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Abstract

Many realistic problems in computational acoustics involve complex geometries and sound

propagation over large domains, which requires accurate and efficient numerical schemes. It

is difficult to meet these requirements with a single numerical method. Pseudo-spectral (PS)

methods are very efficient, but are limited to rectangular shaped domains. In contrast, the

nodal discontinuous Galerkin (DG) method can be easily applied to complex geometries, but

can become expensive for large problems.

In this paper, we study a coupling strategy between the PS and DG methods to efficiently

solve time-domain acoustic wave problems. The idea is to combine the strengths of these two

methods: the PS method is used on the part of the domain without geometric constraints,

while the DG method is used around the PS region to accurately represent the geometry. This

combination allows for the rapid and accurate simulations of large-scale acoustic problems with

complex geometries, but the coupling and the parameter selection require great care.

The coupling is achieved by introducing an overlap between the PS and DG regions. The

solutions are interpolated on the overlaps, which allows the use of unstructured finite element

meshes. A standard explicit Runge–Kutta time-stepping scheme is used with the DG scheme,

while implicit schemes can be used with the PS scheme due to the peculiar structure of this

scheme. We present one- and two-dimensional results to validate the coupling technique. To

guide future implementations of this method, we extensively study the influence of different

numerical parameters on the accuracy of the schemes and the coupling strategy.

1 Introduction

The present paper is concerned with the simulations in the time domain of large-scale acoustic

problems with complex geometries. The numerical methods must be carefully chosen to minimize

the numerical dispersion error, in order to obtain accurate results when the waves propagate over

long distances. This must be achieved while using an accurate representation of the complex

geometric features of the computational domain. Addressing these different challenges with a

single numerical scheme is difficult. Therefore, in this paper, we develop a coupling between

∗Distributed under Creative Commons CC-BY 4.0 license.
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the pseudo-spectral (PS) method and the discontinuous Galerkin (DG) method to exploit their

respective strengths.

On the one hand, the nodal Discontinuous Galerkin (DG) method yields high-order numerical

approximations in time and space, and explicit time integration models [16]. It can easily han-

dle complex geometries by using unstructured finite-element meshes. In addition, much of the

computation in the DG method is easily parallelized, especially on GPUs [11, 24, 32, 33]. It has

been applied to various wave propagation problems, including room acoustics [52], aeroacoustics

[1, 47] and seismic waves [26, 46]. However, the DG method remains computationally expensive

for large-scale problems, in terms of runtime and number of degrees of freedom, even when using

optimized formulations such as the quadrature-free approach [30] or a matrix-free method [25].

On the other hand, the spectral methods have been extensively studied for solving time-

domain problems [6, 17, 45], including analysis of the convergence and stability of the methods. In

particular, the pseudo-spectral (PS) method uses the Fourier transform to efficiently compute the

spatial derivatives of the numerical solution. The PS method has been used for wave propagation

simulations: for the solution of Maxwell’s equations [22, 28], or for acoustic wave propagation

[18, 21]. The PS method has the advantage of requiring a very small number of points per

wavelength to provide accurate results. In addition, the orthogonality of the basis leads to a

diagonal system, which significantly reduces the computational cost. This method also benefits

from efficient implementations of discrete Fourier transforms, including on GPUs [14, 20].

However, a limitation of the PS method is that the solution should be periodic, otherwise

the Gibbs phenomenon can occur, see [2, 17, 49]. One way to overcome this limitation is to

use a different basis, such as Chebyshev polynomials, see [2, 23, 40, 44]. But in this case, the

basis is not orthogonal and the computational cost is higher. Another strategy is the domain

extension or data flipping, see [37–39]. The Fourier continuation is another approach that involves

a polynomial interpolation of the solution near the boundaries of the domain using, for example,

a Gram polynomial basis [3, 4]. However, this method can also break the orthogonality of the

basis functions. Finally, it is possible to use filters in physical space or Fourier space to recover the

convergence of the solution [12, 13, 51]. In our case, we chose to use Gaussian windowing, which

enforces the periodicity of the PS solution by setting the solution to zero near the boundaries, see

for example [19, 36].

Another problem with the PS method is that the domain should be rectangular to take ad-

vantage of the base orthogonality. This severely limits the application of this method to complex

geometries and requires coupling with another scheme to represent the geometric features.

Various strategies for coupling spectral and other discretization schemes have been studied. For

example, a hybrid method has been developed by coupling finite-difference schemes with a spectral

method [31, 41, 42]. This involves a decomposition of the domain into rectangular regions in which

the solution is represented by a basis of cosine functions (i.e. modes of an acoustic cavity). The

results show a significant reduction in computational cost. For instance, in [31], the runtime was

reduced by three orders of magnitude compared to FDTD solvers for a realistic room acoustic case.

However, the use of a finite difference grid can be too restrictive for the geometry, thus introducing

an additional numerical error. Another idea is to couple the DG and PS methods. This has been

done for the linearized Euler equations [10, 35, 36] with the requirement of a conformal overlap

between the two methods. It also includes a Gaussian window and a low-pass filter to reduce

numerical instabilities.

In this paper, we study the coupling of the DG method with high-order nodal polynomial

basis functions and a PS method with trigonometric basis functions. Due to the periodicity of
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the basis functions in the PS scheme, we use a windowing technique, which acts as a PML, to

bring the solution to zero at the boundaries of the PS domain. More details on the various aspects

of the proposed coupling method are given in the following sections. In contrast to [10, 35, 36],

a novelty of the present approach is to allow unstructured meshes in the overlap, which greatly

simplifies the coupling with unstructured meshes for the DG method. An additional contribution

of the paper is a detailed analysis of the numerical parameters for the coupling is presented to

help in the selection and understanding of the influence of these parameters. Finally, an implicit

time-stepping scheme is also introduced for the PS method to improve the stability limit of the

numerical model. Due to the orthogonality of the basis, there is no additional computational cost

compared to explicit time schemes.

The remainder of the paper is organized as follows. The DG method, the spectral method and

the coupling strategy are described in Sections 2, 3 and 4, respectively. The performance of the

methods and the influence of the different parameters on the accuracy of the solution are studied

in detail in one dimension in Section 5. Finally, in Section 6, we validate the coupling method in

two dimensions and present an example of application.

2 Discontinuous Galerkin (DG) method

To introduce the method, we consider a time-domain acoustic wave problem defined on a bounded

domain Ω ⊂ Rd, with the spatial dimension d = 1, 2 or 3. The problem is written with the

pressure-velocity system defined on Ω,
∂p

∂t
+ ρc2 ∇ · v = 0,

ρ
∂v

∂t
+∇p = 0,

for x ∈ Ω and t > 0, (2.1)

and an absorbing boundary condition prescribed on the boundary ∂Ω,

p− ρc n · v = 0, for x ∈ ∂Ω and t > 0, (2.2)

where p(x, t) is the pressure field, v(x, t) is the particle velocity field, n(x) is the outward unit

normal on ∂Ω, ρ is the density, and c is the sound speed. To facilitate the presentation, we assume

that ρ and c are constant. The problem is completed with initial conditions: p(x, 0) = p0(x) and

v(x, 0) = v0(x).

The computational domain is represented by a conformal mesh made of segments, triangles or

tetrahedra, depending on the spatial dimension d. In the following, an element is denoted by K

and a face of an element is denoted by F .

In each element K, the fields are approximated by polynomials of maximum degree p. In the

DG method, the numerical fields can be discontinuous at the interface between the elements. They
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satisfy, for each element K, the following variational formulation, see e.g. [16]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find pK ∈ Pp(K) and vK ∈ [Pp(K)]d such that∫
K

∂pK

∂t
qK dx+ ρc2

∫
K

(∇ · vK) qK dx+ ρc2
∫
∂K

n · (v̂ − vK) qK dx = 0,

ρ

∫
K

∂vK

∂t
·wK dx+

∫
K

(∇pK) ·wK dx+

∫
∂K

(p̂− pK) n ·wK dx = 0,

for all qK ∈ Pp(K) and wK ∈ [Pp(K)]d,

(2.3)

where n · v̂ and p̂ are the numerical fluxes. The fluxes weakly enforce the continuity of the fields

at the interfaces between the elements, and they impose the boundary condition on the boundary

of the domain Ω. Here, we consider upwind fluxes, which are widely used for wave propagation

problems, see e.g. [16, 27, 32]. On each face F of each element K, we write

n · (v̂ − vK) :=

{
(ρc n · JvK − JpK)

/
(2ρc) if F ̸∈ ∂Ω,

(pK − ρc n · vK)
/
(2ρc) if F ∈ ∂Ω,

(p̂− pK) :=

{
(JpK − ρc n · JvK)

/
2 if F ̸∈ ∂Ω,

− (pK − ρc n · vK)
/
2 if F ∈ ∂Ω,

where JpK := pK
′ − pK and JvK := vK′ − vK are the jumps at the interface between K and the

neighboring element K ′ sharing the face F .

We consider the DG method using nodal basis functions, see e.g. [15, 16]. On each element K,

the numerical fields can be written as

pK(t,x) =

Nn∑
i=1

pKi (t) ℓKi (x), (2.4)

vK(t,x) =

Nn∑
i=1

vK
i (t) ℓKi (x), (2.5)

where {ℓKi (x)}i are the Lagrange polynomials associated to Nn nodes defined on the element K,

and {pKi (t)}i and {vKi (t)}i are the values of the fields at these nodes. In practice, the polynomials

and the nodes are defined on a reference element, and a mapping between the reference element

and the physical element K is used. The number of nodes per element, i.e. Nn, depends on the

polynomial order p and the dimension d. The position of the reference nodes are defined by using

the optimization procedure described in [53].

The semi-discrete scheme is obtained by using equations (2.4)–(2.5) in the variational formu-

lation (2.3), and by using the Lagrange polynomials as test functions. In this work, the time

stepping of the DG solution is performed with a low-storage explicit 4th order Runge–Kutta

(ERK4) scheme [7, 16]. Since this scheme is conditionally stable, the time step ∆t must verify a

Courant-Friedrichs-Lewy (CFL) stability condition, see e.g. [9, 16, 48].

We refer e.g. to [16, 24, 32, 33] for a generalization of the DG scheme to more than one

dimension, and for efficient parallel implementations.
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3 Pseudo-spectral (PS) method

In this section, we describe a PS method (Section 3.1) combined with implicit Runge–Kutta

time-stepping schemes (Section 3.2) for solving the pressure-velocity system. The PS method is a

priori only suitable for periodic solutions. To overcome this problem, we use a windowing strategy

(Section 3.3), which can be interpreted as the use of perfectly matched layers.

3.1 Pseudo-spectral discretization in space

In the PS methods, the numerical solution is represented by a sum of functions. While complex

exponential Fourier modes are frequently considered, we use real sine and cosine Fourier modes,

because the solutions of the considered problems are real. Using real numbers instead of complex

numbers reduces memory usage by a factor two. Thanks to this modal representation of the

solution, the discrete problem can be written as a system of uncoupled equations associated with

the modes. The numerical solution can also be rewritten with a nodal representation by using

the Inverse Discrete Cosine Transform (IDCT) and the Inverse Discrete Sine Transform (IDST)

in space, see e.g. [43]. The discrete unknowns then correspond to the values of the fields at the

nodes of a regular spatial grid of the domain.

In the proposed approach, cosine modes are used for the pressure field. For the Cartesian

components of the velocity field, the modes are obtained by differentiating the cosine functions,

resulting in sine modes with multiplicative coefficients. In the following, we derive the semidiscrete

schemes in one and two dimensions.

Spatial discretization in one dimension We consider the acoustic wave system (2.1) on the

domain Ω = [0, L]. The approximations of the unknown fields are written as

p(x, t) =

Nm−1∑
i=0

pi(t) φi(x) and v(x, t) =

Nm−1∑
i=0

vi(t) ∂xφi(x), (3.1)

with the modal coefficients pi(t) and vi(t) and the modes φi(x) = cos(iπx/L) and ∂xφi(x) =

−(iπ/L) sin(iπx/L), where Nm is the number of modes. These functions strongly enforce the

boundary condition v(x, t) = 0 at the boundaries of the domain.

By injecting the numerical fields (3.1) into equation (2.1), and by using orthogonality properties

of the modes, we obtain the system of ordinary differential equations

dpi
dt

− ρω2
i vi = 0, for i = 0 . . . Nm − 1,

ρ
dvi
dt

+ pi = 0, for i = 1 . . . Nm − 1,

dv0
dt

= 0.

(3.2)

with ωi = cπi/L. The key property is that the discrete unknowns corresponding to different modes

are decoupled. For each mode i, the unknown vector

yi =

(
pi
vi

)
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is governed by the system

dyi
dt

= Fiyi, with Fi =


(

0 ρω2
i

−ρ−1 0

)
, if i ̸= 0,(

0 0

0 0

)
, if i = 0.

(3.3)

Interestingly, this semi-discrete scheme can also be obtained by using the semi-discrete fields (3.1)

in the DG formulation (2.3) with the cosine/sine modes as test functions. The boundary terms of

the DG formulation are cancelled by applying the appropriate boundary conditions.

In the pseudo-spectral methods, the differentiation terms are frequently computed with Fourier

and inverse Fourier transforms, see e.g. [28]. The unknown fields can be written as

p(x, t) =

Nm−1∑
i=0

p̃i(t) e
ȷiπx/L and v(x, t) =

Nm−1∑
i=0

ȷ(iπ/L) ṽi(t) e
ȷiπx/L

with the imaginary unit ȷ =
√
−1 and the Fourier coefficients p̃i(t) and ṽi(t). Using these discrete

fields in the pressure-velocity system (2.1) and taking advantage of orthogonality properties, we

also obtain the uncoupled systems (3.2) with the unknowns p̃i(t) and ṽi(t) instead of pi(t) and

vi(t).

Spatial discretization in two dimensions. We consider now the rectangular domain [0, Lx]×
[0, Ly]. The unknowns p, vx and vy are approximated with trigonometric modes:

p(x) =

Nx−1∑
ix=0

Ny−1∑
iy=0

pix,iyφix,iy (x), φix,iy (x) = cos

(
ixπx

Lx

)
cos

(
iyπy

Ly

)
,

vx(x) =

Nx−1∑
ix=0

Ny−1∑
iy=0

vx,ix,iy∂xφix,iy (x), ∂xφix,iy (x) = − ixπ

Lx
sin

(
ixπx

Lx

)
cos

(
iyπy

Ly

)
,

vy(x) =

Nx−1∑
ix=0

Ny−1∑
iy=0

vy,ix,iy∂yφix,iy (x), ∂yφix,iy (x) = − iyπ

Ly
cos

(
ixπx

Lx

)
sin

(
iyπy

Ly

)
.

Using these discrete fields in the acoustic wave system, and taking advantage of the orthogonality

of the modes, we obtain the system of ordinary differential equations

dpix,iy
dt

− ω2
ixvx,ix,iy − ω2

iyvy,ix,iy = 0, for ix = 0 . . . Nx − 1, iy = 0 . . . Ny − 1,

ρ
dvx,ix,iy

dt
+ pix,iy = 0, for ix = 1 . . . Nx − 1, iy = 0 . . . Ny − 1,

dvx,0,iy
dt

= 0, for iy = 1 . . . Ny − 1,

ρ
dvy,ix,iy

dt
+ pix,iy = 0, for ix = 0 . . . Nx − 1, iy = 1 . . . Ny − 1,

dvy,ix,0
dt

= 0, for ix = 1 . . . Nx − 1,
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with the coefficients ωix = cπix/Lx and ωiy = cπiy/Ly. For each mode (ix, iy), the equations can

be rewritten in matrix form by introducing the unknown vector

yix,iy =

 pix,iy
vx,ix,iy
vy,ix,iy

 .

The unknown vector is governed by the system

dyix,iy
dt

= Fix,iyyix,iy , with Fix,iy =



 0 ρω2
ix

ρω2
iy

−ρ−1 0 0

−ρ−1 0 0

 , if ix ̸= 0 and iy ̸= 0,

 0 0 ρω2
iy

0 0 0

−ρ−1 0 0

 , if ix = 0 and iy ̸= 0,

 0 ρω2
ix

0

−ρ−1 0 0

0 0 0

 , if ix ̸= 0 and iy = 0,

0 0 0

0 0 0

0 0 0

 , if ix = 0 and iy = 0.

(3.4)

3.2 Runge–Kutta time stepping schemes

We use the specific form of the PS system to derive efficient implementations of implicit Runge–

Kutta (IRK) time-stepping schemes. Implicit schemes are interesting because they can be uncon-

ditionally stable, i.e. there is no constraint on the time step, but they usually require solving a

linear system at each time step. Fortunately, the PS system is formed of many small uncoupled

systems of size d+ 1 (where d is the spatial dimension). The matrices of these systems (denoted

Fi and Fix,iy above) can be easily inverted analytically.

We have derived explicit expressions of the update schemes by applying the standard IRK

methods to the semi-discrete systems (3.3) and (3.4). There is no intermediate steps, and then

no additional storage for intermediate solutions that are generally required with these multi-level

schemes. For the one-dimensional case (equation (3.3)), we obtain the following update schemes

for the solutions corresponding to mode i ̸= 0 with several classical IRK methods:

• The implicit Euler method, which is a 1st-order implicit Runge–Kutta (IRK1) method, gives:
pn+1
i =

1

1 + Ci

(
pni +∆t ρ ω2

i v
n
i

)
,

vn+1
i =

1

1 + Ci

(
vni − ∆t

ρ
pni

)
,

with Ci = ∆t2ω2
i .
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• The trapezoidal rule, which is a 2nd-order implicit Runge–Kutta (IRK2) method, gives:
pn+1
i =

1

1 + Ci

(
(1− Ci) p

n
i +∆t ρ ω2

i v
n
i

)
,

vn+1
i =

1

1 + Ci

(
(1− Ci) v

n
i − ∆t

ρ
pni

)
,

with Ci = ∆t2ω2
i /4.

• The Gauss-Legendre method [5, 34], which is a 4th-order implicit Runge–Kutta (IRK4)

method, gives:
pn+1
i =

1

(1 + Ci + C2
i )

((
1− 5Ci + C2

i

)
pni +∆t ρ ω2

i (1− Ci) v
n
i

)
,

vn+1
i =

1

(1 + Ci + C2
i )

((
1− 5Ci + C2

i

)
vni − ∆t

ρ
(1− Ci) p

n
i

)
,

with Ci = ∆t2ω2
i /12.

Details of the derivation of these schemes are given in Appendix A.

Similar update formulas can be obtained for the two- and three-dimensional cases and for the

explicit Runge–Kutta (ERK) methods. By comparing the number of floating-point operations per

time step per mode, we have observed that the computational cost of the IRK and ERK update

formulas are very close.

3.3 Windowing

The PS method described above is a priori only suitable for problems with periodic solutions, since

the trigonometric basis functions are periodic. Without special treatment, non-periodic solutions

are degraded by the Gibbs phenomenon.

Several approaches can be considered to overcome the Gibbs phenomenon. Chebyshev poly-

nomial basis functions [2, 23, 40, 44] can be used instead of the trigonometric functions, or an

approach similar to the Fourier continuation method [3, 4, 50] can be implemented to represent

non-periodic solutions. Unfortunately, with these approaches, the solutions corresponding to dif-

ferent modes are generally coupled, then the problem cannot be solved mode by mode, and we

lose a crucial feature required for fast solution procedures. Strategies based on domain extension

and data flipping can be explored, see e.g. [37–39], but this requires the use of a much larger

computational domain. Filters have also been used to improve the solution, see e.g. [12, 13, 51].

In this work, we consider a windowing strategy. At each time step, the discrete fields are

computed at the nodes of a regular spatial grid (this is the nodal representation of the solution)

Algorithm 1 Solution procedure with the PS method and the windowing strategy

Set the nodal values of the initial solution: pnod and vnod.
for t = 0, . . . , tmax (time loop) do
Compute the modal coefficients: pmod = DCT(pnod) and vmod = DST(vnod).
Update the modal coefficients of the PS solution by using the time-stepping scheme.
Compute the nodal values: pnod = IDCT(pmod) and vnod = IDST(vmod).
Multiply the nodal values by the window function.

end for
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by using inverse discrete cosine/sine transforms (i.e. IDCT and IDST), and the nodal values are

multiplied by a Gaussian window function that attenuates the waves near the domain boundaries

[19]. The solution is equal to zero at the boundaries, and the solution is periodic. This can be

interpreted as a perfectly matched layer (PML) technique [29]. Finally, the modal representation

of the solution (equation (3.1)) is recovered by using discrete cosine/sine transforms (i.e. DCT and

DST). The complete solution procedure is summarized in Algorithm 1.

In the one-dimensional case, the regular spatial grid corresponds to Nm evenly spaced points.

We consider the following window function

Wl =


e
−αwin ln(10)

(
l−Nwin
Nwin

)2βwin

, for l = 1, . . . , Nwin,

1, for l = Nwin + 1, . . . , Nm −Nwin,

e
−αwin ln(10)

(
l−(Nm−Nwin)

Nwin

)2βwin

, for l = Nm −Nwin + 1, . . . , Nm.

where Nwin is the number of points in each windowed part of the function, and αwin and βwin are
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Figure 1: Example of a window function with Nm = 400 and Nwin = 80.
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Figure 2: Propagation of a 1D wave with the PS method and the windowing technique. The pressure p
and the velocity v are plotted in black and red, respectively.
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window coefficients. We use αwin = (Nm − 3)/14 and βwin = 3. To illustrate the method, the

acoustic system (2.1) is solved on the domain Ω = [−1, 1] with the initial fields

p(x, 0) =
1

σ
√
2π

e−x2/(2σ2) and v(x, 0) = 0,

with σ = 0.1. The window function is represented in Figure 1, and the solution is plotted at

different times in Figure 2. We observe that the wave is absorbed near the boundaries of the

domain.

4 Coupling of the DG and PS methods

In our approach, the computational domain is divided into large boxes (e.g. segments in 1D and

rectangles in 2D) surrounded by unstructured finite element meshes to match the geometry. The

PS scheme is used in the large boxes, and the DG scheme is used on the unstructured meshes.

The idea is to make the PS regions as large as possible in order to reduce the computational cost

of the DG regions.

The coupling between the methods is achieved thanks to an overlap between the DG regions

and the PS regions. Figure 3 shows a PS region embedded between two DG regions in one

dimension. We distinguish two overlaps: data is transferred from the PS region to the DG region

in the Lov,DG overlap, and from the DG region to the PS region in the Lov,PS overlap.

The acoustic problem in the DG domain is marched in time using the ERK4 scheme, while

the IRK4 scheme is used in the PS region. After each time step, the local solution of each region

must be updated by using the local solutions of the neighboring regions. In the overlap close

to the boundary of the region, the local solution is simply replaced by the local solution of the

neighboring region, as shown in Figure 3. The procedure is detailed in Algorithm 2.

For the communications from a PS region to a DG region, the solution in the PS region is

simply evaluated at the nodes of the DG elements in the overlap Lov,DG. In one dimension, they

are computed using equation (3.1). This approach is easily used with nodal finite elements.

For the communications from a DG region to a PS region, the DG solution is evaluated at

the nodes of the PS regular spatial grid in the overlap Lov,PS. This is a bit more involved, since

this requires a mapping between the nodes of the PS spatial grid and the elements of the finite

element mesh, which is unstructured. Then, for each node of the PS spatial grid, the DG solution

is computed by using the local representation (2.4)-(2.5). Once the PS solution is updated on the

PS region

DG regionDG region

Lov,DG Lov,DG

Lov,PSLov,PS

Figure 3: Partition of the domain into the DG and PS regions in one dimension. The red arrow indicated
the data transfers.
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Algorithm 2 Solution procedure with the coupled DG and PS methods

Set the nodal values of the initial PS solutions.
Set the initial DG solutions.
for t = 1, . . . , tmax (time loop) do
Compute the modal coefficients of the PS solutions (with DCT and DST).
Update the modal coefficients of the PS solutions with IRK4.
Update the DG solutions with ERK4.
Compute and transfer the data on the overlaps.
Compute the nodal values of the PS solutions (with IDCT and IDST).
Multiply the nodal values of the PS solutions by the window function.

end for

regular grid, the modal coefficients are recomputed using the DCT and DST.

This coupling strategy introduces several parameters that need to be selected. First, the

element sizes in the DG and PS regions must be specified. In one dimension, the same spatial

step can be used in both DG and PS regions, which simplifies the implementation. However,

the method must be able to perform well with unstructured finite element methods in order to

deal with two and three-dimensional cases. Second, different time steps could be used in the DG

and PS regions. When different time steps are used in neighboring regions, the solution is not

communicated until it is updated in the neighboring regions. In the DG regions, the time step

must verify a CFL stability condition because the ERK scheme is conditionally stable, while in

the PS region there is no time step constraint. Finally, the sizes of the two overlaps are important

parameters. The influence of these parameters is studied in detail in the next section.

5 Numerical studies and analysis of the parameters in 1D

In this section, we first study the DG and PS methods without coupling in a 1D configuration, then

we study the coupling described in the previous section. The influence of the different parameters

is systematically evaluated.

We consider a simple dimensionless reference benchmark with the parameters c = 1 and ρ = 1.

The reference solution corresponds to a Gaussian pulse traveling from left to right through the

domain Ω = [−1, 2],

p(x, t) = v(x, t) = e−(x−x0−t)2/σ2

with σ = 0.05 and x0 = −0.5. This solution is used to initialize the fields at t = 0. The pulse

starts in the middle of the region [−1, 0] and reaches the middle of the regions [0, 1] and [1, 2] at

t = 1 and t = 2, respectively. At t = 3, the pulse has left the domain if the boundary on the

right-hand side is non-reflecting.

5.1 Numerical study of the DG and PS methods without coupling

We first examine the methods without coupling using the reference benchmark. For the PS

method, the left and right windowing zones are [−1,−0.8] and [1.8, 2], respectively. Note that the

Gaussian pulse has not yet reached the right windowing zone at t = 2, and it must have left the

domain at t = 3. By default, we consider the ERK4 time-stepping scheme for the DG method

and the IRK4 time-stepping scheme for the PS method. The element size for the DG scheme is

11
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Figure 4: Numerical errors of the DG and PS methods as functions of the number of degrees of freedom
(DOFs) for the 1D reference benchmark.

denoted by ∆xDG, and that for the PS method is given by ∆xPS = L/Nm, where L is the size of

the domain and Nm and the number of modes.

Influence of the spatial discretization

The accuracy of the spatial discretization schemes is studied by computing the error at the time

t = 2. To avoid the influence of the time-stepping scheme on the accuracy, the methods are tested

with a very small time step, ∆t = 10−4.

The relative errors are plotted as a function of the number of degrees of freedom (DOFs) in

Figure 4. The L2 norm of the error on the pressure field is computed with a Gaussian integration

for the DG method, and with a trapezoidal rule for the PS method. The number of DOFs

corresponds to the number of modes for the PS method, and to the number of nodes for the DG

method. We have tested P1, P4 and P9 elements, corresponding to p = 1, 4 and 9, respectively.

With the DG method, the numerical error is systematically reduced as the polynomial order

is increased, for any given number of DOFs. The expected order of convergence O((∆xDG)
p+1) is

recovered (results not shown for brevity), see [16].

With the PS method, the error decreases rapidly as we increase the number of modes until it

reaches machine accuracy at about 200 modes. This result is expected since the PS method has

exponential convergence [45]. We have also verified that there is a similar convergence with the

PS method when using exponential functions as basis functions. In fact, there is little difference

between the two sets of basis functions for the PS method. For the remainder of this article, the

PS method is considered using only the trigonometric basis functions.

Influence of the time discretization

We now compare the different Runge–Kutta time-stepping schemes, and we study the influence

of the time step ∆t. In Figure 5, the relative error is plotted as a function of the time step ∆t for
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(b) DG method with 300 DOFs
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(c) PS method with 100 DOFs
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(d) PS method with 300 DOFs

Figure 5: Error obtained with the DG (top) and spectral (bottom) methods with different time-stepping
schemes as a function of the time step ∆t for the 1D reference benchmark. For both methods, we have
used either 100 DOFs (left) or 300 DOFs (right).

the different methods and the different time-stepping schemes.

With the DG method, the error quickly reaches a plateau as we decrease ∆t. This plateau

corresponds to the spatial resolution, which then dominates the overall numerical error. The level

of the plateau is lowered by tacking a larger number of DOFs or a higher polynomial degree.

The plateaus are much lower with the PS method, and we observe the expected convergence

rates of the different RK time-marching schemes. For any given value of ∆t, the ERK4 and IRK4

schemes achieve better accuracy than the RK2 or RK1 schemes at similar computational cost. In

addition, the implicit methods have a slightly better accuracy than the explicit methods for the

same time step ∆t.

Influence of the windowing for the PS method

To study the windowing, the simulation is run up to t = 3. At this final time, the traveling pulse

should have left the domain completely. Therefore, the pulse should be absorbed by the right

window, ideally without any reflection.

The relative error is estimated by computing the norm of the solution in the domain at the
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Figure 6: Error obtained with the PS method as a function of the size of the window on the right of the
domain. These results are obtained with Nwin = 100, 200, 300 and 400 modes, and with the IRK4 scheme
for ∆t = 10−4.

final time, divided by that at the initial time. This relative error should be close to 1 if the pulse

is reflected, and close to 0 if it is completely absorbed. It could be interpreted as the size of a

reflection coefficient.

In Figure 6, the error is plotted as a function of the size of the window on the right, for several

numbers of modes. The size of the window can be defined in terms of the length Lwin and in terms

of the number of points in the right window, i.e. Nwin = ceil(Lwin/∆xPS). We observe that the

error decreases as we increase the length of Lwin, and the decay is faster with a larger number of

modes (Figure 6(a)). In fact, the amount of spurious reflections can be controlled by the number

of points inside the window. We observe in Figure 6(b) that the relative error is close to 10−4 with

Nwin = 20 points in all cases, except for the simulation with the smaller number of DOFs. In the

latter case, the global error is likely dominated by the spatial discretization of the PS scheme.

5.2 Numerical study of the DG/PS coupling

To study the DG/PS coupling, the computational domain [−1, 2] is partitioned into one PS region

[−Lov,PS, 1 + Lov,PS] placed between two DG regions [−1, Lov,DG] and [1− Lov,DG, 2], with small

overlapping zones of size Lov,PS and Lov,DG. The Gaussian pulse starts in the left DG region,

it traverses the PS region, and it is located in the right DG region at the end of the simulation.

Snapshots of the DG and PS solutions and errors are shown in Figure 7 at different times.

The DG solutions are updated with ERK4, the PS solution is updated with IRK4, and data

is exchanged in the overlapping zones, as described in Section 4. In the DG regions, the degree

of the polynomial basis functions is P = 4, and the time step is given by the empirical rule

∆tDG = 0.5/(2P + 1)∆xDG [9]. In the PS region, the size of the window Lwin is always equal to

the size of the overlap Lov,PS, and the time step is ∆tPS = ∆tDG by default.

Validation of the coupling and parameter selection

To assess the accuracy of the coupling method and to select the parameters, a number of simu-

lations are reported in Table 1. Each simulation targets a given level for the overall numerical

error.
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Figure 7: Snapshots of the solution and the corresponding error at different times. Green curves correspond
to the DG regions, and red curves correspond to the PS region. The parameters correspond to the target
error 10−4 given in Table 1.

First, the element size in the DG regions (∆xDG) and the distance between two points in the

PS region (∆xPS) are adjusted so that the numerical error in each region is close to the target

error when the coupling is disabled (i.e. the exact solution is prescribed at the interface) and

∆tDG = 10−4. The second and third columns in Table 1 correspond to the relative errors obtained

in this way.

The fourth column in Table 1 gives the numerical error with the coupling strategy and either

∆tDG = 10−4 or, in parentheses, the time step given by the empirical rule above. Any increase in

numerical error in the coupled model can be fully attributed to the coupling method. We observe

that for all the error targets, the error for the coupling method is greater than the error when

using either the DG or PS method alone, but it remains of the same order of magnitude. This

indicates that the proposed coupling does not deteriorate significantly the global accuracy of the

simulation.

Influence of the overlaps

In this section, we study how the size of the overlaps can impact the accuracy of the solution.

Table 1: Parameters and numerical errors for the coupling method with different error targets.

TE Error DG Error PS Error DG/PS coupling ∆xDG ∆xPS K N Kov,DG Nov,PS

10−2 9.5 10−3 8.2 10−3 2.0 10−2 (1.6 10−2) 0.080 0.025 15 56 2 9
10−3 9.3 10−4 8.1 10−4 2.5 10−3 (1.9 10−3) 0.055 0.018 22 77 3 12
10−4 9.2 10−5 8.4 10−5 3.8 10−4 (2.7 10−4) 0.037 0.014 32 99 5 15
10−5 9.4 10−6 9.9 10−6 2.7 10−5 (2.1 10−5) 0.023 0.012 52 121 8 18
10−6 9.8 10−7 6.7 10−7 3.1 10−6 (3.4 10−6) 0.015 0.009 82 147 13 22
10−7 9.9 10−8 8.0 10−8 2.6 10−7 (2.0 10−7) 0.009 0.008 130 169 21 25
10−8 9.8 10−9 6.2 10−9 3.6 10−8 (3.9 10−8) 0.006 0.007 208 196 34 29
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First, we study the influence of the DG overlap with a fixed PS overlap. Figure 8 shows

the numerical error for different numbers of DG elements in the overlap. In all the cases, using

more than 5 elements in the DG overlap does not significantly improve the accuracy. However,

reducing the number of elements below 5 systematically increases the error. This threshold of

5 elements follows directly from the choice of the time integration scheme. Indeed, the low-

storage RK4 scheme [7, 8] involves five stages at each time step. At each stage, the DG model

transfers data from each DG element to its neighbors. Therefore, at each time step, information is

transmitted through five DG elements. The results in Figure 8 indicate that the DG overlap should

be sufficiently wide so that the waves cannot completely cross the overlap during a single time

step. To verify this interpretation, we have checked (results not shown here) that, when using

the RK1 and RK2 schemes, increasing the width of the DG overlap beyond 1 and 2 elements,

respectively, does not improve the accuracy.
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Figure 8: Error as a function of the number of elements in the DG overlap with the parameters given in
Table 1.
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Figure 9: Error as a function of the number of points in the PS overlap with the parameters given in
Table 1.
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We now investigate how the windowing technique and the size of the PS overlap can impact

the accuracy of the solution. Figure 9 shows the numerical error as a function of the number of

points in the PS overlap, obtained with and without windowing. When the PS overlap is thin,

i.e. with a few points, the relative error is high in all the cases. The error decreases as the number

of points in the overlap increases, and the decay is much faster with the windowing technique.

With many points, the relative errors reach the same levels with and without windowing. This

can be expected because, with a thick PS overlap, the PS solution is replaced on large zones close

to the boundaries of the PS region at each iteration. This reduces the influence of the treatment

at the boundary of the PS zone.

Influence of the communications at the DG/PS interface and the PS time step

We now consider cases where the time steps in the DG and PS regions are not equal, and where

the data exchange does not occur at every time step. The DG time step (∆tDG) must verify a

stability condition, while the PS time step (∆tPS) can be much larger thanks to the use of an

implicit time stepping scheme.

First, we increase the PS time step according to ∆tPS = Icomm∆tDG for a given DG time step,

where Icomm is a positive integer. The communication between the regions is performed after each

PS time step. Therefore, the DG solution in the DG overlap is updated at every Icomm DG time

step. In Figure 10(a), it is clear that the error increases rapidly with Icomm.

In Figure 10(b), the DG and PS time steps are equal, but the communications are performed at

every Icomm time step. Therefore, the methods could run independently with communication only

at certain steps. We observe that the error does not increase as much as in Figure 10(a). Since the

only difference between the two figures is the PS time step, this means that the error in the left

figure is mainly due to the time stepping scheme used in the PS region. We also observe that the

effect of Icomm on the results is not significant, up to a certain value of Icomm. The simulation time

between two communications (i.e. Icomm∆tDG) cannot be larger than the simulation time to cross
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(a) Case ∆tPS = Icomm∆tDG
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Figure 10: Error as a function of the number of DG iterations between two communications (Icomm) with
the parameters given in Table 1.

17



the smallest overlap (i.e. min(Lov,PS, Lov,DG)/c). When Icomm∆tDG > min(Lov,PS, Lov,DG)/c, the

relative error is close to one in all the cases (results not shown for brevity).

6 Numerical studies in two dimensions

6.1 Validation of the PS method

To validate the PS implementation in two dimensions with the IRK4 scheme, we consider a

dimensionless reference benchmark that represents the propagation of an acoustic pulse in the

square domain Ω = [−2, 2] × [−2, 2] with ρ = 1 and c = 1. The windowing of the PS solution

is applied to the boundary of this domain with Lwin = 2.5. The initial condition is a Gaussian

pressure pulse located at the center of the domain,

p(x, 0) = e−∥x∥2/(2σ2) and v(x, 0) = 0,

with σ = 0.05. We use the same number of modes on the two directions Nx = Ny = Nm for the

PS method. Figure 11 shows the numerical solution at different times.

The solution of the PS method at t = 1 is compared with a reference numerical solution

obtained with many modes. Note that at t = 1 the acoustic pulse has not yet reached the

outer boundary of the computational domain. The influence of the number Nm of modes in each

direction on the L2 error is plotted in Figure 12(a). As in one dimension, the error decreases

rapidly as we increase the number of modes. In addition, the performance of the IRK4 scheme is

examined by varying the time step ∆t, see Figure 12(b). As expected, the IRK4 scheme exhibits

a fourth-order convergence rate.

6.2 Validation and analysis of the coupling method

In this section, we present results for the coupling method in two dimensions, and we compare

them with results obtained with the DG method. We consider again the computational domain

Ω = [−2, 2] × [−2, 2] with ρ = 1 and c = 1. A plane wave propagates through the domain along

the direction d = (1, 1)/
√
2. The reference solution is given by

p(x, t) = e−(d·x−x0−t)2/σ2

and v(x, t) = pd,

with σ = 0.5 and x0 = −4. It is used to define the initial fields.

(a) t = 0 (b) t = 1 (c) t = 2

Figure 11: Pressure at different times in two dimensions.
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Figure 12: Error given in terms of spatial and time discretization.

(a) DG mesh (b) Hybrid mesh

Figure 13: Examples of meshes used for the comparison between the DG method and the coupling DG/SP
method. DG elements are shown in black. The spectral domain is shown in red.

For the DG simulations, the entire domain is meshed with P3 elements, see Figure 13(a), and

the non-homogeneous Robin condition (2.2) is prescribed at the boundaries of the mesh. For

the DG/PS simulations, we define an interior PS region ΩPS = [−1 − Lov,PS, 1 + Lov,PS]
2 inside

Ω with Lov,PS = 0.3, see Figure 13(b). The same number of modes is used in both directions,

Nx = Ny = Nm with ∆xPS = ∆yPS = 10−2. The windowing technique is used at the boundary of

this region. The PS region is surrounded by a DG region ΩDG with P3 elements. The DG region

corresponds to Ω from which the square [−1+Lov,DG, 1−Lov,DG]
2 is removed, with Lov,DG = 0.2.

A non-homogeneous Robin boundary condition is used at the exterior boundary of ΩDG. The

same time step is used in all the regions. Here, we use the empirical rule ∆t = 2/3minn(∆rn),

where min(∆rn) is the minimal distance between two finite element nodes in the mesh, see [16].

The solutions and numerical errors are shown in Figure 14 for the DG method and the coupling

method. Only the DG solutions are shown in Figure 14 because the solutions from both methods

are very close and cannot be visually distinguished. The error in the DG method follows the plane

wave. For the coupling method, we observe that the error is lower in the PS region than in the

DG region, see Figure 14(h). In addition, for long times, we observe small reflections due to the

interface between the two regions, see Figure 14(i).
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(a) DG solution t = 2 (b) DG solution t = 4 (c) DG solution t = 6

(d) Error t = 2 (e) Error t = 4 (f) Error t = 6

(g) Error t = 2 (h) Error t = 4 (i) Error t = 6

Figure 14: Top: DG results at different times. Middle: Difference between the DG results and the exact
solution. Bottom: Difference between the hybrid method and the exact solution.
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Figure 15: Error as a function of time for the DG and coupling methods.
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Next, we gradually increase the size of the PS region without modifying the domain Ω, thereby

decreasing the size of the DG region. We consider square PS regions of sizes LPS = 2, 2.4, 2.8,

and 3.2. In these cases, the number of degrees of freedom in the DG region represents respectively

32%, 24%, 18% and 12% of the total number of degrees of freedom, respectively.

Figure 15 shows the error as a function of time for the DG method and the coupling method

with different sizes of the PS region. As expected, the numerical errors increase as the plane wave

enters the domain and then decrease as the wave leaves the domain. In addition, we observe that

the DG error is larger than the coupling method error in all cases and for most of the simulation

time. This is consistent with the previous results, e.g. Figure 14(h), which shows a smaller error

in the PS domain. At the end of the simulation (t = 8), the error of the coupling method is

slightly higher than the DG error. This may be due to the small spurious reflections generated

at the interface between the PS and DG regions. Varying the size LPS of the PS region does not

significantly change the numerical error over the duration of the simulation, indicating that the

accuracy of the coupling method can be maintained.

6.3 Example of application

We present an example with a more complex geometry, shown in Figure 16(a). A Gaussian pulse

propagates through the mesh, starting at position x0 = (0.75, 0.25). We consider the parameters

ρ = 1 and c = 1, and a homogeneous Dirichlet condition is imposed at the boundary of the domain.

The solution is computed using the DG method alone and the coupling strategy. Figure 16(a)

shows an example of a triangular mesh for the DG model covering the whole domain (in practice,

a finer mesh was used). For the coupling method, the PS region is a rectangle covering a large,

central part of the domain, see Figure 16(b). The unstructured mesh used in the DG region is

able to represent the gap between the PS region and the complex boundary of the domain. The

DG model consists of 65350 P3 elements, while in the coupling model, there are 41659 P3 DG

elements and 50000 modes in the PS region.

The solutions obtained with the DG method and the DG/SP coupling method are shown in

Figure 16. The two methods give almost identical results. This shows that the coupling method

does not introduce significant scattering at the interface between the PS and DG regions.

7 Summary and perspectives

We have presented and extensively studied a coupling strategy of PS and DG methods to solve

the wave equation in the time domain. The DG method uses high-order nodal polynomial shape

functions, and the PS method uses trigonometric modes. The motivation for this coupling strategy

is to combine the efficiency of the PS method for large-scale simulations with the flexibility of the

DG method for complex geometries. However, this approach introduces several parameters that

need to be carefully studied.

The exchange of information between the PS and DG regions is performed by interpolating

the solutions over the overlaps between the two regions. The proposed method can handle non-

conforming meshes, i.e. the PS nodes do not have to coincide with the DG nodes. Moreover,

by exploiting the peculiar structure of the spectral system, we have developed efficient Runge–

Kutta implicit time integration schemes with no additional computational cost. This gives more

flexibility in the choice of time step for the spectral method.
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(a) DG Mesh (b) Mesh for the coupling method

(c) Pressure at t = 0.1 for the DG method (d) Pressure at t = 0.1 for the coupling method

(e) Pressure at t = 1.3 for the DG method (f) Pressure at t = 1.3 for the coupling method

(g) Pressure at t = 3 for the DG method (h) Pressure at t = 3 for the coupling method

Figure 16: Mesh and results for the DG method (left) and the coupling method (right).

A detailed parametric study of the method has been performed in one dimension. The accuracy

of the coupling method is mainly influenced by the width of the overlaps. The width of the DG

overlap is directly related to the time-integration scheme (e.g., five elements for the fourth-order,

low-memory scheme used in the present work). It was also shown that one can use different time

steps in the two methods, although increasing the PS time step should be limited due to the time

discretization error. Synchronization between the PS and DG regions can be performed every few

time steps.

The coupling method has also been implemented and validated in two dimensions using un-

structured triangular meshes in the DGmethod. The coupling of the methods does not significantly

increase the numerical error.

The main perspective of this work is the development of optimized 3D codes, which are of

paramount importance to test and validate the approach on real cases. Indeed, the performance

of the resulting solvers could be compared with DG solvers to evaluate the speedup provided by

the coupling method. Implementation techniques have already been proposed to develop efficient

PS and DG solvers, including on GPU clusters, as discussed in the introduction.

Another important perspective is to further develop the versatility of the approach. We think

that multiple PS regions could be used and arranged differently to cover a larger region of the
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computational domain and further reduce the number of DG degrees of freedom. This may require

the introduction of a coupling technique between adjacent PS regions. The PS region could also

be used up to the boundary of the domain, provided that a periodic boundary condition or a

non-reflecting boundary condition has to be imposed, which increases the range of applications.

Acknowledgments. This work was supported in part by France Relance and Siemens Industry

Software SAS (WavesDG-GPU project, 15/01/2022-14/01/2024).

A Runge–Kutta time stepping schemes

In this appendix, we derive Implicit Runge–Kutta (IRK) schemes for the general linear system

dy

dt
= Fy,

with a constant square matrix F and an unknown vector y. A s-stage IRK scheme is given by

yn+1 = yn +∆t

s∑
i=1

biki,

with

ki = F
(
yn +∆t

s∑
j=1

aijkj
)
, for i = 1 . . . s,

where aij and bi are constant coefficients. The coefficients of several standard schemes are given

in Table 2.

Table 2: Butcher tables for several IRK methods.

(a) Notation (b) Implicit Euler (c) Trapezoidal rule (d) Gauss–Legendre

c A

b⊤

1 1

1

0 0 0

1 1
2

1
2

1
2

1
2

1
2
−

√
3

6
1
4

1
4
−

√
3

6

1
2
+

√
3

6
1
4
+

√
3

6
1
4

1
2

1
2

The implicit Euler method (Table 2b) is a first-order scheme (IRK1). We have

k1 = F(yn +∆t k1),

yn+1 = yn +∆t k1,

which leads to the update formula

yn+1 = (I−∆t F)−1 yn.

23



The trapezoidal rule (Table 2c) gives a second-order scheme (IRK2). We have

k1 = Fyn,

k2 = F
(
yn + ∆t

2 k1 +
∆t
2 k2

)
,

yn+1 = yn + ∆t
2 k1 +

∆t
2 k2.

By deriving explicit expressions for k1 and k2 and replacing in the last equation, we obtain the

update formula

yn+1 =
(
I− ∆t

2 F
)−1 (

I+ ∆t
2 F

)
yn.

The Gauss–Legendre method is a two-step fourth-order scheme (IRK4). We have

k1 = F (yn +∆t a11 k1 +∆t a12 k2) ,

k2 = F (yn +∆t a21 k1 +∆t a22 k2) ,

yn+1 = yn + ∆t
2 k1 +

∆t
2 k2.

Combining these equations and using the coefficients in Table 2d give

k1 =
(
I+∆t

√
3
6 F

)−1 (
I−∆t

√
3
6 F

)
k2,

k2 =

((
I− ∆t

4 F
)
−∆t

(
1
4 +

√
3
6

)
F
(
I+∆t

√
3
6 F

)−1 (
I−∆t

√
3
6 F

))−1

Fyn,

yn+1 = yn +∆t
(
I+∆t

√
3
6 F

)−1

k2.

We finally obtain:

yn+1 = yn +∆t
(
I+∆t

√
3
6 F

)−1

((
I− ∆t

4 F
)
−∆t

(
1
4 +

√
3
6

)
F
(
I+∆t

√
3
6 F

)−1 (
I−∆t

√
3
6 F

))−1

Fyn.
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[36] R. Pagán Muñoz and M. Hornikx. Hybrid Fourier pseudospectral/discontinuous Galerkin

time-domain method for wave propagation. Journal of Computational Physics, 348:416–432,

2017.

[37] C. Pan. Design of a windowless digital filter using FFT algorithm. Technical report, Stanford

Linear Accelerator Center, 1993.

[38] C. Pan. Gibbs phenomenon suppression and optimal windowing for attenuation and Q mea-

surements. Technical report, Stanford Linear Accelerator Center, 1993.

[39] C. Pan. Gibbs phenomenon removal and digital filtering directly through the fast Fourier

transform. IEEE Transactions on Signal Processing, 49(2):444–448, 2001.

[40] R. B. Platte and A. Gelb. A hybrid Fourier–Chebyshev method for partial differential equa-

tions. Journal of Scientific Computing, 39:244–264, 2009.

[41] N. Raghuvanshi, B. Lloyd, N. Govindaraju, and M. C. Lin. Efficient numerical acoustic

simulation on graphics processors using adaptive rectangular decomposition. In Proceedings

of the EAA Symposium on Auralization, 2009.

[42] N. Raghuvanshi, R. Narain, and M. C. Lin. Efficient and accurate sound propagation us-

ing adaptive rectangular decomposition. IEEE Transactions on Visualization and Computer

Graphics, 15(5):789–801, 2009.

[43] K. R. Rao and P. Yip. Discrete cosine transform: algorithms, advantages, applications.

Academic press, 2014.

[44] J. Shen. Efficient spectral-Galerkin method II. Direct solvers of second-and fourth-order

equations using Chebyshev polynomials. SIAM Journal on Scientific Computing, 16(1):74–

87, 1995.

[45] J. Shen, T. Tang, and L.-L. Wang. Spectral methods: algorithms, analysis and applications,

volume 41. Springer Science & Business Media, 2011.

[46] S. Terrana, J. P. Vilotte, and L. Guillot. A spectral hybridizable discontinuous Galerkin

method for elastic–acoustic wave propagation. Geophysical Journal International, 213(1):

26



574–602, Apr. 2018.

[47] I. Toulopoulos and J. A. Ekaterinaris. High-order discontinuous Galerkin discretizations for

computational aeroacoustics in complex domains. AIAA Journal, 44(3):502–511, 2006.

[48] T. Toulorge and W. Desmet. CFL conditions for Runge–Kutta discontinuous Galerkin meth-

ods on triangular grids. Journal of Computational Physics, 230(12):4657–4678, 2011.

[49] L. N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Applied Mathe-

matics, 2000.
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