

which shows exactly that h̄1 satisfies (6.27) which are the bounds given in the second line of (2.14).

Step 3: local constancy of f1 := (h1, . . . , h1)
Again, we show it for f̄1 := (h̄1, . . . , h̄1) with respect to f̄ and this gives the result for f1 = (h1, . . . , h1) with
respect to f . Assume that h̄1(p̄) ̸= f̄ j(p̄) for all j ∈ I ⊂ {1, . . . , N}, and recall the argument of the proof of
Proposition 3.10, in Step 2. We have here

f̄ j(p̄) ̸= h̄1(p̄) = h̄0(q̄) = Gf̄j

(p̄j , q̄j) =


sup

[q̄j ,p̄j ]

f̄ j = sup
[q̄j ,p̄j)

f̄ j if q̄j < p̄j

inf
[p̄j ,q̄j ]

f̄ j = inf
(p̄j ,q̄j ]

f̄ j if q̄j > p̄j

where we have used the fact that the inf / sup can not be reached at p̄j , because f̄ j(p̄j) ̸= h̄1(p̄). Notice also

that we can not have q̄j = p̄j , otherwise we would get h̄1(p̄) = h̄0(p̄) = Gf̄j

(p̄j , p̄j) = f̄ j(p̄j) = f̄ j(p̄), which

is impossible by assumption. This shows now that for p̄ε close to p̄ in

p̄+∑
j∈I

Rej

 ∩ [ā, b̄], we also have

(by continuity of f̄ , h̄0)

h̄0(q̄) = Gf̄j

(p̄jε, q̄
j)


=


sup

[q̄j ,p̄j
ε]

f̄ j = sup
[q̄j ,p̄j)

f̄ j if q̄j < p̄jε

inf
[p̄j

ε,q̄j ]
f̄ j = inf

(p̄j ,q̄j ]
f̄ j if q̄j > p̄jε

 = h̄1(p̄) for all j ∈ I

= h̄1(p̄) because p̄jε = p̄j for all j ̸∈ I

This justifies a posteriori that we can choose q̄ε := q̄ in h̄1(p̄ε) = h̄0(q̄ε) = Gf̄j

(p̄jε, q̄
j
ε). Therefore

f̄ j(p̄ε) ̸= h̄1(p̄ε) = h̄0(q̄) = h̄1(p̄) for all j ∈ I. Hence f̄1 is locally constant on
{
f̄1 ̸= f̄

}
.

This ends the proof of the lemma. Then we have the following result.
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Proposition 6.9 (Properties of HJ germs)
Assume (2.2) with N ≥ 1. Let G be a generalized Riemann germ which is a HJ germ.

i) (Regularity properties of f̂)

Then G is a Riemann germ, i.e. f̂ = f̂G is continuous, and f̂ is locally Lipschitz continuous on [a, b].
ii) (HJ-relaxation formula)

Moreover there exists some continuous function ĥ : [a, b] → R such that for all index j, we have f̂ j = ĥ.

And the function ĥ satisfies the following HJ-relaxation formula

(6.34) for all p ∈ [a, b], there exists q ∈ [a, b] s.t. ĥ(p) = ĥ(q) =

{
Gfj

(pj , qj) if Jj ≃ (−∞, 0)

Gfj

(qj , pj) if Jj ≃ (0,+∞)

Proof of Proposition 6.9
Step 1: proof of i)

By assumption, we know that there exists h : G → R such that f = (h, . . . , h) on G. Define ĥ := h ◦ πG :

[a, b] → R. This implies that f̂ = (ĥ, . . . , ĥ) : [a, b] → RN . Up to apply a reversion transform, we can assume

that we work on N : 0 junction. From (4.14), we deduce that for each j ∈ {1, . . . , N}, the map p 7→ ĥ(p) is
locally Lipschitz continuous in pj , uniformly in pk for k ̸= j. Because this is true for any index j, we deduce
that ĥ and then f̂ is continuous. Moreover, from (4.14) we have |∂pj ĥ(p)| ≤ |(f j)′(pj)| for a.e. p ∈ [a, b].
Step 2: proof of ii)

From Step 1, we know that f̂ is locally constant on
{
f̂ ̸= f

}
and G =

{
f̂ = f

}
. Hence any p̂ ∈ G satisfies

ĥ(p̂) = Gfj

(p̂j , p̂j) for all j = 1, . . . , N . Therefore, setting h0 := ĥ, we see that the function h1 given by
relaxation formula (6.25) satisfies

h1(p̂) = h0(q) = Gfj

(p̂j , qj) = ĥ(p̂) with q = p̂

i.e. h1 = ĥ on G. Therefore f1 = (h1, . . . , h1) satisfies f1 = f on G, and from Lemma 6.7, we know that f1 is

locally constant on {f1 ̸= f} and also satisfies (2.14). Therefore ii) of Theorem 2.14 shows that f1 = f̂G = f̂ .

Moreover we have (ĥ, . . . , ĥ) = f̂ = f1 = (h1, . . . , h1) with h1 = Rh0 = Rĥ, where Rh0 is defined in (6.26).

This shows that ĥ = Rĥ which means exactly (6.34). This ends the proof of the lemma.

Proof of Theorem 2.25
For the proof, we refer to the table of Subsection 2.4. Theorem 2.25 follows from Proposition 6.9, and the
two last lines of (2.18) follow from ii) of Theorem 2.14. This ends the proof of the theorem.

6.6 Theorem 2.28 and its proof: HJ germ G determined by χG
We now start with the following result.

Lemma 6.10 (Key reduction for HJ germs)

Assume (2.2) with N ≥ 1. Let G be a generalized Riemann germ which is a HJ germ with f̂G = (ĥ, . . . , ĥ).
We consider any y = (y1, . . . , yN ) with yj ∈ Jj for all j. Let p ∈ [a, b] be such that there exists λ ∈ R with

(6.35) f j(pj) = λ for all j = 1, . . . , N

Assume the following

(6.36) for all q ∈ χG,
(
q ⋄ y ≥ p ⋄ y =⇒ ĥ(q) ≤ λ

)
and

(6.37) for all q ∈ χG,
(
q ⋄ y ≤ p ⋄ y =⇒ ĥ(q) ≥ λ

)
with sub/super characteristic sets χG and χG given in Definition 2.27 and Hadamard product ⋄ given in
Definition 2.10. Then

λ = ĥ(p)
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Proof of Lemma 6.10
Let p ∈ [a, b] satisfying (6.35) and set

vj(t, x) = −λt+ pjx, j = 1, . . . , N

Then vj is a viscosity solution of vjt + f j(vjx) = 0 on R× Jj , j = 1, . . . , N . We claim that v = (v1, . . . , vN )

is a ĥ-viscosity solution on {x = 0} if v0(t, 0) := vj(t, 0) satisfies

(6.38) v0t + ĥ(v1x, . . . , v
N
x )(t, 0)) = 0 for all t ∈ R

and we show it in the next steps. To this end, for q ∈ [a, b], we set w = (w1, . . . , wN ) with

wj(t, x) := −λt+ qjx, j = 1, . . . , N

Step 1: checking that v is a ĥ-viscosity subsolution on {x = 0}
Notice that for all q ∈ [a, b], inequality q ⋄ y ≥ p ⋄ y is equivalent to

(6.39) w ≥ v on R× J with equality on R× {0}

Set I :=
{
j ∈ {1, . . . , N} , σj = 1

}
. Now from Lemma 9.4 (and using I-reversion composed with I-

inversion), we get that v is a ĥ-viscosity subsolution on {x = 0} if and only if for all q ∈ χG, relation

(6.39) implies the subsolution viscosity inequality −λ+ ĥ(q) ≤ 0. In other words, condition (6.36) is equiv-

alent to the fact that v is a ĥ-viscosity subsolution on {x = 0}.
Step 2: checking that v is a ĥ-viscosity supersolution on {x = 0}
Similarly notice that for all q ∈ [a, b], inequality q ⋄ y ≤ p ⋄ y is equivalent to

(6.40) w ≤ v on R× J with equality on R× {0}

Now from Lemma 9.4 (and using I-reversion composed with I-inversion), we get that v is a ĥ-viscosity
supersolution on {x = 0} if and only if for all q ∈ χG, relation (6.40) implies the supersolution viscosity

inequality −λ + ĥ(q) ≥ 0. In other words, condition (6.37) is equivalent to the fact that v is a ĥ-viscosity
supersolution on {x = 0}.
Step 3: conclusion
We conclude that v is both a ĥ-viscosity subsolution and supersolution on {x = 0}. Therefore v is a ĥ-

viscosity solution and satisfies (6.38), i.e. −λ+ ĥ(p) = 0, which ends the proof of the lemma.

Proof of Theorem 2.28
Let f̂G = (ĥ, . . . , ĥ) and f̂G0

= (ĥ0, . . . , ĥ0) be the associated Godunov fluxes to the germs G and G0. Let

p ∈ G0 ⊃ χG and let us show that p ∈ G. We set λ := ĥ0(p) = f j(pj).
Step 1: proof of (6.36)
Let q be such that

(6.41) q ∈ χG and q ⋄ y ≥ p ⋄ y

Because χG ⊂ G0, we deduce that q ∈ G0 and then ĥ(q) = f j(q) = ĥ0(q) ≤ ĥ0(p) = λ, where we have used

the monotonicities of ĥ0 and inequality in (6.41). This shows (6.36).
Step 2: proof of (6.37)
The proof is similar to the one of Step 1.
Step 3: conclusion
From Lemma 6.10, we deduce that f j(pj) = ĥ0(p) = λ = ĥ(p). Therefore p ∈ G. This ends the proof of the
lemma.

6.7 Theorem 2.29 and its proof: conservative 1 : 1 germs

The proof of Theorem 2.29 requires the following intermediate result.
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Lemma 6.11 (Conservative 1 : 1 junctions)
Assume (2.2) for N = 2 and 1 : 1 junctions. Let G ⊂ [a, b] be a generalized Riemann germ.
i) (Equivalence of conservative and HJ germs)
Then G is conservative, i.e. satisfies

(6.42) f1 = f2 on G

if and only if it is a HJ germ.
ii) (Further properties of the germ)
When G is conservative, then G is also a Riemann germ which is at the same time a Kruz̆kov germ, a HJ
germ and a monotone germ.

Proof of Lemma 6.11
Point i) follows from the definitions. We now focus on the proof of point ii).
Relation (6.42) shows that G is a HJ germ, and then a Riemann germ from Proposition 6.9. Defining

h : G → R by h(p) := f1(p) = f2(p) for p ∈ G, and setting ĥ := h ◦ πG , we see that f̂ = (f̂1, f̂2) = (ĥ, ĥ)

with monotonicities ĥ(↑, ↓). This shows that G is a monotone germ.
We now set for σ1 = 1 = −σ2

Df̂ (p, q) :=
∑
k=1,2

Df̂k

(p, q) = IN−OUT with Df̂k

(p, q) := σk · sign(pk − qk) ·
{
f̂k(p)− f̂k(q)

}
Hence we have Df̂ (p, q) =

{
sign(p1 − q1)− sign(p2 − q2)

}
·
{
ĥ(p)− ĥ(q)

}
and the monotonicities of ĥ show

that Df̂ ≥ 0 on [a, b]2. Because Df̂ and Df coincide on G × G, we deduce that Df ≥ 0 on G × G. Therefore
G is a Kruz̆kov germ. This ends the proof of the lemma.

Proof of Theorem 2.29
For the proof, we refer to the table of Subsection 2.4. The result follows from Lemma 6.11, from ii) of
Proposition 6.9 for the relaxation formula and from Theorem 2.28 for the characterization of the germ by
χG. Notice that inequalities (2.22) then follow automatically from ii) of Theorem 2.14. The independent
proof of relation (2.20) (which gives explicitly a way to recover the full germ from its characteristic subset)
is postponed to Lemma 7.17. This ends the proof of the theorem.

6.8 Proposition 2.30 and its proof: germ product property for conservative
lines

Proof of Proposition 2.30
We do the proof by recurrence on n ≥ 1.
Step 1: case n = 1
Then we can apply Theorem 2.29 to get that G = G1 is a Riemann germ which is Kruz̆kov, HJ and monotone.
From [14] (and also Theorem 2.28), we know that all HJ germs with all convex fluxes (and then also with
all concave fluxes) are classified by a flux limiter Aj ≤ Aj

∗ := min
α=L,R

max f jα for j = 1 with

Gj := Gj
Aj :=

{
(pjL, pjR) ∈ Qj , min

{
Aj , f1L,+(pjL), f jR,−(pjR)

}
= f jL(pjL) = f jR(pjR)

}
with Qj := [ajL, bjL]× [ajR, bjR] and

f jα,+(z) :=

{
f jα(z) for z ∈ [ajα, cjα]
f jα(cjα) for z ∈ [cjα, bjα]

and f jα,−(z) :=

{
f jα(cjα) for z ∈ [ajα, cjα]
f jα(z) for z ∈ [cjα, bjα]

Moreover, for Aj ≤ Aj
∗, let us denote U

j(Aj) = (ujL, ujR) ∈ Qj such that f jα(ujα) = Aj , α = L,R, and

U j
∗ (A

j) := (ujL− (Aj), ujR+ (Aj)) with χGj
Aj =

{
U j
∗ (A

j)
}

where the characteristic subset χGj of the HJ germ Gj is defined in Definition 2.27 and with ujα± (Aj) ∈
[ajα, bjα] defined by

f jα,±(ujα± (Aj)) = f jα(ujα± (Aj)) = Aj
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Because BA(U j
∗ (A

j)) =
(
(ujL+ (Aj),+∞)× (−∞, ujR− (Aj))

)
∩Qj , we see that if U j

∗ (B) ∈ Gj
Aj then U j

∗ (B) ∈
Gj
Aj ∩BA(U j

∗ (A
j)) and then (using for instance Theorem 2.28)

U j
∗ (B) ∈ Gj

Aj =⇒ B = Aj

Step 2: from n ≥ 1 to n+ 1
Step 2.1: first property of maximal A
Assume that the result is true up to level n, and let us show that it is true at the level n + 1. Now

consider any A = (A1, . . . , An+1) ∈
∏

j=1,...,n+1

(−∞, Aj
∗] such that there exists UA := (U1, . . . , Un+1) ∈ G

with U j = U j(Aj) for j = 1, . . . , n+ 1, and which is maximal in the following sense:

there exist no Ā ≥ A with Ā ̸= A such that U Ā ∈ G

Now for U ′ := (U1(A1), . . . , Un(An)) ∈ R2n, consider the sliced germ (see the slicing Lemma 4.12)

GU ′ ⊂ Qj ∩
{
f jL(pjL) = f jR(pjR)

}
for j := n+ 1

From Step 1, we know that there exists An+1
0 ≤ An+1

∗ such that Un+1(An+1) ∈ GU ′ = Gn+1

An+1
0

. Because

A is maximal, this implies that An+1 = An+1
0 , and then we can assume (without loss of generality) that

Un+1(An+1) = Un+1
∗ (An+1) =: Un+1

∗ .

Conversely, the sliced germ satisfies U ′ ∈ GUn+1
∗

=
∏

j=1,...,n

Gj

Aj
0

for some Aj
0 ≤ Aj

∗ for j = 1, . . . , n. Because

(A1, . . . , An) is also maximal, we deduce that An = An
0 , and by recurrence (A1, . . . , An) = (A1

0, . . . , A
n
0 ).

Therefore, we conclude that

UA ∈ G
A = (A1, . . . , An+1) maximal

}
=⇒


Ũ = (U ′, Un+1

∗ ) ∈ G, for UA =: (U ′, Un+1) and Un+1
∗ := Un+1

∗ (An+1)

GUn+1
∗

=
∏

j=1,...,n

Gj
Aj

and then

A = (A1, . . . , An+1) maximal =⇒ UA
∗ ∈ G, with UA

∗ := (U1
∗ , . . . , U

n+1
∗ ) and U j

∗ := U j
∗ (A

j) for all j

Step 2.2: uniqueness of the maximal A

Now consider A and Ā maximal. Then UA
∗ , U

Ā
∗ ∈ G and πG : ∅ ≠ BA(UA

∗ ) ∩ BA(U Ā
∗ ) →

{
UA
∗
}
=
{
U Ā
∗

}
implies Ā = A. Therefore any maximal A (which always exists) is then unique, and let us call it A0. We
have in particular UA0

∗ ∈ G.
Step 2.3: going further for component n+ 1

We want to show that G ⊂
∏

j=1,...,n+1

Gj

Aj
0

. Consider any UA ∈ G with A not necessarily maximal. In

particular, we have then A ≤ A0. We write UA = (U ′, Un+1) with Un+1 = Un+1(An+1).
Case 1: An+1 < An+1

0

We want to show that Un+1 ̸= Un+1
∗ (An+1). Assume by contradiction that

(6.43) Un+1 = Un+1
∗ (An+1)

Then, up to increase A1, . . . , An, we can assume that (A1, . . . , An) is maximal for the sliced germ GUn+1
∗

.

Hence Step 2.1 shows that (U1
∗ (A

1), . . . , Un
∗ (A

n)) ∈ GUn+1
∗

, and then UA
∗ = (U1

∗ (A
1), . . . , Un+1

∗ (An+1)) ∈ G.
Then the argument of Step 2.2 shows that A = A0. Contradiction with An+1 < An+1

0 . Therefore (6.43) is
false, and we get Un+1 ∈ Gn+1

An+1
0

\
{
Un+1
∗ (An+1

0 )
}
.

Case 2: An+1 = An+1
0

Then Un+1 ∈ Gn+1

An+1
0

.

Conclusion
We deduce that in all cases, we have: U = (U1, . . . , Un+1) ∈ G =⇒ Un+1 ∈ Gn+1

An+1
0

.
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Step 2.4: final step
Repeating Step 2.3 for all components j = 1, . . . , n+ 1, we conclude that

U = (U1, . . . , Un+1) ∈ G =⇒ U j ∈ Gj

Aj
0

for all j = 1, . . . , n+ 1

i.e. G ⊂
∏

j=1,...,n+1

Gj

Aj
0

. Because both sides are (complete) generalized Riemann germs, we deduce that we

have equality. This ends the proof of the lemma.

Remark 6.12 Notice that from [14], the result of Proposition 2.30 stays true if strict concavity of each f jα

is replaced by the fact that continuous f jα : [ajα, bjα] → R is increasing on (ajα, cjα) and decreasing on
(cjα, bjα).

7 Complementary results

7.1 More on Riemann monotonicity

Our goal is now to show that for locally Lipschitz continuous maps h : RN → RN which are Riemann
monotone, their Jacobian matrices have a particular monotonicity property, called P0-monotonicity. In
order to describe this property, it is useful to focus first on the linear case h(x) = Mx, and to transfer our

notions of monotonicity for the functions h = f̂G , to the square matrices M .

Definition 7.1 (P0-monotone, Riemann monotone, Kruz̆kov monotone)
A principal minor of a n×n matrixM = (Mij)i,j∈{1,...,n} is the determinant of a submatrixMI := (Mij)i,j∈I

for a subset ∅ ̸= I ⊂ {1, . . . , n}, obtained by depletion of columns and of lines with the same labels. Let M
be a real n× n matrix.
i) (P0-monotone)
A matrix M is said to be a P0-monotone, if all its principal minors are nonnegative.
ii) (Riemann monotone)
A matrix M is said to be a Riemann monotone, if for all x ∈ Rn, it satisfies

x ⋄Mx ≤ 0 =⇒ Mx = 0

iii) (Kruz̆kov monotone)
A matrix M is said to be Kruz̆kov monotone if it satisfies

Mjj ≥
∑

i∈{1,...,n}\{j}

|Mij | for all j = 1, . . . , n

(i.e. if M is (non-negatively) diagonally column-dominant).

Remark 7.2 We refer the reader to the book of Johnson, Smith, Tsatsomeros [15], for the properties
of P0-(monotone) matrices.

Then we have the following result.

Lemma 7.3 (Hierarchy of monotonicities)
For a real n× n matrix M , we have the following hierarchy

i) M is Kruz̆kov monotone =⇒ ii) M is Riemann monotone =⇒ iii) M is P0-monotone

Proof of Lemma 7.3
Step 1: i) implies ii)
Assume thatM is Kruz̆kov monotone in the sense of Definition 7.1, and consider the linear map h(x) :=Mx.
Then ii) of Proposition 6.4 shows that Dh ≥ 0. Then Proposition 5.9 implies that h is Riemann monotone.
Because h is linear, this means that M is Riemann monotone in the sense of Definition 7.1.
Step 2: ii) implies iii)
We only show that the determinant of the full matrix M is nonnegative, and the argument is the same for
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all principal submatrices. The argument of the proof of Lemma 5.3 shows that the linear map of matrix
M + εidRn is injective for all ε > 0. For large ε > 0, the determinant is then positive, hence by continuity
in ε > 0, we deduce that det(M + εidRn) > 0. In the limit ε → 0+, this shows that det(M) ≥ 0. This ends
the proof of the lemma.

Then we have the following result.

Proposition 7.4 (Jacobian of Riemann monotone maps)
Assume (2.2) for N ≥ 1. Assume that h : [a, b] → RN is Riemann monotone and locally Lipschitz continu-
ous. Then the Jacobian matrix (∂jh

i)i,j∈{1,...,N} is a P0-monotone matrix a.e. on [a, b].

Proof of Proposition 7.4
The proof follows closely the proof for matrices (see Step 2 of the proof of Lemma 7.3).
We only show that the determinant of the full Jacobian matrix is nonnegative, and the argument is the same
for all principal submatrices. Assume by contradiction that there exists a Lebesgue point p0 ∈ [a, b] such
that

(7.1) det(A) < 0 with A := Dh(p0)

Then Lemma 5.3 shows that h+εidRn is injective for all ε > 0. For large ε > 0, the determinant det(A+εidRn)
is positive, hence by continuity in ε > 0, we deduce that det(A + εidRn) ≥ 0 for all ε > 0. In the limit
ε → 0+, this gives a contradiction with (7.1). Therefore (7.1) is false, and we conclude that det(Dh) ≥ 0
a.e. on [a, b]. This ends the proof of the proposition.

The following result shows that P0-monotonicity is indeed very close to Riemann monotonicity.

Lemma 7.5 (A property of P0-monotone matrices)
Let M be a P0-monotone n×n matrix. Then for all ε > 0, the matrix Mε :=M+εId is Riemann monotone.

Proof of Lemma 7.7
Consider some x ∈ Rn such that x ⋄ Mεx ≤ 0. We now use an argument introduced in Fiedler and
Pták [10], in the proof of their Theorem 1.3. We deduce that there exists some diagonal matrix ∆ ≥ 0,
with nonnegative diagonal such that Mεx = −∆x. Let us denote ∆ε := ∆ + εId, and MI is the principal
submatrix of M of indices I, and similarly for ∆ε

Ī
the submatrix of ∆ε of indices Ī := {1, . . . , N} \I. If

x ̸= 0, then x is a 0-eigenvector of the matrix M +∆ε, and using the fact that M is P0-monotone, we get

0 = det(M +∆ε) =
∑

I⊂{1,...,N}

det(MI)det(∆
ε
Ī) ≥ det(∆ε) ≥ εn > 0

Contradiction. Hence we deduce that x = 0 and then Mεx = 0. Hence we have shown that x ⋄Mεx ≤ 0
implies Mεx = 0, i.e. that Mε is Riemann monotone. This ends the proof of the lemma.

We finish this subsection with two counter-examples, which show that we can not hope the Jacobian
matrix of Riemann monotone maps, to be Riemann monotone everywhere.

Lemma 7.6 (Counter-example for matrices)

For n = 2, consider A :=

(
0 1

−1 0

)
. Then A is P0-monotone, but is not Riemann monotone.

Proof of Lemma 7.6

Consider p :=

(
1
0

)
. Then we have p ⋄Ap = 0R2 and Ap ̸= 0R2 . This ends the proof of the lemma.

Lemma 7.7 (Counter-example for maps)
For n = 2 and x, y ∈ R, consider the map h : Rn → Rn defined by

h = (hx, hy) with

{
hx(x, y) = x3 + y
hy(x, y) = −x+ y3

Then the map h is Riemann monotone, but its Jacobian matrix Dh(0, 0) =

(
0 1

−1 0

)
is not Riemann

monotone as a matrix (i.e. in the sense of Definition 7.1).
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Proof of Lemma 7.7
For p = (x, y) and p̄ := (x̄, ȳ), we see that (p̄− p) ⋄ [h]p̄p ≤ 0 means{

(x̄− x) ·
{
(x̄3 − x3) + (ȳ − y)

}
≤ 0

(ȳ − y) ·
{
−(x̄− x) + (ȳ3 − y3)

}
≤ 0

Taking the sum, we get 0 ≤ (x̄ − x)(x̄3 − x3) + (ȳ − y)(ȳ3 − y3) ≤ 0, which implies x̄ − x = 0 = ȳ − y, i.e.
p̄ = p and then [h]

p̄
p = 0. Hence (p̄−p)⋄ [h]p̄p ≤ 0 implies [h]

p̄
p = 0, which shows that h is Riemann monotone.

This ends the proof of the lemma.

7.2 Adding an (N + 1)-th branch to get conservative germs

In what follows, RH refers to the Rankine-Hugoniot relation.

Lemma 7.8 (Adding an (N + 1)-th branch)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Define

(RHf )(p) :=
∑

j=1,...,N

σjf j(pj)

Consider the smallest one-dimensional box IN+1 := [aN+1, bN+1] ⊂ R such that

IN+1 ⊃ −RHf (G)

Let us consider any locally Lipschitz continuous decreasing bijective function fN+1 : IN+1 → IN+1. We then
define
(7.2)
f̃ := (f, fN+1), ã := (a, aN+1), b̃ := (b, bN+1), J̃ := J ∪ JN+1 with JN+1 ≃ (−∞, 0), σN+1 = 1

and the set

(7.3) G̃ :=
{
p̃ := (p, pN+1) ∈ [ã, b̃], pN+1 := (fN+1)−1(−RHf (p)) with p ∈ G

}
i) (Construction of a conservative germ G̃)
Then G̃ ⊂ [ã, b̃] is a generalized Riemann germ with respect to (J̃ , f̃) if and only if G is a generalized Riemann

germ with respect to (J, f). When it is the case, then G̃ is moreover conservative. More precisely if f̂ = f̂G

(resp.
ˆ̃
f := f̂G̃) is the flux associated to the Riemann germ G (resp. G̃), then

ˆ̃
f =

ˆ̃
fG̃ = (f̂ ,−RH f̂ ) and RH

ˆ̃
f = 0 on [ã, b̃]

ii) (Case of Riemann germs)
Then G̃ ⊂ [ã, b̃] is a Riemann germ if and only if G ⊂ [a, b] is a Riemann germ.
iii) (Case of D+-germs)

Then G is a Df
+-germ if and only if G̃ is a Df̃

+-germ.
iv) (Case of conservative dissipative sets)
Let G ⊂ [a, b] ⊂ RN be a set and G̃ ⊂ [ã, b̃] ⊂ R1+N be the set defined in (7.3). Then

(7.4)

{
Df ≥ 0 on G × G
RHf = 0 on G

implies

(7.5)

{
Df̃ ≥ 0 on G̃ × G̃
RH f̃ = 0 on G̃

for f̃ defined in (7.2).
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Proof of Lemma 7.8
Points i) and ii) of the lemma are straightforward. We now prove iii). Up to apply a suitable reversion
transform, we can assume that J is of type N : 0.

Step 1: from Df̃
+-germ to Df

+-germ

Consider p̃ = (p, pN+1), q̃ = (q, qN+1) ∈ [ã, b̃].
We have

D
ˆ̃
f
+(p̃, q̃) = Df̂

+(p, q) +
{
sign+(pN+1 − qN+1)

}
·
{
−RH f̂ (p)−

(
−RH f̂ (q)

)}
with Df̂

+(p, q) =
∑

j=1,...,N

{
sign+(pj − qj)

}
· [f̂ j ]pq . Either pN+1 ≤ qN+1 and then D

ˆ̃
f
+(p̃, q̃) = Df̂

+(p, q). Or

pN+1 > qN+1 and (using 1− sign+(x) = −sign−(x) if x ̸= 0), we get, if pj ̸= qj for all j = 1, . . . , N , that

D
ˆ̃
f
+(p̃, q̃) = Df̂

+(p, q)− [RH f̂ ]pq
=

∑
j=1,...,N

{
sign−(pj − qj)

}
· [f̂ j ]pq

=
∑

j=1,...,N

{
sign+(qj − pj)

}
· [f̂ j ]qp

= Df̂
+(q, p)

For Ω defined in (4.22), this means D
ˆ̃
f
+(p̃, q̃) = Df̂

+(q, p) if (q, p) ∈ Ω. Hence if D
ˆ̃
f
+ ≥ 0, then G̃ is Kruz̆kov

and then
ˆ̃
f is continuous and f̂ is also continuous. Moreover we have Df̂

+ ≥ 0 on Ω. From Lemma 4.17, we

deduce that Df̂
+ ≥ 0 on Ω = [a, b]2. Therefore, if G̃ is a Df̃

+-germ, then G is a Df
+-germ.

Step 2: from Df
+-germ to Df̃

+-germ

Conversely, if Df̂
+ ≥ 0, then

0 ≤ D
ˆ̃
f
+(p̃, q̃) =

{
Df̂

+(p, q) if pN+1 < qN+1

Df̂
+(q, p) if pN+1 > qN+1

Hence for
Ω̃ :=

{
(p̃, q̃) ∈ [ã, b̃], p̃j ̸= q̃j for all j = 1, . . . , N + 1

}
we see that D

ˆ̃
f
+ ≥ 0 on Ω̃. From Lemma 4.17, we deduce that D

ˆ̃
f
+ ≥ 0 on Ω̃ = [ã, b̃]2. Therefore, if G is a

Df
+-germ, then G̃ is a Df̃

+-germ.
Step 3: proof of iv)
Assume that the set G satisfies (7.4). For all p, q ∈ G, consider pN+1 := (fN+1)−1(−RHf (p)) = (fN+1)−1(0)
and qN+1 := (fN+1)−1(−RHf (p)) = (fN+1)−1(0). Then for p̃ = (p, pN+1), q̃ = (q, qN+1) ∈ G̃ ⊂ [ã, b̃], we
have

Df̃ (p̃, q̃) = Df (p, q) +
{
sign(pN+1 − qN+1)

}
·
{
−RHf (p)−

(
−RHf (q)

)}
= Df (p, q) ≥ 0

From the definition of G̃, we deduce (7.5).
This ends the proof of the lemma.

7.3 Duality for D+-germs

In this section, we study the following notion of duality, in particular useful for D+-germs.

Definition 7.9 (Left-dual and right-dual)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set.
Then we define the left-dual of the set G as

∗G :=
∗
fG :=

{
p′ ∈ [a, b], Df

+(p
′, p) ≥ 0 for all p ∈ G

}
and its right-dual

G∗ := G
∗
f :=

{
p′ ∈ [a, b], Df

+(p, p
′) ≥ 0 for all p ∈ G

}
where Df

+ is defined in (2.9).
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Remark 7.10 (A model case)
Before to start with duality, it is instructive to keep in mind the following model case for 1 : 0 junctions.
For N = 1, we consider f1(u) = g(u) = u(1−u) on [0, 1], with Amax := sup[0,1] g = 1

4 = g(u0) with u0 := 1
2 .

We set the monotone envelopes of g

g+(p) :=

{
g(u) for p ∈ [0, u0]
g(u0) for p ∈ [u0, 1]

and g−(p) :=

{
g(u0) for p ∈ [0, u0]
g(u) for p ∈ [u0, 1]

and the monotone inverse functions u+(λ) ≤ u−(λ) defined by

[0, u0] ∋ u+(λ) :=

{
(g+)

−1(λ) for λ ∈ [0, Amax)
u0 for λ = Amax

and [u0, 1] ∋ u−(λ) :=

{
(g−)

−1(λ) for λ ∈ [0, Amax)
u0 for λ = Amax

For a 1 : 0 junction, and for the parameter A ∈ [0, Amax], we can consider the following germ GA ⊂ [0, 1]
defined by

GA := {p ∈ [0, 1], ĝA(p) = g(p)} with flux ĝA(p) := min
{
A, g+(p)

}
Then for Dg

+(p, q) := sign+(p− q) · {g(p)− g(q)}, a direct computation gives GA = [0, u+(A)] ∪ {u−(A)}
∗(GA) = [0, u−(A)]
(GA)

∗ = [0, u+(A)] ∪ [u−(A), 1]

Here the left-dual behaves like a sort of left completion of GA, while the right dual behaves like a sort of right
completion.

We now start with the following straightforward result (with Df
+(p, q) :=

∑
j=1,...,N

σj · sign+(pj − qj) ·{
f j(pj)− f j(qj)

}
).

Lemma 7.11 (Explicit characterization of duality)

Assume (2.2) with N ≥ 1. Then for any sets P,Q ⊂ [a, b], we have Df
+(P,Q) ≥ 0 if and only if

(7.6)∑
j∈K

σj ·
{
f j(p)− f j(q)

}
≥ 0 for all (p, q) ∈ P×Q, for all K ⊂ {1, . . . , N} such that p−q ∈ ẼK ,

with

(7.7) ẼK :=
∑
j∈K

(0,+∞)ej −
∑
j ̸∈K

[0,+∞)ej .

Remark 7.12 Notice that quantity ẼK shares some similarities with quantity EK defined in (4.25).

We also notice the following straightforward result about left and right duals.

Lemma 7.13 (Exchanging left and right-duals by inversion transform)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set.
Consider the full inversion transform

p̄ := −p, f̄(p̄) := −f(−p̄), Ḡ := −G

Then we have
Df

+(p, q) = Df̄
+(q̄, p̄)

and
∗̄
f Ḡ = G

∗
f and ∗G = Ḡ

∗̄
f

We now have the following result.
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Lemma 7.14 (Characterization of the duals of D+-germs)

Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a D+-germ. Then we have for f̂ = f̂G

(7.8) ∗G = GSUB :=
{
p ∈ [a, b], σ ⋄ (f̂ − f)(p) ≤ 0

}
and Df

+(GSUB ,G) ≥ 0

and

(7.9) G∗ = GSUP :=
{
p ∈ [a, b], σ ⋄ (f̂ − f)(p) ≥ 0

}
and Df

+(G,GSUP ) ≥ 0

Proof of Lemma 7.14
We only prove (7.8), because (7.9) follows from (7.8) and Lemma 7.13.
Step 1: proof that GSUB ⊂ ∗G
Fix some p ∈ GSUB , and let us consider any q ∈ G such that p− q ∈ ĚK with ĚK defined in (7.7). Then we
get

Df
+(p, q) =

∑
j∈K

σj ·
{
f j(p)− f j(q)

}
=
∑
j∈K

σj ·
{
f j(p)− f̂ j(q)

}
≥
∑
j∈K

σj ·
{
f̂ j(p)− f̂ j(q)

}
= Df̂

+(p, q)
≥ 0

because G is a D+-germ. Therefore p ∈ ∗G.
Step 2: proof that GSUB ⊃ ∗G
Conversely, consider p ∈ ∗G and for p̂ := πG(p), let us set

(7.10) K :=
{
k ∈ {1, . . . , N} , σk ·

{
fk(pk)− fk(p̂k)

}
< 0
}
.

Because pk belongs to the basin of attraction BAk(p̂k) on the branch Jk ≃ σk · (−∞, 0), we deduce that

pk > p̂k for all k ∈ K

Similarly, for all k ∈ {1, . . . , N} \K, we have σk ·
{
fk(pk)− fk(p̂k)

}
≥ 0 and then

pk ≤ p̂k for all k ∈ {1, . . . , N} \K

Therefore p̂ ∈ G with p− p̂ ∈ ĚK . Because p ∈ ∗G, we deduce that

0 ≤ Df
+(p, p̂) =

∑
j∈K

σj ·
{
f j(p)− f j(p̂)

}
<

(7.10)
0

if K ̸= ∅. Contradiction. Therefore K = ∅, and σ ⋄ (f − f̂)(p) ≥ 0, i.e. p ∈ GSUB .
This shows (7.8) and ends the proof of the lemma.

Corollary 7.15 (Key dissipation of the duals)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a D+-germ. Then we have

D+(
∗G,G∗) ≥ 0, i.e. D+(GSUB ,GSUP ) ≥ 0

and
∗G ∩ G∗ = G

Proof of Corollary 7.15

Let p ∈ ∗G = GSUB =
{
σ ⋄ (f̂ − f) ≤ 0

}
and q ∈ G∗ = GSUP =

{
σ ⋄ (f̂ − f) ≥ 0

}
such that p − q ∈ ĚK .

Then we have
Df

+(p, q) =
∑
j∈K

σj ·
{
f j(p)− f j(q)

}
≥
∑
j∈K

σj ·
{
f̂ j(p)− f̂ j(q)

}
= Df̂

+(p, q)
≥ 0
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because G is a D+-germ. This ends the proof of the corollary.

Lemma 7.16 (Max and Min of duals for D+-germs)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a D+-germ. Then we have componentwisely

max
{
GSUB ,GSUB

}
⊂ GSUB

and
min

{
GSUP ,GSUP

}
⊂ GSUP

Proof of Lemma 7.16
For γ = α, β, let us consider pγ ∈ GSUB , which then satisfies σ ⋄ (f̂ − f)(pγ) ≤ 0. Then consider p :=
max {pα, pβ} componentwisely, i.e.

pj := max
{
pjα, p

j
β

}
, j = 1, . . . , N

Recall that we have the monotonicities (σ1f̂1)(↑, ↓, . . . , ↓). Let γ1 ∈ {α, β} be such that p1 = p1γ1
. Then,

using the monotonicities of σ1f̂1, we deduce that

σ1f̂1(p) = σ1f̂1(p1γ1
, p′) ≤ σ1f̂1(pγ1

) = σ1f1(p1γ1
) = σ1f1(p)

Similarly, we get σ ⋄ (f̂ − f)(p) ≤ 0, which shows that p ∈ GSUB . The proof for the minimum is similar.
This ends the proof of the lemma.

7.4 Duality and characteristic subsets for conservative 1 : 1 germs

Lemma 7.17 (Duality and characteristic subsets for conservative 1 : 1 germs)
Assume (2.2) with N = 2 for 1 : 1 junction with f = (fL, fR) for indices j = L,R (for left and right) with
σL = 1 and σR = −1. Let G ⊂ [a, b] be a conservative Kruz̆kov germ. Following Definition 2.27, we recall
the following sets of characteristic points of G (the sub-charcateristic set χG and super-characteristic set χG)

χG :=

{
p̂ = (p̂L, p̂R) ∈ G,

∣∣∣∣ fL < fL(p̂L) on (p̂L, p̂L + ε) ⊂ [aL, bL]
fR < fR(p̂R) on (p̂R − ε, p̂R) ⊂ [aR, bR]

∣∣∣∣ for some ε > 0

}

χG :=

{
p̂ = (p̂L, p̂R) ∈ G,

∣∣∣∣ fL > fL(p̂L) on (p̂L − ε, p̂L) ⊂ [aL, bL]
fR > fR(p̂R) on (p̂R, p̂R + ε) ⊂ [aR, bR]

∣∣∣∣ for some ε > 0

}
χG := χG ∪ χG

For p = (pL, pR) and q = (qL, qR), we recall

RHf (p) := fL(pL)−fR(pR), Df
+(p, q) = sign+(pL−qL)·

{
fL(pL)− fL(qL)

}
−sign+(pR−qR)·

{
fR(pR)− fR(qR)

}
Then we have
(7.11)

′′
(χG) :=

{
p ∈ [a, b], RHf (p) ≥ 0, Df

+(p, q) ≥ 0 for all q ∈ χG
}
= GSUB =

{
σ ⋄ (f̂ − f) ≤ 0

}
(χG)′′ :=

{
p ∈ [a, b], RHf (p) ≤ 0, Df

+(q, p) ≥ 0 for all q ∈ χG
}
= GSUP =

{
σ ⋄ (f̂ − f) ≥ 0

}
and

(7.12) (χG)′ :=
{
p ∈ [a, b], RHf (p) = 0, Df (p, q) ≥ 0 for all q ∈ χG

}
= G

Proof of Lemma 7.17
Step 1: proof of (7.11)
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We prove the first line of (7.11) (the proof of the second line is similar).
Consider p ∈ ′′

(χG). Then we have

(7.13) fL(pL)− fR(pR) ≥ 0

and

(7.14) sign+(pL − qL) ·
{
fL(pL)− fL(qL)

}
− sign+(pR − qR) ·

{
fR(pR)− fR(qR)

}
≥ 0 for all q ∈ χG

Assume by contradiction that p ̸∈ GSUB =
{
f̂L − fL ≤ 0, −(f̂R − fR) ≤ 0

}
.

Case A: fL(pL) < fL(p̂L)
Then we get pL ∈ BAL(p̂) ∩ (p̂L,+∞). Moreover, using (7.13), we get

fR(pR) ≤ fL(pL) < fL(p̂L) = fR(p̂R)

and then pR ∈ BAR(p̂) ∩ (−∞, p̂R), which shows that p̂ ∈ χG. Then the first term in (7.14) leads to a
contradiction for the choice of q := p̂.
Case B: fR(pR) > fR(p̂R)
Similarly to Case A, we get pR ∈ BAR(p̂) ∩ (p̂R,+∞). Moreover, using (7.13), we get now

fL(pL) ≥ fR(pR) > fR(p̂R) = fL(p̂L)

and then pL ∈ BAL(p̂) ∩ (−∞, p̂L), which shows that p̂ ∈ χG. Then the second term in (7.14) leads to a
contradiction for the choice of q := p̂.
Conclusion and consequences
Therefore p ∈ GSUB . Hence we have shown that

(7.15)
′′
(χG) ⊂ GSUB = ∗G

But, by duality, the inclusion χG ⊂ G implies the reverse inclusion

(7.16)
′′
(χG) ⊃

′′
G := ∗G ∩

{
RHf ≥ 0

}
Moreover using the fact that RH f̂ = 0, we deduce that{

RHf ≥ 0
}
⊃
{
σ ⋄ (f̂ − f) ≤ 0

}
= GSUB = ∗G

Hence (7.16) shows that
′′
(χG) ⊃ ∗G and the reverse inclusion (7.15) implies the equality, i.e. the first line

of (7.11).

Step 2: proof of (7.12)
Step 2.1: preliminaries
Let p ∈ (χG)′, i.e. satisfying

(7.17) fL(pL)− fR(pR) = 0

and

(7.18) sign(pL − qL) ·
{
fL(pL)− fL(qL)

}
− sign(pR − qR) ·

{
fR(pR)− fR(qR)

}
≥ 0 for all q ∈ χG

Again assume by contradiction that p ̸∈ GSUB =
{
f̂L − fL ≤ 0, −(f̂R − fR) ≤ 0

}
.

Case A: fL(pL) < fL(p̂L)
Because (7.17) implies (7.13), then Case A of Step 1 shows that p̂ ∈ χG with{

fL(pL) < fL(p̂L)
pL > p̂L,

and

{
fR(pR) < fR(p̂R)

pR < p̂R
.
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Then both terms in (7.18) lead to a contradiction for q := p̂.
Case B: fR(pR) > fR(p̂R)
Similarly, because (7.17) implies (7.13), then Case B of Step 1 shows that p̂ ∈ χG with{

fL(pL) > fL(p̂L)
pL < p̂L

and

{
fR(pR) > fR(p̂R)

pR > p̂R

and both terms (7.18) lead to a contradiction for q := p̂.
Conclusion: p ∈ GSUB

Step 2.2: Further conclusion
Similarly we show that p ∈ GSUP . Hence p ∈ GSUB ∩ GSUP = G. This shows that

(7.19) (χG)′ ⊂ G

Conversely, notice that χG ⊂ G, and then by duality, we get

(7.20) (χG)′ ⊃ G′ = GD ∩
{
RHf = 0

}
with GD :=

{
p ∈ [a, b], Df (p, q) ≥ 0 for all q ∈ G

}
. From Lemma 6.2 on the D-maximality of Kruz̆kov

germs, we deduce that

GD = G ⊂
{
RHf = 0

}
where the last inclusion follows from the fact that G is a conservative (Kruz̆kov) germ. Then (7.20) gives
(χG)′ ⊃ G′ = G, and the reverse inclusion (7.19) implies the equality, i.e. (7.12). This ends the proof of the
lemma.

Remark 7.18 For N = 1 and for a junction of type 1 : 0 or of type 0 : 1 (where no Rankine-Hugoniot
relation is required), results similar to Lemma 7.17 still hold. Precisely, we have{

p ∈ [a, b], Df
+(p, q) ≥ 0 for all q ∈ χG

}
= GSUB

{
p ∈ [a, b], Df

+(q, p) ≥ 0 for all q ∈ χG
}
= GSUP

and {
p ∈ [a, b], Df (p, q) ≥ 0 for all q ∈ χG

}
= G

7.5 Polar decomposition of Godunov flux for bell-shaped fluxes

In the special case of bell-shaped fluxes, it is possible to show that Godunov flux at the junction has a unique
polar decomposition in preflux composed with a capacity. The capacity is explicit, while the preflux encodes
the structure of the Godunov flux. The preflux is unique on the image of the capacity.

Definition 7.19 (Preflux)

Let N ≥ 1 and σ ∈ {±1}N .
0) (Preflux)
We say that γ̂ is a preflux if it satisfies the following set of conditions
(7.21)

γ̂ : [0,+∞)N → [0,+∞)N is continuous (Continuity)

0 ≤ γ̂ ≤ id[0,+∞)N (Bounds)

γ 7→ γ̂j(γ) is nondecreasing in γj, for all j = 1, . . . , N (Basic monotonicity)

γ̂ is locally constant on
{
γ̂ ̸= id[0,+∞)N

}
in the sense of Definition 2.12 (Local constancy)
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Recall that the local constancy of γ̂ means that for all γ∗ ∈ [0,+∞)N , and I :=
{
j ∈ {1, . . . , N} , γ̂j(γ∗) ̸= γj∗

}
,

there exists ε > 0 such that

γ̂ = const = γ̂(γ∗) on Qε(γ∗) :=

γ∗ +∑
j∈I

(−ε, ε)ej

 ∩ [0,+∞)N

i) (HJ preflux)
We say that the preflux γ̂ is HJ if

γ̂j = g for all j = 1, . . . , N, for some function g : [0,+∞)N → [0,+∞)

ii) (Kruz̆kov preflux)
We say that the preflux γ̂ is Kruz̆kov if

0 ≤ Dγ̂
∗ (γ̄, γ) :=

∑
j=1,...,N

sign(γ̄j − γj) ·
{
γ̂j(γ̄)− γ̂j(γ)

}
for all γ̄, γ ∈ [0,+∞)N

iii) (σ-monotone Kruz̆kov preflux)
We say that the preflux γ̂ is σ-monotone Kruz̆kov if

0 ≤ Dγ̂
∗+(γ̄, γ) :=

∑
j=1,...,N

signσ
j

(γ̄j − γj) ·
{
γ̂j(γ̄)− γ̂j(γ)

}
for all γ̄, γ ∈ [0,+∞)N

(where we make some abuse of notation for signσ
j

).
iv) (σ-monotone preflux)
We say that the preflux γ̂ is σ-monotone if

the maps γ 7→ σj γ̂j(γ) are nonincreasing in the variable σkγk for all k ̸= j.

v) (conservative preflux)
We say that the preflux γ̂ is conservative if ∑

j=1,...,N

σj · γ̂j = 0

Remark 7.20 Notice that condition (7.21) defining a preflux, means exactly that γ̂ is a Godunov flux for
a junction N : 0 with function f := id[0,+∞)N associated to a Riemann germ Gγ̂ :=

{
γ̂ = id[0,+∞)N

}
⊂

[0,+∞)N . This follows immediately from Theorems 2.14 and 2.16.

Definition 7.21 (Capacity, for bell-shaped fluxes)
Assume (2.2) for N ≥ 1.
i) (Bell-shaped)
We say that f = (f1, . . . , fN ) is bell-shaped, if each scalar function fk : [ak, bk] → [0,+∞) is continuous,
satisfies fk(ak) = 0 = fk(bk), has a maximum value fkmax := fk(ck) at ck ∈ (ak, bk) and is increasing on
(ak, ck) and decreasing on (ck, bk) for k = 1, . . . , N . We set the monotone functions

fk,+(q) =

{
fk(q) for q ∈ [ak, ck]
fk(cj) for q ∈ [ck, bk]

and fk,−(q) =

{
fk(ck) for q ∈ [ak, ck]
fk(q) for q ∈ [ck, bk]

ii) (Capacity)
We recall that the orientations of each branch Jk is encoded in σk = +1 if Jk ≃ (−∞, 0) and σk = −1 if
Jk ≃ (0,+∞). We define the capacity γ̄ = (γ̄1, . . . , γ̄N ) : [a, b] → [0,+∞)N as the following function for
p ∈ [a, b]

(7.22) γ̄k(p) := γ̄k(pk) := fk,σ
k

(pk) for all k = 1, . . . , N

(with a slight abuse of notation).

88



Remark 7.22 As an example, consider some 1 : 1 junction with indices j = L,R (for left and right)

with σL = 1 and σR = −1. Then the standard Godunov flux f̂ = (f̂L, f̂R) associated to some HJ germ

with flux limiter A, is given by f̂L(p) = f̂R(p) = min
{
A, fL,+(pL), fR,−(p−)

}
. Then the capacity is γ̄(p) =

(fL,+(pL), fR,−(pR)) for p = (pL, pR) and the preflux is γ̂ = (γ̂L, γ̂R) with γ̂L(γ) = γ̂R(γ) = min
{
A, γL, γR

}
for γ = (γL, γR). Here the preflux γ̂ has all the properties: γ̂ is HJ, conservative, σ-monotone, Kruz̆kov,
and σ-monotone Kruz̆kov.

Proposition 7.23 (Polar decomposition of Godunov flux, for bell-shaped fluxes)
Assume (2.2) for N ≥ 1 for a junction (J, f). Assume that f is bell-shaped, and call γ̄ : [a, b] → [0,+∞)N

the capacity given by definition 7.21.
i) (Polar decomposition)

Let G ⊂ [a, b] be a Riemann germ with respect to (J, f). Then the Godunov flux f̂G associated to G has the
following polar decomposition

f̂G = γ̂ ◦ γ̄

where γ̂ : [0,+∞)N → [0,+∞)N is a preflux (as in Definition 7.19) and γ̄ is the capacity. Moreover the
preflux γ̂ is unique on the image of the capacity.
ii) (Riemann germ construction)
Given any preflux γ̂ : [0,+∞)N → [0,+∞)N , we define

(7.23) G := Gf̂ :=
{
p ∈ [a, b], f̂(p) = f(p)

}
with f̂ := γ̂ ◦ γ̄ : [a, b] → [0,+∞)N .

Then G is a Riemann germ.
iii) (Further properties of the germ)
In the previous construction i)-ii), the preflux γ̂ is HJ (resp. σ-monotone, conservative, conservative
Kruz̆kov), if and only if the germ G is HJ (resp. monotone, conservative, conservative Kruz̆kov).

Moreover, if the Riemann germ G is Kruz̆kov (resp. monotone Kruz̆kov), then the preflux γ̂ is also
Kruz̆kov (resp. σ-monotone Kruz̆kov).
iv) (Counter-example: Kruz̆kov preflux ̸=⇒ Kruz̆kov germ)
There are examples where the preflux γ̂ is Kruz̆kov (resp. σ-monotone Kruz̆kov), and where the associated
Riemann germ Gf̂ given in (7.23) is not Kruz̆kov (resp. not monotone Kruz̆kov).

Remark 7.24 Notice that Kruz̆kov property for preflux γ̂ is not transferable in general to the germ Gf̂ ,
because the Kruz̆kov property does not behave well by composition by functions in general, contrarily to
monotonicity properties.

Proof of Proposition 7.23
Step 1: proof of ii)
Step 1.1: continuity and basic monotonicity
We notice that the map γ̄ : [a, b] → [0,+∞)N defined in (7.22) is continuous and each map pj 7→ σj γ̄j(pj)

is nondecreasing. This implies that f̂ is continuous and the map p 7→ σj f̂ j(p) is nondecreasing in pj for all
indices j.
Step 1.2: local constancy

Let us now check that f̂ is locally constant on
{
f̂ ̸= f

}
. Fix some p ∈ [a, b], and let

Ĩ :=
{
j ∈ {1, . . . , N} , f̂ j(p) ̸= f j(p)

}
and I :=

{
j ∈ {1, . . . , N} , γ̂j(γ̄(p)) ̸= γ̄j(p)

}
Consider q ∈ [a, b] such that

qj
{

= pj if j /∈ Ĩ

∈ (pj − ε, pj + ε) ∩
[
aj , bj

]
if j ∈ Ĩ

Now, consider some j ∈ Ĩ and assume that σj = +1 (the case σj = −1 is similar). We distinguish two cases.
Case A: pj ∈ [aj , cj ]

Then we have γ̂j(γ̄(p)) = f̂ j(p) ̸= f j(p) = f j,+(pj) = γ̄j(p), which shows that j ∈ I. Moreover γ̄j(q) ∈(
γ̄j(p)− δ, γ̄j(p) + δ

)
∩ [0,+∞) for some δ > 0 small enough.

Case B: pj ∈ (cj , bj ]
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Then for ε > 0 small enough, we have qj > cj and then γ̄j(q) = f j,+(qj) = f j(cj) = γ̄j(p).
Conclusion
Using both cases A and B, and the local constancy of γ̂ on

{
γ̂ ̸= id[0,+∞)N

}
, we deduce that for ε > 0

small enough, we have f̂(q) = γ̂(γ̄(q)) = γ̂(γ̄(p)) = f̂(p), which means exactly that f̂ is locally constant on{
f̂ ̸= f

}
.

Step 1.3: bounds
We also have for p ∈ [a, b]

f j−(p
j) = inf

[pj ,bj ]
f j = 0 ≤ f̂ j(p) ≤ γ̄j(p) = f j,+(pj) = sup

[aj ,pj ]

f j = f j+(p
j) if Jj ≃ (−∞, 0)

f j−(p
j) = inf

[aj ,pj ]
f j = 0 ≤ f̂ j(p) ≤ γ̄j(p) = f j,−(pj) = sup

[pj ,bj ]

f j = f j+(p
j) if Jj ≃ (0,+∞)

From the first three steps and the characterization of generalized Riemann germs (see ii) of Theorem 2.14),
and of Riemann germs (see i) of Theorem 2.16), we deduce that G is a Riemann germ.
Step 2: proof of i)

Let G be a Riemann germ, and set f̂ := f̂G which is known to be continuous.
Step 2.1: unique decomposition of f̂
Notice that the capacity γ̄ genuinely varies on the set

K :=
∏

j=1,...,N

Kj with Kj :=


[
aj , cj

]
if σj = 1[

cj , bj
]

if σj = −1

We then define ρ = (ρ1, . . . , ρN ) : [a, b] → K as

ρj(pj) =

{
max

{
pj , cj

}
if σj = 1

min
{
pj , cj

}
if σj = −1

, for all pj ∈ [aj , bj ]

which is such that f j,σ
j

= f j ◦ ρj , and then γ̄ = f ◦ ρ. Because ρ is a projection, we deduce in particular
that

(7.24) γ̄ = γ̄|K ◦ ρ.

Now for p ∈ [a, b], we first distinguish the first index and set p = (p1, p′), and consider g := f̂1(·, p′) :
[a1, b1] → R. Assume also that σ1 = 1 (the case σ1 = −1 is similar). From Theorem 2.14 and the slicing
Lemma 4.12, we know that g is nondecreasing and is locally constant on

{
g ̸= f1

}
. Because f1 is decreasing

on (c1, b1), we deduce that g is constant on [c1, b1]. Hence g ̸= f1 a.e. on [c1, b1]. Because f̂ is locally

constant on
{
f̂ ̸= f

}
, we deduce that the whole function f̂(·, p′) : [a1, b1] → RN is locally constant on

[c1, b1]. Therefore, we have f̂(·, p′) = f̂(·, p′) ◦ ρ1. The the same raisonning with all indices j, shows that

(7.25) f̂ = f̂ ◦ ρ

We now define

(7.26) γ̂ := f̂ ◦ (γ̄|K)−1 : Γ0(c) → Γ0(c) with Γ0(c) := [0, γ̄(c)] =
∏

j=1,...,N

[
0, f j(cj)

]
.

Hence we get f̂|K = γ̂ ◦ γ̄|K and then using (7.25), we get

f̂ = f̂|K ◦ ρ
= γ̂ ◦ γ̄|K ◦ ρ

(7.24)
= γ̂ ◦ γ̄.

Notice that the invertibility of γ̄|K shows that the function γ̂ is unique on the image K of the capacity γ̄
and given by (7.26).
Step 2.2: properties of the preflux
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The fact that γ̂ is preflux in the sense of point 0) of Definition 7.19 (i.e. continuity, bounds, basic monotonicity

and local constancy) follows immediately from its expression (7.26), and from the similar properties of f̂ .
Step 3: proof of iii)
Step 3.1: σ-monotone preflux
For a σ-monotone preflux, we know for k ̸= j that σj γ̂j is nonincreasing in σkγ̄k, which is itself nondecreasing
in pk, by definition of γ̄. By composition, we deduce that σj f̂ j is nonincreasing in pk for all k ̸= j. This shows
that if the preflux γ̂ is σ-monotone then (from Lemma 5.5) the Riemann germ G is monotone. Conversely,
we similarly get that if G is monotone, then γ̂ is σ-monotone.
Step 3.2: HJ and conservative properties
It is straightforward to check that the preflux γ̂ is HJ (resp. conservative) if and only if f̂ satisfies the same
properties, which from Lemma 5.5 is equivalent to the similar properties for the germ G.
Step 3.3: Kruz̆kov germ =⇒ Kruz̆kov preflux
The result follows from the restriction f̂|K = γ̂ ◦ γ̄|K , and the fact that γ̄|K : K → [0, γ̄(c)] is bijective. We
also use the change of variables sign(γ̄j(p̄j)− γ̄j(pj)) = σjsign(p̄j −pj) for p̄, p ∈ K. The similar result holds
true for monotone Kruz̆kov germ which implies σ-monotone Kruz̆kov preflux, using the change of variables

signσ
j

(γ̄j(p̄j)− γ̄j(pj)) = σjsign+(p̄j − pj).
Step 3.4: conservative Kruz̆kov
If Gf̂ is conservative Kruz̆kov, then Steps 3.2 and 3.3 imply that the preflux γ̂ is conservative Kruz̆kov.
Conversely, if the preflux γ̂ is conservative Kruz̆kov, we can only indirectly show that it transfers to the
germ. We first show the following result.
Step 3.4.1: γ̂ is conservative Kruz̆kov =⇒ γ̂ is σ-monotone
We consider a (partial) inversion-reversion and set

˜̂γ(γ) := γ̂(σ ⋄ γ) : Ω → [0,+∞)N with Ω :=
∏

j=1,...,N

J̄j , and J̄j =

{
[0,+∞) if σj = 1
(−∞, 0] if σj = −1

Then it is easy to check that ˜̂γ is a Godunov flux for the Riemann germ

G˜̂γ :=
{
˜̂γ = f̃

}
⊂ Ω with f̃ := σ ⋄ idΩ

with respect to (J, f̃). Then the fact that γ̂ is conservative Kruz̆kov implies that the germ G˜̂γ is conservative
Kruz̆kov. From Theorem 2.24, we know that conservative Kruz̆kov implies that G˜̂γ is monotone, which means
that γ̂ is σ-monotone.
Step 3.4.2: core of the proof
Now we know that γ̂ is σ-monotone and conservative. Because those properties are transferable in general to
the germ Gf̂ (from Steps 3.1 and 3.2), we deduce that Gf̂ is monotone conservative, and then from Theorem
2.24, Gf̂ is also conservative Kruz̆kov. This ends the proof of Step 3.4 for the equivalence of conservative
Kruz̆kov preflux γ̂ and conservative Kruz̆kov germ Gf̂ .

Step 4: proof of iv), a counter-example
We build a counter-example for some 1 : 1 junction, with indices j = L,R (for left and right). We build some

preflux γ̂ which is Kruz̆kov, but non conservative. We will then show that Gf̂ is not Kruz̆kov for f̂ := γ̂ ◦ γ̄,
with the capacity γ̄(p) = (fL,+(pL), fR,−(pR)) for p = (pL, pR) ∈ [a, b], where f = (fL, fR) is bell-shaped.
Precisely, consider ϕ : [0,+∞) → [0,+∞) which is a continuous increasing and bijective function. We set

γ̂ : [0,+∞)2 → [0,+∞)2 with γ̂(γ) :=
(
min

{
γL, ϕ(γR)

}
, min

{
γR, ϕ−1(γL)

})
for γ := (γL, γR)

Then it is easy to check that γ̂ = (γ̂L, γ̂R) is a preflux. Moreover for σ = (σL, σR) = (1,−1), the preflux γ̂
is σ-monotone, Kruz̆kov, and σ-monotone Kruz̆kov. Moreover γ̂ is conservative (or equivalently HJ) if and
only if ϕ = id[0,+∞). Now assume that ϕ ̸= id[0,+∞), such that γ̂ is not conservative, say with ϕ(γR0 ) > γR0
for some γR0 > 0. Then assume that the maxima of the bell-shaped functions satisfy fL(cL) > ϕ(γR0 )
and fR(cR) > γR0 . Then consider pR0 ∈ (cR, bR) such that fR(pR0 ) = γR0 , and pL0 ∈ (aL, cL) such that
fL(pL0 ) = ϕ(γR0 ), and call p0 := (pL0 , p

R
0 ). Then we get

γ̄(b) = (fL,+(bL), fR,−(bR)) = (fL(cL), 0), γ̄(p0) = (fL,+(pL0 ), f
R,−(pR0 )) = (ϕ(γR0 ), γ

R
0 )
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and using f̂ := γ̂ ◦ γ̄, we get f̂(b) = (0, 0) and f̂(p0) = (ϕ(γR0 ), γ
R
0 ). Hence

Df̂ (b, p0) = sign(bL − pL0 ) ·
{
f̂L(b)− f̂L(p0)

}
− sign(bR − pR0 ) ·

{
f̂R(b)− f̂R(p0)

}
=
{
f̂L(b)− f̂L(p0)

}
−
{
f̂R(b)− f̂R(p0)

}
= γR0 − ϕ(γR0 )
< 0

The case ϕ(γR0 ) < γR0 leads similarly to Df̂ (a, p0) = ϕ(γR0 ) − γR0 < 0, using f̂(a) = (0, 0). Then from
Lemma 5.5, we deduce that the Riemann germ Gf̂ ⊂ [a, b] is not Kruz̆kov. A fortiori, Gf̂ is neither monotone
Kruz̆kov. This ends the proof of the proposition.

Lemma 7.25 (Characterization of prefluxes)

Assume (2.2) for N ≥ 1 for a junction (J, f) with σ ∈ {±1}N . Let f̃ j : σj [0,+∞) → [0,+∞) with
f̃ j(pj) := σjpj.
i) (Characterization of prefluxes)

Then a map γ̂ : [0,+∞)N → [0,+∞)N is a preflux if and only if f̂ := γ̂ ◦ f̃ is a Godunov flux associated to

a Riemann germ G :=

p ∈ ∏
j=1,...,n

σj [0,+∞), f̂(p) = f̃(p)

 with respect to (J, f̃).

ii) (Characterization of conservative σ-monotone prefluxes)
Moreover, the preflux γ̂ is conservative σ-monotone if and only if the germ G is conservative monotone, or
equivalently if and only if γ̂ is Lipschitz continuous and satisfies

(7.27)


σkσj∂kγ̂

j ≤ 0 for all k ̸= j

1 ≥ σj∂j γ̂
j ≥

∑
k∈{1,...,N}\{j}

|∂j γ̂k| for all indices j

Proof of Lemma 7.25
The proof of i) is easy and similar to the proof of i) of Proposition 7.23 on polar decomposition. Hence we

skip it. The proof of ii) is also similar and follows from the relation (∂pkσj f̂ j)(p) = (∂σkpk(σj γ̂j))(σ ⋄ p).
Notice that (7.27) follows from the fact that conservative monotone germs are conservative Kruz̆kov germs
(see Theorem 2.24), and both characterizations of monotone germs (Theorem 2.22) and of Kruz̆kov germs
(Theorem 2.21). Notice that the bound by 1 in the second line of (7.27) follows from vii) of Proposition
2.13. This ends the proof of the lemma.

We finish this section with examples.

Lemma 7.26 (Example of the truncation preflux)
Assume N ≥ 1, and let λ̄ = (λ̄1, . . . , λ̄N ) ∈ [0,+∞)N , and the truncation function

(7.28) Tλ̄ : [0,+∞)N → [0,+∞)N with Tλ̄(γ) = (min
{
γ1, λ̄1

}
, . . . ,min

{
γN , λ̄N

}
)

Then Tλ̄ is a (Kruz̆kov) preflux.

Proof of Lemma 7.26
The function Tλ̄ is continuous. We obviously have 0 ≤ Tλ̄(γ) ≤ γ. Moreover if T j

λ̄
(γ) < γj , then all coor-

dinates of Tλ̄ are locally independent on γj , which means that Tλ̄ is locally constant on
{
Tλ̄ ̸= id[0,+∞)N

}
.

Finally each map γ 7→ T j

λ̄
(γ) is nondecreasing in γj . This shows that Tλ̄ is a preflux. Moreover its is

straightforward to check that it is a Kruz̆kov preflux. This ends the proof of the lemma.

Lemma 7.27 (Composition of prefluxes)
Assume N ≥ 1, and let γ̂0 : [0,+∞)N → [0,+∞)N be a preflux, and for λ̄ ∈ [0,+∞)N , let Tλ̄ : [0,+∞)N →
[0,+∞)N be the truncation preflux defined in (7.28). Then γ̂ := γ̂0 ◦ Tλ̄ is also a preflux.
Moreover, if γ̂0 is HJ (resp. σ-monotone, conservative), then γ̂ has the same property.
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Proof of Lemma 7.26
Step 1: γ̂ is a preflux
The function γ̂ is continuous by composition. Recall that 0 ≤ γ̂0(γ), Tλ̄(γ) ≤ γ, an inequality which is also
preserved by composition. Assume that for some γ∗ ∈ [0,+∞)N , we have γ̂j0(Tλ̄(γ∗)) = γ̂j(γ∗) < γj∗. We

know that T j

λ̄
(γ∗) ≤ γj∗.

Case A: T j

λ̄
(γ∗) = γj∗

Recall that γ̂0(γ) is independent on γ
j close to T j

λ̄
(γ∗) = γj∗. Now because

(7.29) the components of T k
λ̄
(γ) do not depend on γj for k ̸= j,

this implies that γ̂ = γ̂0 ◦ Tλ̄ is also independent on γj close to γj∗.
Case B: T j

λ̄
(γ∗) < γj∗

Then the whole vector Tλ̄ is independent on γj for γj close to γj∗, and then γ̂ = γ̂0 ◦ Tλ̄ is also independent
on γj for γj close to γj∗.
This shows that γ̂ is locally constant on

{
γ̂ ̸= id[0,+∞)N

}
. Finally the fact that γ 7→ γ̂j0(γ) is nondecreasing

in γj , and the same property for Tλ̄ and property (7.29) imply that γ 7→ (γ̂j0 ◦Tλ̄)(γ) is nondecreasing in γj .
Therefore γ̂ is also a preflux.
Step 2: further properties of γ̂
Notice that if γ̂0 is HJ (resp. σ-monotone, conservative), then it is directly transferable by composition to
γ̂ = γ̂0 ◦ Tλ̄. This ends the proof of the lemma.

8 Examples and counter-examples

8.1 A monotone germ which is not a Riemann germ

Lemma 8.1 (A monotone germ which is not a Riemann germ on a 1 : 1 junction)
Assume (2.2) with N = 2 for j = L,R with JL ≃ (−∞, 0) and JR ≃ (0,+∞) and [a, b] = [0, 1]2. We
consider Lipschitz continuous functions f j : [0, 1] → R for j = L,R with

{
0 < p̂L < q̂L < 1
fL decreasing

and


0 < p̂R < q̂R < 1
fR(p̂R) = fR(q̂R) = 0
fR < 0 on [0, p̂R)
fR > 0 on (p̂R, q̂R) ∪ (q̂R, 1]

We set
G = {p̂, q̂} with p̂ = (p̂L, p̂R) and q̂ = (q̂L, q̂R)

Then G ⊂ [a, b] is a generalized Riemann germ with respect to (J, f), which is also a monotone germ.

Moreover f̂ = f̂G satisfies f̂R = 0 on [a, b] = [0, 1]2

f̂L =

{
fL(p̂L)
fL(q̂L)

on BA(p̂) = [0, 1]× [0, q̂R)
on BA(q̂) = [0, 1]× [q̂R, 1]

Hence f̂L is discontinuous on [0, 1]×
{
q̂R
}
with ∂pR f̂L ≤ 0 and G is not a Riemann germ.

8.2 A monotone germ with f̂ continuous but not locally Lipschitz

Lemma 8.2 (A monotone germ on a 2 : 0 junction, with f̂ continuous but not locally Lipschitz)
Set N = 2 and [a, b] = [0, 1]2 and three C1 functions g : [0, 1] → [0, 1] an increasing bijection (hence with g(0) = 0 and g(1) = 1)

f1 : [0, 1] → R decreasing with (f1)′ ≤ −δ < 0 on [0, 1]
f2 : [0, 1] → R increasing with (f2)′ ≥ δ > 0 on [0, 1]

Then the set
G :=

{
p = (p1, p2) ∈ [a, b], p2 = g(p1)

}
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is a Riemann germ, and satisfies G =
{
f̂ = f

}
with continuous function f̂ = f̂G given by

{
f̂2(p) := f2(p2)

f̂1(p) := f1(g−1(p2))

Then G is a monotone germ for a 2 : 0 junction.
Moreover G is a Kruz̆kov germ (for f) if and only if

(8.1) the map (f1 + f2 ◦ g) : [0, 1] → R is nondecreasing

In particular, if g′(0) = 0, then G is a monotone germ, is not a Kruz̆kov germ and f̂ is not locally Lipschitz.

Proof of Lemma 8.2
We just compute Df (p, q) = sign(p1 − q1) ·

{
f1(p1)− f1(q1)

}
+ sign(p2 − q2) ·

{
f2(p2)− f2(q2)

}
. Then

for p, q ∈ G, i.e. for p2 = g(p1) and q2 = g(q1), we get (with g increasing) that Df (p, q) = sign(p1 −
q1) ·

[
f1 + f2 ◦ g

]p1

q1
, and then Df ≥ 0 on G2 if and only if (8.1) holds true. Moreover, if g′(0) = 0, then

(f1 + f2 ◦ g)′(0) = (f1)′(0) ≤ −δ and (8.1) does not hold true, which shows that G is not a Kruz̆kov germ.
This ends the proof of the lemma.

8.3 Counter-example to Riemann monotonicity for degenerate f

Lemma 8.3 (Counter-example to Riemann monotonicity for degenerate f on a 2 : 0 junction)
Assume (2.2) with N = 2, Jj ≃ (−∞, 0) for j = 1, 2 and [a, b] := [0, 1]2. We consider Lipschitz continuous
functions f j : [0, 1] → R for j = 1, 2 with f2 = 0

f1 decreasing
h : [0, 1] → [0, 1] continuous increasing and bijective

We set
G :=

{
p = (p1, p2) ∈ [a, b], p1 = h(p2)

}
Then G is a Riemann germ with respect to (J, f) with{

f̂2 = 0

f̂1(p) = (f1 ◦ h)(p2)

Here f̂ is continuous but not Riemann monotone. Moreover G is a monotone germ.

Proof of Lemma 8.3
Consider p, q ∈ [a, b] with p > q, f̂1(p) < f̂1(q), f̂2(p) = 0 = f̂2(q). Hence (p − q) ⋄ [f̂ ]pq ≤ 0 but [f̂ ]pq ̸= 0.
This ends the proof of the lemma.

8.4 Counter-example to gluing without Riemann monotonicity

Lemma 8.4 (Counter-example to gluing Riemann germs without Riemann monotonicity)
Assume (2.2) with N = 2, Jj ≃ (−∞, 0) for j = 1, 2 and [a, b] := [0, 1]2. We consider Lipschitz continuous
functions f j : [0, 1] → R for j = 1, 2 with f2 = 0

f1 decreasing
h : [0, 1] → [0, 1] continuous increasing and bijective

We set
G :=

{
p = (p1, p2) ∈ [a, b], p1 = h(p2)

}
=: Ḡ
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Let us define

f̄ = (f̄1, f̄2) := (−f1,−f2) and J̄ := {0} ∪
⋃

j=1,2

J̄2 with J̄j := −Jj for j = 1, 2

Then G is a monotone Riemann germ with respect to (J, f) and Ḡ is a monotone Riemann germ with respect

to (J̄ , f̄) with ˆ̄f = −f̂ . Moreover both G and Ḡ are not Riemann monotone and the set

G0 := Ḡ♯G for the gluing of branch J̄2 ≃ (0,+∞) with J2 ≃ (−∞, 0)

defined as in (5.38) is such that G0 is a not a generalized Riemann germ.

Proof of Lemma 8.4

From Lemma 8.3, we know that G is a monotone Riemann germ with

{
f̂2 = 0

f̂1(p) = (f1 ◦ h)(p2)
. Moreover,

by construction, Ḡ is obtained by reversion transform of G (see Definition 4.4), and then is also a monotone
Riemann germ. Define the set for f0 := 0 = f2 = f̄2

G0 :=

(p1, p̄1) ∈ [a1, b1]2, there exists (p̄2, p2) ∈ [a2, b2]2 s.t.

∣∣∣∣∣∣
(p̄1, p̄2) ∈ Ḡ
(p1, p2) ∈ G
f0(p̄2) = Gf0

(p̄2, p2) = f0(p2)


By definition, we have G0 = Ḡ♯G for the gluing of branch J̄2 ≃ (0,+∞) with J2 ≃ (−∞, 0). If f̂ and ˆ̄f
would be Riemann monotone, then G0 ⊂ [a1, b1]2 would be a Riemann germ with respect to (J0, f0) with
f0 := (f1, f̄1) and J0 := {0} ∪ J1 ∪ J̄1. But we have G0 = [a1, b1]2, and for any q ∈ [a1, b1]2, we have

BA(J0,f0)(q) = [a1, b1]2

Therefore (BA(q̂))q̂∈G0
is not a partition of [a1, b1]2, which shows that G0 is a not a generalized Riemann

germ. This ends the proof of the lemma.

8.5 Counter-example to self-gluing of HJ germs

Lemma 8.5 (Counter-example to self-gluing of HJ germs)
Consider g : [0, 1] → R with g(u) := u(1 − u). For N = 3, consider f0 = f1 = f2 := g, [a, b] := [0, 1]3 and
branches J0 ≃ (−∞, 0) and J1 ≃ J2 ≃ (0,+∞) and J := {0} ∪

⋃
j=0,1,2 J

j. We set the nondecreasing and
nonincreasing envelopes of g

g+(u) := max
[0,u]

g and g−(u) := max
[u,1]

g for all u ∈ [0, 1]

Then the set

G :=
{
p = (p0, p1, p2) ∈ [0, 1]3, min

{
g+(p0), g−(p1), g−(p2)

}
= g(p0) = g(p1) = g(p2)

}
is a HJ germ with respect to (J, f), which is not a Kruz̆kov germ.

Let G
♯

2:0 be the self-gluing of G along branches J2 and J0 for the flux f2 = f0 = g. Then G
♯

2:0 is not a
generalized Riemann germ with respect to (J1, f1).

Proof of Lemma 8.5
Here g : [0, 1] → R is a bell-shaped flux. For γ = (γ0, γ1, γ2) and N = 3, define the function γ : [0,+∞)N →
[0,+∞)N as γ̂j(γ) := min

{
γ0, γ1, γ2

}
for j = 0, 1, 2. Then it is easy to check that γ̂ is a HJ preflux in the

sense of Definition 7.19. For the capacity γ̄(p) := (g+(p0), g−(p1), g−(p2)), we then deduce that γ := γ̂ ◦ γ̄ is
a Godunov flux, and that G is the associated HJ germ. We set Gg : [0, 1]2 → R for the standard Godunov
flux associated to the flux g, which satisfies here Gg(pL, pR) = min(g+(pL), g−(pR)). Then recall that the
standard Godunov germ is defined as Gg :=

{
p = (pL, pR) ∈ [0, 1]2, g(pL) = Gg(pL, pR) = g(pR)

}
. Then, by

definition, we have

G
♯

2:0 =
{
p1 ∈ [0, 1], there exists (p2, p0) ∈ Gg such that p = (p0, p1, p2) ∈ G

}
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For λ ∈ [0, 14 ], we define u±(λ) := (g±)−1(λ). Now for any p1 ∈ [0, 1], set λ := g(p1) and p0 := u+(λ) =: p2.

Hence it is straightforward to check that (p2, p0) ∈ Gg and (p0, p1, p2) ∈ G, which implies that p1 ∈ G
♯

0:2.

Therefore G
♯

2:0 = [0, 1] and (BA(J1,f1)(p̂1))
p̂1∈G

♯
0:2

is not a partition of [0, 1], by definition of the Basin of

Attraction. Therefore Theorem 2.14 implies that G
♯

2:0 is not a generalized Riemann germ (with respect to
(J1, f1)). Finally Corollary 5.15 implies that G is not a Kruz̆kov germ. This ends the proof of the lemma.

8.6 Strange germs for 2 : 0 junctions and classification

Lemma 8.6 (Strange germs for 2 : 0 junctions and classification; f1 ↓, f2 ↑)
Assume (2.2) for a with N = 2, Jj ≃ (−∞, 0) for j = 1, 2 and [a, b] := [0, 1]2. We set J := {0} ∪ J1 ∪ J2.
We consider Lipschitz continuous functions f j : [0, 1] → R for j = 1, 2 with

f1 decreasing and f2 increasing.

i) (Classification of Riemann germs)
Then the set G ⊂ [a, b] is a Riemann germ with respect to (J, f) if and only if there exists h : [0, 1] → [0, 1]
continuous such that

(8.2) G = Gh with Gh :=
{
p = (p1, p2) ∈ [a, b], p1 = h(p2)

}
We also have Gh =

{
f̂h = f

}
with continuous function f̂h = f̂Gh

given by

(8.3)

{
f̂2h(p) := f2(p2)

f̂1h(p) := f1(h(p2))

ii) (Existence of strange germs, nonconservative Kruz̆kov germs)
If h is not monotone, then the Riemann germ G is not monotone, not HJ, neither conservative. Moreover,
if f1, f2, h are Lipschitz continuous, then the Riemann germ G is Kruz̆kov if and only if

(8.4) (f2)′ +
{
(f1)′ ◦ h

}
· |h′| ≥ 0 a.e. on [0, 1]

with the convention that g · |h′| = 0 if h′ = 0, even where g is not defined. In particular G is not Kruz̆kov if
|h′| is large enough.

On the contrary, if (f2)′ ≥ δ > 0 a.e. on [0, 1], and for |h′| small enough with h non monotone, then G
is a nonmonotone nonconservative Kruz̆kov germ.

Moreover if h is nondecreasing such that the function f2 + f1 ◦ h is nondecreasing and non identically
equal to zero, then G is a monotone nonconservative Kruz̆kov germ.

Proof of Lemma 8.6
Step 1: proof of i)
Step 1.1: necessary inclusion of G
From the slicing lemma 4.12, notice that if G ⊂ [a, b] is a Riemann germ with respect to (J, f) with f̂ := f̂G ,
then for any fixed p2 ∈ [0, 1], the set

Gp2 :=
{
p1 ∈ [0, 1], f̂1(p1, p2) = f1(p1)

}
is a generalized Riemann germ with respect to (J1, f1), which is also a Riemann germ because f̂ is continuous.

Because f1 is decreasing and the map f̂1p2 : p1 7→ f̂1(p1, p2) is nondecreasing and locally constant on{
f̂1p2 ̸= f1

}
, we deduce that f̂1p2 is constant on [0, 1]. Moreover, we know that we have f̂1p2 = f1 ◦ πGp2

.

Because f1 is decreasing, we deduce that πGp2
: [0, 1] → [0, 1] is constant and set h(p2) := πGp2

(p1) for any

p1 ∈ [0, 1]. Hence we have f̂1(p1, p2) := f1(h(p2)). Still because f1 is decreasing, and f̂1 is continuous, we
deduce that h : [0, 1] → [0, 1] is continuous. Therefore

G ⊂
{
f̂1 = f1

}
= Gh with continuous h : [0, 1] → [0, 1].
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It is also easy to check that Gh =
{
f̂h = f

}
.

Step 1.2: property of Gh

Conversely, consider Gh =
{
f̂h = f

}
with f̂h given in (8.3) for continuous h : [0, 1] → [0, 1]. Notice also that

because f2 is increasing, we see that f̂ jh has expected monotonicities in pj . Moreover it is easy to check that

f̂h is locally constant on
{
f̂h ̸= f

}
. Now from (2.15) and from the monotonicities of the f j ’s, we get

f1− = f1 ≤ f1(0) ≡ f1+ and f2− ≡ f2(0) ≤ f2 = f2+

Hence from ii) of Theorem 2.14, we deduce that Gh is a generalized Riemann germ, and from i) of Theorem
2.16, we deduce that Gh is a Riemann germ.
Step 1.3: conclusion for G
Now from Step 1.1, we have G ⊂ Gh ⊂ [a, b] with both G and Gh generalized Riemann germs (in [a, b]) with
respect to (J, f). From i) of Theorem 2.14, we conclude that G = Gh.
Step 2: proof of ii)
For conservative, HJ and monotone germs, we use the definitions of the classes of germs and also Lemma
5.5 for their characterization in term of their Godunov fluxes f̂ .

Hence the Riemann germ G is conservative if and only if f̂1 + f̂2 = 0, i.e. −f1(h(p2)) = f2(p2), i.e. the
(continuous) function h := (−f1)−1 ◦ f2 is increasing.

Similarly, the Riemann germ G is HJ if and only if f̂1 = f̂2 and is nondecreasing in each coordinate pj ,
i.e. h := (f1)−1 ◦ f2 is decreasing.

Similarly, the Riemann germ G is monotone if and only if p2 7→ f̂1(p) and p1 7→ f̂2(p) are nonincreasing,
i.e. h is nondecreasing.

By definition, the Riemann germ G is Kruz̆kov if and only if we have Df (p̄, p) ≥ 0 for all p, p̄ ∈ G, i.e.
(8.5)
sign(p̄1−p1)·

{
f1(p̄1)− f1(p1)

}
+sign(p̄2−p2)·

{
f2(p̄2)− f2(p2)

}
≥ 0 for all p1 := h(p2), p̄1 = h(p̄2), p2, p̄2 ∈ [0, 1]

Because the composition of Lipschitz functions is Lipschitz, and using Rademacher’s theorem, we deduce
(8.4) in the limit |p̄2 − p2| → 0. Conversely, the integration of (8.4) implies (8.5).

In particular, if h is nondecreasing such that the function f2+ f1 ◦h is also nondecreasing and non iden-
tically equal to zero, then G is a monotone nonconservative Kruz̆kov germ. This ends the proof of the lemma.

Lemma 8.7 (Classification for 2 : 0 junctions; f1 ↓, f2 ↓)
Assume (2.2) for a with N = 2, Jj ≃ (−∞, 0) for j = 1, 2 and [a, b] := [0, 1]2. We set J := {0} ∪ J1 ∪ J2.
We consider Lipschitz continuous functions f j : [0, 1] → R for j = 1, 2 with

f1 and f2 decreasing.

Then the set G ⊂ [a, b] is a Riemann germ with respect to (f, J) if and only if there exists p̂ ∈ [a, b] such

that G = {p̂}. When it is the case, then we also have G =
{
f̂ = f

}
with the function f̂ = f̂G given by

f̂ = const = f(p̂).

Proof of Lemma 8.7
Consider some p ∈ [a, b], and set p̂ := π(p) with π := πG : [a, b] → G the natural projection map. Because
f1, f2 are both decreasing for a 2 : 0 junction, we deduce that BA(p̂) = [a, b], and then π = const = p̂, which

shows that G = {p̂}. Moreover f̂G = f(p̂). Conversely, for any p̂ ∈ [a, b], it is straightforward to check that
G = {p̂} is a Riemann germ. This ends the proof of the lemma.

Lemma 8.8 (Classification for 2 : 0 junctions; f1 ↑, f2 ↑)
Assume (2.2) for a with N = 2, Jj ≃ (−∞, 0) for j = 1, 2 and [a, b] := [0, 1]2. We set J := {0} ∪ J1 ∪ J2.
We consider Lipschitz continuous functions f j : [0, 1] → R for j = 1, 2 with

f1 and f2 increasing.
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i) (Classification)
Then the set G ⊂ [a, b] is a Riemann germ with respect to (f, J) if and only if there exist continuous maps
hj± : [0, 1] → [0, 1] for j = 1, 2 such that 0 ≤ hj− ≤ hj+ ≤ 1, and for j̄ ∈ {1, 2} \ {j}, we have

G = K1 ∩K2 with Kj :=
{
p ∈ [a, b], hj−(p

j̄) ≤ pj ≤ hj+(p
j̄)
}

with moreover G =
{
f̂ = f

}
, with f̂ locally constant on

{
f̂ ̸= f

}
, where f̂ : [a, b] → R2 is continuous and

satisfies for j = 1, 2

(8.6) f̂ j(p) = f j(T
hj
+(pj̄)

hj
−(pj̄)

(pj)) with T y
x (z) = x ∨ z ∧ y for x ≤ y

and x ∨ z := max(x, z), y ∧ z := min(y, z).
ii) (Further properties)
Moreover, we have the following properties for any p ∈ [0, 1]2 with p̂ := πG(p) ∈ [0, 1]2, we have

(8.7)



(
(f̂ − f)1(p) > 0 and (f̂ − f)2(p) > 0

)
implies BA(p̂) ⊃ [(0, 0), p̂] ∋ p(

(f̂ − f)1(p) > 0 and (f̂ − f)2(p) < 0
)

implies BA(p̂) ⊃ [(0, p̂2), (p̂1, 1)] ∋ p(
(f̂ − f)1(p) < 0 and (f̂ − f)2(p) > 0

)
implies BA(p̂) ⊃ [(p̂1, 0), (1, p̂2)] ∋ p(

(f̂ − f)1(p) < 0 and (f̂ − f)2(p) < 0
)

implies BA(p̂) ⊃ [p̂, (1, 1)] ∋ p

Proof of Lemma 8.8
Part 1: proof of i)
Step 1: necessary conditions on G
Step 1.1: freezing p2

From the slicing lemma 4.12, notice that if G ⊂ [a, b] is a Riemann germ with respect to (J, f) with f̂ := f̂G ,
then for any fixed p2 ∈ [0, 1], the set

Gp2 :=
{
p1 ∈ [0, 1], f̂1(p1, p2) = f1(p1)

}
is a generalized Riemann germ with respect to (J1, f1), which is also a Riemann germ because f̂ is con-

tinuous. Because f1 is increasing and the map f̂1p2 : p1 7→ f̂1(p1, p2) is nondecreasing and locally constant

on
{
f̂1p2 ̸= f1

}
, we deduce that f̂1p2 coincides with f1 only on a subinterval [h1−(p

2), h1+(p
2)] ⊂ [0, 1], and

satisfies

f̂1p2(p1) = f1(T z+
z− (p1)) with

{
z− := h1−(p

2)
z+ := h1+(p

2)

Because f̂1 is continuous, we deduce that
{
f̂1 = f1

}
is a closed set, and then h1− is lower semicontinuous

and h1+ is upper semicontinuous. Moreover, it is easy to see that the strict monotonicity of f1 and the

continuity of f̂1 also imply the continuity of h1±.
Step 1.2: freezing p1 and first consequences
By symmetry from Step 1, we get a similar result, exchanging indices 1 and 2. This shows (8.6) with con-

tinuous maps hj± : [0, 1] → [0, 1]. Moreover, this implies that G =
{
f̂ = f

}
= K1 ∩ K2, and f̂ is locally

constant on
{
f̂ ̸= f

}
and f̂ : [a, b] → R2 is continuous from i) of Theorem 2.16, because G is a Riemann germ.

Step 2: sufficient conditions for G
From ii) of Theorem 2.14, we only have to check the second line of (2.14). Recall that

f j(pj) = inf
[pj ,1]

f j = f j−(p
j) ≤ f j+(p

j) = sup
[0,pj ]

f j = f j(1)

and because f j is increasing. We deduce from the expression of f̂ j that f j− ≤ f̂ j ≤ f j+, and Theorem 2.14

implies that G =
{
f̂ = f

}
is a generalized Riemann germ. Because f̂ is continuous, G is then a Riemann
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germ.

Part 2: proof of ii)

We only do the proof for the first line of (8.7) (the other cases are similar). Assume that (f̂1 − f1)(p) > 0,

(f̂2 − f2)(p) > 0. Because f1, f2 are increasing, we deduce that BA(p̂) ∩ [0R2 , p̂] = [0R2 , p̂], which shows the

result with moreover f̂ = f(p̂) on [0R2 , p̂]. This ends the proof of the lemma.

8.7 An explicit example of gluing without cancellation property

Lemma 8.9 (A 1 : 1 explicit example of gluing without cancellation property)
Assume (2.2) with N = 2, JL ≃ (−∞, 0) and JR ≃ (0,+∞) and f j = g with [aj , bj ] = [0, 1] for j = L,R,
with g : [0, 1] → R strictly concave with g(0) = 0 = g(1). Let A0 := max[0,1] g = g(p0) > 0 with p0 ∈ (0, 1)
and A ∈ [0, A0]. We define

g+(x) :=

{
g(x) for x ∈ [0, p0]
g(p0) for x ∈ (p0, 1]

and g−(x) :=

{
g(p0) for x ∈ [0, p0]
g(x) for x ∈ (p0, 1]

and
GA :=

{
(pL, pR) ∈ [0, 1]2, min

{
A, g+(pL), g−(pR)

}
= g(pL) = g(pR)

}
Then for any A,B ∈ [0, A0], we have

GA♯GB = Gmin{A,B} for the gluing of JR
GA

≃ (0,+∞) with JL
GB

≃ (−∞, 0)

In particular we always have

GA0
♯GA = GA♯GA and GA♯GA0

= GA♯GA

which does not imply the cancellation property that GA = GA0
.

p0 1

1

p
L

Rp

p
0

0

p
A

p
A
+

−

Figure 2: The germ GA for A ∈ (0, A0)

Proof of Lemma 8.9
For λ ∈ [0, A0], let p

±
λ ∈ [0, 1] be such that g(p±λ ) = λ = g±(p±λ ). Notice that Gλ is a HJ germ. From [14],

we know that all HJ germs with all convex fluxes (and then also with all concave fluxes) are classified by a
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flux limiter, which is λ, and particularly by a single point (p−λ , p
+
λ ) ∈ Gλ, because χGλ =

{
(p−λ , p

+
λ )
}
, where

χGλ is the characteristic subset of the HJ germ Gλ (see Theorem 2.28). Let

G̃0 := GA♯GB =

(pL, p̃R) ∈ [0, 1]2, there exists (p̃L, pR) ∈ [0, 1]2 s.t.

∣∣∣∣∣∣
(pL, pR) ∈ GA

(p̃L, p̃R) ∈ GB

g(pR) = Gg(pR, p̃L) = g(p̃L)


From Theorem 2.19, we know that G̃0 is a HJ germ, and then of the form G̃0 = Gλ for some λ ∈ [0, A0].
Moreover (pL, p̃R) ∈ G0 if and only if (using Gg(pR, p̃L) = min

{
g+(pR), g−(p̃L)

}
) min

{
A, g+(pL), g−(pR)

}
= g(pL) = g(pR)

min
{
B, g+(p̃L), g−(p̃R)

}
= g(p̃L) = g(p̃R)

g(pR) = min
{
g+(pR), g−(p̃L)

}
= g(p̃L)

For C := min {A,B}, we have (with obvious notation for the gluing (pL, pR)♯(p̃L, p̃R) := (pL, p̃R))

G̃0 ∋ (p−C , p
+
C) =

{
(p−C , p

+
C)♯(p

+
C , p

+
C) if C = A

(p−C , p
−
C)♯(p

−
C , p

+
C) if C = B

We deduce that λ = C and G̃0 = GC which ends the proof of the lemma.

8.8 An example of non commutativity of the gluing

g

p p pp
A A AA

1 2 3 4

1/2

0 1/2 1 3/2 2

A

Figure 3: Graph of g

Lemma 8.10 (Explicit example of a HJ germ for 1 : 1 junction)
We set J := {0} ∪ JL ∪ JR with JL ≃ (−∞, 0) and JR ≃ (0,+∞). We also set f = (fL, fR) := (g, g) and
[a, b] := [0, 2]2, with

g : [0, 2] → R with g(u) := g0(u) + g0(u− 1) and g0(u) := max {0,min {u, 1− u}}

Given A := (A,B,C,D) with 1
2 > A > B > C > D > 0, we want to define a germ GA. To this end, given

λ ∈ [0, 12 ], we set

p1λ := λ, p2λ = 1− λ, p3λ := 1 + λ, p4λ := 2− λ with

{
g(pkλ) = λ for k = 1, . . . , 4
0 ≤ p1λ ≤ p2λ ≤ p3λ ≤ p4λ ≤ 2
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Figure 4: Level sets of ĥ with four plateaux (see (8.8))

We also set for p = (pL, pR) 
pA := (p4A, p

1
A)

pB := (p2B , p
1
B)

pC := (p4C , p
3
C)

pD := (p2D, p
3
D)

We then define for p = (pL, pR) ∈ [a, b] := [0, 2]2

(8.8) ĥ(p) := λ for p ∈ Γλ

with

Γλ :=



[
p3A, 2

]
×
[
0, p1A

]
for λ = A

ΓAB
λ :=

({
p3λ
}
×
[
0, p2λ

])
∪
([
p3λ, 2

]
×
{
p2λ
})

for λ ∈ (A,B)([
p1B , p

3
B

]
×
[
0, p2B

])
∪ ΓAB

B for λ = B

ΓBC
λ :=

({
p1λ
}
×
[
0, p2λ

])
∪
([
p1λ, 2

]
×
{
p2λ
})

for λ ∈ (B,C)([
p3C , 2

]
×
[
p2C , p

4
C

])
∪ ΓBC

C for λ = C

ΓCD
λ :=

({
p1λ
}
×
[
0, p2λ

])
∪
([
p1λ, p

3
λ

]
×
{
p2λ
})

∪
({
p3λ
}
×
[
p2λ, p

4
λ

])
∪
([
p3λ, 2

]
×
{
p4λ
})

for λ ∈ (C,D)([
p1λ, p

3
λ

]
×
[
p2λ, p

4
λ

])
× ΓCD

D for λ = D

ΓD0
λ :=

({
p1λ
}
×
[
p1λ, p

4
λ

])
∪
([
p1λ, 2

]
×
{
p4λ
})

for λ ∈ (D, 0]

which is a continuous function ĥ : [0, 2]2 → R. Let f̂ = (ĥ, ĥ). Then

GA :=
{
p ∈ [a, b], f̂(p) = f(p)

}
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Figure 5: HJ Germ GA ⊂
{
g(pL) = g(pR)

}
and characteristic subset χGA = {pA, pB , pC , pD}

is a generalized Riemann germ which is a HJ germ (and then also a conservative germ and a Kruz̆kov germ)
with respect to (J, f). Moreover we have

(8.9) χGA = {pA, pB , pC , pD}

Proof of Lemma 8.10
It is easy to check that ĥ : [0, 2]2 → R is continuous. Moreover by construction f̂ := (ĥ, ĥ) is locally constant

on
{
f̂ ̸= f

}
, with ĥ nonincreasing in pR and nondecreasing in pL. Moreover, we have the following monotone

bounds

max
{
fL−(p

L), fR− (pR)
}
= 0 ≤ ĥ(p) ≤ min

{
fL+(p

L), fR+ (pR)
}
= min

{
1

2
, pL, 2− pR

}
with 

fL+(p
L) := sup

[0,pL]

g = min

{
pL,

1

2

}
fL−(p

L) := inf
[pL,2]

g = 0

fR− (pR) := inf
[0,pR]

g = 0

fR+ (pR) := sup
[pR,2]

g = min

{
2− pR,

1

2

}
Then from ii) of Theorem 2.14, we deduce that GA is a generalized Riemann germ with respect to (J, f).
Moreover by construction it is a HJ germ. Finally it is easy to check (8.9). This ends the proof of the lemma.

Lemma 8.11 (An example of non commutativity of the gluing)
We work with notation of Lemma 8.10. Let

A := (A,B,C,D) with
1

2
> A > B > C > D > 0
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and

A′ := (A′, B′, C,D) with
1

2
> A′ > B′ > C > D > 0

and
A′ > A > B′ > B > C > D

Then the gluing satisfies

(8.10) G̃′ := GA♯GA′ = G(B′,B,C,D) ̸= G(B,B,C,D) = GA′♯GA =: G̃

Proof of Lemma 8.11
First notice that by gluing HJ germs are preserved. Hence both G̃ and G̃′ are HJ germs, and are then
characterized by their characteristic subsets that we expect to satisfy

(8.11) χG̃ ⊃ {pÃ, pB̃ , pC̃ , pD̃} and χG̃′ ⊃ {pÃ′ , pB̃′ , pC̃′ , pD̃′}

Precisely we compute (with obvious notation for p = (pL, pR) and the gluing (pL, pR)♯(pL
′
, pR

′
) := (pL, pR

′
))

pÃ′ := (p4B′ , p1B′) = (p4B′p2B′)♯(p2B′ , p1B′) ∈ GA♯GA′ with Ã′ := B′

pB̃′ := (p2B , p
1
B) = (p2B , p

1
B)♯(p

1
B , p

1
B) ∈ GA♯GA′ with B̃′ := B

pC̃′ := (p4C , p
3
C) = (p4C , p

4
C)♯(p

4
C , p

3
C) ∈ GA♯GA′ with C̃ ′ := C

pD̃′ := (p2D, p
3
D) = (p2D, p

2
D)♯(p2D, p

3
D) ∈ GA♯GA′ with D̃′ := D

pÃ := (p4B , p
1
B) = (p4B , p

2
B)♯(p

2
B , p

1
B) ∈ GA′♯GA with Ã := B

pB̃ := (p2B , p
1
B) = (p2B , p

2
B)♯(p

2
B , p

1
B) ∈ GA′♯GA with B̃ := B

pC̃ := (p4C , p
3
C) = (p4C , p

4
C)♯(p

4
C , p

3
C) ∈ GA′♯GA with C̃ := C

pD̃ := (p2D, p
3
D) = (p2D, p

2
D)♯(p2D, p

3
D) ∈ GA′♯GA with D̃ := D

This shows (8.11), and then Theorem 2.28 shows (8.10). This ends the proof of the lemma.

8.9 D-maximality does not imply completeness

We give two examples. The first example is explicit for 2 : 0 junction, while the second is less explicit for
junctions 0 : 3.

Lemma 8.12 (Explicit conservative D-maximal set, which is not complete, for 2:0 junctions)
Let g(x) := |x| − 1 with g : R → R, and a 2 : 0 junction J with f1 = f2 := g. There exists an explicit set
G ⊂ R2 satisfying

(8.12)

{
Df ≥ 0 on G × G
f1 + f2 = 0 on G

Then the set G is conservative D-maximal in the following sense: if some set G′ ⊂ R2 satisfies (8.12) and

G ⊂ G′, then G′ = G. Moreover G is not complete, i.e.
⋃
p̂∈G

BA(p̂) ̸= R2.

Proof of Lemma 8.12
Step 0: preliminaries
We consider the following three points A := (2, 0), B := (0, 2), B′ := (0,−2), and define the subset G ⊂ R2

as G := SAB ∪ SAB′ , where SAB is the closed segment joining A to B in R2. For all p, q ∈ R2, recall the
dissipation

Df := Df (p, q) :=
∑
j=1,2

sign(pj − qj) ·
[
f j
]pj

qj
with

[
f j
]pj

qj
:= f j(pj)− f j(qj)

Step 1: proof that Df ≥ 0 on G × G
We have

Df =



[
f1
]p1

q1
+
[
f2
]p2

q2
≥ 0 if p, q ∈ SAB , with p2 = p1 ≥ q1 = q2,[

f1
]p1

q1
−
[
f2
]p2

q2
≥ 0 if p, q ∈ SAB′ , with −p2 = p1 ≥ q1 = −q2,[

f1
]p1

q1
+
[
f2
]p2

q2
≥ 0, if p ∈ SAB , q ∈ SAB′ , with p2 = p1 ≥ q1 = −q2 ≥ 0,

−
[
f1
]p1

q1
+
[
f2
]p2

q2
≥ 0, if p ∈ SAB , q ∈ SAB′ , with 0 ≤ p2 = p1 < q1 = −q2.
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Step 2: maximality of G
Notice first that it is straightforward to check that f1 + f2 = 0 on G.
Assume now that there exists p ∈ R2 such that G′ := {p}∪G satisfies (8.12). Then we have (f1+f2)(p) = 0,
i.e. |p1|+ |p2| = 2. If p1 < 0, then |p2| < 2 and we get

Df (B′, p) =
{
f1(0)− f1(p1)

}
−
{
f2(−2)− f2(p2)

}
= −|p1| −

{
2− |p2|

}
= 2|p2| − 4 < 0

Contradiction. Therefore p1 ≥ 0 and p ∈ G, i.e. G′ = G. We conclude that G ⊂ R2 satisfying (8.12) is
maximal for the inclusion.
Step 3: basin of attraction of G
We have 

BA(p) = (−∞, 0]× (−∞, 2), for p = B′

BA(p) =
{
p1
}
× (∞,−p2) for all p ∈ SAB′\ {B′}

BA(p) = {p} for all p ∈ SAB\ {A,B}
BA(p) = (−∞, 0]× {2} , for p = B

Then ⋃
p̂∈G

BA(p̂) = R2\Ω0 with the open set Ω0 :=
{
p = (p1, p2) ∈ R2, p2 > h(p1)

}
̸= ∅

where h(p1) := min
{
2, 2− p1,−∞ · 1{p1>2}

}
. This shows that G is not complete and ends the proof of the

lemma.

Lemma 8.13 (A conservative D-maximal set, which is not complete, for 3:0 junctions)
There exists a 3 : 0 junction J with f j = g for j = 1, 2, 3 for some Lipschitz continuous function g :
[α, β] → R for some α, β ∈ R with α < β. We set a := (α, α, α) and b := (β, β, β). Then there exists a set
G ⊂ [a, b] ⊂ RN for N = 3 satisfying

(8.13)


Df ≥ 0 on G × G∑
j=1,...,N

f j = 0 on G

Moreover G is conservative D-maximal in the following sense: for every set G′ ⊂ [a, b] satisfying (8.13) such

that G ⊂ G′, then G′ = G. Moreover G is not complete, i.e.
⋃
p̂∈G

BA(p̂) ̸= [a, b].

Proof of Lemma 8.13
Step 1: properties of G0

Let ε, δ, η ∈ (0, 1) be such that α < −1 < ε+ δ < β and g such that

g(α) = 0, g(−1) = η, g(ε) = −(1 + η), g(ε+ δ) = 1, g(β) = 0

We set  U1 := −e1 + εe2 + (ε+ δ)e3
U2 := −e2 + εe3 + (ε+ δ)e1
U3 = −e3 + εe1 + (ε+ δ)e2

and consider the set
G0 := {a, b, U1, U2, U3} ⊂ [a, b].

Using g(−1) + g(ε) + g(ε + δ) = 0, it is straightforward to check that G0 satisfies the second line of (8.13).
Now let us check that we have

(8.14) Df
+ ≥ 0 on G0 × G0

which implies that G0 satisfies the first line of (8.13), because Df (p, q) = Df
+(p, q) +Df

+(q, p). In order to
check (8.14), now consider the matrix E whose lines are vectors U1, U2, U3, i.e.

E =

 U1
1 U2

1 U3
1

U1
2 U2

2 U3
2

U1
3 U2

3 U3
3

 =

 −1 ε ε+ δ
ε+ δ −1 ε
ε ε+ δ −1


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Then we consider B = g(E) componentwise, we get with gji := g(U j
i )

B =

 g11 g21 g31
g12 g22 g32
g13 g23 g33

 =

 η −(1 + η) 1
1 η −(1 + η)

−(1 + η) 1 η


Recall that

D+(U1, U2) = sign+(U1
1 − U1

2 ) ·
{
g11 − g12

}
+ sign+(U2

1 − U2
2 ) ·

{
g21 − g22

}
+ sign+(U3

1 − U3
2 ) ·

{
g31 − g32

}
We get  D+(U1, U2) =

{
g21 − g22

}
+
{
g31 − g32

}
= −

{
g11 − g12

}
= D+(U2, U1)

D+(U2, U3) =
{
g12 − g13

}
+
{
g32 − g33

}
= −

{
g22 − g23

}
= D+(U3, U2)

D+(U3, U1) =
{
g13 − g11

}
+
{
g23 − g21

}
= −

{
g33 − g31

}
= D+(U1, U3)

Hence D+(Ui, Uj) ≥ 0 for i, j = 1, . . . , 3 if and only if g11 ≤ g12 , g
2
2 ≤ g23 , g

3
3 ≤ g31 , which is the case because

g11 = g22 = g33 = η ≤ 1 = g12 = g23 = g31 . We also have D+(a, b) = 0 = D+(b, a) because g(α) = 0 = g(β).
Moreover Rankine-Hugoniot relation f1 + f2 + f3 = 0 implies

D+(Ui, a) = 0 = D+(a, Ui), D+(Ui, b) = 0 = D+(b, Ui), for i = 1, 2, 3

Hence (8.14) holds true, and then G0 satisfies (8.13).
Step 2: definition of G̃
We now consider a set G̃ ⊂ [a, b] satisfying (8.13) with G0 ⊂ G̃, and such that G̃ is maximal for the inclusion.
Step 3: uncompleteness of G̃
Assume by contradiction that G̃ is complete, i.e. that

⋃
p̂∈G̃

BA(p̂) = [a, b]. From Lemma 3.4, we deduce that

(BA(p̂))p̂∈G̃ is a partition of [a, b], and then G̃ is a generalized Riemann germ. Because G̃ satisfies (8.13), we

deduce that G̃ is a conservative Kruz̆kov germ, hence f̂ = f̂G̃ satisfies for N = 3

(8.15)

 Df̂ ≥ 0 on [a, b]
2∑

j=1,...,N

f̂ j = 0 on [a, b]

We set f̂ j0 := f̂ j(0) for j = 1, 2, 3 and 0 = 0R3 . We compute
Df̂ (U1, 0) =

{
g21 − f̂20

}
+
{
g31 − f̂30

}
= −

{
g11 − f̂10

}
= Df̂ (0, U1)

Df̂ (U2, 0) =
{
g12 − f̂10

}
+
{
g32 − f̂30

}
= −

{
g22 − f̂20

}
= Df̂ (0, U2)

Df̂ (U3, 0) =
{
g13 − f̂10

}
+
{
g23 − f̂20

}
= −

{
g33 − f̂30

}
= Df̂ (0, U3)

From the first line of (8.15), we deduce g11 ≤ f̂10 , g
2
2 ≤ f̂20 , g

3
3 ≤ f̂30 , which gives

0 < 3η = g11 + g22 + g33 ≤ f̂10 + f̂20 + f̂30 = 0

where the last equality follows from the second line of (8.15). Contradiction. Hence G̃ is not complete and
this ends the proof.

Corollary 8.14 (Counter-example to completeness for N ≥ 3)
Let N ≥ 3. Then there exists a N : 0 junction and particular Lipschitz continuous functions (f j)j=1,...,N

and a set G ⊂ [a, b] ⊂ RN satisfying (8.13). Moreover G is conservative D-maximal in the following sense:
for every set G′ ⊂ [a, b] satisfying (8.13) such that G ⊂ G′, then G′ = G. Moreover G is not complete, i.e.⋃
p̂∈G

BA(p̂) ̸= [a, b].

Proof of Corollary 8.14
For N = 3, the result follows from Lemma 8.13 for some set G3 satisfying (8.13) which is maximal for the
inclusion, and the contradiction to the completeness of G3 precisely follows from the evaluation of

(8.16) Df̂G3 (0R3 , Uj) ≥ 0, j = 1, 2, 3.
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For N ≥ 3, we set

(8.17) p′N = (p4N , . . . , p
N
N ) with pkN := (fk)−1(0), k = 4, . . . , N.

Now fix some N ≥ 3, and assume that there exists some set GN satisfying (8.13) which is maximal for the
inclusion. Let us now show that we can transfer the result to the level N + 1. Indeed, applying Lemma
7.8, we see that we can construct a set G̃N ⊂ [ã, b̃] ⊂ RN+1 which satisfies (8.13), hence at the level N + 1.
Then consider a set GN+1 with G̃N ⊂ GN+1 ⊂ [ã, b̃] ⊂ RN+1 satisfying (8.13) at the level N + 1, and which
is maximal for the inclusion.

Assume now by contradiction that the set GN+1 is complete. Then the argument of Step 3 of the proof
of Lemma 8.13 applies and shows that GN+1 is indeed a conservative Kruz̆kov germ. In particular f̂GN+1

is
continuous, and using definition (8.17) at level N + 1, we get

Df̂G3 (0R3 , Uj) = Df̂GN+1 ((0R3 , p′N+1), (Uj , p
′
N+1)) ≥ 0, j = 1, 2, 3

which leads to the same contradiction as (8.16) did. Therefore GN+1 ⊂ RN+1 must be not complete. This
ends the proof of the corollary.

9 Appendix of Part I

9.1 Standard Riemann problem

We consider the entropy solution u = u(t, x) to the following Riemann problem

(9.1)

 ut + (g(u))x = 0 on (0,+∞)× R

u(0, x) = u0(x) :=

{
pL if x < 0
pR if x > 0

Lemma 9.1 (Explicit solution to Riemann’s problem on the real line)
Assume that g : R → R is continuous, locally Lipschitz. The for any pL, pR ∈ R, there exists a unique
entropy solution u to (9.1). It satisfies u(t, x) = U(x/t) for all t > 0. Moreover, let us define I :=
[min(pL, pR),max(pL, pR)] and

g̃ :=

{
convex envelop of gI if pL < pR
concave envelop of gI if pL > pR

∣∣∣∣ with gI(a) :=

 g(a) if a ∈ I
+∞ if a ∈ R\I, pL < pR
−∞ if a ∈ R\I, pL > pR

and set

ξL ≤ ξR with (ξL, ξR) :=

 ( g̃′(p+L) , g̃′(p−R) ) if pL < pR
( 0 , 0 ) if pL = pR
( g̃′(p−L ) , g̃′(p+R) ) if pL > pR

Then

(9.2) U(ξ) =

 pL if ξ < ξL
pR if ξ > ξR
((g̃|I)

′)−1(ξ) if ξ ∈ [ξL, ξR]

where the map U : R → R is monotone and is uniquely defined outside a countable set.

Remark 9.2 Notice that ((g̃|I)
′)−1 is not defined for ξL = 0 = ξR, which only arises when pL = pR. When

pL ̸= pL, as a help, the function ((g̃|I)
′)−1 is better understood as the inverse maximal monotone graph of

the maximal monotone graph (g̃|I)
′.

proof of Lemma 9.1
For the proof, we refer to the textbook Serre [19], where it is done for C∞ functions g. Indeed, only the
regularity C2 is used there. This can easily be extended to the case of g continuous and locally Lipschitz, by
approximation, and stability of entropy solutions. On the same topic, the reader can also consult textbooks
Dafermos [9] and Holden, Risebro [13]. This ends the proof of the lemma.
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Remark 9.3 Notice that the result of Lemma 9.1 also follows from HJ-SCL relations (for instance justified
using vanishing viscosity method, and BV bounds for scalar conservation laws). Indeed it is also a straight-
forward consequence of Hopf formula (see Theorem 3.1 in [5]) for convex initial data of Hamilton-Jacobi
equations. Here the convex initial data is W0(x) = pLx ·1{x<0}+pRx ·1{x>0} when pL < pR, for non convex
Hamiltonian g.

9.2 Reduction of test functions for viscosity solutions on junctions

Consider the problem

(9.3)


vjt + f j(vjx) = 0 on R× Jj , j = 1, . . . , N

v0(t, 0) := vj(t, 0) on R× {0} , j = 1, . . . , N

v0t + ĥ(v1x, . . . , v
N
x ) = 0 on R× {0}

We also define the half-relaxation operators

(9.4)


(Rĥ)(p) := sup

q∈[p,b]

min
{
ĥ, fmin

}
(q) with fmin(q) := min

j=1,...,N
f j(qj)

(Rĥ)(p) := inf
q∈[a,p]

max
{
ĥ, fmax

}
(q) with fmax(q) := max

j=1,...,N
f j(qj)

Lemma 9.4 (Reducing the set of test functions)
Assume (2.2) with N ≥ 1 with a junction J of type 0 : N . Let G ⊂ [a, b] be a generalized Riemann germ

which is a HJ germ. Then the associated Godunov flux is f̂G = (ĥ, . . . , ĥ) with ĥ : [a, b] → R given by i) of
Theorem 2.25. For any p ∈ [a, b], consider the function v = (v1, . . . , vN ) defined by

vj(t, x) := −λt+ pjx for all (t, x) ∈ R× Jj , j = 1, . . . , N

i) (Viscosity subsolutions)

Then ĥ satisfies

(9.5) ĥ = Rĥ with R defined in (9.4)

Moreover v is a viscosity subsolution of (9.3) if and only if −λ+ f j(pj) ≤ 0 and

for all q ∈ χG,
(
q ≥ p =⇒ −λ+ ĥ(q) ≤ 0

)
ii) (Viscosity supersolutions)

Then ĥ satisfies

(9.6) ĥ = Rĥ with R defined in (9.4)

Moreover v is a viscosity supersolution of (9.3) if and only if −λ+ f j(pj) ≥ 0 and

for all q ∈ χG,
(
q ≤ p =⇒ −λ+ ĥ(q) ≥ 0

)
Proof of Lemma 9.4
Step 1: proof of (9.5)

By definition of Rĥ and by monotonicity of ĥ, we have Rĥ ≤ ĥ. Now for p ∈ [a, b], let p̂ := πG(p). Then

(Rĥ)(p) := sup
q∈[p,b]

min
{
ĥ, fmin

}
(q) ≥ sup

q∈[p,b]∩BA(p̂)

min
{
ĥ, fmin

}
(q)

By construction, there exists q ∈ [p, b] ∩ BA(p̂) such that f j(qj) ≥ f j(p̂j) = ĥ(p̂) = ĥ(q), j = 1, . . . , N .

Therefore (Rĥ)(p) ≥ ĥ(p̂) = ĥ(p), which implies the equality and then shows (9.5).
Step 2: proof of (9.6)

107



The proof is similar to Step 1.
Step 3: proof of i)
The proof of i) is a simple variant of the proof of Theorem 2.7 in [14]. An easy adaptation of the proof is
done for instance in [11] in the case [a, b] ∩ RN = RN , in the subsection on the reduction of test functions.
The adaptation to the general case [a, b] is straightforward (and indeed easier).
Step 4: proof of ii)
The proof is similar to Step 3. This ends the proof of the lemma.

9.3 Gluing of matrices

In Subsection 5.5, we have studied the gluing of two germs Gα♯Gβ . We have also seen that naturally is

associated the gluing of their Godunov fluxes f̂ = f̂α♯f̂β .

In this section, we are interested in the algebra giving the Jacobian matrix Df̂ in terms of the two
Jacobian matrices Df̂α and Df̂β . This is given by the following result.

Lemma 9.5 (Formal Jacobian matrix after gluing)
For γ = α, β, let some integers nγ ≥ 2. By abuse of notation, let us also allow the indices α, β to denote two

sets of indices with α ≃ {1, . . . , nα − 1} and β ≃ {1, . . . , nβ − 1}. Now let f̂γ = (f̂0γ , f̂
1
γ , . . . , f̂

nγ−1
γ ) : Rnγ ⊃

[a, b]γ → Rnγ . For pγ = (p1γ , . . . , p
nγ−1
γ ) ∈ Rnγ−1, let us set f̂ = (−f̂0α, f̂1α, . . . , f̂nα−1

α )♯f̂β defined formally by

(9.7) f̂ j(pα, pβ) :=

{
f̂ jα(r, pα) if j ∈ α

f̂ jβ(r, pβ) if j ∈ β

∣∣∣∣∣ with r satisfying − f̂0α(r, pα) = f̂0β(r, pβ)

(having in mind J0
α ≃ (0,+∞) and J0

β ≃ (−∞, 0), and then here (−f̂0α)(↓, pα) and f̂0β(↑, pβ), i.e. f̂0α(↑, pα)).
We set (with index i for the line and j for the column)

B̂′ := (∂j f̂
i
α)i,j∈{0}∪α =

(
∂0f̂

0
α (∂j f̂

0
α)j∈α

(∂0f̂
i
α)i∈α (∂j f̂

i
α)i,j∈α

)
=

(
B′

0 D′

C ′ B′

)
and

B̂ := (∂j f̂
i
β)i,j∈{0}∪β =

(
∂0f̂

0
β (∂j f̂

0
β)j∈β

(∂0f̂
i
β)i∈β (∂j f̂

i
β)i,j∈β

)
=

(
B0 D
C B

)
Then we have formally

B̂′ ⋆ B̂ := λ0(∂j f̂
i)i,j∈α∪β = λ0

(
B′ 0
0 B

)
−
(
C ′

C

)
· (D′ D) with λ0 := B′

0 +B0

When λ0 > 0, we set B̂′♯B̂ := λ−1
0 (B̂′ ⋆ B̂).

Proof of Lemma 9.5
Taking the derivative of the last equation of (9.7), we get easily{

∂j f̂
0
α + λ0∂jr = 0 if j ∈ α

∂j f̂
0
β + λ0∂jr = 0 if j ∈ β

The elimination of ∂jr then gives

λ0(∂j f̂
i)i,j∈α∪β =

(
(λ0∂j f̂

i
α − ∂0f̂

i
α∂j f̂

0
α)i,j∈α (0− ∂0f̂

i
α∂j f̂

0
β)(i,j)∈β×α

(0− ∂0f̂
i
β∂j f̂

0
α)(i,j)∈α×β (λ0∂j f̂

i
β − ∂0f̂

i
β∂j f̂

0
β)i,j∈β

)

and the result follows. This ends the proof of the lemma.

Then we have the following result about the new algebra of gluing of matrices.
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Proposition 9.6 (Properties of the gluing of matrices)
Let Mn denote the set of n × n matrices, with the convention that Mn = {0} for n ≤ 0. For m,n ≥ 0 and
m+ n ≥ 1, the gluing map

⋆ : Mm+1 ×Mn+1 → Mm+n

(B̂′, B̂) 7→ B̂′ ⋆ B̂

is quadratic. Moreover if the square matrices B̂′, B̂ are P0-monotone (resp. Riemann monotone, resp.
Kruz̆kov monotone, in the sense of Definition 7.1), then B̂′ ⋆ B̂ is also a P0-monotone (resp. Riemann
monotone, resp. Kruz̆kov monotone).

For the proof of Proposition 9.6, we need the following easy result.

Lemma 9.7 (A property of Riemann monotone matrices)

Assume that the following matrix B̂ =

(
B0 D
C B

)
is Riemann monotone (in the sense of Definition 7.1),

where the block decomposition is for B0 ∈ R and B ∈ Rn. We have B0 ≥ 0. Moreover B0 = 0 implies C = 0.

Proof of Lemma 9.7
Recall that by assumption, for all x ∈ R1+n, we know that x ⋄ (B̂ · x) ≤ 0 implies B̂ · x = 0. Now for

x = (a, 0, . . . , 0)
T

with a ̸= 0, we get x ⋄ (B̂ · x) = 0 with B0 = 0, and then 0 = B̂ · x = a

(
0
C

)
implies

C = 0. The fact that B0 ≥ 0 is general and follows from the fact that B̂ is in particular P0-monotone. This
ends the proof of the lemma.

Proof of Proposition 9.6
Step 1: Proof of P0-monotonicity
We claim that

(9.8) δ := det(B̂′ ⋆ B̂) = λ
(m+n−1)
0

{
det(B′)det(B̂) + det(B̂′)det(B)

}
Notice that δ ≥ 0 if both matrices B̂′, B̂ are P0-monotone. This property also passes to minors of B̂′ ⋆ B̂,
because they are then expressed as functions of minors of B̂′ and of B̂.

Now let us show (9.8). Denoting by B̌′
l the matrix B′ whose column l has been suppressed (and similarly
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B̌q the matrix B whose column q has been suppressed), we get

λ
−(m+n−1)
0 δ := λ

−(m+n−1)
0 det(B̂′ ⋆ B̂)

= λ
−(m+n−1)
0

∣∣∣∣∣∣
1 0 0
0 λ0B

′ − C ′D′ −C ′D
0 −CD′ λ0B − CD

∣∣∣∣∣∣
= λ

−(m+n−1)
0

∣∣∣∣∣∣
1 0 0
C ′/λ0 λ0B

′ − C ′D′ −C ′D
C/λ0 −CD′ λ0B − CD

∣∣∣∣∣∣
= λ

−(m+n−1)
0

∣∣∣∣∣∣
1 λ0D

′ λ0D
C ′/λ0 λ0B

′ 0
C/λ0 0 λ0B

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ0 D′ D
C ′ B′ 0
C 0 B

∣∣∣∣∣∣
= λ0det(B

′)det(B) + det(B) ·
m∑
l=1

(−1)lD′
ldet(C

′, B̌′
l) + (−1)m

n∑
q=1

(−1)qDq

∣∣∣∣ C ′ B′ 0
C 0 B̌q

∣∣∣∣
= λ0det(B

′)det(B) + det(B) ·
m∑
l=1

(−1)lD′
ldet(C

′, B̌′
l) +

n∑
q=1

(−1)qDq

∣∣∣∣ B′ C ′ 0
0 C B̌q

∣∣∣∣
= λ0det(B

′)det(B) + det(B) ·
m∑
l=1

(−1)lD′
ldet(C

′, B̌′
l) + det(B′) ·

n∑
q=1

(−1)qDqdet(C, B̌q)

where, in the fifth line we have factorized the first column by λ−1
0 and the other columns by λ0, in the sixth

line we have used expansion along the first row. Again using expansion of the determinant on the first row,
recall that 

det(B̂′) = B′
0det(B

′) +

m∑
l=1

(−1)lD′
ldet(C

′, B̌′
l)

det(B̂) = B0det(B) +

q∑
q=1

(−1)lDqdet(C, B̌q)

λ0 = B′
0 +B0

Hence λ
−(m+n−1)
0 δ = det(B̂′)det(B) + det(B′)det(B̂) which shows (9.8).

Step 2: Proof of Riemann monotonicity
Case A: λ0 = 0

The case λ0 = B′
0 +B0 = 0 implies B̂′ ⋆ B̂ = −ČĎ with Č :=

(
C ′

C

)
and Ď := (D′ D).

Recall that B′
0, B0 ≥ 0. Hence λ0 = 0 also implies B′

0 = 0 = B0. Moreover Lemma 9.7 shows that Č = 0.
Hence B̂′ ⋆ B̂ = 0 which is in particular Riemann monotone.
Case B: λ0 := B′

0 +B0 > 0
Then in statement of Proposition 5.11, we can consider the functions

f̂0α(r, pα) := B′
0r +D′ · pα

f̂ iα(r, pα) := (C ′)ir + (B′ · pα)i

f̂0β(r, pβ) := B0r +D · pβ
f̂ iβ(r, pβ) := Cir + (B · pβ)i

They are not locally constant, but there is a unique solution r ∈ R of

−f̂0α(r, pα) = f̂0β(r, pβ).
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When B̂′, B̂ are Riemann monotone matrices, then f̂α, f̂β are Riemann monotone maps. Then Step 6 of

the proof of Proposition 5.11 applies and shows that f̂(pα, pβ) is Riemann monotone, which means precisely

that the matrix B̂′♯B̂ := λ−1
0 (B̂′ ⋆ B̂) is a Riemann monotone matrix.

Step 3: Proof of Kruz̆kov monotonicity
If λ0 = 0, then Step 2 shows that B̂′ ⋆ B̂ = 0 which is in particular Kruz̆kov monotone. If λ0 > 0, the proof
follows the lines of Step 2, replacing Riemann monotonicity by Kruz̆kov monotonicity, and using Step 8 of
the proof of Proposition 5.11 instead of Step 6. This ends the proof of the lemma.

Remark 9.8 Our calculations are related to the Schur complement (see [15]) for B̂ :=

(
B0 D
C B

)
, which

is B̂/B0 := B − CB−1
0 D and satisfies classically det B̂ = det B0 · det(B̂/B0).

Lemma 9.9 (Formal Jacobian matrix after self-gluing)
Let γ be a fixed index, and some integers nγ ≥ 3. Let Iγ := {0, . . . , nγ − 1} and I ′′ := {1, . . . , nγ − 2}.
Now let f̂γ = (f̂0γ , f̂

1
γ , . . . , f̂

nγ−1
γ ) : Rnγ ⊃ [a, b]γ → Rnγ . For pγ = (p1γ , . . . , p

nγ−2
γ ) ∈ Rnγ−2, let us set

f̂ = (−f̂k1
γ , f̂1γ , . . . , f̂

nγ−2
γ , f̂k2

γ )
♯

k1:k2 with k1 := 0 and k2 := nγ − 1, defined formally for j ∈ I ′′ by

(9.9) f̂ j(pγ) := f̂ jγ(r, pγ , r) with r satisfying − f̂0γ (r, pγ , r) = f̂nγ−1
γ (r, pγ , r).

(having in mind Jk1
γ ≃ (0,+∞) and Jk2

γ ≃ (−∞, 0), and then here (−f̂k1
γ )(↓, pγ , r) and f̂k2

γ (r′, pγ , ↑), i.e.
f̂k1
γ (↑, pγ , r)). We set (with index i for the line and j for the column)

B̂ := (∂j f̂
i
γ)i,j∈{k1}∪I′′∪{k2} =

 (∂k1
f̂k1
γ ) (∂j f̂

k1
γ )j∈I′′ (∂k2

f̂k1
γ )

(∂k1 f̂
i
γ)i∈I′′ (∂j f̂

i
γ)i,j∈I′′ (∂k2

f̂ iγ)i∈I′′

(∂k1
f̂k2
γ ) (∂j f̂

k2
γ )j∈I′′ (∂k2

f̂k2
γ )

 =

 B′
0 D′ F ′

0

C ′ B C
E′

0 D B0


Then we have formally

B̂
⋆

j1:j2 := λ0(∂j f̂
i)i,j∈I′′ = λ0B − (C ′ + C) · (D +D′) with λ0 := {B′

0 + F ′
0}+ {E′

0 +B0}

When λ0 > 0, we moreover set B̂
♯

j1:j2 := λ−1
0 B̂

⋆
j1:j2 .

Proof of Lemma 9.9
Taking the derivative of the last equality of (9.9), we get easily

−
{
∂j f̂

j1
γ + (∂jr)

{
∂j1 f̂

j1 + ∂j2 f̂
j1
γ

}}
= ∂j f̂

j2
γ + (∂jr)

{
∂j1 f̂

j2 + ∂j2 f̂
j2
γ

}
i.e.

∂j f̂
j1
γ + ∂j f̂

j2
γ + λ0∂jr = 0

The elimination of ∂jr then gives

λ0(∂j f̂
i)i,j∈I′′ =

(
λ0∂j f̂

i
γ −

{
∂j f̂

j1
γ + ∂j f̂

j2
γ

}
·
{
∂j1 f̂

i
γ + ∂j2 f̂

i
γ

})
i,j∈I′′

and the result follows. This ends the proof of the lemma.

Proposition 9.10 (Properties of the self-gluing of a matrix)
Let Mn denote the set of n × n matrices, with the convention that Mn = {0} for n ≤ 0. For n ≥ 3, the
self-gluing map

⋆ : Mn → Mn−2

B̂ 7→ B̂⋆ := B̂
⋆

j1:j2 with j1 := 0, j2 := n− 1

is quadratic. Moreover if the square matrix B̂ is Kruz̆kov monotone (in the sense of Definition 7.1), then
B̂⋆ is also Kruz̆kov monotone.
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Proof of Proposition 9.10
Case A: λ0 := {B′

0 + F ′
0}+ {E′

0 +B0} = 0
Because B̂ is Kruz̆kov monotone, we know with I ′′ := {1, . . . , n− 2} that

B′
0 ≥ |E′

0|+
∑
i∈I′′

|(C ′)i|

B0 ≥ |F ′
0|+

∑
i∈I′′

|Ci|

Hence λ0 = 0 implies C ′ = 0 = C and then B̂∗ = 0, which is in particular a Kruz̆kov monotone matrix.
Case B: λ0 > 0
Then in statement of Proposition 5.14, for nγ := n, we can consider the functions for pγ = (p1γ , . . . , p

nγ−2
γ ) ∈

Rnγ−2 with k1 := 0, k2 := nγ − 1
f̂k1
γ (r′, pγ , r) := B′

0r
′ +D′ · pγ + F ′

0r

f̂ iγ(r
′, pγ , r) := (C ′)ir′ + (B · pγ)i + Cir, i ∈ I ′′

f̂k2
γ (r′, pγ , r) := E′

0r
′ +D · pγ +B0r

They are not locally constant, but there is a unique solution r ∈ R of

−f̂k1
γ (r, pγ , r) = f̂k2

γ (r, pγ , r).

The proof follows the lines of Step 6 of the proof of Proposition 5.11, which shows that f̂ defined in (9.9)

satisfies Df̂ ≥ 0, which means exactly that λ−1
0 B̂⋆ is Kruz̆kov monotone. This ends the proof of the lemma.

Part II

Existence and uniqueness theory for Kruz̆kov
germs

10 Properties of semisolutions

10.1 Stability

Lemma 10.1 (Solutions versus sub/supersolutions)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a generalized Riemann germ. Then u is a G-entropy solution
of (2.4) if and only if it is a G-entropy subsolution and supersolution of (2.4).

Proof of Lemma 10.1
We know that GSUB ∩ GSUP = G. Hence the desired property is true at the junction point for G-entropy.
We now want to check (it is probably very classical) that on each branch a function is an entropy solution
if and only if it is an entropy subsolutions and supersolution. To this end, we consider the case N = 1 and
drop the index j. We get with notation ψj in (2.24) and ψj

± in (2.25){
|u− k| = |u− k|+ + |u− k|− and |u− k|− = |k − u|+
ψ(u, k) = ψ+(u, k) + ψ−(u, k)

and this implies that if a function u is both an entropy subsolution and supersolution, then it is an entropy
solution. Conversely for an entropy solution (hence bounded), we have for all k ∈ R

(10.1)

{
|u− k|+ |u− a| = 2|u− k|+ + |k − a|+ 2|u− a|−
ψ(u, k) + ψ(u, a) = 2ψ+(u, k) + {f(k)− f(a))}+ 2ψ−(u, a)

and

(10.2)

{
|u− k|+ |u− b| = 2|u− k|− + |k − b|+ 2|u− b|+
ψ(u, k) + ψ(u, b) = 2ψ−(u, k)− {f(k)− f(b))}+ 2ψ+(u, b)
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Notice that u ∈ [a, b] implies 0 = 2|u − a|− = 2ψ−(u, a) = 2|u − b|+ = 2ψ+(u, b). Hence this shows in the
integral formulation that every standard entropy solution u satisfying a ≤ u ≤ b also satisfies both conditions
of standard entropy subsolution and supersolution for k ∈ [a, b], and then for all k ∈ R.
This ends the proof of the lemma.

In general, we do not expect to have stability of G-solutions for all Riemann germs G. Here we present
stability for certain subclasses.

Lemma 10.2 (Stability of solutions and of sub/supersolutions)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set.
We consider a sequence of functions (un)n∈N with un : [0,+∞)× J → R, such that

un → u∞ in L1
loc([0,+∞)× J)

i) (Solutions for Kruz̆kov germs)
If G is a Kruz̆kov germ and if each function un is a G-entropy solution of (2.4), then the limit u is also a
G-entropy solution of (2.4).
ii) (Subsolutions/supersolutions for monotone Kruz̆kov germs)
If G is a monotone Kruz̆kov germ and if each function un is a G-entropy subsolution (resp. supersolution)
of (2.4), then the limit u is also a G-entropy subsolution (resp. supersolution) of (2.4).

Proof of Lemma 10.2
First recall that the stability of Kruz̆kov entropy solutions/subsolutions/supersolutions is classical outside
the junction point, and follows from the very definition of Kruz̆kov entropy solutions. Hence it remains to
show the stability of the boundary condition at the junction point.
Step 1: proof of i)
We simply use the integral formulation of (2.4), which is recalled in Proposition 2.39. Forgetting the initial
data, and focusing on the junction point, this means the following for un. For all test functions 0 ≤ φj ∈
C1

c ((0,+∞)× J̄j), and with J̄j = {0} ∪ Jj ≃ [0,+∞) or (−∞, 0] with φj(t, 0) = φk(t, 0) for all t ∈ [0,+∞)
and all index j, k, we have

(10.3)
∑
k

{∫
(0,+∞)×Jk

{
ηk(un, c)φ

k
t + ψk(un, c)φ

k
x

}
dtdx

}
≥ 0 for all elements c = (c1, . . . , cN ) ∈ G

At the limit n→ +∞, the function u∞ still satisfies (10.3). Choosing

φj(t, x) = β(t)αj
ε(x) with αj

ε(x) = αj(ε−1x) with 0 ≤ β ∈ C1
c (0,+∞), 0 ≤ αj ∈ C1

c (J̄
j), αj(0) = 1

and using the existence of strong Panov’s traces, we get at the limit ε→ 0:∫
(0,+∞)×{0}

βD(u∞, c) ≥ 0 with D(u∞, c) :=
∑

Jk≃(−∞,0)

ψk(u∞, c)−
∑

Jk≃(0,+∞)

ψk(u∞, c)

We deduce that for a.e. time t ∈ (0,+∞), we have D(u∞(t, 0), c) ≥ 0 for all c ∈ G. Because G is a D-germ,
it is D-maximal, and this implies that u∞(t, 0) ∈ G for a.e. time t ∈ (0,+∞), which shows that u∞ is a
G-entropy solution of (2.4).
Step 2: proof of ii)
The proof follows the same lines as in Step 1. Recall that at the junction point, G-entropy subsolutions
(resp supersolutions) un of (2.4) satisfy the following. For all test functions 0 ≤ φj ∈ C1

c ((0,+∞)× J̄j) with
J̄j = {0} ∪ Jj ≃ [0,+∞) or (−∞, 0], and with φj(t, 0) = φk(t, 0) for all t ∈ [0,+∞) and all index j, k, we
have the following inequality

(10.4)
∑
k

{∫
(0,+∞)×Jk

{
ηk+(un, c)φ

k
t + ψk

+(un, c)φ
k
x

}
dtdx

}
≥ 0 for all c ∈ GSUB

(respectively the same relation with (ηk−, ψ
k
−,GSUP ) instead of (ηk+, ψ

k
+,GSUB), with ψk

−(un, c) = ψk
+(c, un)).

Then we deduce D+(u∞(t, 0), c) ≥ 0 for all c ∈ GSUB . Using the fact that the left-dual satisfies
∗GSUB = GSUB , we deduce that u∞(t, 0) ∈ GSUB for a.e. time t ∈ (0,+∞), which shows that u∞ is a
G-entropy subsolution (resp. supersolution) of (2.4). This ends the proof of the lemma.
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10.2 L1-contraction, uniqueness and comparison

Lemma 10.3 (L1-contraction, uniqueness and comparison)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a set. Let us consider two initial data u0, v0 ∈ p0 + L1(J)
for some constant p0 ∈ RN .
i) (L1-contraction and uniqueness)
Assume that G is a Kruz̆kov germ. Let u, v be two G-entropy solutions of (2.4) with respective initial data
u0, v0. Then we have ∫

{t}×J

|u− v| ≤
∫
{0}×J

|u− v| for all t ≥ 0

In particular, if u0 = v0, we get u = v, i.e. we have uniqueness of the solution.
ii) (Comparison)
Assume that G is a monotone Kruz̆kov germ. Let u (resp. v) be a G-entropy subsolution (resp. supersolution)
of (2.4), with respective initial data u0, v0. Then we have∫

{t}×J

|u− v|+ ≤
∫
{0}×J

|u− v|+ for all t ≥ 0

Proof of Lemma 10.3
Step 1: proof of i)
Recall that the doubling of variable method introduced by Kruz̆kov, allows to claim for inequalities on
D′ = D′((0,+∞)× Jj) that

(10.5)
∂tη

j(u, k) + ∂xψ
j(u, k) ≤ 0

∂tη
j(k, v) + ∂xψ

j(k, v) ≤ 0

}
for all k ∈ RN , implies ∂tη

j(u, v)t + ∂xψ
j(u, v) ≤ 0

Notice that in the original paper [16], Kruz̆kov uses the Lipschitz continuity of the fluxes f j (that we also
assume), even if it also works for continuous fluxes (using the Lebesgue Dominated Convergence theorem).
Inspired by the integral formulation of (2.4) given in Proposition 2.39 at the junction point, we consider the
following. For all test functions 0 ≤ φj ∈ C1

c ((0,+∞)× J̄j) with J̄j = {0} ∪ Jj ≃ [0,+∞) or (−∞, 0] with

(10.6) φj(t, 0) = φk(t, 0) =: φ(t, 0) for all t ∈ [0,+∞) and all index j, k

we set

(10.7) I(φ) :=
∑
k

{∫
(0,+∞)×Jk

{
ηk(u, v)φk

t + ψk(u, v)φk
x

}
dtdx

}

Now set

φ̃j
ε(t, x) := φ(t, 0)αj

ε(x) with αj
ε(x) := αj(ε−1(x), 0 ≤ αj ∈ C1

c (J̄
j), αj(0) = 1

Then we write I(φ) = I(φ̃ε)+ I(φ− φ̃ε). Because φ− φ̃ε is the limit of functions in C1
c ((0,+∞)× (J\ {0})),

we deduce from (10.5) that I(φ− φ̃ε) ≥ 0. In the other hand, we have using Panov’s traces that

I(φ̃ε) → I0 as ε→ 0, with I0 :=

∫
(0,+∞)×{0}

φD(u, v)

Because φ ≥ 0 and D(G,G) ≥ 0, we deduce that I0 ≥ 0. Hence I(φ) ≥ 0. Using Panov’s traces at
time t = 0+, and the same argument as before but in time instead of space, we get for all test functions
0 ≤ φj ∈ C1

c ([0,+∞)× J̄j) satisfying (10.6) that

∑
k

{∫
(0,+∞)×Jk

{
ηk(u, v)φk

t + ψk(u, v)φk
x

}
dtdx+

∫
{0}×Jk

ηk(u, v)φk dx

}
≥ 0

Using the fact that the fluxes f j are locally Lipschitz continuous (say with constant L), we know that we have
finite propagation. Now, given any compact set K0 ⊂ J , and for t ≥ 0, let Kt := J\Ωt with Ωt := BtL +Ω0
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and Ω0 := J\K0. Then we can find a sequence of test functions φn(t, x) approximating 1Kt(x)1[0,s](t) for
any s > 0. Hence we get ∫

{s}×Ks

|u− v| ≤
∫
{0}×K0

|u− v| =
∫
{0}×K0

|u0 − v0|

This property implies that u, v ∈ C0([0,+∞);L1
loc(J)) (for instance testing u with a function v which is

locally constant on K0 ̸∋ 0, we can repeat it for all such K0 and all translations in time). Now assuming that
u0, v0 ∈ p0+L

1(J), we deduce from monotone convergence theorem, that we can pass to the limit where K0

tends to the whole junction J , which gives∫
{s}×J

|u− v| ≤
∫
J

|u0 − v0| =
∫
{0}×J

|u− v|

Step 2: proof of ii)
The proof follows the lines of Step 1. The method of doubling of variables of Kruz̆kov also works for Kruz̆kov
semi-entropies, and gives that

∂tη
j
+(u, k) + ∂xψ

j
+(u, k) ≤ 0

∂tη
j
+(k, v) + ∂xψ

j
+(k, v) ≤ 0

}
for all k ∈ RN , implies ∂t(η

j
+(u, v) + ∂xψ

j
+(u

j , vj) ≤ 0

Then for all test functions 0 ≤ φj ∈ C1
c ((0,+∞)× J̄j) with J̄j = {0} ∪ Jj ≃ [0,+∞) or (−∞, 0] satisfying

(10.6), we set

(10.8) I+(φ) :=
∑
k

{∫
(0,+∞)×Jk

{
ηk+(u, v)φ

k
t + ψk

+(u, v)φ
k
x

}
dtdx

}

and using the fact that D+(GSUB ,GSUP ) ≥ 0, we get that I+(φ) ≥ 0 and also deduce that

∑
k

{∫
(0,+∞)×Jk

{
ηk+(u, v)φ

k
t + ψk

+(u, v)φ
k
x

}
dtdx+

∫
{0}×Jk

ηk+(u, v)φ
k dx

}
≥ 0

Panov’s traces also work for subsolutions and supersolutions, and this is also the case for the finite propa-
gation behaviour. We get in particular that |u− v|+ ∈ C0([0,+∞);L1(J)), and that∫

{s}×J

|u− v|+ ≤
∫
J

|u0 − v0|+ =

∫
{0}×J

|u− v|+

This ends the proof of the lemma.

10.3 Maximum and minimum of semisolutions

Lemma 10.4 (Maximum/minimum of sub/supersolutions)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a monotone Kruz̆kov germ.
i) (Maximum of two subsolutions)
Let u,w be two G-entropy subsolutions of (2.4). Then max(u,w) is a G-entropy subsolutions of (2.4).
ii) (Minimum of two supersolutions)
Let u,w be two G-entropy supersolutions of (2.4). Then min(u,w) is a G-entropy supersolutions of (2.4).

Proof of Lemma 10.4
We prove point i) (the proof of ii) is similar).
Step 1: checking that max(u,w) is an entropy subsolution, outside the junction point
The result of point i) should be standard, but we are not aware of a direct proof (see nevertheles Bianca,
Dogbe [24] for an indirect proof). Because we only want to check that each component max(uj , wj) is an
entropy solution on each brancj Jj , we can consider the case N = 1 and drop the index j in all expressions.
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We define the entropy η0(α, β; γ) := η+(α ∨ β, γ) = |α ∨ β − γ|+, which is clearly symmetric in α, β, and
satisfies (using α ∨ β = β + |α− β|+)

η0(α, β; γ) = |β+ |α−β|+−γ|+ =

{
|α− β|+ + β − γ if β ≥ γ
|α− γ|+ if β ≤ γ

}
= |α−β∨γ|++sign+(β−γ) ·(β−γ)

For ψ+(β, γ) = sign+(β − γ) · {f(β)− f(γ)}, we now define q0(α, β; γ) := ψ+(α, β ∨ γ) + ψ+(β, γ). At this
stage, it is not clear if q0 is symmetric or not in α, β, and we set

δq0(α, β; γ) := q0(α, β; γ)− q0(β, α; γ) = ψ+(α, β ∨ γ) + ψ+(β, γ)− ψ+(β, α ∨ γ)− ψ+(α, γ)

which is antisymmetric in α, β. We now only consider the case α ≤ β, (because the other case is symmetric).

α ≤ β ψ+(α, β ∨ γ) ψ+(β, α ∨ γ) ψ+(α, γ) ψ+(β, γ) 2ψ+(α ∨ β, γ) δq0(α, β; γ)

α ≤ β ≤ γ ψ+(α, γ) = 0 ψ+(β, γ) = 0 ψ+(α, γ) = 0 ψ+(β, γ) = 0 2ψ+(β, γ) = 0 0
α ≤ γ ≤ β ψ+(α, β) = 0 ψ+(β, γ) ψ+(α, γ) = 0 ψ+(β, γ) 2ψ+(β, γ) 0
γ ≤ α ≤ β ψ+(α, β) = 0 ψ+(β, α) ψ+(α, γ) ψ+(β, γ) 2ψ+(β, γ) 0

We deduce from the table that q0 is symmetric in α, β and that 2ψ+(α ∨ β; γ) = q0(α, β, γ) + q0(β, α, γ),
which shows that q0(α, β; γ) = ψ+(α ∨ β; γ). Hence we can apply the method of doubling of variables of
Kruz̆kov, which gives that

∂tη0(u, k; c) + ∂xq0(u, k; c) ≤ 0
∂tη0(w, ℓ; c) + ∂xq0(w, ℓ; c) ≤ 0

}
for all k, ℓ ∈ RN , implies ∂tη0(u,w; c) + ∂xq0(u,w; c) ≤ 0

i.e. ∂tη+(u ∨ w, c) + ∂xψ+(u ∨ w, c) ≤ 0 for all c ∈ R. This shows that max(u,w) is a Kruz̆kov entropy
subsolution (outside the origin).
Step 2: checking that max(u,w) is a G-entropy subsolution, at the junction point
Here this is the simplest part. We just have to check that max(u,w)(t, 0) ∈ GSUB for a.e. time t > 0, which
follows from Lemma 7.16. This ends the proof of the lemma.

10.4 Proof of Theorem 2.38: properties of semisolutions for monotone Kruz̆kov
germs

Proof of Theorem 2.38
For the proof we refer to the table of Subsection 2.4. The result follows from Lemmata 10.2 (stability), 10.3
(Max/min) and 10.4 (L1-comparison).

11 Existence via vanishing viscosity for Kruz̆kov germs

In this section, our goal is to get existence (and indeed uniqueness) of G-entropy solutions to problem (2.23),
which describes scalar conservation laws on a junction. We will be able to reach the end of this program
only in the special case of Kruz̆kov germs G.

11.1 General strategy for the proof of existence

Here we present very briefly the general strategy of the proof of existence. We only give the heuristics,
without justification. The key idea is to get a priori bounds on the solution, and then to justify them
using some method of approximation. To simplify, we assume that J is a junction of type 0 : N , i.e. that
Jj ≃ (0,+∞) for all j. We consider solutions u = (u1, . . . , uN ) of ut + (f(u))x = 0 on (0,+∞)× J

u(t, 0) ∈ G a.e. on (0,+∞)× {0}
u = u0 on {0} × J

0. L∞ estimate
Assuming u0 bounded, we first construct a bounded box [ā, b̄] ⊃ u0(J) such that G ∩ [ā, b̄] is still a Riemann
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germ on [ā, b̄], which is not a straightforward result. We then show by the maximum principle (up to the
boundary) that u(t, ·) ∈ [ā, b̄] for all t > 0.
1. ut estimate
Then for J∗ := J\ {0}, for two solutions u, v we have |u− v|t + (ψf (u, v))x ≤ 0 with ψfj

(u, v) := sign(uj −
vj) ·

{
f j(uj)− f j(vj)

}
. The integration by parts on (0, t)× J∗ gives the contraction estimate∫

(0,t)×{0}
Df (u, v) +

∫
{t}×J

|u− v| ≤
∫
{0}×J

|u− v| where Df (u, v) :=
∑

j=1,...,N

−ψfj

(u, v) ≥ 0

for u(t, 0), v(t, 0) ∈ G, because G is a Kruz̆kov germ. In particular for v(t, x) := u(t+ h, x) and dividing by
h→ 0+, we get formally ∫

{t}×J

|ut| ≤
∫
{0}×J

|ut|

Up to a boundary layer correction term when u0(0) ̸∈ G, we can show that such inequality holds true.
2. ux estimate
We write (ux)t + (f ′(u)ux)x = 0. Multiplying by sign(ux), we get |ux|t + (f ′(u)|ux|)x ≤ 0. Integrating on
(0, t)× (δ,+∞), we get ∫

{t}×(δ,+∞)

|ux| ≤
∫
{0}×(δ,+∞)

|ux|+
∫
(0,t)×{δ}

|(f(u))x|

≤
∫
{0}×(δ,+∞)

|ux|+
∫
(0,t)×{δ}

|ut|

which is the boundary BLN estimate. Integrating on δ, and using the ut estimate, we get what we call the
interior BLN estimate on ux.
3. Recovering the junction condition
The previous bounds give some a priori BVloc estimates, which are sufficient for any reasonable approximation
process. Still in such approximation process, the key point is to recover the junction condition u(t, 0) ∈ G,
at the limit. This is done using a weak version of the boundary condition. Precisely, this is the following for
φ = (φ1, . . . , φN ) with 0 ≤ φj ∈ C1((0,+∞)× J̄j), and for all stationary constant solution c ∈ G

0 ≤
∫
(0,+∞)×J∗

{
|u− c|φt + ψf (u, c)φx

}
Focusing φ on the junction point x = 0, we get for all 0 ≤ ϕ ∈ C1

c (0,+∞)

0 ≤
∫
(0,+∞)×{0}

Df (u, c)ϕ(t), i.e. 0 ≤ Df (u, c) for all c ∈ G

which implies u(t, 0) ∈ G, because G is maximal, due to the fact that G is Kruz̆kov.

11.2 Strategy of the proof by vanishing viscosity

Here we present briefly the strategy of the proof of existence by vanishing viscosity. Given a Kruz̆kov germ
G, we call f̂ := f̂G its associated Godunov flux. In a first step, the existence is reached using several approx-
imations of the problem, and in a second step we relax all those approximations. We list below our set of
approximations:

1) (Boundedness)
We assume that the box [a, b] is bounded. We also work on a truncated junction JR := J ∩ BR(0) with
bounded branches of length R, with suitable boundary condition for x = ±R, encoded in some suitable germ
GR and some associated flux f̂R.
2) (Regularized fluxes)

We consider smooth flux functions fη, f̂η, f̂R,η, instead of functions f, f̂ , f̂R which are only locally Lipschitz
continuous.
3) (Regularization of the solution by vanishing viscosity)
We introduce some viscosity ε > 0. We also assume that initial data is smooth, bounded and satisfies some
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compatibility conditions.

With those approximations in hands, we will be able to justify the following estimates on the solution uε

(11.1)

uε,j(t, x) ∈ [aj , bj ] for all (t, x) ∈ [0,+∞)× Jj
R, j = 1, . . . , N (Box estimate)∫

{t}×JR

|uεt | ≤
∫
{0}×JR

|uεt | (Contraction estimate)

∫
{t}×Jδ,R−δ

|uεx| ≤
∫
{0}×Jδ,R−δ

|uεx|+
∫
(0,t)×∂Jδ,R−δ

|uεt | (Boundary BLN estimate)

for all small δ > 0 with
Jδ,R−δ := (J ∩BR−δ)\B̄δ

Once we have estimates (11.1), it is sufficient to get BV bounds on the solution uε, locally outside the origin
x = 0 and outside x ∈ ∂JR. We can then remove fluxes approximations 2). Then notice that all c ∈ G
are solutions for x ̸∈ ∂JR, while all cR ∈ GR are solutions for all x ̸= 0. This allows us show the following
property with φ ∈ Lip([0,+∞)× J̄R;R+)

(11.2)



∫
{0}×JR

|uε − c|φ+

∫
(0,+∞)×JR

{
|uε − c|φt + ψf (uε, c)φx

}
≥ −εCφ

for all φ ∈ Cc([0,+∞)× JR) and all c ∈ G

∫
{0}×JR

|uε − cR|φ+

∫
(0,+∞)×JR

{
|uε − cR|φt + ψf (uε, cR)φx

}
≥ −εCφ

for all φ ∈ Cc([0,+∞)× (J̄R\ {0})) and all cR ∈ GR

We can then remove the viscosity approximation 3) with ε→ 0. We end up with entropy solutions with
zero viscosity on the bounded junction JR. The boundary conditions at x = 0 and x ∈ ∂JR then follow from
(11.2).

In a final step, we can consider the limit R→ +∞, and recover the desired solution on the full junction J .

As a guide for the remaining part of this section, let us indicate the flux f̂R that we choose. For
σ = (−1, . . . ,−1), and given some p0 ∈ [a, b], and p = (p1, . . . , pN ) ∈ [a, b], we set for all j = 1, . . . , N

(11.3) f̂ jR(p) := Gfj

(pj , pj0) and Jj
R ≃ (0, R)

where Gfj

is the standard Godunov flux associated to f j . Then the associated germ is GR :={
p ∈ [a, b], f̂R(p) = f(p)

}
.

In order to simplify the presentation, we will also use extensively the following result. It is a reduction
result for a problem with viscosity ε ≥ 0 on the full junction J . Its proof is straightforward.

Lemma 11.1 (Reduction from n : m junction to 0 : n+m junction)
Assume (2.2) with N ≥ 1, and let G ⊂ [a, b] be a Riemann germ with respect to (J, f) of orientation

σ ∈ {±1}N with Jj ≃ σj · (−∞, 0), with Godunov flux f̂ := f̂G : [a, b] → RN . Let uε be a solution of

(11.4)


uε,jt + (f j(uε,j))x = εuε,jxx on (0,+∞)× Jj

f j(uε,j)− εuε,jx = f̂ j(uε) on (0,+∞)× {0}
uε,j = uj0 on {0} × J

Define the following type of reversion transform

(ũj0(x), ũ
ε,j(t, x), J̃j , f̃ j(pj),

ˆ̃
f j(p)) :=

{
(ũj0(x), uε,j(t, x), Jj , f j(pj), f̂ j(p)) if σj = −1

(ũj0(−x), uε,j(t,−x), −Jj , −f j(pj), −f̂ j(p)) if σj = 1
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Then uε solves (11.4) if and only if ũε := (ũε,1, . . . , ũε,N ) solves
ũε,jt + (f̃ j(ũε,j))x = εũε,jxx on (0,+∞)× J̃j

f̃ j(ũε,j)− εũε,jx =
ˆ̃
f j(ũε) on (0,+∞)× {0}

ũε,j = ũj0 on {0} × J̃

and junction J̃ is of type 0 : N with J̃j ≃ (0,+∞) for all j.

11.3 Viscous regime for truncated junction with regularized fluxes

Lemma 11.2 (Existence in the viscous regime for truncated junction with regularized fluxes)
Assume (2.2) with N ≥ 1 with junction J of type 0 : N and bounded box [a, b] ⊂ RN . Let R > 0, JR := J∩BR

and σ = (−1, . . . ,−1) = −σR ∈ RN and let us consider functions for all j = 1, . . . , N and p ∈ RN

(11.5)



f̂η, f̂R,η : RN → RN ,

fη, f̂η, f̂R,η ∈W 1,∞(RN ;RN )

fη = (f1η , . . . , f
N
η ) with f jη : R → R

pj 7→ f̂ jη (p) is nonincreasing

pj 7→ f̂ jR,η(p) is nondecreasing

σj · (f̂ jη (p))|pj=aj ≤ σj · f jη (aj)
σj
R · (f̂ jR,η(p))|pj=aj ≤ σj

R · f jη (aj)

σj · (f̂ jη (p))|pj=bj ≥ σj · f jη (bj)
σj
R · (f̂ jR,η(p))|pj=bj ≥ σj

R · f jη (bj)

∣∣∣∣∣∣∣∣∣∣∣
for all p ∈ [a, b]

Assume that the initial data u0 = (u10, . . . , u
N
0 ) satisfies uj0 ∈ C∞(J̄j

R; [a
j , bj ]) with Jj

R ≃ (0, R). Let ε > 0.
i) (Existence)
Then there exists uε = (uε,j)j=1,...,N with

(11.6) uε,j : [0,+∞)× J̄j
R → [aj , bj ]

solution of

(11.7)


uε,jt + (f jη (u

ε,j))x = εuε,jxx on (0,+∞)× Jj
R

f jη (u
ε,j)− εuε,jx = f̂ jη (u

ε) on (0,+∞)× {0}
f jη (u

ε,j)− εuε,jx = f̂ jR,η(u
ε) on (0,+∞)× {R}

with initial condition

(11.8) uε,j = uj0 on {0} × J̄j
R

In particular we have uε,j ∈ C
α
2 ,α
t,x ([0,+∞)× J̄j

R) for all α ∈ (0, 1).
ii) (Further regularity)
Assume moreover that the initial data u0 satisfies the following compatibility conditions for all j = 1, . . . , N

(11.9)

{
f jη (u

j
0)− ε(uj0)x = f̂ jη (u0) for x = 0

f jη (u
j
0)− ε(uj0)x = f̂ jR,η(u0) for x = R.

and that we have the following additional regularity

(11.10) fη, f̂η, f̂R,η ∈W 2,∞
loc (RN ;RN )

Then the solution has regularity uε,j ∈ C
2+α
2 ,2+α

t,x ([0,+∞)× J̄j
R) for all α ∈ (0, 1).
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Proof of Lemma 11.2
First notice that, up to rescale the PDE in space and redefine properly the functions fη, f̂η, f̂R,η, we can
assume that ε = 1.
Step 1: first global existence result
We can apply Lemma 15.7 to h(u) := −fη(u), g0(u) := f̂η(u)− fη(u) and gR(u) := f̂R,η(u)− fη(u). We get

the existence of a global solution u = (u1, . . . , uN ) with uj ∈ C
α
2 ,α
t,x ([0,+∞)× J̄j

R) for any α ∈ (0, 1), of

(11.11)


ut + (fη(u))x = uxx on (0,+∞)× J∗

R

fη(u)− ux = f̂η(u) on (0,+∞)× {0}
fη(u)− ux = f̂R,η(u) on (0,+∞)× (J ∩ ∂BR)

u = u0 on {0} × J∗
R

Step 2: Box bounds (11.6)
In order to show that the solution u stays in the box [a, b] if the initial data is, we want to use the maximum

principle. Recall that f̂η, f̂R,η satisfy the barrier bounds (the two last lines of (11.5)). Given some index j,
we want to show that the solutions satisfy for instance

(11.12) uj ≤ bj

Given the PDE on the branch Jj
R, i.e. (uj − bj)t + (f jη (u

j) − f jη (b
j))x = (uj − bj)xx and multiplying it by

sign+(uj − bj) (or an approximation of it), we get (with ψ
fj
η

+ defined in (2.25))

(|uj − bj |+)t + (ψ
fj
η

+ (uj , bj))x ≤ (|uj − bj |+)xx

and integrating over Jj
R ≃ (0, R), we get

d

dt

∫
{t}×Jj

R

|uj − bj |++

[
ψ
fj
η

+ (uj , bj)− sign+(uj − bj)ujx

]x=R

x=0

(t) ≤ 0, i.e.
d

dt

∫
{t}×Jj

R

|uj − bj |++Dj ≤ 0

with

Dj := sign+(uj − bj) ·
{
f̂ jR,η(u

j)− f jη (b
j)
}
|x=R

− sign+(uj − bj) ·
{
f̂ jη (u)− f jη (b

j)
}
|x=0

=: Dj
R +Dj

0

Recall that at x = 0 with Jj ≃ (0,+∞), we have f̂ jη (p)|pj=bj ≤ f jη (b
j), where we have used the two last lines

of (11.5) for f̂η and σj = −1. Recall also that the map pj 7→ f̂ j(p) is nonincreasing. This property implies

that Dj
0 ≥ 0. Similarly, at x = R with Jj

R ≃ (0, R) (and σj
R = 1), we have f̂ jR,η(p)|pj=bj ≥ f jη (b

j), where we

have used the two last lines of (11.5) for f̂R,η and σj
R = 1. This shows that Dj

R ≥ 0. Hence

d

dt

∫
{t}×Jj

R

|uj − bj |+ ≤ 0

Because the initial data satisfies uj0 ≤ bj , this shows that uj ≤ bj , i.e. the maximum principle. All those
arguments can be made rigorous, as it is classical. Similarly, we show the other bounds, and get that

u(t, x) ∈ [a, b] for all (t, x) ∈ [0,+∞)× J̄R. Notice that regularity C
α
2 ,α,
t,x of the solution uε follows from i) of

Lemma 15.7.
Step 3: further regularity
Notice that point ii) of the lemma follows immediately from assumption (11.9), additional regularity (14.7)
and from regularity results ii) and iii) of Lemma 15.7. Finally, changing the variables back from ε = 1 to
the original ε, we get the results for the solution uε of (11.7). This ends the proof of the lemma.

Lemma 11.3 (Contraction-dissipation in the viscous regime for 0 : N junction J)
We work under assumptions of Lemma 11.2 i), and assume that uε, vε are two solutions of (11.7) with
respective initial data u0, v0. Then we have the following Kato inequality

(11.13)

∫
{t}×JR

|uε − vε|+
∫
(0,t)×{0}

Df̂η (uε, vε) +

∫
(0,t)×{R}

Df̂R,η (uε, vε) ≤
∫
{0}×JR

|uε − vε|
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with

Df̂η (uε, vε) :=

N∑
j=1

σj ψf̂j
η (uε, vε) and ψf̂j

η (uε, vε) := sign(uε,j−vε,j)·
{
f̂ jη (u

ε)− f̂ jη (v
ε)
}

with σj = −1

and

Df̂R,η (uε, vε) :=

N∑
j=1

σj
R ψf̂j

R,η (uε, vε) with σj
R = 1.

Moreover, for every test function 0 ≤ φj ∈ C1
c ([0,+∞)× J̄j) such that

(11.14)

{
φj(t, 0) = φk(t, 0) =: φ(t, 0) for all indices j, k
φj(t, R) = φk(t, R) =: φ(t, R) for all indices j, k

we have

(11.15)

∫
(0,+∞)×{0}

Df̂η (uε, vε)φ+

∫
(0,+∞)×{R}

Df̂R,η (uε, vε)φ

≤ εCR,φ +

∫
{0}×JR

|uε − vε|φ+

∫
(0,+∞)×JR

{
|uε − vε|φt + ψfη (uε, vε)φx

}
where CR,φ depends on R and φ and is independent on ε.

Proof of Lemma 11.3
Step 1: preparation
Consider θν : R → R a (symmetric) approximation of the absolute value with

θ′ν(y) :=

 1 if y > ν
ν−1y if |y| ≤ ν
−1 if y < −ν

Now multiplying by θ′ν(u
ε,j − vε,j) the difference of the two PDEs satisfied by uε,j and vε,j , we get the very

classical estimate (at least in the sense of distributions)

(11.16) ∂tθν(u
ε,j − vε,j) + ∂xψ

fj
η

ν (uε, vε) +Aj
ν = ε(θν(u

ε,j − vε,j))xx − εθ′′ν (u
ε,j − vε,j)|(uε,j − vε,j)x|2

where ψ
fj
η

ν (uε, vε) := θ′ν(u
ε,j − vε,j) ·

{
f jη (u

ε)− f jη (v
ε)
}
with f jη (u

ε) := f jη (u
ε,j) and

Aj
ν := Aj

ν [u
ε, vε] := −θ′′ν (uε,j − vε,j) ·

{
f jη (u

ε)− f jη (v
ε)
}
· (uε,j − vε,j)x

Now, following the ideas of [23], we have the monotone convergence for any radius R > 0

(11.17)

∫
[0,R]∩{|w|≤ν}

|wx| dx→
∫
[0,R]∩{w=0}

|wx| dx = 0 as ν → 0

where the equality to zero is classical for w ∈ W 1,2([0, R]). This implies that Aj
ν → 0 in the sense of

distributions as ν → 0, and using θ′′ν ≥ 0, as ν → 0, we recover the standard result in the sense of
distributions

∂t|uε,j − vε,j |+ ∂xψ
fj
η (uε, vε) ≤ ε|uε,j − vε,j |xx

where ψfj
η (uε, vε) := sign(uε,j − vε,j) ·

{
f jη (u

ε)− f jη (v
ε)
}
. To simplify the notation, we set θjν(u

ε − vε) := θν(u
ε,j − vε,j)

θjν
′(uε − vε) := θ′ν(u

ε,j − vε,j)
θjν

′′(uε − vε) := θ′′ν (u
ε,j − vε,j)
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Multiplying first (11.16) by a smooth nonnegative test function 0 ≤ φj ∈ C∞
c ([0,+∞) × J̄j

R), we get by

integration by parts on Jj
R ≃ (0, R)

−
∫
{0}×Jj

R

θjν(u
ε − vε)φj −

∫
(0,+∞)×{0}

ψ
fj
η

ν (uε, vε)φj +

∫
(0,+∞)×{R}

ψ
fj
η

ν (uε, vε)φj

−
∫
(0,+∞)×Jj

R

{
θjν(u

ε − vε)φj
t + ψ

fj
η

ν (uε, vε)φj
x

}
+

∫
(0,+∞)×Jj

R

Aj
νφ

j

=

∫
(0,+∞)×{R}

{
ε(θjν(u

ε − vε))xφ
j − εθjν(u

ε − vε)φj
x

}
−
∫
(0,+∞)×{0}

{
ε(θjν(u

ε − vε))xφ
j − εθjν(u

ε − vε)φj
x

}
+

∫
(0,+∞)×Jj

R

εθjν(u
ε − vε)φj

xx −
∫
(0,+∞)×Jj

R

εθjν
′′(uε − vε)|(uε,j − vε,j)x|2φj

Using the fact that the solutions satisfy
ψ
fj
η

ν (uε, vε)− ε(θjν(u
ε − vε))x = ψf̂j

ν (uε, vε) on x = 0

ψ
fj
η

ν (uε, vε)− ε(θjν(u
ε − vε))x = ψ

f̂j
R,η

ν (uε, vε) on x = R

(which is already satisfied by the initial data), we get∫
(0,+∞)×{R}

ψ
f̂j
R,η

ν (uε, vε)φj −
∫
(0,+∞)×{0}

ψ
f̂j
η

ν (uε, vε)φj

≤
∫
(0,+∞)×{0}

εθjν(u
ε − vε)φj

x −
∫
(0,+∞)×{R}

εθjν(u
ε − vε)φj

x +

∫
(0,+∞)×Jj

R

εθjν(u
ε − vε)φj

xx

+

∫
{0}×Jj

R

θjν(u
ε − vε)φj +

∫
(0,+∞)×Jj

R

{
θjν(u

ε − vε)φj
t + ψ

fj
η

ν (uε, vε)φj
x

}

−
∫
(0,+∞)×Jj

R

Aj
νφ

j

In the limit ν → 0, this gives with the special convention |uε − vε|j := |uε,j − vε,j |
(11.18) {∫

(0,+∞)×{R}
ψf̂j

R,η (uε, vε)φj + ε|uε − vε|jφj
x

}
−

{∫
(0,+∞)×{0}

ψf̂j
η (uε, vε)φj + ε|uε − vε|jφj

x

}

≤
∫
(0,+∞)×Jj

R

ε|uε − vε|jφj
xx +

∫
{0}×Jj

R

|uε − vε|jφj +

∫
(0,+∞)×Jj

R

{
|uε − vε|jφj

t + ψfj
η (uε, vε)φj

x

}
Step 2: proof of (11.13)
For s > 0 and φj(t, x) := 1[0,s](t), and summing on j in (11.18), we get (11.13) with t replaced by s.

Step 3: proof of (11.15)
We come back to (11.18) with general test function φj satisfying (11.14). We now consider a constant
M ≥ max

j
max(|aj |, |bj |). Summing over indices j, we get

∫
(0,+∞)×{0}

Df̂η (uε, vε)φ+

∫
(0,+∞)×{R}

Df̂R,η (uε, vε)φ

≤ 2εMC ′
R,φ +

N∑
j=1

∫
{0}×Jj

|uε − vε|jφj +

N∑
j=1

∫
(0,+∞)×Jj

{
|uε − vε|jφj

t + ψfj
η (uε, vε)φj

x

}
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where C ′
R,φ is a constant only depending on R and φ, and we set CR,φ := 2MC ′

R,φ. This is (11.15). This
ends the proof of the lemma.

Corollary 11.4 (True contraction in the viscous regime)
We work under assumptions of Lemma 11.2 ii). We assume that uε is a solution of (11.7) with initial data

u0 satisfying in particular compatibility conditions (11.9). We assume moreover that f̂η and f̂R,η satisfy for
all j = 1, . . . , N

(11.19)


−∂j f̂ jη ≥

∑
k∈{1,...,N}\{j}

|∂j f̂kη |

∂j f̂
j
R,η ≥

∑
k∈{1,...,N}\{j}

|∂j f̂kR,η|

∣∣∣∣∣∣∣∣∣∣
on [a, b]

Then we have

(11.20)

∫
{t}×JR

|uε − vε| ≤
∫
{0}×JR

|uε − vε|

Moreover we have

(11.21)

∫
{t}×JR

|uεt | ≤
∫
{0}×JR

|uεt |

Proof of Corollary 11.4

Notice that assumption (11.19) implies Df̂η ≥ 0, Df̂R,η ≥ 0 on [a, b]2. Together with (11.13), this implies
(11.20). Second inequality (11.21) follows from the choice of vε(t, x) := uε(t+ τ, x), and dividing the differ-
ence by τ and passing to the limit. Here, we use in particular regularity of the solution up to the time t = 0

with uε,j ∈ C
1+ β

2 ,2+β
t,x ([0,+∞)× J̄j

R), where we have (uε,j)t(0, ·) = ε(uj0)xx − (f jη )
′(uj0) · (u

j
0)x. This ends the

proof of the corollary.

Lemma 11.5 (Boundary and interior BLN estimates for a single truncated branch)
Assume (2.2) with N = 1, and denote J1 = (0,+∞), and the truncated branch J1

R := (0, R) for some R > 0

and a bounded interval [a, b] ⊂ R. Consider fη = f1η ∈ (W 1,∞ ∩W 2,∞
loc )(R;R). For ε > 0, we consider a

solution uε ∈ C
1+ β

2 ,2+β
t,x ([0,+∞)× J̄1

R; [a, b]) for some β ∈ (0, 1) of

uεt + (fη(u
ε))x = εuεxx on (0,+∞)× J1

R

Then for any δ ∈ (0, R/4) and t > s ≥ 0, we have∫
{t}×(δ,R−δ)

|uεx| ≤
∫
{s}×(δ,R−δ)

|uεx|+

{∫
(s,t)×{δ}

|uεt |+
∫
(s,t)×{R−δ}

|uεt |

}
(Boundary BLN estimate)

where the lateral integral lies in the bracket.
Moreover, we have
(11.22)∫
{t}×(2δ,R−2δ)

|uεx| ≤
∫
{s}×(δ,R−δ)

|uεx|+δ−1

{∫
(s,t)×(δ,2δ)

|uεt |+
∫
(s,t)×(R−2δ,R−δ)

|uεt |

}
(Interior BLN estimate)

Proof of Lemma 11.5
Step 1: Boundary BLN estimate
Recall that the classical BLN estimate (14) in Bardos, Leroux, Nedelec [23] holds for zero Dirichlet boundary
conditions. Here we do not assume any boundary conditions, but get a sort of BLN estimate up to the
boundary, that we simply call boundary BLN estimate. We follow quite closely the ideas of the proof in [23].
Precisely, we adapt the estimate on ux. We take the x-derivative of the PDE for u := uε

∂tux + ∂xF = ε(ux)xx with F := (fη(u))x
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and multiply by θ′ν(ux), we get

(11.23) ∂tθν(ux) + ∂xΦν +Bν = ε(θν(ux))xx − εθ′′ν (ux)|uxx|2

with Φν := F ·θ′ν(ux), Bν := −F ·θ′′ν (ux)uxx and |F | ≤ L|ux|, where L is the Lipschitz constant of fη. Hence
we have Bν → 0 as ν → 0 (like in (11.17)). Therefore, as ν → 0, it gives ∂t|ux| + ∂x {F · sign(ux)} − 0 ≤
ε(|ux|)xx, which is not good enough. Indeed, we must use the PDE, in some sense on the artificial boundary
x ∈ ∂(δ,R− δ).
We now do the proof formally and explain later how to make it rigorous. Integrating (11.23), we get∫

JR,δ

∂tθν(ux) + [Φν ]∂JR,δ
+

∫
JR,δ

Bν = ε [(θν(ux))x]∂JR,δ
−
∫
JR,δ

εθ′′ν (ux)|uxx|2 with JR,δ := (δ,R− δ)

Now the PDE is valid up on the boundary, i.e. ut + F = εuxx on (0,+∞) × ∂JR,δ. Hence, multiplying by
θ′ν(ux), we get

[Φν ]∂JR,δ
= [{εuxx − ut} · θ′ν(ux)]∂JR,δ

=
[
{ε(θν(ux))x − ut · θ′ν(ux)]∂JR,δ

Hence this gives ∫
JR,δ

∂tθν(ux) + [−ut · θ′ν(ux)]∂JR,δ
+

∫
JR,δ

Bν = −
∫
JR,δ

εθ′′ν (ux)|uxx|2

Integrating in time on (s, t), and using |θ′ν | ≤ 1, we get∫
{t}×JR,δ

θν(ux) +

∫
(s,t)×JR,δ

Bν ≤
∫
{s}×JR,δ

θν(ux) +

∫
(s,t)×∂JR,δ

|ut|

Passing to the limit ν → 0, we have Bν → 0 and get the boundary BLN estimate

(11.24)

∫
{t}×JR,δ

|ux| ≤
∫
{s}×JR,δ

|ux|+
∫
(s,t)×∂JR,δ

|ut|

Now this formal proof of (11.24) can easily be justified using test functions as in the proof of Lemma 11.3.
Step 2: interior BLN estimate
From the boundary BLN estimate, we can always deduce an interior BLN estimate as follows. We follow an
idea introduced in Lemma 4.2 in [25]. Replacing δ by h > 0 in (11.24), and integrating (11.24) for h ∈ (δ, 2δ),
we get (dividing by δ)

δ−1

∫
(δ,2δ)

dh

∫
{t}×JR,h

|ux| ≤ δ−1

∫
(δ,2δ)

dh

∫
{s}×JR,h

|ux|+ δ−1

∫
(δ,2δ)

dh

∫
(s,t)×∂JR,h

|ut|

and then ∫
{t}×JR,2δ

|ux| ≤
∫
{s}×JR,δ

|ux|+ δ−1

{∫
(s,t)×(δ,2δ)

|ut|+
∫
(s,t)×(R−2δ,R−δ)

|ut|

}
which is (11.22). This ends the proof of Lemma.

11.4 Removing regularization of the fluxes

Proposition 11.6 (Existence in the viscous regime for truncated junctions)
Assume (2.2) with N ≥ 1 with junction J of type 0 : N and bounded box [a, b] ⊂ RN . Let R > 0 and

124



σ = (−1, . . . ,−1) = −σR ∈ RN and let us consider functions for all j = 1, . . . , N and all p ∈ [a, b]

(11.25)



f̂ , f̂R : [a, b] → RN ,

f, f̂ , f̂R ∈W 1,∞([a, b];RN )

f = (f1, . . . , fN ) with f j : [aj , bj ] → R

σj · (f̂ j(p))|pj=aj ≤ σj · f j(aj)
σj
R · (f̂ jR(p))|pj=aj ≤ σj

R · f j(aj)

σj · (f̂ j(p))|pj=bj ≥ σj · f j(bj)
σj
R · (f̂ jR(p))|pj=bj ≥ σj

R · f j(bj)

We assume moreover that f̂ and f̂R satisfy for all j = 1, . . . , N and a.e. on [a, b]

(11.26)


−∂j f̂ j ≥

∑
k∈{1,...,N}\{j}

|∂j f̂k|

∂j f̂
j
R ≥

∑
k∈{1,...,N}\{j}

|∂j f̂kR|

Assume that the initial data u0 = (u10, . . . , u
N
0 ) satisfies

(11.27) uj0 ∈ C∞(J̄j
R; [a

j , bj ]) with Jj
R ≃ (0, R).

Let ε > 0.
i) (Existence)
Then there exists uε = (uε,j)j=1,...,N with

(11.28) uε,j : [0,+∞)× J̄j
R → [aj , bj ]

solution of

(11.29)


uε,jt + (f j(uε,j))x = εuε,jxx on (0,+∞)× Jj

R

f j(uε,j)− εuε,jx = f̂ j(uε) on (0,+∞)× {0}
f j(uε,j)− εuε,jx = f̂ jR(u

ε) on (0,+∞)× {R}

where the boundary conditions are satisfied in a weak sense (i.e. against test functions) and with initial
condition

(11.30) uε,j = uj0 on {0} × J̄j
R

In particular we have uε,j ∈ C
α
2 ,α
t,x ([0,+∞)× J̄j

R) for all α ∈ (0, 1).
ii) (Additional bounds)
Assume moreover that the initial data u0 satisfies the following compatibility conditions for all j = 1, . . . , N

(11.31)

{
f j(uj0)− ε(uj0)x = f̂ j(u0) for x = 0

f j(uj0)− ε(uj0)x = f̂ jR(u0) for x = R.

and set

(11.32)

{
uεt := ε(u0)xx − (f(u0))x
uεx := (u0)x

∣∣∣∣ on {0} × J∗
R with J∗

R := JR\ {0}

Then we have the following bounds for all t > 0

(11.33)

∫
{t}×JR

|uεt | ≤
∫
{0}×JR

|uεt |

and for all δ ∈ (0, R/4)

(11.34)

∫
{t}×(2δ,R−2δ)

|uεx| ≤
∫
{0}×(δ,R−δ)

|uεx|+ δ−1

{∫
(0,t)×(δ,2δ)

|uεt |+
∫
(0,t)×(R−2δ,R−δ)

|uεt |

}
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Proof of Proposition 11.6
We first notice that (11.26) implies on [a, b] and for all j, the map pj 7→ f̂ j(p) is nonincreasing, while the

map pj 7→ f̂ jR(p) is nondecreasing.
Step 1: Extension of the fluxes to the whole space
Let us simply extend f j : [aj , bj ] → R by continuity to a function still denoted by f j : R → R, with constant
value f j(aj) on the left, and constant value f j(bj) on the right of the interval [aj , bj ]. This automatically
extends to a bounded and Lipschitz continuous function f : RN → RN (with our standard abuse of notation).

We now want to extend the bounded and Lipschitz vectorial functions f̂ , f̂R : [a, b] → RN to the whole RN .

We only do it for f̂ (this is similar for f̂R). We first notice that the first line of (11.26) for j means

(11.35) −∂j f̂ j ≥
∑

k∈{1,...,N}\{j}

ωjk∂j f̂
k for all ωjk ∈ {±1}

which is equivalent to the fact that the map

pj 7→ hjω(p) := f̂ j(p) +
∑

k∈{1,...,N}\{j}

ωjkf̂
k(p) is nonincreasing.

Step 1.1: extension along p1

We now first extend f̂ along the first coordinate p1 as follows for p′ = (p2, . . . , pN ) ∈ Π′
2 :=

∏
j=2,...,N [aj , bj ]

f̂(p1, p′) :=


f̂(a1, p′) for p1 < a1

f̂(p1, p′) for p1 ∈ [a1, b1]

f̂(b1, p′) for p1 > b1

Notice in particular that p1 7→ h1ω(p) is also nonincreasing on Π1 := R× Π′
2, because f̂ is constant in p1 on{

p1 < a1
}
and also on

{
p1 > b1

}
. For j ̸= 1, the maps pj 7→ hjω(p) are also nonincreasing on Π1, because

this is already the case for any fixed p1 ∈ [a1, b1], and in particular for p1 ∈ ∂[a1, b1]. Moreover, for all j, the

maps f̂ j are also bounded and Lipschitz continuous on Π1.
Step 1.2: extension along p2

Now for p1 ∈ R and p′′ := (p3, . . . , pN ) ∈ Π′
3 :=

∏
j=3,...,N [aj , bj ], we set

f̂(p1, p2, p′′) :=


f̂(p1, a2, p′′) for p2 < a2

f̂(p1, p2, p′′) for p2 ∈ [a2, b2]

f̂(p1, b2, p′′) for p2 > b2

which extends f̂ to Π2 := R2 × Π′
3. Exactly the same reasoning as in Step 1.1 applies and shows that

pj 7→ hjω(p) is nonincreasing on Π2 for all j, and that f̂ is bounded and Lipschitz continuous on Π2.
Step 1.3: induction and conclusion
We do the proof by induction on j, and finally get that pj 7→ hjω(p) is nonincreasing on ΠN := RN for all

ω and for all j. For all indices j, this shows that −∂j f̂ j ≥
∑

k∈{1,...,N}\{j}

|∂j f̂k| a.e. on RN . This implies

in particular that pj 7→ f̂ j(p) is nonincreasing for all j. Moreover the map f̂ is bounded and Lipschitz

continuous over RN . We conclude that the extensions f, f̂ , f̂R :→ RN are bounded and globally Lipschitz
continuous. Moreover f̂ , f̂R satisfy (11.26) a.e. on RN , and

Lip(f j ;R) = Lip(f j ; [aj , bj ])

Lip(f̂ ;RN ) = Lip(f̂ ; [a, b])

Lip(f̂R;RN ) = Lip(f̂R; [a, b])

Step 2: Regularizations
Step 2.1: Regularization of the fluxes
We now consider some nonnegative function ρ ∈ C∞

c (R) with
∫
R ρ = 1. For some η ∈ (0, 1] and for p =

(p1, . . . , pN ), we set ρ̄η(p) := ε−N ρ̄(η−1p) with the product ρ̄(p) := ρ(p1) . . . ρ(pN ). We set the mollifications

ĝη := f̂ ⋆RN ρ̄η and ĝR,η := f̂R ⋆RN ρ̄η. Applying mollification in (11.35), we get

−∂j ĝjη ≥
∑

k∈{1,...,N}\{j}

ωjk∂j ĝ
k
η for all ωjk ∈ {±1}
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which shows that −∂j ĝjη ≥
∑

k∈{1,...,N}\{j}

|∂j ĝkη | on RN . This implies that ĝη, ĝR,η satisfy (11.26).

We now set the regularized fluxes f̂η(p) := ĝη(p) − µ {p−m} and f̂R,η(p) := ĝη(p) + µ {p−m} with m :=
a+ b

2
and µ :=

√
η. Then f̂η, f̂R,η still satisfy (11.26). They satisfy moreover the four last lines of (11.25)

for our choice of µ and for η > 0 small enough. We also consider fη := f ⋆RN ρ̄η, which satisfies f jη = f j ⋆R ρη
with ρη(x) := η−1ρ(η−1x). Moreover we have

Lip(f jη ;R) ≤ Lip(f j ; [aj , bj ])

Lip(f̂η;RN ) ≤ Lip(f̂ ; [a, b])

Lip(f̂R,η;RN ) ≤ Lip(f̂R; [a, b])

Step 2.2: contraction-regularization of the initial data
For ν ∈ (0, 1), we contract u0, defining u0,ν := m+ (1− ν)(u0 −m) with m := a+b

2 . Let 0 < β << ν. Then

for ν > 0 small enough, we have u0,ν(x) ∈ [a, b]−β :=
∏

j=1,...,N

[aj + β, bj − β] for all x ∈ [0, R]. Then we

extend u0,ν outside the interval [0, R] in a C∞ function such that u0,ν(x) ∈ [a, b]−β/2 for all x ∈ R, and such
that u0,ν takes a constant value u0,ν(−1) for x < −1 and the constant value u0,ν(R+1) for x > R+1. Now,
consider the mollification v0,ν,η := u0,ν ⋆R ρη. It satisfies

(11.36) v0,ν,η(x) ⊂ [a, b]−β/2 for all x ∈ R.

We want our approximation to satisfy compatibility conditions (11.31). To this end, we now consider a
function ψ ∈ C∞

c ([0, R∗)) with R∗ := min {1, R} and η ∈ (0, 1] such that ψη(x) = ηψ(η−1x), ψ(0) = 0 and

ψ′(0) = 1. Setting λ := ε−1
{
fη − f̂η

}
(v0,ν,η(0))−v′0,ν,η(0) and λR := ε−1

{
fη − f̂R,η

}
(v0,ν,η(R))−v′0,ν,η(R),

we see that the function

w0(x) := v0,ν,η(x) + λψη(x)− λRψη(R− x) for x ∈ [0, R]

satisfies {
f jη (w

j
0)− ε(wj

0)x = f̂ jη (w0) for x = 0

f jη (w
j
0)− ε(wj

0)x = f̂ jR,η(w0) for x = R.

From (11.36), we deduce that for η small enough, we have w0(x) ⊂ [a, b]−β/4 for all x ∈ R. Hence

fη, f̂η, f̂R,η ∈W 2,∞
loc (RN ,RN ) satisfy (11.25)-(11.26) and w0 satisfies (11.27), (11.31).

Step 3: A priori estimates
Let us call U = uεν,η the solution given by Lemma 11.2 for fluxes (fη, f̂η, f̂R,η) and initial data u0,ν,η := w0.

We have in particular U j ∈ C
2+α
2 ,2+α

t,x ([0,+∞)× J̄j
R) for all α ∈ (0, 1). From (11.21) and (11.22) , we get

(11.37)

U j(t, x) ∈ [aj , bj ] for all (t, x) ∈ [0,+∞)× J̄j
R∫

{t}×JR

|Ut| ≤
∫
{0}×JR

|Ut|

∫
{t}×(2δ,R−2δ)

|Ux| ≤
∫
{0}×(δ,R−δ)

|Ux|+ δ−1

{∫
(0,t)×(δ,2δ)

|Ut|+
∫
(0,t)×(R−2δ,R−δ)

|Ut|

}
for all δ ∈ (0, R/4)

where {
Ut(0, ·) = ε(w0)xx − (fη(w0))x
Ux(0, ·) = (w0)x

∣∣∣∣ with w0 = u0,ν,η

We make a discussion for Ut(0, ·) (the discussion is similar and simpler for Ux(0, ·), and we skip it). Notice
that we have Ut(0, x) = A(x) + B(x) with A(x) := ε(v0,ν,η)xx − (fη(v0,ν,η))x and B(x) := U j

t (0, x) − A(x).
Moreover, we have

lim sup
(ν,η)→(0,0)

|Aj(x)| ≤ ε|(uj0)xx(x)|+ Lip(f j ; [a, b]) · |(uj0)x(x)| for all x ∈ (0, R)
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and

|Aj |L∞(0,R) ≤ 1 + ε|(uj0)xx|L∞(0,R) + Lip(f j ; [a, b]) · |(uj0)x|L∞(0,R) for (ν, η) close enough to (0, 0)

The contribution to B only arises through the functions ψη(x) and ψη(R− x). Because |ψ′′
η |L1(0,R) ≤ C and

|supp(ψη)| → 0 and λ, λR → 0 as (ν, η) → (0, 0), we deduce that |B|L1(0,R) → 0 as (ν, η) → (0, 0).
Step 4: Removing regularization of the fluxes

Setting K[u0] :=
∑

j=1,...,N

{
ε|(uj0)xx|L1(0,R) + Lip(f j ; [a, b]) · |(uj0)x|L1(0,R)

}
and K ′[u0] = 1 +K[u0], and for

(ν, η) close enough to (0, 0), from Step 3 we get

(11.38)



U j(t, x) ∈ [aj , bj ] for all (t, x) ∈ [0,+∞)× J̄j
R∫

{t}×JR

|Ut| ≤ K ′[u0]

∫
{t}×(2δ,R−2δ)

|Ux| ≤
∫
{0}×(δ,R−δ)

|(u0)x|+ δ−1K ′[u0] for all δ ∈ (0, R/4)

We conclude from the compactness of the inclusion BVloc ⊂L1
loc, that up to extract a subsequence (and using

a diagonal extraction argument to cover [0,+∞)× J̄R), that we have

U = uεν,η → uε in L1
loc([0,+∞)× J̄R) as (ν, η) → (0, 0)

From (11.37), we deduce that

uε,j(t, x) ∈ [aj , bj ] for all (t, x) ∈ [0,+∞)× J̄j
R∫

{t}×JR

|uεt | ≤
∫
{0}×JR

|uεt |

∫
{t}×(2δ,R−2δ)

|uεx| ≤
∫
{0}×(δ,R−δ)

|uεx|+ δ−1

{∫
(0,t)×(δ,2δ)

|uεt |+
∫
(0,t)×(R−2δ,R−δ)

|uεt |

}
for all δ ∈ (0, R/4)

where uε satisfies (11.32). Moreover we can pass to the limit in the PDE (and its weak formulation). There-
fore uε solves (11.29) with initial data as in (11.30) with u0 solving (11.31). Finally Lemma 11.2 shows that

uε,j ∈ C
α
2 ,α
t,x ([0,+∞)× J̄j

R) for all α ∈ (0, 1). This ends the proof of the proposition.

11.5 Removing the viscosity

Proposition 11.7 (Existence for truncated junctions)
Assume (2.2) with N ≥ 1, nondegeneracy condition (2.16), for a junction J of type 0 : N and bounded box
[a, b] ⊂ RN . Let R > 0, JR := J ∩ BR with Jj

R ≃ (0, R) for all j and σ = (−1, . . . ,−1) = −σR ∈ RN .

Assume that f, f̂ , f̂R satisfy (11.25) and (11.26). Assume also that G :=
{
p ∈ [a, b], f̂(p) = f(p)

}
and

GR :=
{
p ∈ [a, b], f̂R(p) = f(p)

}
are two Kruz̆kov germs respectively at the junction point x = 0, and at

the junction point x = R.
Assume that the initial data u0 = (u10, . . . , u

N
0 ) is of bounded variations, i.e. satisfies uj0 ∈ BV (Jj

R; [a
j , bj ]).

i) (Existence and uniqueness)
Then there exists a unique u = (uj)j=1,...,N with

(11.39) uj : [0,+∞)× Jj
R → [aj , bj ]

entropy solution of

(11.40)


ujt + (f j(uj))x = 0 on (0,+∞)× Jj

R

f j(uj) = f̂ j(u) a.e. on (0,+∞)× {0}
f j(uj) = f̂ jR(u) a.e. on (0,+∞)× {R}
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where the boundary conditions are satisfied in the sense of strong traces and with initial condition

(11.41) uj = uj0 on {0} × Jj
R

Moreover we have
u ∈ Lip([0,+∞);M(J∗

R))

with J∗
R := JR\ {0} and M(J∗

R) denotes the set of measures on J∗
R. For w = (w1, . . . , wN ), where each

wj denotes a finite measure on Jj
R, the associated norm is defined as |w|M(J∗

R) :=
∑

j=1,...,N

|wj |M(Jj
R), where

M(Jj
R) is the set of (real valued) measures on the open interval Jj

R ≃ (0, R) and | · |M(Jj
R) is the total

variation of the measure.
ii) (Additional bounds)
Then we have the following bounds for a.e. t > 0
(11.42)

|ut(t, ·)|M(J∗
R) ≤ L|(u0)x|M(J∗

R) +K0 with


L := sup

j=1,...,N
Lip(f j ; [aj , bj ])

K0 :=
∑

j=1,...,N

{
|(f j − f̂ j)(u0(0))|+ |(f j − f̂ jR)(u0(R))|

}
and

(11.43) |ux(t, ·)|M(JR−2δ\B̄2δ) ≤ (1 + δ−1L)|(u0)x|M(J∗
R) + δ−1K0 for all δ ∈ (0, R/4)

Proof of Proposition 11.7
Consider the solution uε given in Proposition 11.6 for the fluxes f, f̂ , f̂R and some initial data uε0 which
approximates the function u0 and which is described below.
Step 1: definition of the smooth initial data uε0
Precisely, because u0 ∈ BV (J∗

R), we deduce that uj0 has a two limits uj0(0) and u
j
0(R). We then extend uj0

by the value uj0(0) for x ≤ 0 and by the value uj0(R) for x ≥ R. We get the BV semi-norms [uj0]BV (R) =

[uj0]BV (Jj
R) := |(uj0)x|M(Jj

R). For ν ∈ (0, 1), we then contract u0, defining u0,ν := m + (1 − ν)(u0 −m) with

m := a+b
2 . Let

(11.44) 0 < β << ν

Then for ν > 0 small, we have u0,ν(x) ∈ [a, b]−β :=
∏

j=1,...,N

[aj + β, bj − β] for all x ∈ R. For η, µ >

0, using the notation ρη = η−1ρ(η−1·) and ψµ = µψ(µ−1·) of Step 2 of the proof of Proposition 11.6,

we set v0,ν,η := u0,ν ⋆R ρη : R → [a, b]−β . Setting λ := ε−1
{
f − f̂

}
(v0,ν,η(0)) − v′0,ν,η(0) and λR :=

ε−1
{
f − f̂R

}
(v0,ν,η(R))− v′0,ν,η(R), we see that

uε0(x) := v0,ν,η(x) + λψµ(x)− λRψµ(R− x) for x ∈ [0, R]

satisfies {
f(uε0)− ε(uε0)x = f̂(uε0) for x = 0

f(uε0)− ε(uε0)x = f̂R(u
ε
0) for x = R.

Notice that for

(11.45) µ << η << ε

we have in particular u0,ν,η,µ(x) ∈ [a, b]−β/2 for all x ∈ [0, R].
Step 2: a priori bounds
Using (v0,ν,η)xx = (u0,ν)x ⋆R (ρη)x and (11.44)-(11.45), we get

ε|(vj0,ν,η)xx|L1(Jj
R) ≤ ε|(uj0)x|M(R)|(ρη)x|L1(R) = εη−1[uj0]BV (Jj

R)|ρx|L1(R) → 0 as ε→ 0
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and

ε|(λjψµ)xx|L1(Jj
R) = ε|λj ||ψ′′|L1(0,+∞) → |(f j − f̂ j)(u0(0))| · |ψ′′|L1(0,+∞) as (ε, ν) → (0, 0)

and similarly
|(vj0,ν,η)x|L1(Jj

R) ≤ |(uj0)x|M(R)|ρη|L1(R) = [uj0]BV (Jj
R)

and
|(λjψµ)x|L1(Jj

R) = |λjµ| · |ψ′|L1(0,+∞) → 0 as ε→ 0

Notice that ψ′(0) = 1 and ψ ∈ C∞
c ([0, R∗). Hence we can find a sequence of such ψn such that

|(ψn)′′|L1(0,+∞) = [(ψn)′]BV (0,+∞) → 1, where the limit is the BV semi-norm of Heaviside function. Setting

K[u0] :=
∑

j=1,...,N

{
|(f j − f̂ j)(u0(0))|+ |(f j − f̂ jR)(u0(R))|+ Lip(f j ; [a, b]) · [uj0]BV (0,R)

}
, K ′[u0] = 1+K[u0]

and for (ε, ν) close enough to (0, 0), we deduce from (11.38) that for all time t > 0
uε,j(t, x) ∈ [aj , bj ] for all (t, x) ∈ [0,+∞)× Jj

R

|uεt (t, ·)|M(J∗
R) ≤ K ′[u0]

|uεx(t, ·)|M(JR−2δ\B̄2δ) ≤ [u0]BV (J∗
R) + δ−1K ′[u0] for all δ ∈ (0, R/4)

From compactness of BVloc ⊂ L1
loc, we get that, up to extract a subsequence, we have uε → u in L1

loc([0,+∞)× JR)

uε0 → u0 in L1(JR)

∣∣∣∣∣∣ as (ε, ν) → (0, 0)

From the semi-continuity of BV norms/total variations of measures, this implies in particular bounds (11.42)
and (11.43).
Step 3: test function formulations
Recall that (11.15) holds true for two solutions uε, vε and fluxes satisfying assumption (11.5).
Step 3.1: interior formulations
In the special case where the test function satisfies φ = (0, . . . , 0, φj , 0, . . . , 0) with 0 ≤ φj ∈ C∞

c ([0,+∞)×
Jj
R), relation (11.15) still holds true if the solutions are only solutions on (0,+∞) × Jj

R. In particular, we
can choose vε = c := (0, . . . , 0, cj , 0, . . . , 0) for any cj ∈ [aj , bj ]. This gives

0 ≤ εCR,φ +

∫
{0}×Jj

R

|uε,j0 − cj |φj +

∫
(0,+∞)×Jj

R

{
|uε − cj |φj

t + ψfj

(uε, c)φj
x

}
In the limit ε→ 0, we recover for all cj ∈ [aj , bj ]

0 ≤
∫
{0}×Jj

R

|uj0 − cj |φj +

∫
(0,+∞)×Jj

R

{
|u− cj |φj

t + ψfj

(u, c)φj
x

}
which means exactly that uj is an entropy solution of (11.40) only on (0,+∞)×Jj

R and with initial data uj0.
Step 3.2: boundary formulation at x = 0
In the special case where the test function satisfies φ = (φ1, . . . , φN ) with 0 ≤ φj ∈ C∞

c ([0,+∞)×(Jj
R∪{0}))

with φj(t, 0) = φk(t, 0) for all k, j and all times t ≥ 0, then relation (11.15) still holds true if the solutions
are only solutions on (0,+∞)× JR, where we recall that 0 ∈ JR. In particular, we have for all vε := c ∈ G

0 ≤
∫
(0,+∞)×{0}

Df̂ (uε, c)φ ≤ εCR,φ +

∫
{0}×JR

|uε0 − c|φ+

∫
(0,+∞)×JR

{
|uε − c|φt + ψf (uε, c)φx

}
In the limit ε → 0, we recover 0 ≤

∫
{0}×JR

|u0 − c|φ +

∫
(0,+∞)×JR

{
|u− c|φt + ψf (u, c)φx

}
. Now we can

find a sequence of test functions approximating the functions φj
γ(t, x) = ζ(t)max

{
0, 1− γ−1x

}
for all j and
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γ > 0. Using nondegeneracy condition (2.16), we deduce from Theorem 2.33 that u has a strong trace at
x = 0 for a.e. time t > 0. Therefore, in the limit γ → 0 focusing on the junction point x = 0, we get

0 ≤
∫
(0,+∞)×{0}

 ∑
j=1,...,N

−ψfj

(u, c)

 ζ =

∫
(0,+∞)×{0}

Df (u, c)ζ

Because this is true for any function 0 ≤ ζ ∈ C∞
c ([0,+∞)), we deduce that for a.e. time t > 0, we have

0 ≤ Df (u(t, 0), c) for all c ∈ G. Because u(t, 0) ∈ [a, b] and G is a Kruz̆kov germ, we deduce from Theorem
2.21 that G is maximal and then u(t, 0) ∈ G for a.e. time t > 0. This shows the second line of (11.40).
Step 3.3: boundary formulation at x = R
The proof is similar to Step 3.2, and shows the third line of (11.40).
Step 4: uniqueness
Finally the uniqueness of the solution u follows as usual, from the L1-contraction as in i) of Lemma 10.3.
We do not repeat the details here. This ends the proof of the proposition.

11.6 Proof of Theorem 2.36: removing the truncations

Proposition 11.8 (Existence on the infinite junction)
Assume (2.2) with N ≥ 1, nondegeneracy condition (2.16), and let G ⊂ [a, b] be a Kruz̆kov germ. Consider
an initial data u0 with u0(J) ⊂ [a, b] such that u0−p0 ∈ (BV ∩L1)(J) for some p0 ∈ [a, b]∩RN . Then there
exists a unique G-entropy solution u of (2.4) with initial data u0.

Proof of Proposition 11.8 and of Theorem 2.36
Step 1: reduction to a bounded box
Because u0 ∈ BV (J), we deduce that u0 is bounded. From Proposition 6.1, there exists a bounded box
[ā, b̄] ⊂ [a, b] such that u0(J) ⊂ [ā, b̄] and G ∩ [ā, b̄] is a Riemann germ on the bounded box [ā, b̄].
Step 2: construction of the germ GR

Let R > 0 and JR := J ∩BR and Jj
R := Jj ∩BR. We set

f̂ jR(u
j) :=

{
Gfj

(uj , pj0) if Jj
R ≃ (0, R)

Gfj

(pj0, u
j) if Jj ≃ (−R, 0)

where Gfj

(↑, ↓) is the standard Godunov flux associated to f j . Indeed, using Lemma 11.1 it is simpler to
work with junctions J of type 0 : N , and at the very end of the proof to use Lemma 11.1 to come back to
the original problem. Hence in the remaining of the proof, we assume that J is of type 0 : N , and then
Jj
R ≃ (0, R) for all j.

Here we have

GR :=
{
p ∈ [a, b], f̂R(p) = f(p)

}
=

∏
j=1,...,N

Gj
R with Gj

R :=
{
pj ∈ [aj , bj ], f̂ jR(p) = f j(pj)

}
Notice that each Gj

R is a Kruz̆kov germ (as any germ for a single branch), and then it is easy to check that
the product GR is also a Kruz̆kov germ.
Step 3: properties of the Godunov fluxes
From now on, and to simplify the presentation, let is assume without loss of generality that [ā, b̄] = [a, b] is a
bounded box. Notice now that the four last lines of (11.5) are automatically satisfied for the Godunov fluxes

f̂ = f̂G and f̂R := f̂GR
, because of the monotone bounds (second line of (2.14)) satisfied by the Godunov

fluxes.
Step 4: construction of a solution on JR and the limit R→ +∞
Therefore Proposition 11.7 applies with p0 := u0(R

−) and gives the existence of a solution uR of (11.40)

with initial data (u0)|JR
. In particular we have f̂R(u0) = f(u0) at x = R. From the a priori bounds given

in Proposition 11.7, we can pass to the limit with uR → u as R → +∞. This leads to the existence of a
solution u with bounds.
Step 5: uniqueness and L1-contraction
The uniqueness and L1-contraction follow from i) of Lemma 10.3.
Finally, in the special case p0 = 0, we recover the results of Theorem 2.36, and for general p0, this proves
Proposition 11.8. This ends the proof.
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12 Existence via semi-discretized schemes for Kruz̆kov germs

12.1 The semi-discretized scheme

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N . We set the disjoint union

(12.1) JN :=
∐

α=1,...,N

Jα
N with Jα

N := −σαN, for α = 1, . . . , N

For R ∈ N with R ≥ 3, we can also consider truncated branches

JR :=
∐

α=1,...,N

Jα
R with Jα

R := {k ∈ −σαN, |k| ≤ R} , for α = 1, . . . , N

We set Rα := σαR. Given some p0 ∈ [a, b], we also consider the following flux

f̂αR(p) :=

{
Gα(pα, pα0 ) if σα = −1
Gα(pα0 , p

α, ) if σα = 1

where Gα(↑, ↓) is the standard Godunov flux associated to the function fα. Recall that GR :={
p ∈ [a, b], f̂R(p) = f(p)

}
is a Kruz̆kov germ with respect to junction (−J, f).

We consider functions u : [0,+∞)×JR → R with u = (uαk (t)) for t ≥ 0, k ∈ Jα
R and α = 1, . . . , N solution

of the following semi-discretized scheme for uk := (u1k, . . . , u
N
k ) and ∆x > 0

(12.2)



∂tu
α
k +

Gα(uαk , u
α
k+1)−Gα(uαk−1, u

α
k )

∆x
= 0 for k ∈ Jα

N \ {0, Rα}

∂tu
α
k +

Gα(uαk , u
α
k+1)− f̂α(uk)

∆x
= 0 for k = 0 with σα = −1

∂tu
α
k +

f̂α(uk)−Gα(uαk−1, u
α
k )

∆x
= 0 for k = 0 with σα = 1

∂tu
α
k +

f̂αR(uk)−Gα(uαk−1, u
α
k )

∆x
= 0 for k = Rα with σα = −1

∂tu
α
k +

Gα(uαk , u
α
k+1)− f̂αR(uk)

∆x
= 0 for k = Rα with σα = 1

12.2 Preparation

Then we have the following result.

Lemma 12.1 (Existence of a semi-discrete solution)

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N and [a, b] bounded. Assume that G ⊂ [a, b] is

a Kruz̆kov germ, whose associated flux if f̂ := f̂G. With notation (12.1), assume that the initial data u(0)
satisfies

(12.3) u0,αk (t) ∈ [aα, bα] for all k ∈ Jα
R, α = 1, . . . , N

at the initial time t = 0. For any ∆x > 0, there exists a unique solution u : [0,+∞) × JR → R of (12.2)
with initial data u(0). Moreover u(t) satisfies (12.3) for all t ≥ 0 and u ∈ C1,1([0,+∞);L∞(JR)).

Proof of Lemma 12.1
We first extend the fluxes f, f̂ , f̂R from the box [a, b] to the whole space RN as in Step 1 of the proof of
Proposition 11.6. We also define the extended Godunov flux Gα = Gfα

from the extended flux fα.
Then the result follows easily from the fact that f̂ , f̂R and f and (Gα)α are globally Lipschitz continuous

functions. Then the classical Cauchy-Lipschitz theorem applies to the Banach space L∞(JR), and gives the

existence and uniqueness of a solution in C1,1. Moreover, the fluxes f̂ , f̂R satisfy the second line of (2.14)
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which implies that f, f̂ , f̂R satisfy (11.25). Let us now show that uαk (t) remains in the box ∈ [aα, bα]. Let
us show for instance that uαk (t) ≤ bα. Formally, if the suppremum of uαk (t0) on k ∈ Jα

R is reached at some
index k0 for some time t0 with value uαk0

(t0) = bα, then we get for k = k0

∂tu
α
k0
(t0) =



Gα(uαk−1, b
α)−Gα(bα, uαk+1)

∆x
≤ 0 if k0 ∈ Jα

R\ {0, Rα}

f̂α(uk)−Gα(bα, uαk+1)

∆x
≤ 0 if k0 = 0 and σα = −1

Gα(uαk−1, b
α)− f̂α(uk)

∆x
≤ 0 if k0 = 0 and σα = 1

Gα(uαk−1, b
α)− f̂αR(uk)

∆x
≤ 0 if k0 = Rα and σα = −1

f̂αR(uk)−Gα(bα, uαk+1)

∆x
≤ 0 if k0 = Rα and σα = 1

where in the first line we have used the monotonicities of the Godunov flux Gα(↑, ↓), while in the four last
lines, we have also used the four last lines of (11.25). This shows formally that uαk (t) ≤ bα for all times
t ≥ 0 and k ∈ Jα

R. As it is usual, this can be made rigorous, using for instance classical technics proving the
comparison principle for viscosity solutions. This ends the proof of the lemma.

We will need the following easy result.

Lemma 12.2 (Comparison of entropy fluxes)
We define the entropy flux for x′, y′, x, y ∈ [aα, bα] as

Ψα(x′, y′;x, y) := Gα(x′ ∨ x, y′ ∨ y)−Gα(x′ ∧ x, y′ ∧ y)

where Gα : [aα, bα]2 → R is the standard Godunov flux associated to the function fα. Then we have

(12.4) sign(y − y′) · {Gα(x, y)−Gα(x′, y′)} ≤ Ψα(x′, y′;x, y) ≤ sign(x− x′) · {Gα(x, y)−Gα(x′, y′)}

Proof of Lemma 12.2
We only prove the right inequality, i.e.

(12.5) Gα(x′ ∨ x, y′ ∨ y)−Gα(x′ ∧ x, y′ ∧ y) ≤ sign(x− x′) · {Gα(x, y)−Gα(x′, y′)}

Notice that the proof of the left inequality is similar.
Case A: x− x′ ≥ 0
Subcase A.1: y ≥ y′

Then (12.5) means G(x, y)−G(x′, y′) ≤ G(x, y)−G(x′, y′), which is indeed an equality.
Subcase A.2: y ≤ y′

Then (12.5) means G(x, y′) − G(x′, y) ≤ G(x, y) − G(x′, y′), which is true because of the monotonicity of
G(x′′, ↓).
Case B: x− x′ ≤ 0
Subcase B.1: y ≥ y′

Then (12.5) means G(x′, y)−G(x, y′) ≤ −{G(x, y)−G(x′, y′)}, which is true because of the monotonicity
of G(x′′, ↓).
Subcase B.2: y ≤ y′

Then (12.5) means G(x′, y′)−G(x, y) ≤ −{G(x, y)−G(x′, y′)}, which is again an equality.
This ends the proof of the lemma.

For later use, we will need the following.
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Definition 12.3 (The approximate solution uε given by the semi-discrete scheme)
We set ε := ∆x > 0. Given a solution u of the semi-discretized scheme (12.2), we define uε = (uε,1, . . . , uε,N )
as
(12.6)

uε,α(t, x) :=
∑
k∈Jα

R

uαk (t)χ
ε,α
k (x) with χε,α

k (x) :=

{
1[kε,(k+1)ε)(x) if σα = −1
1((k−1)ε,kε](x) if σα = 1

∣∣∣∣ for α = 1, . . . , N

Lemma 12.4 (Entropy inequalities)

We work under assumptions of Lemma 12.1 and recall that σ ∈ {±}N . Let u(t), v(t) two solutions of the
semi-discretized scheme (12.2) respectively with initial data u(0), v(0). Then we have the following
i) (Pointwise entropy inequality)

(12.7) ∂tW
α
k +

Ψα
k+ 1

2

−Ψα
k− 1

2

∆x
≤ 0 for all k ∈ Jα

R, α = 1, . . . , N

with for k ∈ Z

Wα
k := |uαk − vαk | for k ∈ Jα

R

Ψα
k+ 1

2

:=



Ψα(uαk , u
α
k+1; v

α
k , v

α
k+1) if k ∈ Jα

R\ {R}
Ψα

R(uk, vk) if k = R

Ψα
0 (uk+1, vk+1) if k = −1

∣∣∣∣∣∣∣∣ if σα = −1

Ψα(uαk , u
α
k+1; v

α
k , v

α
k+1) if k ∈ Jα

R\ {0}
Ψα

0 (uk, vk) if k = 0

Ψα
R(uk+1, vk+1) if k = −R− 1

∣∣∣∣∣∣∣∣ if σα = 1

and 
Ψα(x′, y′;x, y) := Gα(x′ ∨ x, y′ ∨ y)−Gα(x′ ∧ x, y′ ∧ y)
Ψα

0 (z
′, z) = sign(z′α − zα) ·

{
f̂α(z′)− f̂α(z)

}
Ψα

R(z
′, z) = sign(z′α − zα) ·

{
f̂αR(z

′)− f̂αR(z)
}

ii) (Integral entropy inequality)
Let uε, vε as in Definition 12.3 with ε := ∆x. Define also
(12.8)

Ψε,α(t, x) :=
∑

k∈Jα
R\{Rα}

Ψα
k+ 1

2
(t)χε,α

k (x) with χε,α
k (x) :=

{
1[kε,(k+1)ε)(x) if σα = −1
1((k−1)ε,kε](x) if σα = 1

∣∣∣∣ for α = 1, . . . , N

Let us consider a smooth test function 0 ≤ φα
k (t) with compact support in t ∈ [0,+∞) for k ∈ Jα

R which

satisfies φα
0 (t) = φβ

0 (t) for all α, β. Then we have the following integral entropy inequality

(12.9)

∫
{0}×J

|uε − vε|φε +

∫
(0,+∞)×J

{
|uε − vε|φε

t − σΨε ·
{
φε(t, · − σε)− φε(t, ·)

ε

}}
≥ 0

where φε is defined from φ by the same formula defining uε from u.

Proof of Lemma 13.3
Step 1: proof of i)
We start with the semi-discretized scheme satisfied by u and v, and multiply the difference of the schemes
by sign(uαk − vαk ) (starting with an approximation of it). We get

∂t|uαk − vαk |+
Ψα,+

k −Ψα,−
k

∆x
= 0 for k ∈ Jα

R
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with

Ψα,+
k :=


sign(uαk − vαk ) ·

{
Gα(uαk , u

α
k+1)−Gα(vαk , v

α
k+1)

}
if k ∈ Jα

R\ {R}
Ψα

R(uk, vk) if k = R

∣∣∣∣ if σα = −1

sign(uαk − vαk ) ·
{
Gα(uαk , u

α
k+1)−Gα(vαk , v

α
k+1)

}
if k ∈ Jα

R\ {0}
Ψα

0 (uk, vk) if k = 0

∣∣∣∣ if σα = 1

and

Ψα,−
k :=



sign(uαk − vαk ) ·
{
Gα(uαk−1, u

α
k )−Gα(vαk−1, v

α
k )
}

if k ∈ Jα
R\ {0}

Ψα
0 (uk, vk) if k = 0

∣∣∣∣ if σα = −1

sign(uαk − vαk ) ·
{
Gα(uαk−1, u

α
k )−Gα(vαk−1, v

α
k )
}

if k ∈ Jα
R\ {−R}

Ψα
R(uk, vk) if k = −R

∣∣∣∣ if σα = 1

Then Lemma 12.2 means Ψα
k+ 1

2

≤ Ψα,+
k and Ψα

k− 1
2

≥ Ψα,−
k for all k ∈ Jα

R, which implies (12.7).

Step 2: proof of ii)
Now, in order to simplify the presentation, let us assume that σα = −1, say for all α (which can be done
using a suitable change of variables like in Lemma 11.1). Consider any test function 0 ≤ φα

k (t) which is
with compact support for t ∈ [0,+∞). Multiplying (12.7) by φα

k for k = 0, . . . , R, and summing over k and
integrating in time over (0,+∞), we get

0 ≥ ε
∑

k=0,...,R

∫
(0,+∞)

{
{∂tWα

k }φα
k +

{
Ψα

k+ 1
2

−Ψα
k− 1

2

ε

}
· φα

k

}

=

∫
(0,+∞)

ε ∑
k=0,...,R

{∂tWα
k }φα

k +

Ψα
R(uR, vR)φ

α
R −Ψα

0 (u0, v0)φ
α
0 +

∑
k=0,...,R−1

Ψα
k+ 1

2
φα
k −

∑
k=1,...,R

Ψα
k− 1

2
φα
k




=

∫
(0,+∞)

{Ψα
R(uR, vR)φ

α
R −Ψα

0 (u0, v0)φ
α
0 }+

∫
(0,+∞)

ε ∑
k=0,...,R

{∂tWα
k }φα

k +

 ∑
k=0,...,R−1

Ψα
k+ 1

2

{
φα
k − φα

k+1

}


=

∫
(0,+∞)

{Ψα
R(uR, vR)φ

α
R −Ψα

0 (u0, v0)φ
α
0 }+

∫
(0,+∞)×Jα

{
{∂t|uε,α − vε,α}φε,α −Ψε,α

{
φε,α(·, ·+ ε)− φε,α

ε

}}
An integration by parts in time gives

(12.10)

∫
{0}×Jα

|uε,α − vε,α|φε,α +

∫
(0,+∞)×Jα

{
|uε,α − vε,α|φε,α

t +Ψε,α

{
φε,α(·, ·+ ε)− φε,α

ε

}}

≥
∫
(0,+∞)

{Ψα
R(uR, vR)φ

α
R −Ψα

0 (u0, v0)φ
α
0 }

Summing over α and using φε ≥ 0, we get∫
{0}×J

|uε − vε|φε +

∫
(0,+∞)×J

{
|uε − vε|φε

t +Ψε

{
φε(·, ·+ ε)− φε

ε

}}

≥
∫
(0,+∞)×(J∩∂BεR)

Df̂R(uε, vε)φε +

∫
(0,+∞)×{0}

Df̂ (uε, vε)φε

with

Df̂ (uε, vε) :=

N∑
α=1

σα ψf̂α

(uε, vε) and ψf̂α

(uε, vε) := sign(uε,α − vε,α) ·
{
f̂α(uε)− f̂α(vε)

}
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and

Df̂R(uε, vε) :=

N∑
α=1

σα
R ψf̂α

R (uε, vε) with σα
R = −σα.

Because both G and GR are Kruz̆kov germs respectively to (J, f) and (−J, f), we deduce that Df̂ , Df̂R ≥ 0.
Joint to the fact that φε ≥ 0, we see that (12.10) implies∫

{0}×J

|uε − vε|φε +

∫
(0,+∞)×J

{
|uε − vε|φε

t +Ψε

{
φε(·, ·+ ε)− φε

ε

}}
≥ 0

More generally, for arbitrary signs σα ∈ {±1} with σR := −σ, we get (12.9). This ends the proof of the
lemma.

Corollary 12.5 (Contraction estimates)
We work under assumptions of Lemma 12.1. Let u, v be two solutions of the semi-discretized scheme (12.2).
We use notation of Definition 12.3 for uε, vε. Then for all t > 0, we have for Rε := (R+ 1)ε

(12.11)

∫
{t}×(J∩BRε )

|uε − vε| ≤
∫
{0}×(J∩BRε )

|uε − vε|

We also have

(12.12)

∫
{t}×(J∩BRε )

|∂tuε| ≤
∫
{0}×(J∩BRε )

|∂tuε|

Proof of Corollary 13.4
On the one hand, inequality (12.11) follows from the integral entropy inequality (12.9) for φε ≡ 1. On the
other hand, inequality (12.12) follows from (12.11) choosing vε = uε(·+ τ), dividing by τ and passing to the
limit τ → 0+. This ends the proof of the lemma.

Lemma 12.6 (BNL estimates)
We work under assumptions of Lemma 12.1. Given a solution u of the semi-discretized scheme (12.2), we
consider uε as in Definition 12.3. Fix α such that σα = −1. Let ki ∈ Jα

R and xi = kiε for i = 1, 2 with
x1 < x2 and 2 ≤ ki ≤ R− 2. Then we have boundary BLN estimate∫

{t}×(x1,x2)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣− ∫
{0}×(x1,x2)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣ ≤ ∑
i=1,2

ε−1

∫
(0,t)×(xi,xi+ε)

|∂tuε,α|

(12.13)

Moreover for Rε := (R + 1)ε and x1 = 2δ = Rε − x2 + ε with δ ∈ ε(N\ {0, 1}), we have the interior BLN
estimate

(12.14)

∫
{t}×(2δ,Rε−2δ)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣
≤
∫
{0}×(δ,Rε−δ)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣+ δ−1

{∫
(0,t)×(δ,2δ)

|∂tuε,α|+
∫
(0,t)×(Rε−2δ,Rε−δ)

|∂tuε,α|

}

Proof of Lemma 13.5
Recall that σα = −1, and define ũε,α(t, x) := uε,α(t, x + ε). For i = 1, 2, assume xi = kiε ∈ Jα ≃ (0,+∞)
for i = 1, 2 with ki ∈ Jα

R\ {0, R} with 2 ≤ ki ≤ R− 2 and x1 < x2. Integrating (12.7) over (x1, x2), we get

∫
{t}×(x1,x2)

∂t|ũε,α − uε,α|+
∑
k∈Jα

R

{
Ψα

k+ 1
2

−Ψα
k− 1

2

ε

}
χε,α
k

 ≤ 0
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with Ψα
k+ 1

2

:= Ψα(ũαk , ũ
α
k+1;u

α
k , u

α
k+1) = Ψα(uαk+1, u

α
k+2;u

α
k , u

α
k+1). From (12.4), it satisfies

|Ψα
k+ 1

2
| ≤ |Gα(uαk+1, u

α
k+2)−Gα(uαk , u

α
k+1)| = ε|∂tuαk+1|

Hence

∂t

∫
{t}×(x1,x2)

|ũε,α − uε,α| ≤ −
{
Ψα

k2− 1
2

−Ψα
k1− 1

2

}
≤ |Ψα

k2− 1
2

|+ |Ψα
k1− 1

2

|

= ε
{
|∂tuαk2

|+ |∂tuαk1
|
}

=
∑
i=1,2

∫
{t}×(x1,x1+ε)

|∂tuε,α|

Integrating on (0, t), we get∫
{t}×(x1,x2)

|ũε,α − uε,α| −
∫
{0}×(x1,x2)

|ũε,α − uε,α| ≤
∑
i=1,2

∫
(0,t)×(xi,xi+ε)

|∂tuε,α|

which implies (12.6). Alternatively, this inequality can also be obtained from the integral entropy inequality
for a suitable test function, which is a characteristic function of the rectangle (0, t)× (x1, x2).
In particular, for x1 = h and x2 = Rε − h− ε, we get that (12.6) means∫

{t}×(h,Rε−h)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣
≤
∫
{0}×(h,Rε−h)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣+ ε−1

{∫
(0,t)×(h,h+ε)

|∂tuε,α|+
∫
(0,t)×(Rε−h−ε,Rε−h)

|∂tuε,α|

}

Now for ∆ ∈ N\ {0, 1} and δ := ε∆, summing over ε−1h = ∆, . . . , 2∆− 1, we get

∆

∫
{t}×(2δ,Rε−2δ)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣
≤ ∆

∫
{0}×(δ,Rε−δ)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣+ ε−1

{∫
(0,t)×(δ,2δ)

|∂tuε,α|+
∫
(0,t)×(Rε−2δ,Rε−δ)

|∂tuε,α|

}

which implies (12.14). This ends the proof of the lemma.

12.3 Convergence

Then we have the following result.

Proposition 12.7 (Convergence of the semi-discretized solution on the truncated junction)

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N and [a, b] bounded. Assume that G ⊂ [a, b] is

a Kruz̆kov germ, whose associated flux if f̂ := f̂G. With notation (12.1), assume that the initial data u(0)
satisfies (12.3). For any ε := ∆x > 0 and R ≥ 3, let u be the unique solution u : [0,+∞) × JR → R of
(12.2) with initial data u(0), and let uε : [0,+∞)× (J ∩BRε

) → R with Rε := (R+ 1)ε given by Definition
12.3. Assume Ū0 = (Ū1

0 , . . . , Ū
N
0 ) with Ūα

0 ∈ (BV ∩ L1)(Jα; [aα, bα]). Define for α = 1, . . . , N

uαk (0) := ε−1

∫
Jα

Ūα
0 χ

ε,α
k with χε,α

k given in Definition 12.3

Then we have

uε → Ū in L1
loc([0,+∞)× (J ∩BR̄)) as (ε,R) → (0,+∞) with Rε → R̄ > 0

where Ū is the unique solution of (11.40) (where R is replaced by R̄) and with initial data Ū(0, ·) = Ū0.
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Proof of Proposition 12.7
Recall that uε(t, x) belongs to the box [a, b] which gives an L∞ estimate, and we have both estimate (12.12)

on uεt , and interior BLN estimate (13.5) on
uε(·, ·+ ε)− uε

ε
, which approximates the x-derivative of uε.

This shows that we have uniform bounds on uε in BVloc;t,x. The compactness of BVloc ⊂ L1
loc for bounded

functions implies the convergence of uε in L1
loc to some function Ū , up to extraction of a subsequence. Now

our integral entropy inequalities (12.9) also passes to the limit and gives (for any constant V both solution
of the limit problem and of the discretized problem)

(12.15)

∫
{0}×(J∩BR̄)

|Ū − V |φ+

∫
(0,+∞)×(J∩BR̄)

{
|Ū − V |φt + Ψ̄ · φx

}
≥ 0

with
Ψε,α → Ψ̄α = Ψα(Ūα, Ūα, V α, V α)

where we recall that Ψα(x′, y′;x, y) := Gα(x′ ∨ x, y′ ∨ y)−Gα(x′ ∧ x, y′ ∧ y). This gives

Ψ̄α = fα(Ūα ∨ V α)− fα(Ūα ∧ V α) = sign(Ūα − V α)
{
fα(Ūα)− fα(V α)

}
= ψfα

(Ūα, V α)

which is exactly the flux of Kruz̆kov entropy. Choosing the test function φα with compact support in the
interior of each branch Jα ∩ BR̄ and any constant V α ∈ [aα, bα], we recover that Ū is an entropy solution
on each (truncated) branch. Now choosing V ∈ G and a test function φ with compact support in J ∩ BR̄,
with moreover φ focusing on the origin, we recover that

Df (Ū(t, 0), V ) ≥ 0 for a.e. t > 0 and all V ∈ G

Because G is Kruz̆kov, we recover that Ū(t, 0) ∈ G for a.e. t > 0.
Similarly, we show that (Ū(t, ·))J∩∂BR̄

∈ GR. This shows that Ū is solution of (11.40) (where R is replaced
by R̄) and with initial data U(0, ·) = U0. The uniqueness of the solution shows the uniqueness of any ac-
cumulation point of the sequence uε. This implies the convergence of the full sequence uε towards Ū . This
ends the proof of the proposition.

13 Existence via fully discretized schemes for monotone Kruz̆kov
germs

13.1 The fully discretized scheme

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N . We recall notation (12.1), namely

JN :=
∐

α=1,...,N

Jα
N with Jα

N := −σαN, for α = 1, . . . , N

We consider functions u : N× JN → R with u = (un,αk ) for n ∈ N, k ∈ Jα
N and α = 1, . . . , N solution of the

following fully discretized explicit (finite volume) scheme for un0 := (un,10 , . . . , un,N0 ) and ∆x > 0, ∆t > 0 and
n ∈ N
(13.1)

un+1,α
k − un,αk

∆t
+
Gα(un,αk , un,αk+1)−Gα(un,αk−1, u

n,α
k )

∆x
= 0 for k ∈ Jα

N \ {0}

un+1,α
k − un,αk

∆t
+
Gα(un,αk , un,αk+1)− f̂α(unk )

∆x
= 0 for k = 0 with σα = −1

un+1,α
k − un,αk

∆t
+
f̂α(unk )−Gα(un,αk−1, u

n,α
k )

∆x
= 0 for k = 0 with σα = 1

where Gα = Gfα

is the standard Godunov flux associated to the function fα : [aα, bα] → R. We also assume

that f̂ = f̂G : [a, b] → RN is the Godunov flux associated to a Kruz̆kov germ G. When it will be useful, we
will furthermore assume that G is monotone.
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13.2 Preparation

Then we have the following result.

Lemma 13.1 (Existence of a fully discrete solution)

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N and [a, b] bounded. We also assume that

f̂ = f̂G : [a, b] → RN is the Godunov flux associated to a Kruz̆kov germ G. With notation (12.1), assume
that the initial data u0 : JN → R (with u0 = (u0,αk ) with k ∈ Jα

N ) satisfies

(13.2) un,αk ∈ [aα, bα] for all k ∈ Jα
N , α = 1, . . . , N

at the initial time n = 0. For any ∆x > 0, ∆t > 0, satisfying the following CFL condition

(13.3) L
∆t

∆x
≤ 1

2
with L := sup

α=1,...,N
Lip(fα; [aα, bα])

there exists a unique solution u : N × JN → R of (13.1) with initial data u0. Moreover u satisfies (??) for
all n ≥ 0.

Furthermore, if the germ G is monotone, then the scheme is also monotone.

Proof of Lemma 13.1
Recall that f̂ = f̂G satisfies on [a, b]

σj∂j f̂
j ≥

∑
α∈{1,...,N}\{j}

|∂j f̂α|, for all j = 1, . . . , N

because G is Kruz̆kov. Furthermore, when G is monotone, we also have on [a, b]

(13.4) ∂j(σ
j f̂ j) ≥ 0, ∂k(σ

j f̂ j) ≤ 0 for all k ̸= j

Step 1: extension, existence and uniqueness
We first extend the fluxes f, f̂ from the box [a, b] to the whole space RN as in Step 1 of the proof of
Proposition 11.6. Furthermore, when G is monotone, it is important to notice that monotonicities (13.4) are

still true for the extension f̂ on RN , as it follows easily from the method of extension. We also define the
extended Godunov flux Gα = Gfα

from the extended flux fα.
Then the functions f̂ , f and (Gα)α are defined on the whole RN , and are globally Lipschitz continuous

satisfying in particular for all indices j, α

(13.5) 0 ≤ σj∂j f̂
j(p) ≤ |(f j)′(pj)| ≤ L, |∂uLGα(uL, uR)|, |∂uRGα(uL, uR)| ≤ L.

Therefore there is existence and uniqueness of a solution u to the scheme (13.1).
Step 2: monotonicity of the scheme when G is monotone
We have

un+1,α
k = Hα

k [u
n] :=


Hα

k (u
n,α
k−1, u

n,α
k , un,αk+1) if k ∈ Jα

N \ {0}

Hα
k (u

n
k , u

n,α
k+1) if k = 0 and σα = −1

Hα
k (u

n,α
k−1, u

n
k ) if k = 0 and σα = 1

with

Hα
k [u

n] :=



un,αk +
∆t

∆x
·
{
Gα(un,αk−1, u

n,α
k )−Gα(un,αk , un,αk+1)

}
if k ∈ Jα

N \ {0}

un,αk +
∆t

∆x
·
{
f̂α(unk )−Gα(un,αk , un,αk+1)

}
if k = 0 and σα = −1

un,αk +
∆t

∆x
·
{
Gα(un,αk−1, u

n,α
k )− f̂α(unk )

}
if k = 0 and σα = 1

Under the CFL condition (13.3), and from estimates (13.5) and the monotonicities (13.4) on RN and the
natural monotonicities of the standard Godunov fluxes Gα’s, we deduce that Hα

k is monotonous in its
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arguments.
Step 3: bounds in the box (even when G is not monotone)

Moreover, the flux f̂ satisfies the second line of (2.14) which implies that f, f̂ satisfy (11.25). Let us now
show that un,αk remains in the box ∈ [aα, bα]. Let us show for instance that un,αk ≤ bα. Formally, if the
suppremum of (un,αk )’s on k ∈ Jα

N is reached at some index k0 for some time index n0 with value un0,α
k0

= bα,
then we get (n, k) = (n0, k0)

un+1,α
k − un,αk

∆t
=



Gα(un,αk−1, b
α)−Gα(bα, un,αk+1)

∆x
≤ 0 if k0 ∈ Jα

N \ {0}

f̂α(unk )−Gα(bα, un,αk+1)

∆x
≤ 0 if k0 = 0 and σα = −1

Gα(un,αk−1, b
α)− f̂α(unk )

∆x
≤ 0 if k0 = 0 and σα = 1

where in the first line we have used the monotonicities of the Godunov flux Gα(↑, ↓), while in the two last
lines, we have also used the four last lines of (11.25). This shows formally that un,αk ≤ bα for all times n ≥ 0
and k ∈ Jα

N . As it is usual, this can be made rigorous, using for instance classical technics proving the
comparison principle for viscosity solutions. This ends the proof of the lemma.

For later use, we will need the following.

Definition 13.2 (The approximate solution uε given by the fully discrete scheme)
We set τ := ∆t > 0, ε := ∆x > 0 and ε̃ := (τ, ε). Given a solution u of the semi-discretized scheme (12.2),
we define uε̃ = (uε̃,1, . . . , uε̃,N ) for α = 1, . . . , N
(13.6)

uε̃,α(t, x) :=
∑

n∈N, k∈Jα
R

un,αk (t)χε̃,n,α
k (x) with χε̃,n,α

k (t, x) :=

{
1[nτ,(n+1)τ)(t) · 1[kε,(k+1)ε)(x) if σα = −1
1[nτ,(n+1)τ)(t) · 1((k−1)ε,kε](x) if σα = 1

Lemma 13.3 (Entropy inequalities for monotone Kruz̆kov germs)

We work under assumptions of Lemma 13.1 and recall that σ ∈ {±}N . Let u, v two solutions of the fully
discretized scheme (13.1) respectively with initial data u0, v0. We assume that G is monotone Kruz̆kov.
Then we have the following
i) (Pointwise entropy inequality)

(13.7)
Wn+1,α

k −Wn,α
k

∆t
+

Ψn,α

k+ 1
2

−Ψn,α

k− 1
2

∆x
≤ 0 for all k ∈ Jα

N , α = 1, . . . , N

with for k ∈ Z, n ∈ N

Wn,α
k := |un,αk − vn,αk | for k ∈ Jα

N

Ψn,α

k+ 1
2

:=


Ψα(un,αk , un,αk+1; v

n,α
k , vn,αk+1) if k ∈ Jα

N
Ψα

0 (u
n
k+1, v

n
k+1) if k = −1

∣∣∣∣ if σα = −1

Ψα(un,αk , un,αk+1; v
n,α
k , vn,αk+1) if k ∈ Jα

N \ {0}
Ψα

0 (u
n
k , v

n
k ) if k = 0

∣∣∣∣ if σα = 1

and 
Ψα(x′, y′;x, y) := Gα(x′ ∨ x, y′ ∨ y)−Gα(x′ ∧ x, y′ ∧ y)
Ψα

0 (z
′, z) = f̂α(z′ ∨ z)− f̂α(z′ ∧ z)

with (z′ ∨ z)α := z′α ∨ zα and (z′ ∧ z)α := z′α ∧ zα

ii) (Integral entropy inequality)
Let uε̃, vε̃ as in Definition 13.2. Define also

(13.8) Ψε̃,α(t, x) :=
∑

n∈N, k∈Jα
N

Ψn,α

k+ 1
2

χε̃,n,α
k (t, x) for α = 1, . . . , N
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with χε̃ defined in (13.6). Let us consider a test function 0 ≤ φn,α
k for n ∈ N for k ∈ Jα

N which satisfies

φn,α
0 = φn,β

0 for all α, β and n ∈ N. For φε̃ is defined from φ by the same formula defining uε̃ from u, and
assuming that φε̃ has compact support on [0,+∞)× J , we have the following integral entropy inequality
(13.9)∫

{0}×J

|uε̃ − vε̃|φε̃ +

∫
(0,+∞)×J

{
|uε̃ − vε̃|(·+ τ, ·) ·

{
φε̃(·+ τ, ·)− φε̃

τ

}
− σΨε̃

{
φε̃(·, · − σε)− φε̃

ε

}}
≥ 0

Proof of Lemma 13.3
Step 1: proof of i)
We first notice that for x′, x ∈ R, we have |x′−x| := x′ ∨x−x′ ∧x. Because we assume that G is monotone,
we know that the scheme is monotone. Hence Hα

k [u
n] ∨Hα

k [v
n] ≤ Hα

k [u
n ∨ vn]

Hα
k [u

n] ∧Hα
k [v

n] ≥ Hα
k [u

n ∧ vn]
with (un ∨ vn)αk := un,αk ∨ vn,αk and (un ∧ vn)αk := un,αk ∧ vn,αk

Therefore, starting with the fully discretized scheme satisfied by u and v, and get (with obvious notation)

un+1 ∨ vn+1 − un+1 ∧ vn+1 ≤ H[un ∨ vn]−H[un ∧ vn]

Hence Wn,α
k := |un,αk − vn,αk | satisfies

Wn+1,α
k −Wn,α

k

∆t
+

Ψn,α

k+ 1
2

−Ψn,α

k− 1
2

∆x
≤ 0 for all k ∈ Jα

N , α = 1, . . . , N

with Ψn,α

k± 1
2

as in the statement of i) of Lemma 13.3. This shows (13.7).

Step 2: proof of ii)
Now, in order to simplify the presentation, let us assume that σα = −1, say for all α (which can be done
using a suitable change of variables like in Lemma 11.1). Consider any test function 0 ≤ φn,α

k . Multiplying
(13.7) by φn,α

k for k ∈ Jα
N , and summing over k and integrating in time over n ∈ N, we get for φε̃ with

compact support in [0,+∞)× J

0 ≥ ετ
∑

n∈N, k∈Jα
N

{{
Wn+1,α

k −Wn,α
k

τ

}
φn,α
k +

{
Ψn,α

k+ 1
2

−Ψn,α

k− 1
2

ε

}
· φn,α

k

}

=



ε
∑
k∈Jα

N

−W 0,α
k φ0,α

k +
∑
n∈N

Wn+1,α
k φn,α

k −
∑

n∈N\{0}

Wn,α
k φn,α

k


τ
∑
n∈N

−Ψα
0 (u

n
0 , v

n
0 )φ

n,α
0 +

∑
k∈Jα

N

Ψn,α

k+ 1
2

φn,α
k −

∑
k∈Jα

N \{0}

Ψn,α

k− 1
2

φn,α
k





=



ε
∑
k∈Jα

N

{
−W 0,α

k φ0,α
k −

∑
n∈N

Wn+1,α
k

{
φn+1,α
k − φn,α

k

}}

τ
∑
n∈N

−Ψα
0 (u

n
0 , v

n
0 )φ

n,α
0 +

∑
k∈Jα

N

Ψn,α

k+ 1
2

{
φn,α
k − φn,α

k+1

}



=


−
∫
{0}×Jα

W ε̃,αφε̃,α −
∫
(0,+∞)×Jα

W ε̃,α(·+ τ, ·) ·
{
φε̃,α(·+ τ, ·)− φε̃,α

τ

}

−
∫
(0,+∞)×{0}

Ψα
0 (u

ε̃, vε̃)φε̃,α −
∫
(0,+∞)×Jα

Ψε̃,α

{
φε̃,α(·, ·+ ε)− φε̃,α

ε

}

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i.e.
(13.10)∫

{0}×Jα

|uε̃ − vε̃|φε̃ +

∫
(0,+∞)×Jα

{
|uε̃ − vε̃|(·+ τ, ·) ·

{
φε̃(·+ τ, ·)− φε̃

τ

}
+Ψε̃

{
φε̃(·, ·+ ε)− φε̃

ε

}}

≥ −
∫
(0,+∞)×{0}

Ψα
0 (u

ε̃, vε̃)φε̃

Summing over α and using φε̃ ≥ 0, we get∫
{0}×J

|uε̃ − vε̃|φε̃ +

∫
(0,+∞)×J

{
|uε̃ − vε̃|(·+ τ, ·) ·

{
φε̃(·+ τ, ·)− φε̃

τ

}
+Ψε̃

{
φε̃(·, ·+ ε)− φε̃

ε

}}

≥
∫
(0,+∞)×{0}

Df̂ (uε̃ ∨ vε̃, uε̃ ∧ vε̃)φε̃

with

Df̂ (p, q) :=
N∑

α=1

σα ψf̂α

(p, q) and ψf̂α

(p, q) := sign(pα − qα) ·
{
f̂α(p)− f̂α(q)

}
Because G is a Kruz̆kov germ with respect to (J, f), we deduce that Df̂ ≥ 0. Joint to the fact that φε̃ ≥ 0,
we see that (13.10) implies∫

{0}×J

|uε̃ − vε̃|φε̃ +

∫
(0,+∞)×J

{
|uε̃ − vε̃|(·+ τ, ·) ·

{
φε̃(·+ τ, ·)− φε̃

τ

}
+Ψε̃

{
φε̃(·, ·+ ε)− φε̃

ε

}}
≥ 0

More generally, for arbitrary signs σα ∈ {±1}, we get (13.9). This ends the proof of the lemma.

Corollary 13.4 (Contraction estimates)
We work under assumptions of Lemma 13.1 with G monotone Kruz̆kov. Let u, v be two solutions of the fully
discretized scheme (13.1). We use notation of Definition 13.2 for uε̃, vε̃. Then for all t > 0, we have

(13.11)

∫
{t}×J

|uε̃ − vε̃| ≤
∫
{0}×J

|uε̃ − vε̃|

where the right hand side may be infinite.
We also have

(13.12)

∫
{t}×J

∣∣∣∣uε̃(·+ τ, ·)− uε̃

ε

∣∣∣∣ ≤ ∫
{0}×J

∣∣∣∣uε̃(·+ τ, ·)− uε̃

ε

∣∣∣∣
Proof of Corollary 13.4
On the one hand, inequality (13.11) follows from the integral entropy inequality (13.9) for φε̃ ≡ 1. On the
other hand, inequality (13.12) follows from (13.11) choosing vε = uε(· + τ, ·), dividing by τ . This ends the
proof of the lemma.

Lemma 13.5 (BNL estimates)
We work under assumptions of Lemma 13.1. Given a solution u of the fully discretized scheme (13.1), we
consider uε̃ as in Definition 13.2. Fix α such that σα = −1. Let ki ∈ Jα

N and xi = kiε for i = 1, 2 with
x1 < x2 and ki ≥ 2. Then we have boundary BLN estimate for t ∈ τN\ {0, 1}
(13.13)∫
{t}×(x1,x2)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣−∫
{0}×(x1,x2)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣ ≤ ∑
i=1,2

ε−1

∫
(0,t)×(xi,xi+ε)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
Moreover for x1 = 2δ with δ ∈ ε(N\ {0, 1}), we have the interior BLN estimate for t ∈ τN\ {0, 1}
(13.14)∫
{t}×(2δ,+∞)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣ ≤ ∫
{0}×(δ,+∞)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣+δ−1

∫
(0,t)×(δ,2δ)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
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Proof of Lemma 13.5
Recall that σα = −1, and define vε̃,α(t, x) := uε̃,α(t, x + ε). For i = 1, 2, assume xi = kiε ∈ Jα ≃ (0,+∞)
for i = 1, 2 with ki ∈ Jα

N \ {0} with ki ≥ 2 and x1 < x2. For t ∈ τN\ {0, 1}, consider the (limit) test function
φε̃,α(s, x) = 1[0,t)(s) · 1[x1,x2)(x), with φ

ε̃,β = 0 for β ̸= α. Plugging this test function in the integral entropy
inequality (13.9), we get∫

{0}×(x1,x2)

|uε̃,α − vε̃,α| −
∫
{t}×(x1,x2)

|uε̃,α − vε̃,α|+ ε−1
∑
i=1,2

∫
(0,t)×(xi−ε,xi)

−(−1)iΨε̃,α ≥ 0

Recall that Ψn,α

k+ 1
2

:= Ψα(vn,αk , vn,αk+1;u
n,α
k , un,αk+1) = Ψα(un,αk+1, u

n,α
k+2;u

n,α
k , un,αk+1). From (12.4), it satisfies

|Ψn,α

k+ 1
2

| ≤ |Gα(un,αk+1, u
n,α
k+2)−Gα(un,αk , un,αk+1)| = ε

∣∣∣∣∣u
n+1,α
k+1 − un,αk+1

τ

∣∣∣∣∣
Hence for t = nτ∫

{t}×(x1,x2)

|uε̃,α − vε̃,α| −
∫
{0}×(x1,x2)

|uε̃,α − vε̃,α| ≤
∑
i=1,2

τ
∑

m=0,...,n−1

|Ψm,α

ki− 1
2

|

≤ ε
∑
i=1,2

τ
∑

m=0,...,n−1

∣∣∣∣∣u
m+1,α
ki

− um,α
ki

τ

∣∣∣∣∣
=
∑
i=1,2

∫
(0,t)×(xi,xi+ε)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
Hence we get∫
{t}×(x1,x2)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣−∫
{0}×(x1,x2)

∣∣∣∣uε̃,α(·, ·+ ε)− uε̃,α

ε

∣∣∣∣ ≤ ε−1
∑
i=1,2

∫
(0,t)×(xi,xi+ε)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
which is (13.13).

In particular, for x1 = h and x2 = +∞, we get that (13.13) means∫
{t}×(h,+∞)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣
≤
∫
{0}×(h,+∞)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣+ ε−1

∫
(0,t)×(h,h+ε)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
Now for ∆ ∈ N\ {0, 1} and δ := ε∆, summing over ε−1h = ∆, . . . , 2∆− 1, we get

∆

∫
{t}×(2δ,+∞)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣
≤ ∆

∫
{0}×(δ,+∞)

∣∣∣∣uε,α(·, ·+ ε)− uε,α

ε

∣∣∣∣+ ε−1

∫
(0,t)×(δ,2δ)

∣∣∣∣uε̃,α(·+ τ, ·)− uε̃,α

τ

∣∣∣∣
which implies (13.14). This ends the proof of the lemma.

13.3 Convergence

Then we have the following result.

Proposition 13.6 (Convergence of the fully discretized solution for monotone Kruz̆kov germs)

Assume (2.2) with N ≥ 1 and junction (J, f) with σ ∈ {±1}N and [a, b] bounded. Assume that G ⊂ [a, b] is
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a monotone Kruz̆kov germ, whose associated flux if f̂ := f̂G. Assume that τ := ∆t > 0 and ε := ∆x > 0
satisfy the CFL condition (13.3), and let ε̃ := (τ, ε).

Let u be the unique solution u : N × JN → R of (13.1) with initial data u0 satisfying (13.2). Let
uε̃ : [0,+∞)×J → R given by Definition 13.2. Assume Ū0 = (Ū1

0 , . . . , Ū
N
0 ) with Ūα

0 ∈ (BV ∩L1)(Jα; [aα, bα]).
Define for α = 1, . . . , N

u0,αk := ε−1

∫
Jα

Ūα
0 χ

ε,α
k with χε,α

k given in Definition 13.2

Then we have
uε̃ → Ū in L1

loc([0,+∞)× J) as ε̃→ (0, 0)

where Ū is the unique solution of (2.23) and with initial data Ū(0, ·) = Ū0.

Proof of Proposition 13.6
Recall that uε̃(t, x) belongs to the box [a, b] which gives an L∞ estimate, and we have both contraction

estimate (13.12) on
uε̃(·+ τ, ·)− uε̃

τ
which approximates the t-derivative of uε̃, and interior BLN estimate

(13.14) on
uε̃(·, ·+ ε)− uε̃

ε
, which approximates the x-derivative of uε̃. This shows that we have uniform

bounds on uε̃ in BVloc;t,x. Again, the compactness of BVloc ⊂ L1
loc for bounded functions implies the con-

vergence of uε̃ in L1
loc to some function Ū , up to extraction of a subsequence. The remaining part of the

proof is similar to the one of the proof of Proposition 12.7. This ends the proof of the proposition.

14 Examples of conservative Kruz̆kov germs and their Godunov
fluxes

14.1 Vanishing viscosity germ revisited

The germ GV V obtained by vanishing viscosity on a junction has been studied in several works. We can cite
Andreianov, Karlsen, Risebro [3] for 1 : 1 junctions, and for n : m junctions Coclite, Garavello [26]
for existence, Andreianov, Coclite, Donadello [22] for existence and uniqueness for bell-shaped fluxes,
and more recently Musch, Fjordholm, Risebro [18] for monotone fluxes and Fjordholm, Musch,
Risebro [27] for fluxes with finite number of extrema.

Here we do not try to justify that GV V is obtained in the vanishing viscosity limit. On the contrary, we
take GV V (or more precisely its associated Godunov flux) as a definition, and show that it is a conservative
Kruz̆kov germ, removing in particular the technical condition of a finite number of extrema of the fluxes on
each branch.

We have the following result.

Proposition 14.1 (Vanishing viscosity germ and its Godunov flux)
Assume (2.2) with N ≥ 1 and junction (J, f). Assume that [aj , bj ] = [a0, b0] for all j = 1, . . . , N . Assume
moreover that either

(14.1)

{
f j ≥ 0 on [aj , bj ] ⊂ R
f j = 0 on ∂[aj , bj ]

for all indices j = 1, . . . , N

or

(14.2) [a0, b0] ∩ R = R and N ≥ 2 with θj+ = σj+ , θj− = −σj− for two indices j−, j+ in (2.2).

Now for any p ∈ [a, b] ∩ RN , consider

Rp :=

r ∈ [a0, b0],
∑
σj=1

Gj(pj , r) =
∑

σj=−1

Gj(r, pj)


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and

Λp :=

{
g(r) := (g1, . . . , gN )(r) with gj(r) :=

{
Gj(pj , r) if σj = 1
Gj(r, pj) if σj = −1

∣∣∣∣ for all r ∈ Rp

}
Then Λp =

{
f̂(p)

}
is reduced to a singleton. Moreover f̂ : [a, b] → RN defines a map such that the set

GV V :=
{
p ∈ [a, b], f̂(p) = f(p)

}
is a conservative Kruz̆kov germ. Moreover f̂ is the associated Godunov flux f̂ = f̂GV V

.

Proof of Proposition 14.1
Step 1: Rp ̸= ∅
We recall that

Gj(↑, ↓) = Gj(p, q) =


min
[p,q]

f j if p ≤ q

max
[q,p]

f j if p ≥ q

Then we set
g(r) :=

∑
σj=1

Gj(pj , r)−
∑

σj=−1

Gj(r, pj)

which is nonincreasing in r.
Step 1.1: under assumption (14.1)
Inequality f j ≥ 0 implies Gj ≥ 0 and then

g(b0) =
∑
σj=1

0−
∑

σj=−1

(≥ 0) ≤ 0

g(a0) =
∑
σj=1

(≥ 0)−
∑

σj=−1

0 ≥ 0

Because g is continuous, we deduce the existence of some r ∈ [a0, b0] such that g(r) = 0, i.e. r ∈ Rp.
Step 1.2: under assumption (14.2)
Recall that the function θjf j is coercive, i.e. lim inf

|pj |→+∞
θjf j(pj) = +∞. Hence

Gj(pj , r) →



−∞ if r → +∞ and θj = −1 = −σj

+∞ if r → −∞ and θj = 1 = σj

min
[pj ,+∞)

f j if r → +∞ and θj = 1

max
(−∞,pj ]

f j if r → −∞ and θj = −1

while

Gj(r, pj) →



+∞ if r → +∞ and θj = 1 = −σj

−∞ if r → −∞ and θj = −1 = σj

max
[pj ,+∞)

f j if r → +∞ and θj = −1

min
(−∞,pj ]

f j if r → −∞ and θj = 1

Hence under assumption (14.2), we deduce that{
g(r) → −∞ as r → +∞ because of j−
g(r) → +∞ as r → −∞ because of j+

By continuity of g, we deduce the existence of some r ∈ R such that g(r) = 0, i.e. r ∈ Rp.
Step 2: Λp is reduced to a singleton
Assume that r, r̄ ∈ Rp with r < r̄. Hence g(r) = 0 = g(r̄). Because g is a sum of N nonincreasing
functions, we deduce that each function is constant on [r, r̄], i.e. Gj(pj , r) = Gj(pj , r̄) for σj = 1 and
Gj(r, pj) = Gj(r̄, pj) for σj = −1. Up to redefine r, r̄, we can choose such elements such that [r, r̄] is the
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maximal interval in [a0, b0] where g vanishes. This implies that g = const on [r, r̄], and then that Λp = {g(r)}
is a singleton. We set f̂(p) := g(r).

Step 3: continuity of f̂
As usual the continuity of f̂ follows from the singleton property of Λp.

Step 4: bounds on f̂
We want to check that f− ≤ f̂ ≤ f+. We only do it for components j such that σj = 1 (the case σj = −1 is

similar). This follows from f j−(p
j) = Gj(pj , bj) ≤ f̂ j(p) = Gj(pj , r) ≤ Gj(pj , aj) = f j+(p

j).
Step 5: local constancy

Consider p∗ ∈ [a, b] ∩ RN and assume that Kp∗ :=
{
j ∈ {1, . . . , N} , f̂ j(p∗) ̸= f j(p∗)

}
̸= ∅. Let j ∈ Kp∗ .

Assume that σj = 1 (the case σj = −1 is similar). Then we have with r∗ ∈ Rp∗

f j(pj∗) ̸= f̂ j(p∗) = Gj(pj∗, r∗) =


min
[pj

∗,r∗]
f j < f j(pj∗) if pj∗ < r∗

max
[r∗,p

j
∗]
f j > f j(pj∗) if pj∗ > r∗

Then there exists ε > 0 such that for

Qε(p∗) :=

p∗ + ∑
j∈Kp∗

(−ε, ε)ej

 ∩ [a, b]

and all p ∈ Qε(p∗), we have Gj(pj , r∗) = Gj(pj∗, r∗) for σj = 1 and Gj(r∗, p
j) = Gj(r∗, p

j
∗) for σj = −1.

Hence r∗ ∈ Rp and moreover f̂(p) = f̂(p∗). This shows that f̂ is locally constant on Qε(p∗) and then on{
f̂ ̸= f

}
.

Step 6: basic monotonicities
Consider some p ∈ [a, b] ∩ RN , and fix some index j0. Assume also that σj0 = 1 (the case σj0 = −1 is
similar). Then consider

[a, b] ∋ p̄ = p+ qej0 with q ∈ [0,+∞).

Step 6.1: monotonicity in r
Consider the minimal r ∈ R such that r ∈ Rp and any r̄ ∈ Rp̄. Then we have

g(p̄, r̄) := Gj0(p̄j0 , r̄) +
∑

σj=1, j ̸=j0

Gj(pj , r̄)−
∑

σj=−1

Gj(r̄, pj) = 0

Because of the monotonicities Gj(↑, ↓) and the fact that p̄j0 ≥ pj0 , we deduce that 0 = g(p̄, r̄) ≥ g(p, r̄).
Then the monotonicity of g(p, ·) implies that r ≤ r̄.

Step 6.2: monotonicity of f̂
We have

f̂ j0(p̄) = Gj0(p̄j0 , r̄)

=
∑

σj=−1

Gj(r̄, pj)−
∑

σj=1, j ̸=j0

Gj(pj , r̄)

≥
∑

σj=−1

Gj(r, pj)−
∑

σj=1, j ̸=j0

Gj(pj , r)

= Gj0(pj0 , r)

= f̂ j0(p)

which shows the monotonicity of σj f̂ j in pj for j = j0, i.e. the basic monotonicities of f̂ .
Step 7: conservative Riemann germ
From the previous steps, we deduce that GV V is a Riemann germ and f̂ = f̂GV V

. Moreover by construction,
the germ is conservative.
Step 8: monotone germ
We start as in Step 6 with index j0 such that σj0 = 1 (the case σj0 = −1 is similar), and p̄ = p + qej with
q ≥ 0. Using r̄ ∈ Rp̄ and minimal r ∈ Rp, we get r̄ ≥ r.
Case A: σj = 1 with j ̸= j0
We have

f̂ j(p̄) = Gj(pj , r̄) ≤ Gj(pj , r) = f̂ j(p)
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Case B: σj = −1
We have

σj f̂ j(p̄) = σjGj(r̄, pj) ≤ σjGj(r, pj) = σj f̂ j(p)

Conclusion
In all cases, we get that the map p 7→ σj f̂ j(p) is nonincreasing in pj0 for all j ̸= j0. Because this is true for all
indices j0, this implies that the germ GV V is monotone. But a conservative monotone germ is a conservative
Kruz̆kov germ. This ends the proof of the proposition.

14.2 Holden-Risebro theory revisited

We revisit the pioneering work of Holden and Riesebro [31].

Lemma 14.2 (Convex optimization)
Let Ψ : RN → R be a strictly convex function and some fixed vector RN ∋ γ̄ = (γ̄1, . . . , γ̄N ) ≥ 0 and

σ = (σ1, . . . , σN ) ∈ {±1}N with σ ̸= (1, . . . , 1) and σ ̸= (−1, . . . ,−1). Let L : RN → R be the linear map

defined by L(γ) :=
N∑
j=1

σjγj for γ ∈ RN . Let

γ̂(γ̄) := Argmin
K(γ̄)

Ψ with the convex K(γ̄) := {γ ∈ Γ(γ̄), L(γ) = 0} and the box Γ(γ̄) := [0, γ̄] :=

N∏
j=1

[
0, γ̄j

]
i) (Preflux properties)
Then γ̂ : [0,+∞)N → [0,+∞)N is a conservative preflux in the sense of Definition 7.19.
ii) (Holden-Risebro preflux: σ-monotonicity, when Ψ has separated variables)

Assume moreover that there exists N strictly convex functions Ψj : R → R such that Ψ(γ) =

N∑
j=1

Ψj(γ
j)

for γ ∈ RN . Then γ̂ is σ-monotone in the sense of Definition 7.19, and we denote it γ̂HR and call it a
Holden-Risebro preflux..

Remark 14.3 In Lemma 14.2, γ̄ denotes a vector of [0,+∞)N which must not be confused with the capacity
of Definition 7.21.

Proof of Lemma 14.2
Step 1: proof of continuity, basic monotonicity, conservation
Step 1.1: continuity
Notice that 0RN ∈ K(γ̄) for all γ̄ ≥ 0 and then K(γ̄) is always non empty and compact convex. Then the
strict convexity of Ψ implies the uniqueness of the minimizer γ̂(γ̄), which is then well-defined. Moreover this
uniqueness also implies the continuity of the map γ̄ 7→ γ̂(γ̄).
Step 1.2: basic monotonicitity
Consider γ̄, γ̄∗ ∈ [0,+∞)N such that γ̄ − γ̄∗ = εek with ε > 0 and k = 1 to fix the ideas. Assume moreover
that σ1 = 1 (the case σ1 = −1 is similar).
Assume by contradiction that

(14.3) γ̂1(γ̄) ≤ γ̂1(γ̄∗) and γ̂(γ̄) ̸= γ̂(γ̄∗)

This implies that γ̂(γ̄) ∈ [0, γ̄∗]. Because L(γ̂(γ̄)) = 0, we deduce that γ̂(γ̄) ∈ K(γ̄∗) ⊂ K(γ̄). This implies
that

inf
K(γ̄)

Ψ = Ψ(γ̂(γ̄)) ≥ inf
K(γ̄∗)

Ψ = Ψ(γ̂(γ̄∗)) ≥ inf
K(γ̄)

Ψ

Hence Ψ(γ̂(γ̄)) = Ψ(γ̂(γ̄∗)), and because Ψ is strictly convex, we deduce that γ̂(γ̄) = γ̂(γ̄∗). Contradiction
with (14.3). We conclude that γ̂1(γ̄) > γ̂1(γ̄∗) or γ̂(γ̄) = γ̂(γ̄∗). This shows in particular that the map
γ̄ 7→ γ̂j(γ̄) is nondecreasing in γ̄j , for j = 1, and then similarly for all j.
Step 1.3: conservation
By construction, we have L(γ̂(γ̄)) = 0, and then γ̂ is conservative.
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Step 2: proof of local constancy
To simplify the notation, let us introduce γ̂∗ := γ̂(γ̄∗).
Step 2.1: preliminary
Now, given γ̄∗ ∈ [0,+∞)N , the function Ψ is minimal at γ̂∗ on K(γ̄∗) with L(γ̂∗) = 0. Looking at the
subdifferential ∂(Ψ|Γ(γ̄∗))(γ̂∗) of the convex function Ψ, it is easy to see that there exists some λ ∈ R (that
can be interpreted as a Lagrange multiplier), such that the function Φ := {Ψ− λL}|Γ(γ̄∗)

is minimal on Γ(γ̄∗)
at γ̂∗. Hence the convex function Φ satisfies

(14.4) inf
Γ(γ̄∗)

Φ ≥ Φ(γ̂∗) and ξ · ∂Φ(γ̂∗) ≥ 0 for all ξ ∈ Tγ̂∗Γ(γ̄∗) := lim
δ→0+

δ−1 (Γ(γ̄∗)− γ̂∗)

where ξ · ∂Φ(x0) ≥ 0 means ξ · v ≥ 0 for all v ∈ ∂Φ(x0).
Step 2.2: variations and local constancy

Now assume that I :=
{
j ∈ {1, . . . , N} , γ̂j(γ̄∗) ̸= γ̄j∗

}
̸= ∅, and for ε > 0, consider γ̄ ∈ [0,+∞)N such that

(14.5) γ̄j
{

= γ̄j∗ if j /∈ I

∈ (γ̄j∗ − ε, γ̄j∗ + ε) ∩ [0,+∞) if j ∈ I

Assume that σj = 1 (the case σj = −1 is similar). Then for ε small enough, we have

{
γ̄j = γ̂j∗ if γ̄j∗ = γ̂j∗
γ̄j > γ̂j∗ if γ̄j∗ > γ̂j∗

.

Hence [0, γ̄j ] ⊂ [0, γ̂j∗] + Tγ̂j
∗
[0, γ̄j∗], and we conclude that

(14.6) γ̂∗, γ̂(γ̄) ∈ Γ(γ̄) ⊂ Γ(γ̄∗) + Tγ̂∗Γ(γ̄∗)

Therefore
Φ(γ̂∗ + ξ) ≥ Φ(γ̂∗) + ξ · v ≥ Φ(γ̂∗) for all ξ ∈ Tγ̂∗Γ(γ̄∗), v ∈ ∂Φ(γ̂∗)

where we have used the second part of (14.4) in the last inequality. Therefore, using now the first part
of (14.4) and also (14.6), we get inf

Γ(γ̄)
Φ ≥ Φ(γ̂∗). Because L = 0 on K(γ̄), and L(γ̂∗) = 0, we deduce

inf
K(γ̄)

Ψ ≥ Ψ(γ̂∗). Because Ψ is strictly convex and γ̂∗ ∈ K(γ̄), we conclude that γ̂(γ̄) = γ̂∗. Then Definition

(14.5) of γ̄ shows exactly that γ̂ is locally constant on
{
γ̂ ̸= id[0,+∞)N

}
.

Step 3: proof of ii)

We assume that Ψ(γ) =
∑N

j=1 Ψj(γ
j), with Ψj : R → R strictly convex. We fix the index k = 1 and assume

that σ1 = 1 (the other cases are similar for σ1 = −1 or other indices). We want to show that γ̄1 7→ σj γ̂j(γ̄)
is nonincreasing for j ̸= 1.
Step 3.1: a simplified approximate situation
For j ̸= 1, fix γ̄j ≥ 0, and approximate each function Ψj , by a smooth convex coercive function Ψε

j : R → R
such that pointwisely, we have

lim
ε→0+

Ψε
j(x) =

{
Ψj(x) if x ∈

[
0, γ̄j

]
+∞ if x ̸∈

[
0, γ̄j

]
We set Ψε(γ) := Ψ1(γ

1) +
∑N

j=2 Ψ
ε
j(γ

j), Kε(γ̄1) :=
{
γ ∈ Γε(γ̄1), L(γ) = 0

}
, Γε(γ̄1) = [0, γ̄1] × RN−1 and

consider the approximate problem
γ̂ε(γ̄1) := Argmin

Kε(γ̄1)

Ψε

Now it is easy to analyse the optimization problem for which we have suppressed the constraints for j ̸= 1. We
deduce that there exists a Lagrange multiplier λ ∈ R of the constraint L = 0, such that for γ̄′ := (γ̄2, . . . , γ̄N ),
we have Dγ̄′(Ψε − λL)(γ̂ε(γ̄1)) = 0, i.e. (Ψε

2)
′(γ̂ε,2(γ̄1))

. . .
(Ψε

N )′(γ̂ε,N (γ̄1))

 = λ

 σ2

. . .
σN


Similarly for some γ̄1∗ > γ̄1, we get the existence of some λ∗ ∈ R such that (Ψε

2)
′(γ̂ε,2(γ̄1∗))

. . .
(Ψε

N )′(γ̂ε,N (γ̄1∗))

 = λ∗

 σ2

. . .
σN


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Because each function (Ψε
j)

′ is nondecreasing, we deduce that

(14.7) (λ∗ − λ) · σj
{
γ̂ε,j(γ̄1∗)− γ̂ε,j(γ̄1)

}
≥ 0 for all j ̸= 1

Moreover relation L(γ̂ε(γ̄1∗)− γ̂ε(γ̄1)) = 0 shows that

{
γ̂ε,1(γ̄1∗)− γ̂ε,1(γ̄1)

}
+

N∑
j=2

σj
{
γ̂ε,j(γ̄1∗)− γ̂ε,j(γ̄1)

}
= 0.

Notice that (14.7) shows that all terms in the sum
∑N

j=2 have the same sign. Moreover the raisoning of Step

1.2 shows that
{
γ̂ε,1(γ̄1∗)− γ̂ε,1(γ̄1)

}
≥ 0. We deduce that

(14.8) σj
{
γ̂ε,j(γ̄1∗)− γ̂ε,j(γ̄1)

}
≤ 0 for all j ̸= 1

Step 3.2: the limit ε→ 0
Using the strict convexity of Ψ, it is easy to show that lim

ε→0+
γ̂ε(γ̄1) = γ̂(γ̄). We deduce from (14.8) that

σj
{
γ̂j(γ̄1∗ , γ̄

′)− γ̂j(γ̄1, γ̄′)
}
≤ 0 for all j ̸= 1, with γ̄1∗ > γ̄1 and σ1 = 1

which shows exactly that the maps γ̄ 7→ σj γ̂j(γ̄) are nonincreasing in σ1γ̄1 for all j ̸= 1. Similarly, doing
the reasoning for all indices, this implies the σ-monotonicity of γ̂. This ends the proof of the lemma.

For later use, we will also need the following adaptation of the previous lemma.

Lemma 14.4 (Convex optimization, local variation)
Let Ψ : RN → R be a strictly convex function and some fixed vector RN ∋ γ̄∗ = (γ̄1∗ , . . . , γ̄

N
∗ ) ≥ 0 and

σ = (σ1, . . . , σN ) ∈ {±1}N . Let L : RN → R be the linear map defined by L(γ) :=
∑
j=1

σjγj for γ ∈ RN .

Assume that Lγ̄∗ ̸= 0, and let κ ∈ (min {0, Lγ̄∗} ,max {0, Lγ̄∗}). Let

γ̂(γ̄) := Argmin
Kκ(γ̄)

Ψ with the convex Kκ(γ̄) := {γ ∈ Γ(γ̄), L(γ) = κ} and the box Γ(γ̄) := [0, γ̄] :=

N∏
j=1

[
0, γ̄j

]
Then there exists ε > 0 small enough such that the following holds for

Qε :=

γ̄∗ + ∑
j=1,...,N

(−ε, ε)ej

 ∩ [0,+∞)N .

i) (Preflux properties)
Then γ̂ : Qε → [0,+∞)N is well defined and is (locally on Qε) a preflux in the sense of Definition 7.19.
ii) (σ-monotonicity, when Ψ has separated variables)

Assume moreover that there exists N strictly convex functions Ψj : R → R such that Ψ(γ) =

N∑
j=1

Ψj(γ
j) for

γ ∈ RN . Then γ̂ is (locally on Qε) σ-monotone in the sense of Definition 7.19.

Proof of Lemma 14.4
The proof follows exactly the same lines of the proof of Lemma 14.2, but replacing the linear map L by the
affine map γ 7→ Lγ − κ. This ends the proof of the lemma.

Proposition 14.5 (Holden-Risebro germ)

Assume (2.2) for some n : m junction (J, f) with N = n+m and n,m ≥ 1. Recall that σ ∈ {±1}N and σj

denotes the orientation of the branch Jj. Assume that σ ̸= (1, . . . , 1) and σ ̸= (−1, . . . ,−1). Assume also
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that f is bell-shaped, and call γ̄ : [a, b] → [0,+∞)N the capacity γ̄j := f j,σ
j

given in Definition 7.21.
For p ∈ [a, b], consider the convex set

K0(p) := {γ ∈ Γ0(p), L(γ) = 0} with L(γ) :=

N∑
k=1

σkγk and the box Γ0(p) := [0, γ̄(p)] =
∏

k=1,...,N

[
0, γ̄k(p)

]
Let Ψ : RN → R be a strictly convex function.
i) (Riemann germ for strictly convex Ψ)
Then the set

G = GΨ :=
{
p ∈ [a, b] , f̂(p) = f(p)

}
with f̂(p) := Argmin

K0(p)

Ψ

is a conservative Riemann germ.
ii) (Conservative Krus̆kov germ when Ψ has separated variables)

If Ψ(γ) =

N∑
j=1

Ψj(γ
j) with each map Ψj : R → R is strictly convex, then GΨ is a conservative Krus̆kov germ,

which is called a Holden-Risebro germ.

Remark 14.6 Notice that the original Holden-Risebro germ only concerns point ii) of Proposition 14.5.
The reader can also consult Holle [32] for a different discussion of the conservative Kruz̆kov property of
Holden-Risebro germs. Here point i) is a natural generalization, with weaker properties.

Proof of Proposition 14.5
We notice that the capacity γ̄ : [a, b] → [0,+∞)N given by Definition 7.21 is continuous and each map
pj 7→ σj γ̄j(pj) is nondecreasing. Moreover with notation γ̂,K,Γ of Lemma 14.2, we have

f̂ = γ̂ ◦ γ̄, Γ0 = Γ ◦ γ̄, K0 = K ◦ γ̄.

Step 1: Riemann germ property
Then i) of Lemma 14.2 and Proposition 7.23 show that GΨ is a conservative Riemann germ.
Step 2: additional monotonicities for Ψ with separated variables

Assume that Ψ(γ) =

N∑
j=1

Ψj(γ
j). Then ii) of Lemma 14.2 shows that the preflux γ̂ is σ-monotone. Then

iii) of Proposition 7.23 shows that GΨ is monotone. We know (see Theorem 2.24) that any conservative
monotone germ is a Kruz̆kov germ, and this ends the proof of the proposition.

14.3 Garavello-Piccoli solver for convergent junctions/data networks

We need to start with the following result.

Lemma 14.7 (Preflux by orthogonal projection in RN)
Let N ≥ 1 and σ̃ = (σ̃1, . . . , σ̃N+1) = (1, . . . , 1,−1). For y = (y1, . . . , yN ) ∈ [0,+∞)N , define

Ly :=
∑

j=1,...,N

yj

Fix θ ∈ (0, 1]N such that Lθ = 1. For γ = (γ1, . . . , γN ) ∈ [0,+∞)N and γN+1 ∈ [0,+∞), define the following
function

Ψ(·, γN+1) : [0,+∞)N → [0,+∞) with Ψ(y, γN+1) := |y−γN+1θ|2 and the box Γ(γ) := [0, γ] :=

N∏
j=1

[
0, γj

]
We set

(14.9) γ̂(γ, γN+1) := Argmin
K(γ,γN+1)

Ψ(·, γN+1) with K(γ, γN+1) :=
{
y ∈ Γ(γ), Ly = γN+1

}
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Fix some γ̃∗ = (γ∗, γ
N+1
∗ ) = (γ1∗ , . . . , γ

N+1
∗ ) ∈ [0,+∞)N+1 such that Lγ∗ > γN+1

∗ . Then there exists ε > 0
small enough such that the following holds for

Q̃ε(γ̃∗) :=

γ̃∗ + ∑
j=1,...,N+1

(−ε, ε)ej

 ∩ [0,+∞)N+1.

The function ˜̂γ : Q̃ε(γ̃∗) → [0,+∞)N+1 given by ˜̂γ(γ, γN+1) := (γ̂(γ, γN+1), γN+1) is well defined and is
(locally on Q̃ε(γ̃∗)) a σ̃-conservative σ̃-monotone preflux in the sense of Definition 7.19.

Remark 14.8 Notice that γ̂ is the orthogonal projection of γN+1θ onto the closed convex set K(γ, γN+1).

Proof of Lemma 14.7

Because Ψ(·, γN+1) is strictly convex and

{
γN+1
∗
Lγ∗

}
· γ∗ ∈ K(γ∗, γ

N+1
∗ ) ̸= ∅, we deduce that γ̂ (and then ˜̂γ)

is well-defined and is continuous.
Step 1: bounds
By construction, we have ˜̂γ ∈ [0, γ̃] and then 0 ≤ ˜̂γj(γ̃) ≤ γ̃j for all indices j = 1, . . . , N + 1.
Step 2: local constancy
By assumption, we have Lγ∗ > γN+1

∗ and Lγ̂(γ∗, γ
N+1
∗ ) = γN+1

∗ , which forces to have I :={
j ∈ {1, . . . , N} , γ̂j(γ∗, γN+1

∗ ) < γj∗

}
̸= ∅. Moreover for ε > 0, consider

Qε(γ∗) :=

γ∗ +∑
j∈I

(−ε, ε)ej

 ∩ [0,+∞)N

Then for ε > 0 small enough and γ ∈ Qε(γ∗), we still have Lγ > γN+1
∗ . For fixed γN+1

∗ ≥ 0, and using
Lemma 14.4, and the fact that Ψ(·, γN+1

∗ ) is a sum of strictly convex functions in separated variables, we
deduce that locally around γ∗, the map γ 7→ γ̂(γ, γN+1

∗ ) is a preflux. Therefore the map γ 7→ γ̂(γ, γN+1
∗ ) is

locally constant in
{
γ, γ̂(γ, γN+1

∗ ) ̸= γ
}
close to γ∗. This shows the desired local constancy of γ̂, and then

the local constancy of ˜̂γ on
{
γ̃, ˜̂γ(γ̃) ̸= γ̃

}
, close to γ̃∗.

Step 3: basic monotonicity
For fixed γ∗ and γN+1 close enough to γN+1

∗ , consider γ ∈ Qε(γ∗). Then the argument of Step 2 shows that
γ 7→ γ̂(γ, γN+1) is a preflux. In particular the j component of γ̂ is nondecreasing in γj for each j = 1, . . . , N .
With ˜̂γN+1(γ, γN+1) = γN+1, we conclude that ˜̂γ satisfies the basic monotonicities, and ˜̂γ is then a preflux
on Q̃ε(γ̃∗). Moreover it is σ̃-conservative by construction.
Step 4: σ̃-monotonicity
Because we have seen that γ 7→ γ̂(γ, γN+1) is a preflux, we know that for fixed γN+1 it is σ-monotone
in γ. Because ˜̂γN+1(γ, γN+1) = γN+1, it only remains to show that the maps γN+1 7→ γ̂j(γ, γN+1) are
nondecreasing for all j = 1, . . . , N . Having (14.9) in mind, we see that the new difficulty here is that the
convex function Ψ(·, γN+1) itself does depend on γN+1.
Step 4.1: Generic case
Assume that γ̃∗ = (γ∗, γ

N+1
∗ ) ∈ (0,+∞)N ×(0,+∞) satisfies Lγ∗ > γN+1

∗ . Notice that the unique minimizer

γ̂∗ ∈ K(γ∗, γ
N+1
∗ ) is the orthogonal projection of γN+1

∗ θ onto the convex set K(γ∗, γ
N+1
∗ ) ∋

{
γN+1
∗
Lγ∗

}
· γ∗,

which is characterized by the following variational inequality

(14.10) (γN+1
∗ θ − γ̂∗, y − γ̂∗) ≤ 0 for all y ∈ K(γ∗, γ

N+1
∗ ) =

{
y ∈ Γ(γ∗), Ly = γN+1

∗
}

Step 4.1.1: decomposition
Define

Iα :=
{
j ∈ {1, . . . , N} , 0 < γ̂j∗ < γj∗

}
, Iβ :=

{
j ∈ {1, . . . , N} , γ̂j∗ = γj∗

}
, Iδ :=

{
j ∈ {1, . . . , N} , γ̂j∗ = 0

}
We setW := V α⊕V β⊕V δ with V c :=

⊕
k∈Ic

Rek for c = α, β, δ, and for any γ ∈W , we write γ = γα+γβ+γδ

with γc ∈ V c for c = α, β, δ. Notice that the minimizer γ̂∗ is uniquely determined by the existence of Lagrange
multipliers λα∗ ∈ R and µβ

∗ ∈ V β ∩ [0,+∞)N and µδ
∗ ∈ V δ ∩ [0,+∞)N such that

(14.11) γ̂∗ − γN+1
∗ θ = DyΨ(γ̂∗, γ

N+1
∗ ) = λα∗DL− µβ

∗ ⋄DL|V β + µδ
∗ ⋄DL|V δ
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Indeed for Φ(y) := Ψ(y, γN+1
∗ )−λα∗ (Ly−γN+1

∗ ), we have Φ(y) ≥ Φ(γ̂∗)+DyΦ(γ̂∗) · (y− γ̂∗) = Φ(γ̂∗)+(µδ
∗−

µβ
∗ , y − γ̂∗) ≥ Φ(γ̂∗) for y ∈ Γ(γ∗), and with Ly = γN+1

∗ = Lγ̂∗, we get

Ψ(y, γN+1
∗ ) ≥ Ψ(γ̂∗, γ

N+1
∗ ) for all y ∈ K(γ∗, γ

N+1
∗ )

which shows that this characterizes the unique minimizer γ̂∗ of the strictly convex function Ψ(·, γN+1
∗ ) on

the convex set K(γ∗, γ
N+1
∗ ) (this can also be seen as a special case of Karush-Kuhn-Tucker theorem). We

deduce

(14.12)


γ̂δ∗ − γN+1

∗ θδ = λα∗DL|V δ + µδ
∗ ≥ λα∗DL|V δ

γ̂β∗ − γN+1
∗ θβ = λα∗DL|V β − µβ

∗ ≤ λα∗DL|V β

γ̂α∗ − γN+1
∗ θα = λα∗DL|V α

Step 4.1.2: proof that Iδ = ∅ and λα∗ ≥ 0
The fact that γ̂δ∗ = 0 implies with the first line of (14.12) that Iδ = ∅ or λα∗ < 0. Assume by contradiction
that Iδ ̸= ∅ and then that λα∗ < 0.
Case A: Iβ ̸= ∅
Then the second and third lines of (14.12) show that γN+1

∗ θβ > γ̂β∗ in V β , and γN+1
∗ θα ≥ γ̂α∗ in V α.

Then γN+1
∗ θ ≥ γ̂∗ with γN+1

∗ θ ̸= γ̂∗. Hence γN+1
∗ = L(γN+1

∗ θ) ≥ Lγ̂∗ = γN+1
∗ with L(γN+1

∗ θ) ̸= Lγ̂∗.
Contradiction.
Case B: Iβ = ∅
Then the third line of (14.12) shows that

(14.13)

λα∗ |Iα| = = L(γ̂α∗ − γN+1
∗ θα)

=
{
γN+1
∗ − L(γ̂β∗ + γ̂δ∗)

}
− γN+1

∗ Lθα

= L(γN+1
∗ (θβ + θδ)− γβ∗ )

= γN+1
∗ Lθδ > 0

where in the second line we have used Lγ̂∗ = γN+1
∗ , in the third line we have used Lθ = 1, γ̂δ∗ = 0, γ̂β∗ = γβ∗ ,

and in the last line we have used Iβ = ∅ and Iδ ̸= ∅. Contradiction with λα∗ < 0.
Conclusion
We conclude that λα∗ ≥ 0 and Iδ = ∅.
Step 4.1.3: proof that Iα ̸= ∅
Assume by contradiction that Iα = ∅. Then this implies that γN+1

∗ θ ≥ γ̂∗ = γ∗ and then γN+1
∗ = LγN+1

∗ θ ≥
Lγ∗. Contradiction with Lγ∗ > γN+1

∗ . Hence Iα ̸= ∅. Setting eα := |Iα|−1
∑
j∈Iα

ej which satisfies Leα = 1,

we deduce from the third line of (14.12) that

(14.14) γ̂α∗ = γN+1
∗ θα + λ∗e

α with 0 ≤ λ∗ := λα∗ |Iα| = L(γN+1
∗ θβ − γβ∗ )

where in the last equality, we have used the third line of (14.13) with Iδ = ∅. Hence we get

(14.15) γ̂(γ∗, γ
N+1
∗ ) = γ̂∗ = γN+1

∗ (θα + (Lθβ)eα)− (Lγβ∗ )e
α + γβ∗

From (14.11), we also have

(14.16) γ̂∗ − γN+1
∗ θ = λα∗DL− µβ

∗ with

{
0 < γ̂α∗ < γα∗ in V α

γ̂β∗ = γβ∗ and µβ
∗ ≥ 0

which characterizes γ̂∗ ∈ K(γ∗, γ
N+1
∗ ).

We now discuss a complement of independent interest. Because γ̂α∗ ≤ γα∗ and λ∗ ≥ 0, we deduce from
(14.14) that γN+1

∗ θα ∈ Γ(γα∗ ). Now assume by contradiction that there exists j ∈ Iα such that γN+1
∗ θj = γj∗.

Then λ∗ ≥ 0 implies that γ̂j∗ = γj∗. Contradiction with the definition of Iα. Hence we get moreover
γN+1
∗ θα < γα∗ in V α.

Step 4.2: Generic case and variations
Now consider γN+1 := γN+1

∗ + q with q ∈ (0,+∞). Following (14.15), let us consider as a candidate for
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γ̂(γ∗, γ
N+1
∗ + q), the vector ξ := γ̂∗ + q

{
θα + (Lθβ)eα

}
. Following (14.16), we now compute

ξ − γN+1θ =
{
γ̂∗ − γN+1

∗ θ
}
+ q

{
(Lθβ)eα − θβ

}
=
{
λα∗DL− µβ

∗

}
+ q

{
(Lθβ)eα − θβ

}
=
{
λα∗DL− µβ

∗
}
+ q

|Iα|−1(Lθβ)
∑
j∈Iα

ej − θβ


=
{
λα∗DL− µβ

∗
}
+ q

|Iα|−1(Lθβ)

DL−
∑
j∈Iβ

ej

− θβ


= λαDL− µβ with


λα = λα∗ + q|Iα|−1Lθβ ≥ 0

µβ = µβ
∗ + q

θβ + |Iα|−1(Lθβ)
∑
j∈Iβ

ej

 ≥ 0 and ξβ = γβ∗

which satisfies ξα < γα∗ for q > 0 small enough. This shows that

ξ − γN+1θ = λαDL− µβ with

{
0 < ξα < γα∗ in V α

ξβ = γβ∗ and µβ ≥ 0

As in (14.11), this relation characterizes γ̂(γ∗, γ
N+1) = ξ. Because ξ ≥ γ̂∗, we deduce that γ̂(γ∗, γ

N+1) ≥
γ̂(γ∗, γ

N+1
∗ ). Hence for each j = 1, . . . , N , this shows that the map γN+1 7→ γ̂j(γ∗, γ

N+1) is locally nonde-
creasing.
Step 4.3: General case
Let γ̃∗ = (γ∗, γ

N+1
∗ ) ∈ [0,+∞)N+1 such that Lγ∗ > γN+1

∗ . Using the continuity of γ̂, we get (by perturba-
tions) that γ̂j is nondecreasing in γN+1 on Q̃ε(γ̃∗) for all j = 1, . . . , N . With the other monotonicities, we
deduce that ˜̂γ is σ̃-monotone on Q̃ε(γ̃∗).
This ends the proof of the lemma.

Remark 14.9 Notice that Step 4 of the proof of Lemma 14.7 provides a proof of the monotonicity of the
map γN+1 7→ γ̂(γ∗, γ

N+1) stated in Lemma 4 in [30], with more precise justifications.

The next result presents the preflux used by Garavello and Piccoli for RS2 in [30].

Lemma 14.10 (Data networks preflux)

Let N ≥ 1 and σ = (σ1, . . . , σN ) ∈ {±1}N with σ ̸= (1, . . . , 1) and σ ̸= (−1, . . . ,−1). For γ = (γ1, . . . , γN ) ∈
[0,+∞)N , define

L+(γ) :=
∑
σj=1

γj , L−(γ) :=
∑

σj=−1

γj

Let θ ∈ (0, 1)N such that L+(θ) = 1 = L−(θ), fix some γ̄ = (γ̄1, . . . , γ̄N ) ∈ [0,+∞)N , and define the passing
flux

γ̄0(γ̄) := γ̄0 := min
{
L+(γ̄), L−(γ̄)

}
and 

K+(γ̄) := {γ ∈ Γ+(γ̄), L+(γ) = γ̄0} , with Γ+(γ̄) :=
∑
σj=1

[0, γ̄j ]ej

K−(γ̄) := {γ ∈ Γ−(γ̄), L−(γ) = γ̄0} , with Γ−(γ̄) :=
∑

σj=−1

[0, γ̄j ]ej

Let us consider the convex compact set

K(γ̄) :=
{
γ ∈ [0,+∞)N , γ = γ+ + γ−, (γ+, γ−) ∈ K+(γ̄)×K−(γ̄)

}
and the orthogonal projection on it

γ̂DN (γ̄) := Proj⊥|K(γ̄)(γ̄0(γ̄) · θ)

Then γ̂DN : [0,+∞)N → [0,+∞)N is a conservative σ-monotone preflux in the sense of Definition 7.19.
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Remark 14.11 The convergent junction case in Section 5.2.2 of Garavello, Piccoli [12] is a special case
of data networks (Riemann solver RS2 in [30]), which corresponds to N = n + 1 with n ingoing branches
σj = 1 for j = 1, . . . , n and a single outgoing branch σn+1 = −1.

Proof of Lemma 14.10
Step 1: preflux
By construction, the function γ̂ := γ̂DN is continuous and conservative.
Moreover, we see that

γ̂ = γ̂+ + γ̂− with


γ̂+ := Proj⊥|K+(γ̄)(γ̄0θ

+) with θ+ :=
∑
σj=1

θjej

γ̂− := Proj⊥|K−(γ̄)(γ̄0θ
−) with θ− :=

∑
σj=−1

θjej

Step 1.1: bounds
By construction, we have γ̂± ∈ K±(γ̄) ⊂ Γ±(γ̄) and then 0 ≤ γ̂j(γ̄) ≤ γ̄j for all indices j.
Step 1.2: local constancy
For γ ∈ [0,+∞)N , we consider the general splitting

γ = γ+ + γ− with (γ+, γ−) ∈ Γ+(γ)× Γ−(γ)

For some γ̄∗ ∈ [0,+∞)N , assume that I :=
{
j ∈ {1, . . . , N} , γ̂j(γ̄∗) < γ̄j∗

}
̸= ∅. Assume by contradiction

that there exists j, k ∈ I such that σj = 1 and σk = −1. Then this implies that L±γ̂(γ̄∗) < L±γ̄∗, and then
L±γ̂(γ̄∗) < γ̄0(γ̄∗) := min {L+γ̄∗, L

−γ̄∗}, i.e. γ̂±(γ̄∗) ̸∈ K±(γ̄∗). Contradiction. Therefore we conclude that
we have either σj = 1 for all indices j ∈ I, or σj = −1 for all indices j ∈ I.

Without loss of generality, let us assume that σj = 1 for all j ∈ I (the case σj = −1 is similar). Then
L+γ̄+∗ > L+γ̂+∗ = L−γ̄−∗ = γ̄0(γ̄∗). Therefore K

−(γ̄∗) = {γ̄−∗ } and γ̂−(γ̄∗) = γ̄−∗ Moreover for ε > 0, consider

Qε(γ̄∗) :=

γ̄∗ +∑
j∈I

(−ε, ε)ej

 ∩ [0,+∞)N

Then for ε > 0 small enough and γ̄ ∈ Qε(γ̄∗), we have γ̄0(γ̄) = γ̄0(γ̄∗). Therefore we still have K−(γ̄) =
{γ̄−} = {γ̄−∗ }, and then γ̂−(γ̄) = γ̄−∗ . Because γ̂+ is the orthogonal projection on K+(γ̄) of γ̄0θ

+, we deduce
that

(14.17) γ̂+(γ̄) := Argmin
K+(γ̄)

Ψ(·, γ̄0) with Ψ(y, γ̄0) := |y − γ̄0θ
+|2

Because γ̄0(γ̄) = γ̄0(γ̄∗) =: γ̄∗0 is fixed, we can use Lemma 14.4, and the fact that Ψ(·, γ̄∗0) is a sum of strictly
convex functions in separated variables, to deduce that for γ̄ locally around γ̄∗, the map γ̄+ 7→ γ̂+(γ̄++γ̄−∗ ) =
γ̂+(γ̄) is a preflux. Therefore the map γ̄ 7→ γ̂(γ̄) = (γ̂+(γ̄), γ̄−∗ ) is locally constant in {γ̄, γ̂(γ̄) ̸= γ̄} close to
γ̄∗. This is the desired local constancy of γ̂.
Step 1.3: basic monotonicities and σ-monotonicity
Consider γ̄∗, γ̄ ∈ [0,+∞)N , such that for some index j, say with σj = 1 (the case σj = −1 is similar), we
have

(14.18) γ̄ − γ̄∗ = qej with q ∈ (0,+∞)

Case A: L+γ̄∗ ≥ L−γ̄∗
Then L+γ̄∗ ≥ L−γ̄∗ = γ̄0(γ̄∗). Hence L+γ̄ > L−γ̄ = L−γ̄∗ = γ̄0(γ̄). Therefore as in Step 1.2, we get (14.17),
and Lemma 14.4 shows that γ̄+ 7→ γ̂+(γ̄+ + γ̄−∗ ) is a (1, . . . , 1)-monotone preflux. In particular, for σk = 1,
the component σkγ̂k is nonincreasing in σj γ̄j for k ̸= j, and nondecreasing in σj γ̄j for k = j. Moreover, we
have K−(γ̄) = {γ̄−} = {γ̄−∗ }, and then γ̂−(γ̄) = γ̄−∗ . Hence for σk = −1, each component σkγ̂k is constant
in σj γ̄j , and it is in particular nonincreasing.
Case B: L+γ̄∗ < L−γ̄∗
Then γ̄∗0 := γ̄0(γ̄∗) = L+γ̄∗ < L−γ̄∗, and then K+(γ̄∗) = {γ̄+∗ }. Then for q > 0 small enough such
that γ̄∗0 < γ̄0(γ̄) = L+γ̄ < L−γ̄ = L−γ̄∗, we have K+(γ̄) = {γ̄+} and γ̂+(γ̄) = γ̄+ and in particular
γ̂k(γ̄) = γ̄k = γ̄k∗ for all k such that σk = 1 (for k ̸= j and for k = j). For q > 0 not small, notice that there
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exists some unique q∗ > 0, such that we get equality γ̄0(γ̄∗ + q∗ej) = L+(γ̄∗ + q∗ej) = L−γ̄∗, and then we
are back to Case A with γ̄∗ replaced by γ̄∗ + q∗ej .

Now notice that γ̂− is the orthogonal projection on K−(γ̄) of γ̄0θ
−, and we deduce that

(14.19)
γ̂−(γ̄) := Argmin

K−(γ̄)

Ψ(·, γ̄0(γ̄)) with Ψ(y, γ̄0) := |y−γ̄0θ−|2 with K−(γ̄) =
{
γ ∈ Γ−(γ̄), L−γ = L−(γ̄0θ

−)
}

with L−(γ̄0θ
−) = γ̄0 = L+γ̄ = L+γ̄+. Then Lemma 14.7 shows that the map (γ̄−, γ̄0) 7→ (γ̂−(γ̄), γ̄0) is a

(1, 1, . . . , 1,−1)-monotone preflux. In particular each component of γ̂− is nondecreasing in the agglomerated
variable γ̄0(γ̄) = L+γ̄+. Therefore σkγ̂k is nonincreasing in σj γ̄j for all k such that σk = −1. This shows
that γ̂ is σ-monotone, and has the basic monotonicities (σj γ̂j is nondecreasing in σj γ̄j). This ends the proof
of the lemma.

Corollary 14.12 (Data networks germ; RS2 in [30])

Assume (2.2) for some n : m junction (J, f) with N = n+m and n,m ≥ 1. Recall that σ ∈ {±1}N and σj

denotes the orientation of the branch Jj. Assume that σ ̸= (1, . . . , 1) and σ ̸= (−1, . . . ,−1). Assume also

that f is bell-shaped, and call γ̄ : [a, b] → [0,+∞)N the capacity γ̄j := f j,σ
j

given in Definition 7.21.
Then the set

(14.20) G = Gf̂ :=
{
p ∈ [a, b] , f̂(p) = f(p)

}
with f̂(p) := γ̂DN ◦ γ̄

is a conservative Kruz̆kov germ, where γ̂DN is the data network preflux given in Lemma 14.10.

Proof of Corollary 14.12
From Lemma 14.10, we know that the preflux γ̂DN is conservative and σ-monotone. This implies that G is
conservative monotone germ, hence conservative Kruz̆kov. This ends the proof of the corollary.

In [30], the authors provide an important result that gives us an enlighting heuristic for the proof of
Corollary 14.12. We now state this result.

Lemma 14.13 (A contraction result, Lemma 6 in [30])
We work under the assumptions of Corollary 14.12, with furthermore the specific case of f j = f0 for
j = 1, . . . , N . For G defined in (14.20), and for all fixed j ∈ {1, . . . , N}, all p̂ ∈ G, and q ∈ [a, b] such that
q − p̂ ∈ R∗ej satisfies

σjcj ≥ 0 with cj :=
f j(qj)− f j(p̂j)

qj − p̂j
and σj =

{
1 for ingoing road

−1 for outgoing road

then we have (recalling that f̂ = f ◦ πG and πG ◦ πG = πG)

|f̂ j(q)− f j(qj)|+
∑

k∈{1,...,N}\{j}

|f̂k(q)− f̂k(p̂)| = |f̂ j(p̂)− f j(qj)|

Heuristic motivating the proof of Corollary 14.12
We now propose an heuristic to motivate the proof of Corollary 14.12 in the special case f j = f0 for
j = 1, . . . , N , using Lemma 14.13. Using the fact that the map x 7→ |x − c| is 1-Lipschitz, we deduce that

|x − c| − |y − c| ≤ |x − y| and get from Lemma 14.13 that
∑

k∈{1,...,N}\{j}

|f̂k(q) − f̂k(p̂)| ≤ |f̂ j(q) − f̂ j(p̂)|.

In the limit q → p̂, this gives formally
∑

k∈{1,...,N}\{j}

|∂j f̂k| ≤ |∂j f̂ j | at p̂ when σj(f j)′(p̂j) ≥ 0. Using vii)

of Proposition 2.13, if we know that f̂ is a Godunov flux associated to a Riemann germ G, then we expect
σj∂j f̂

j(p̂) ∈
{
0,max

{
0, σj(f j)′(p̂j)

}}
. Then, in the very best case, we may expect to have on G∑
k∈{1,...,N}\{j}

|∂j f̂k| ≤ σj∂j f̂
j
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Because any Godunov flux f̂ is locally constant on
{
f̂ ̸= f

}
, we may expect that this inequality is indeed

true not only on G, but a.e. on [a, b]. If it is the case, then i) of Theorem 2.21 implies that G is a Kruz̆kov
germ. Because by construction G is conservative, we get that G is a conservative Kruz̆kov germ. This ends
the heuristic.

Remark 14.14 (Comments on other Riemann solvers in [30])
In [30], Riemann solver RS3 is not associated to a (conservative) Kruz̆kov germ, because Γi :=
min(γmax

i , γmax
i+n ) = min(γ̄i, γ̄i+n) is symmetric in ingoing index i and outgoing index i + n, which is not

compatible with σ-monotonicity of the associated preflux for σi = 1 and σi+n = −1.
Similarly in [30], Riemann solver RS1 is not associated to a (conservative) Kruz̆kov germ for some

n : m junction with 1 ≤ n ≤ m and m ≥ 2. Indeed if the ingoing branches j = 2, . . . , n are empty with
γ̄j = 0, then the problem is simply described by some 1 : m junction with effective passing flux equal to

min
k=n+1,...,n+m

{
γ̄1,

γ̄k

θk

}
where θk := α1k and where γ̄ is the capacity. As explained in Section 2.3 of [33], this

corresponds to a HJ problem (hence HJ germ) for functions f1 := f0

1 and fk = f0

θk . But monotonicities of

the Godunov flux for HJ germs (with f̂k = h(↑, ↓, . . . , ↓) = h(p1, pn+1, . . . , pn+m)) and for monotone germs

(with ∂pk′ (σkf̂k) ≤ 0 for k′ ̸= k, and ∂pk(σkf̂k) ≥ 0) are indeed incompatible for m ≥ 2.

14.4 Traffic lights germs revisited

We revisit the traffic light germs discovered in Cardaliaguet, Forcadel, Monneau [7] (see also Towers
[36] for a special case), and give as a new result the explicit expression of their associated Godunov flux.

Consider a divergent junction 1 : 2 with bell-shaped function f = (f0; f1, f2) in the sense of Definition
7.21 (with definitions of f j,±), with ingoing flux f0 and outgoing fluxes f1, f2. We consider the following
assumptions

(14.21)


λ̄j ∈ [0, f jmax] for j = 0, 1, 2
λ̄0 = λ̄1 + λ̄2

the maps λ̂k : [0, f0max] → [0, λ̄k] are continuous nondecreasing for k = 1, 2

λ̂k(0) = 0, λ̂k(λ̄0) = λ̄k for k = 1, 2

λ̂1(λ) + λ̂2(λ) = min(λ, λ̄0) for λ ∈ [0, f0max]

For a divergent junction 1 : 2, and for Λ := (λ̄, λ̂) = (λ̄0, λ̄1, λ̄2, λ̂1, λ̂2), we consider the following Traffic
Light germ, which is known to be a Kruz̆kov germ (see [7])

(14.22) G1:2
Λ :=


U = (u0, u1, u2) ∈ R3,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aj ≤ uj ≤ bj , j = 0, 1, 2

0 ≤ f j(uj) ≤ λ̄j , j = 0, 1, 2

f0(u0) = f1(u1) + f2(u2)

fk,+(uk) ≥ λ̂k(f0,+(u0)), k = 1, 2


Lemma 14.15 (Godunov flux of germ G1:2

Λ )
For N = 3, assume (2.2) for some 1 : 2 junction (J, f) with f = (f0, f1, f2), with incoming branch denoted
by J0 (σ0 = 1) and outgoing branches Jk (σk = −1) for indices k = 1, 2. Assume also that f is bell-shaped

in the sense of Definition 7.21, and call γ̄ : [a, b] → [0,+∞)N the capacity γ̄j := f j,σ
j

given in Definition
7.21. We set f jmax := f j(cj) for j = 0, 1, 2 and assume (14.21) with λ̄ = (λ̄0, λ̄1, λ̄2) ∈ [0,+∞)N and

Tλ̄ : [0,+∞)N → [0,+∞)N , with Tλ̄(γ) = (min
{
γ0, λ̄0

}
,min

{
γ1, λ̄1

}
,min

{
γ2, λ̄2

}
)

We define γ̂0 = (γ̂00 , γ̂
1
0 , γ̂

2
0) for γ = (γ0, γ1, γ2) ∈ [0,+∞)N

γ̂10(γ) = min
{
γ1,max

{
λ̂1(γ0), γ0 − γ2

}}
,

γ̂20(γ) = min
{
γ2,max

{
λ̂2(γ0), γ0 − γ1

}}
,

γ̂00 = γ̂10 + γ̂20
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Then

G = Gf̂ :=
{
p ∈ [a, b], f̂(p) = f(p)

}
with f̂ := γ̂ ◦ γ̄ : [a, b] → [0,+∞)N with γ̂ := γ̂0 ◦ Tλ̄

is a conservative Kruz̆kov germ G ⊂ [a, b] with respect to (J, f), and γ̂ is a preflux. Moreover we have
G = G1:2

Λ .

Proof of Lemma 14.15
Step 1: properties of γ̂
Step 1.1: γ̂0 is a conservative preflux
We first notice that by construction, we have the function γ̂0 : [0,+∞)N → [0,+∞)N is continuous, and is
conservative because γ̂00 = γ̂10 + γ̂20 .
Step 1.2: preliminaries
We consider the following four sets (T̂ like triangle, Q̂ like sQuare)

T̂0 :=
{
γ ∈ [0,+∞)N , γ1 + γ2 ≤ γ0

}
T̂1 :=

{
γ ∈ [0,+∞)N , γ1 + γ2 ≥ γ0, γ1 ≤ λ̂1(γ0)

}
T̂2 :=

{
γ ∈ [0,+∞)N , γ1 + γ2 ≥ γ0, γ2 ≤ λ̂2(γ0)

}
Q̂ :=

{
γ ∈ [0,+∞)N , γk ≥ λ̂k(γ0), k = 1, 2

}
and we have (using the fact that x∧ (y∨ z) = (x∧y)∨ (x∧ z) for x∨y := max {x, y} and x∧y = min {x, y})

(14.23) (γ̂10 , γ̂
2
0) =



(γ1, γ2) if γ ∈ T̂0
(γ1, γ0 − γ1) if γ ∈ T̂1
(γ0 − γ2, γ2) if γ ∈ T̂2
(λ̂1(γ0), λ̂2(γ0)) if γ ∈ Q̂ and γ0 ≤ λ̄0

(γ1, γ2) if γ ∈ Q̂ and γ0 > λ̄0 and γ1 + γ2 ≤ γ0

(γ0 − γ2, γ0 − γ1) if γ ∈ Q̂ and γ0 > λ̄0 and γ1 + γ2 ≥ γ0

Step 1.3: bounds
By construction, we have γ̂0 ≥ 0 and γ̂k0 (γ) ≤ γk for k = 1, 2. Moreover from (14.23), we get γ̂00(γ) =
γ̂10 + γ̂20 ≤ γ0.
Step 1.4: local constancy
We see that γ̂0 is not locally constant on

{
γ̂0 ̸= id[0,+∞)N

}
for (γ̂10 , γ̂

2
0) = (γ0−γ2, γ0−γ1). On the contrary

the restriction of γ̂0 to the box K := [0, λ̄] avoids this behaviour, and we see easily from the four first lines
of (14.23), and from the possible combinations, that (γ̂0)|K is locally constant on

{
(γ̂0)|K ̸= idK

}
.

Step 1.5: basic monotonicity
It is easy to check that γ 7→ γ̂j0(γ) is nondecreasing in γj for j = 0, 1, 2.
Step 1.6: σ-monotonicity
In terms of γ = (γ0, γ1, γ2), we now want to check the σ-monotonicity of γ̂0, i.e. that σ

j γ̂j0 is nonincreasing
in σkγk for j ̸= k, i.e. the following monotonities (with indeed ∗ =↑) γ̂00(∗, ↑, ↑)

γ̂10(↑, ∗, ↓)
γ̂20(↑, ↓, ∗)

which is the case.
Step 1.7: conclusion
We now conclude by composition (similarly to the proof of Lemma 7.27) that γ̂ = (γ̂0)|K ◦Tλ̄ is a conservative
σ-monotone preflux.
Step 2: properties of f̂
From Proposition 7.23, we deduce that Gf̂ is a monotone conservative Riemann germ, hence a conservative

Kruz̆kov germ (as follows from Theorem 2.24).
Step 3: identification of the germ
We now want to show that G := Gf̂ = G1:2

Λ . It is known from Lemma 1.5 in [7] that there is a generating set
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EΛ ⊂ G1:2
Λ such that EΛ ⊂ G implies G = G1:2

Λ . Here the generating set is given by EΛ := Γ ∪ {P1, P2, P3},
with 

Γ :=
{
P (γ0), γ0 ∈ [0, λ̄0]

}
with P (γ0) := (u0+(γ

0), u1+(λ̂
1(γ0)), u2+(λ̂

2(γ0)))

P1 := (u0−(λ̄
1), u1+(λ̄

1), u−(0))
P2 := (u0−(λ̄

2), u1−(0), u
2
+(λ̄

2))
P3 := (u0−(0), u

1
−(0), u

2
−(0))

and
f j(uj±(λ)) = λ, uj+(λ) ∈ [aj , cj ], uj−(λ) ∈ [cj , bj ], λ ∈ [0, f j(cj)]

Step 3.1: checking Γ
Notice that γ̄(P (γ0)) = (γ0, f1max, f

2
max), and then for γ0 ∈ [0, λ̄0], we get f̂(P (γ0)) = (γ0, λ̂1(γ0), λ̂2(γ0)) =

f(P (γ0)).
Step 3.2: checking P1

We have γ̄(P1) = (f0max, f
1
max, 0), and then (TK ◦ γ̄)(P1) = (λ̄0, γ̄1, 0). Therefore f̂(P1) = (λ̄1, λ̄1, 0) = f(P1).

Step 3.3: checking P2

Symmetrically, we get f̂(P2)f(P2).
Step 3.4: checking P3

We have γ̄(P3) = (f0max, 0, 0), and (TK ◦ γ̄)(P3) = (λ̄0, 0, 0). Therefore f̂(P3) = (0, 0, 0) = f(P3).
We conclude that EΛ ⊂ G, and then G = G1:2

Λ . This ends the proof of the lemma.

Remark 14.16 (Convergent junctions 2 : 1)
Notice that for convergent junctions 2 : 1, the germ G2:1

Λ has the same expression as G1:2
Λ in (14.22) with

only f j,+ naturally changed in f j,− for j = 0, 1, 2. Similarly the expression of Godunov flux is still given by
f̂ = γ̂ ◦ γ̄, where the preflux γ̂ = γ̂0 ◦ Tλ̄ is unchanged, but only the capacity γ̄j = f j,σ

j

is naturally changed
under the transformation σ → −σ, for σ = (σ0, σ1, σ2).

15 Appendix of Part II

15.1 Tool box: some standard parabolic estimates

In this subsection, we recall some standard parabolic estimates. We consider the following problem for T > 0

(15.1)

 vt − vxx = f on (0, T )× IR =: QT,R,
v = φ on (0, T )× ∂IR
v = v0 on {0} × ĪR

where for R > 0, we assume either that

IR := (0, R) with ∂IR = {0, R} and ĪR = [0, R]

or
IR := R/RZ with ∂IR = ∅ and ĪR = IR

In the following parabolic estimates, when it will be useful, we will make explicit the dependence of the
constants in terms of T,R. We have the following results.

Lemma 15.1 (Calderon-Zygmund estimates)
Assume T > 0 and IR = R/RZ for some R > 0 and let p ∈ (1,+∞). Let v be a solution of (15.1) with
v0 = 0. Then we have

|vt, vxx|p,QT,R
≤ c|vt − vxx|p,QT,R

with | · |p,QT,R
:= | · |Lp(QT,R)

for c = c(p) independent on T,R.

Proof of Lemma 15.1
First notice that the solution v can be extended by periodicity to the whole line R. We first rescale the
problem from (T,R) to (1, R/

√
T ). Then we can consider ṽn = vϕn with ϕn = 1 on [0, n] and ϕn = 0

on R\[−1, (n + 1)]. Applying standard Calderon-Zygmund estimate to ṽn (see Theorem 9.1 in [34]), and
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taking the limit n→ +∞, we recover the result with some constant c only depending on p. Scaling back the
problem to (T,R), we get the result. This ends the proof of the lemma.

Lemma 15.2 (Precised Calderon-Zygmund estimates)
Assume T > 0 and IR = (0, R) for some R > 0 and let p ∈ (1,+∞). Let v be a solution of (15.1) with
v0 = 0 = φ. Then we have

(15.2)
|v|p,QT,R

T
+

|vx|p,QT,R√
T

+ |vt, vxx|p,QT,R
≤ c|vt − vxx|p,QT,R

for c = c(p) independent on T,R.

Proof of Lemma 15.2
Up to extend v by antisymmetry v(t,−x) = −v(t, x), and then by 2R-periodicity in x, we come back to
problem covered by Lemma 15.1 with R replaced by 2R. Now from Lemma 4.5 in [34] (on page 305), we
have

|v|p,QT,R
≤ c̃T |vt, vxx|p,QT,R

and
|vx|p,QT,R

≤ c̃
√
T |vt, vxx|p,QT,R

which implies (15.2) from Lemma 15.1. Notice that (15.2) also follows directly from the standard parabolic
W 2,1;p

x,t estimate, and by scaling in time. This ends the proof of the lemma.

We also have the following result.

Lemma 15.3 (Sobolev embedding in Hölder spaces)

Let p > 3 and α := 1−3/p ∈ (0, 1). For any v ∈W 2,1;p
x,t (QT,R) with IR := (0, R). Then v ∈ C

1+α, 1+α
2

x,t (Q̄T,R)

with vx ∈ C
α,α2
x,t (Q̄T,R). Moreover we have

(15.3)
|vx|∞,QT,R

T
α
2

+ ⟨vx⟩(α)QT,R
≤ c

{
|vt, vxx|p,QT,R

+
|v|p,QT,R

T

}
with


| · |∞,QT,R

:= | · |L∞(QT,R)

⟨·⟩(α)QT,R
:= [·]

C
α, α

2
x,t (QT,R)

with c = c(p) independent on T,R > 0, if T/R2 is small enough. Here ⟨·⟩(α) is the standard parabolic Hölder
semi-norm of parameter α ∈ (0, 1).

Proof of Lemma 15.3
Up to a scaling argument, we can change (T,R) into (T ′, R′) := (T/R2, 1). Then Lemma 3.3 in [34] implies
that there exists c = c(p) such that

|vx|∞,QT ′,R′ ≤
1

2
c
{
δα|vt, vxx|p,QT ′,R′ + δα−2|v|p,QT ′,R′

}
and

⟨vx⟩(α)QT ′,R′ ≤
1

2
c
{
|vt, vxx|p,QT ′,R′ + δ−2|v|p,QT ′,R′

}
with δ := min

{
1
2 ,
√
T

′}
, R′ = 1 and c = c(p) independent on T ′, R′. Now for T ′ small enough, we get

|vx|∞,QT ′,R′

T ′α2
+ ⟨vx⟩(α)QT ′,R′ ≤ c

{
|vt, vxx|p,QT ′,R′ +

|v|p,QT ′,R′

T ′

}
Then scaling back to (T,R), this gives (15.3). This ends the proof of the lemma.

Corollary 15.4 (Sobolev parabolic estimates)
Assume T > 0 and IR = (0, R) for some R > 0 and let p ∈ (3,+∞) with α := 1 − 3/p ∈ (0, 1). Let v be a
solution of (15.1) with v0 = 0 = φ. Then, with notation of Lemma 15.3, we have

(15.4)
|vx|p,QT,R√

T
+

|vx|∞,QT,R

T
α
2

+ ⟨vx⟩(α)QT,R
+ |vxx|p,QT,R

≤ c|vt − vxx|p,QT,R

with c = c(p) independent on T,R > 0, if T/R2 is small enough.
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Proof of Corollary 15.4
The result follows from Lemmata 15.3 and 15.2. This ends the proof of the corollary.

Lemma 15.5 (Schauder parabolic estimates)
Assume T > 0 and IR = (0, R) for some R > 0 and let α ∈ (0, 1). Let v be a solution of (15.1) with
v0 = 0 = φ. Assume that

(15.5) f = 0 on {0} × ∂IR

If f ∈ C
α,α2
x,t (Q̄T,R), then v ∈ C

2+α,1+α
2

x,t (Q̄T,R).

If f ∈ C
1+α, 1+α

2
x,t (Q̄T,R), then v ∈ C

3+α,1+ 1+α
2

x,t (Q̄T,R).

Proof of Lemma 15.5
The result follows from Theorem 5.2 in [34] (on page 320). Notice that on the singular boundary Γ0 :=
{0} × ∂IR, the two compatibility conditions (of order zero and of order one) are satisfied. Recall that the
conditions are the following{

v0 = φ on Γ0, (order zero)
φt − (v0)xx = f on Γ0, (order one)

The first condition is satisfied because v0 = 0 = φ, and the second condition is also satisfied because of
(15.5). This ends the proof of the lemma.

15.2 Existence of a PDE solution by fixed point

The goal of this subsection is to find a fixed point solution to a semi-linear problem (15.13) on

QT,R := (0, T )× (0, R) for T,R > 0.

As it is usual, we first start with a linear problem and insists on a priori estimates in short time, with
sufficiently explicit dependence of the constants.

Precisely, we consider the following scalar linear problem

(15.6)


ut − uxx = hx on (0, T )× (0, R)

−ux = g0(t) on (0, T )× {0}
−ux = gR(t) on (0, T )× {R}
u = u0 on {0} × (0, R)

with

(15.7)

 h = 0 on (0, T )× {0}
−u′0(0) = g0(0)
−u′0(R) = gR(0)

For problem (15.6), we will need several types of parabolic estimates on QT,R. To apply later on a
fixed point method (with some contraction map say in L∞(QT,R)), we will need estimates i) with explicit
dependence in T , with constants small when T is small.

For later use, we will need to get controlled estimates as R → +∞. Hence for fixed ρ > 0, we will need
local in space estimates on QT,ρ := (0, T )× (0, ρ) with constants depending only on T, ρ, but not on R.

For estimates ii) on the solution u in C
α
2 ,α
t,x (QT,ρ) and on ux in Lp(QT,ρ), we will take advantage of a priori

bounds in L∞ on the fixed point solution, and then of u, h, g0, gR.
For estimates iii) on the solution u in W 1,2;p

t,x (QT,ρ), we will take advantage of a priori Lp estimates on hx.

Lemma 15.6 (A priori parabolic estimates)
Assume that u solves (15.6) with the first line of (15.7). Let p ∈ (3,+∞) and α := 1− 3/p ∈ (0, 1). Assume
that u′0 ∈ Lp(0, R).
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i) (Global space estimates on QT,R)
Then there exists a constant c = c(p) independent on T,R, such that for T/R2 small enough, we have

(15.8)
|U |p√
T

+
|U |∞
T

α
2

+ ⟨U⟩(α)QT,R
+ |Ux|p ≤ c|W |p with



W := (u′0, h, g0, gR, h(·, R))

| · |p := | · |Lp(QT,R)

⟨·⟩(α)QT,R
:= [·]

C
α, α

2
x,t (QT,R)

and with

U := u− u0 −R−1GR(t) where G′
R(t) := g0(t)− gR(t) + h(t, R) with GR(0) = 0

ii) (Higher regularity)
Assume (15.7). Let g := (g0, gR).

Moreover, if u0 ∈ C1+α
x ([0, R]) and h, g ∈ C

α,α2
x,t (Q̄T,R), then u ∈ C

1+α, 1+α
2

x,t (Q̄T,R).
iii) (Further regularity)

Assume furthermore that u0 ∈ C2+α
x ([0, R]) and h, g ∈ C

1+α, 1+α
2

x,t (Q̄T,R); then u ∈ C
2+α, 2+α

2
x,t (Q̄T,R).

Proof of Lemma 15.6
Step 0: preliminaries
We first symmetrize u in x and set (with the same notation) u(t, x) := u(t,−x) for x ∈ (−R, 0), and
also symmetrize similarly u0(x) = u0(−x). From the first line of (15.7), we have h(t, 0) = 0, and we can
antisymmetrize h, setting ȟ(t, x) := −h(t,−x) for x ∈ (−R, 0) such that ȟx(t, x) = (hx)(t,−x). We also set
g−R := −gR. Then u satisfies ut − uxx = 2g0(t)δ0(x) + ȟx on (0, T )× (−R,R)

−ux = g±R(t) on (0, T )× {±R}
u = u0 on {0} × (−R,R)

Now we set u = vx and u0 = (v0)x with v0(0) = 0, and setting v0(x) = −v0(−x), we consider v(t, x) =
−v(t,−x) solution of

(15.9)


vt − vxx = g0(t)sign(x) + ȟ on (0, T )× (−R,R)

v = 0 on (0, T )× {0}
vt = g0(t)sign(x) + ȟ− g±R(t) on (0, T )× {±R}
v = v0 on {0} × (−R,R)

where the boundary condition in the third line comes from condition on ux = vxx, using the PDE satisfied
by v up to the boundary (for instance in the case where all functions would be smooth, to fix the ideas).
Setting (with ȟ(t, R) = h(t, R))

G′
R(t) := g0(t)− gR(t) + h(t, R) with GR(0) = 0

we see that ṽ(t, x) := v(t, x)−GR(t) ·R−1x satisfies
ṽt − ṽxx = h̃ on (0, T )× (0, R)

ṽ = 0 on (0, T )× {0}
ṽ = c0 on (0, T )× {R}
ṽ = v0 on {0} × (0, R)

with h̃(t, x) := g0(t) + h(t, x)−G′
R(t) ·R−1x and the constant c0 := v0(R).

Step 1: global space results i)
Then setting v̄ := ṽ − v0, we see that

v̄(t, x) = v(t, x)− v0(x)−GR(t) ·R−1x
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solves

(15.10)


v̄t − v̄xx = h̄ on (0, T )× (0, R)

v̄ = 0 on (0, T )× {0}
v̄ = 0 on (0, T )× {R}
v̄ = 0 on {0} × (0, R)

with h̄ = h̃+ v′′0 , i.e.
h̄(t, x) = g0(t) + h(t, x)−G′

R(t) ·R−1x+ u′0(x).

From Corollary 15.4, we deduce that U := v̄x = u(t, x)− u0(x)−R−1GR(t) satisfies

(15.11)
|U |p√

T
+ |U |∞

T
α
2

+ ⟨U⟩(α) + |Ux|p ≤ c|h̄|p
≤ cK|W |p with W := (u′0, h, g0, gR, h(·, R))

where K is a numerical constant. This shows (15.8).
Step 2: complementar regularity results
Notice that for parabolic problem (15.10), compatibility conditions on the singular boundary {0}×∂(0, R) are
satisfied at order zero and order one. Indeed the condition at order zero is trivial, because its corresponds to
the continuity of the solution v̄ on the singular boundary. The condition at order one means that v̄t = v̄xx+h̄
with v̄xx = 0 = v̄t, i.e. h̄ = 0 on {0} × ∂(0, R). It is then easy to check that this is true when (15.7) holds
true.
Step 2.1: higher regularity ii)

Hence, if u0 ∈ C1+α([0, R]) and h, g ∈ C
α,α2
x,t (Q̄T,R), then using Schauder parabolic estimate (Lemma

15.5 ii)), we deduce that v̄ ∈ C
2+α,1+α

2
x,t (Q̄T,R). Then we have U = v̄x ∈ C

1+α, 1+α
2

x,t (Q̄T,R). Because

U = u(t, x)− u0(x)−R−1GR(t), we deduce that u ∈ C
1+α, 1+α

2
x,t (Q̄T,R).

Step 2.2: further regularity iii)

This step is similar to Step 2.1. If u0 ∈ C2+α([0, R]) and h, g ∈ C
1+α, 1+α

2
x,t (Q̄T,R), then using Schauder

parabolic estimate (Lemma 15.5 iii)), we deduce that u ∈ C
2+α, 2+α

2
x,t (Q̄T,R).

This end the proof of the lemma.

Given w = (w1, . . . , wN ), and functions g = (g1, . . . , gN ) : RN → RN and h = (hj)j=1,...,N with
hj : R → R, we now consider solutions u = (u1, . . . , uN ) to the system for JR := J ∩BR and J∗

R := JR\ {0},
with uj defined on [0, T )× J̄j

R and Jj
R := Jj ∩BR ≃ −σj(0, R) for j = 1, . . . , N , and σj ∈ {±1}.

(15.12)


ut − uxx = (h(w)− h(w)(t, 0))x on (0, T )× J∗

R

−ux = g0(w) on (0, T )× {0}
−ux = gR(w) on (0, T )× (J ∩ ∂BR)
u = u0 on {0} × J∗

R

We also consider solutions to the fixed point problem u ≡ w for T = +∞

(15.13)


ut − uxx = (h(u)− h(u)(t, 0))x on (0,+∞)× J∗

R

−ux = g0(u) on (0,+∞)× {0}
−ux = gR(u) on (0,+∞)× (J ∩ ∂BR)
u = u0 on {0} × J∗

R

Consider also the following initial compatibility condition

(15.14)

{
−(u0)x = g0(u0) on {0} × {0}
−(u0)x = gR(u0) on {0} × (J ∩ ∂BR)
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Lemma 15.7 (Existence by fixed point)
Let R > 0 be fixed. Assume that h, g0, gR : RN → RN are bounded functions which are globally Lipschitz
continuous of Lipschitz constant L0 > 0. Assume also that each component of the initial data satisfies
uj0 ∈ C1+α

x (J̄j
R) for j = 1, . . . , N and every α ∈ (0, 1).

i) (Existence)

Then there exists a unique global solution u with uj ∈ L∞
loc([0,+∞);L∞(J̄j

R))∩C
α
2 ,α
t,x ([0,+∞)×J̄j

R) of (15.13)
for all α ∈ (0, 1) (where the boundary conditions have to be understood in a weak sense).
ii) (Higher regularity)

Moreover, if the initial compatibility condition (15.14) is satisfied, then uj ∈ C
1+α
2 ,1+α

t,x ([0,+∞) × J̄j
R) for

any α ∈ (0, 1).
iii) (Further regularity)
Furthermore, if{

h, g0, gR ∈W 2,∞
loc (RN ;RN )

uj0 ∈ C2+β
x (J̄j

R) for j = 1, . . . , N,

∣∣∣∣ for some β ∈ (0, 1)

then uj ∈ C
2+β
2 ,2+β

t,x ([0,+∞)× J̄j
R).

Proof of Lemma 15.7
Step 1: contraction for short time
Because u0 is in particular Lipschitz continuous, we have

(15.15) u′0 ∈ Lp(JR)

and then u′0 ∈ Lp(QT,R) with QT,R := (0, T ) × JR. Let ua (resp. ub) be the solution to system (15.12) for
w = wa (resp. w = wb). We set ū := ua − ub, and w̄ := wa − wb and

|u|p := |u|Lp(QT,R) :=

N∑
j=1

|uj |Lp(Qj
T,R) with Qj

T,R := (0, T )× Jj
R

From (15.8) applied to ū, we get in particular for (w̄(t, σR))j := w̄j(t, σjR) (by linearity on the initial data
which is zero for ū) the following bound on a quantity Ū

|Ū |∞
T

α
2

≤ c′L0 {|w̄|p + |w̄(·, 0)|p + |w̄(·, σR)|p}

≤ 3c′L0N(TR)
1
p |w̄|∞

where
Ū := ū−R−1ḠR(t), ḠR(0) = 0

with

Ḡ′
R(t) = F [wa](t)− F [wb](t) and F [wa](t) := g0(wa(t, 0))− gR(wa(t, σR)) + h(wa(t, σR))− h(wa(t, 0)).

Hence
|R−1ḠR|∞ ≤ 4L0TR

−1|w̄|∞
and then

|ū|∞ ≤ β|w̄|∞ for some β ∈ (0, 1)

for any T ∈ (0, T0] for some T0 > 0 small enough (depending on R). This shows that the map L∞(QT,R) ∋
w 7→ Φ(w) := u ∈ L∞(QT,R) is a contraction. Hence this map has a unique fixed point u, which is then
solution of (15.12). Moreover we have u = u0 + {Φ(u0 − u0}+

{
Φ2(u0)− Φ(u0)

}
+ . . . , and then

(15.16) |u|∞ ≤ |u0|∞ +
1

1− β
|Φ(u0)− u0|∞

Notice that T0 (and also β) are independent on the Lipschitz norm of the initial data u0, nor on the L∞(QT,R)
norm of the fixed point solution u.
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Step 2: how to restart the time interval
Now if we want to restart the problem from a time t1 ∈ (T/2, T ), as in (15.15), we then need to insure that
ux(t1, ·) ∈ Lp(J∗

R). Indeed, estimate (15.8) shows that
(15.17)
|U |p√
T
+
|U |∞
T

α
2

+[U ]
C

α, α
2

x,t (QT,R)
+|Ux|p ≤ c′′|W |p with W := (u′0, h(u), h(u)(·, 0), g0(u)(·, 0), gR(u)(·, R), h(u)(·, R))

with
U := u− u0 −R−1GR(t) with G′

R(t) = F [u](t) and GR(0) = 0

and then Ux = ux − u′0. From (15.16), we know that u ∈ L∞(QT,R), and then the RHS of (15.17) is finite,
and this implies the existence of some time t1 such that ux(t1, ·) ∈ Lp(J∗

R).
We can now iterate the procedure, and get the existence of a global solution u with uj ∈

L∞
loc([0,+∞);L∞(J̄j

R)). Moreover we see that uj ∈ C
α
2 ,α
t,x ([0,+∞)× J̄j

R) for all α ∈ (0, 1).

Step 3: complementar regularity results
Step 3.1: proof of ii)

Moreover, notice that (15.17) implies that uj ∈ C
α,α2
x,t (Q

j

T,R). Then, using the fact that h, g0, gR are globally

Lipschitz, we deduce that hj(u), gj0(u)(·, 0), g
j
R(u)(·, σjR) ∈ C

α,α2
x,t (Q

j

T,R). If u0 satisfies relations (15.14),

then Lemma 15.6 implies that uj ∈ C
1+α, 1+α

2
x,t (Q

j

T,R). In particular, relations (15.14) propagate in time. Pre-
cisely, this means that we can replace u0 by u(t1, ·) in relations (15.14). Therefore regularity also propagates

and we get that uj ∈ C
1+α, 1+α

2
x,t ([0,+∞)× J̄j

R).
Step 3.2: proof of iii)

The result follows similarly to Step 3.1. Notice in particular that h ∈ W 2,∞
loc (RN ;RN ) and u ∈ C

1+β, 1+β
2

x,t

imply h(u) ∈ C
1+β, 1+β

2
x,t for β ∈ (0, 1). We get similar regularity for g0(u) and gR(u). Therefore further

regularity in iii) of Lemma 15.6 implies that uj ∈ C
2+α, 2+α

2
x,t ([0,+∞)× J̄j

R).
This ends the proof of the lemma.
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