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A B S T R A C T   

The surface soil moisture (SSM) is a key variable for monitoring hydrological, meteorological and agricultural 
processes. It can be estimated from active and passive microwave remote sensing data. While coarse-resolution 
SSM products (> 1 km) have already been evaluated for a large range of ecosystems, such assessments lack very 
high-spatial-resolution SSM products, although they are increasingly available thanks to very high-resolution 
radar data or disaggregation methods applied to coarse-scale products. Within this context, the aim of the 
current study is to carry out, for the first time, an intercomparison of high-spatial resolution SSM products using a 
large in situ SSM database collected from 33 fields located in the Ebro basin (Spain) that were cultivated with 
different crops and irrigated using different techniques. Three products are considered: (i) SSMTheia at the field 
scale derived from Sentinel-1 and Sentinel-2 data using a machine learning algorithm; ii) SSMρ at 50-m reso
lution derived from the Sentinel-1 data using both the backscattering coefficient and the interferometric 
coherence based on the inversion of a simple radiative transfer model; and iii) SSMSMAP20m at 20-m resolution 
obtained by disaggregating SMAP SSM using Sentinel-3 and Sentinel-2 data. The statistical metrics computed on 
the whole database show that the two Sentinel-1 products outperform the disaggregated approach and that the 
SSMρ product exhibits better statistical metrics than the SSMTheia product. This is mainly attributed to the 
inability of the SSMTheia approach to retrieve SSM >0.3 m3/m3. The correlation coefficients are >0.4 (up to 0.8) 
for 72%, 40% and 27% of the fields using SSMρ, SSMTheia and SSMSMAP20m, respectively. Similarly, 80% of the 
fields had RMSE values between 0.06 m3/m3 and 0.1 m3/m3 using SSMρ product against 36% using SSMTheia and 
27% using SSMSMAP20m. In addition, the time series analysis showed that SSMSMAP20m was able to detect large- 
scale wetting events such as rainfall that impacted the whole SMAP pixel while irrigation at the field scale 
was not detected, mainly because the very high-resolution Sentinel-2 data used for the disaggregation of 
Sentinel-3 land surface temperature were not related to the hydric status of the surface. The results show that 
while both Sentinel-1 products perform reasonably well for cereals and, to a lesser extent, for annuals, a drastic 
drop of the metrics is observed for tree crops. Finally, the spatial SSM pattern over the study area is also better 
depicted by the Sentinel-1 products than by the SSMSMAP20m by comparison to the airborne GLORI GNSS-R 
(Global Navigation Satellite System Reflectometry) SSM maps. This study highlights the limitations of SSM 
products over tree crops and provides insights for improving irrigation scheduling at the field scale.   

1. Introduction 

Surface soil moisture (SSM) has been identified as an essential 
climate variable (ECV) that is crucial for characterizing the Earth’s 

climate (GCOS, 2021). It is necessary to monitor the processes at the soil- 
vegetation-atmosphere interface that control the water (Al-Yaari et al., 
2019; Koster et al., 2004; Li et al., 2019; Wang and Dickinson, 2012), 
energy (Ait Hssaine et al., 2018; Diarra et al., 2017; Gokmen et al., 2012; 

* Corresponding author at: CESBIO, University of Toulouse, IRD/CNRS/UPS/CNES, Toulouse, France. 

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2024.114225 
Received 18 October 2023; Received in revised form 13 May 2024; Accepted 22 May 2024   

www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2024.114225
https://doi.org/10.1016/j.rse.2024.114225
https://doi.org/10.1016/j.rse.2024.114225
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 309 (2024) 114225

2

Jiang et al., 2014; Kustas et al., 1998; Li et al., 2006) and carbon 
(Ahlström et al., 2015; Jung et al., 2017; Wang et al., 2014) budgets. 
However, estimating SSM is a complex task because of its high spatio
temporal variability (Brocca et al., 2010; Moran et al., 2004). At the 
local scale, SSM can be accurately obtained from in situ measurements 
either by gathering soil samples (gravimetric method) or by automatic 
sensors (Dobriyal et al., 2012; Vereecken et al., 2014; Walker et al., 
2004b). SSM can also be predicted with land surface models using a set 
of input data, including meteorological forcing and model variables and 
parameters related to soil and vegetation characteristics (Koster et al., 
2009; Nijssen et al., 2001), which are likely to be uncertain, limiting the 
accuracy of SSM predictions. 

Remote sensing microwave data can provide frequent large-scale 
measurements (Karthikeyan et al., 2017). Their use for estimating 
SSM is owing to their sensitivity to the water content of the target, which 
in turn is related to its dielectric properties (Schmugge, 1978; Ulaby 
et al., 1986). Consequently, the surface emission measured by radiom
eters (passive) or the backscattering coefficient measured by scatter
ometers and SARs (active) are widely used to retrieve SSM. Given their 
insensitivity to atmospheric perturbations, microwave missions have 
been the subject of considerable investments, as demonstrated by the 
large number of satellites and derived products that have been made 
available to date. Radiometers have been used since the early 1980s 
(Schmugge, 1983; Ulaby and Long, 2014), but the first mission dedi
cated to SSM monitoring was the ESA’s L-band Soil Moisture and Ocean 
Salinity satellite (SMOS) (Kerr et al., 2016, 2001), which was launched 
in 2009, followed by NASA’s L-band Soil Moisture Active and Passive 
(SMAP) in 2014 (Entekhabi et al., 2010). Prior to the launch of SMOS, C- 
band AMSR-E data were also used to provide SSM products (Njoku, 
2004; Njoku et al., 2003). Active microwave observations have also been 
used to retrieve SSM using scatterometers that were primarily designed 
to measure wind speeds and directions over the ocean (Wagner et al., 
2013, 1999). Interestingly, the continuous acquisition of scatterometer 
data since the launch of ERS-1 in 1992 has produced long time series of 
coarse-scale SSM products (Wagner et al., 2003; Wagner et al., 2013). 

Although global, the abovementioned passive and active products 
are characterized by medium to coarse spatial resolutions (>1 km). Such 
resolution is useful for global applications such as climate studies and 
large-scale drought monitoring. In contrast, they are not appropriate for 
agricultural decision support at the field scale that require information 
at a resolution equal or lower than the size of the field such as irrigation 
timing and amount (Le Page et al., 2023; Massari et al., 2021; Ouaadi 
et al., 2021b), biophysical variables (Bériaux et al., 2015; Hosseini et al., 
2015), evapotranspiration (Ait Hssaine et al., 2021), crop yields (Ines 
et al., 2013; Mishra et al., 2021) and irrigation or fertilizer scheduling 
(Le Page et al., 2014; Subhani et al., 2012). Peng et al. (2021) reviewed 
the different key applications of SSM products and emphasised the need 
for global operational products, typically with 100-m resolution. How
ever, finer resolutions (<100 m) are generally required in many regions 
of the world due to the dominance of very small fields, which can be as 
small as 0.1 ha (Ameur et al., 2020; Defourny et al., 2019; Dobermann 
et al., 2003; Ouaadi et al., 2021a; Ritzema et al., 2008; Weiss et al., 
2020). Indeed, Lesiv et al. (2019) showed that 23% of fields on the globe 
have areas of <0.64 ha. In particular, 50%, 53% and 13% of fields are 
smaller than 0.64 ha in Africa, Asia and Europe, respectively. Very high 
spatial resolutions are also required to assess the intraplot variability for 
precision agriculture. For example, several studies have highlighted the 
need for very high spatial resolution data to estimate the spatial vari
ability of crop growth and yield within a given field (Bouras et al., 2023; 
Ines et al., 2013). This has prompted numerous studies to develop 
methods for estimating SSM at very high spatial resolution. Indeed, 
several attempts have been made to estimate SSM from reflectances in 
the shortwave infrared (SWIR) band (approximately 1500–2300 nm) 
and other bands based on thermal infrared data (c.f. reviews by Li et al. 
(2021) and Zhang and Zhou (2016)). Shortwave infrared reflectance 
approaches are based on water absorption bands to establish 

relationships between either reflectances or indices such as the 
normalized difference water index (NDWI, computed from the near 
infrared and SWIR reflectances) and SSM. Thermal infrared (TIR) ap
proaches rely mainly on sub-diurnal observations of land surface tem
perature (LST) to estimate the soil thermal inertia, which is indirectly 
linked to its water content (Verhoef, 2004). More complex approaches 
based on solving the surface energy budget have also been investigated 
(Van Den Hurk, 2001). However, these approaches are mostly limited by 
the shallow penetration depth of electromagnetic waves in these 
wavelength domains, thereby restricting their applicability to bare or 
sparsely covered soils and to cloud-free conditions (Kerr, 2007; Peng 
et al., 2021). In contrast, microwave-based approaches are promising 
and can be grouped into two main categories: (i) direct inversions of 
very high-resolution radar data and (ii) downscaling of the coarse SSM 
products mentioned above. The downscaling of coarse products is 
widely addressed in the literature using various statistical, machine 
learning or physical approaches. The concept behind downscaling is to 
compute a very high-resolution factor using auxiliary data obtained 
from sensors with high spatial resolution. This factor is then used to 
improve the coarse spatial resolution of the original SSM product (Peng 
et al., 2017). Note that downscaling techniques have been used exten
sively to downscale SSM data up to 1 km (e.g., Choi and Hur, 2012; 
Merlin et al., 2013; Peng et al., 2017; Sabaghy et al., 2020), but these 
techniques have recently been adopted to achieve even higher spatial 
resolutions. For instance, LANDSAT LST combined with NDVI data from 
either LANDSAT or Sentinel-2 have been used to disaggregate SSM data 
at up to a 100-m resolution (Merlin et al., 2013; Ojha et al., 2019; Paolini 
et al., 2022a). SAR data were also used, as in the recent study by Ojha 
et al. (2021), who used Sentinel-1 data to obtain field-scale SSM from the 
previously downscaled SMAP product at 100-m resolution. However, 
SSM can be estimated directly from SAR data. Indeed, SAR imaging 
radars have a resolution of a few meters (RadarSAT, ENVISAT, and 
Sentinel-1), enabling very high-resolution mapping of SSM (Karthikeyan 
et al., 2017; Walker et al., 2004a). In fact, SARs are currently the only 
sensors capable of providing both the spatial resolution and temporal 
coverage required for field-scale applications (Li et al., 2021; Moran 
et al., 2004). Given the complexity of the radar response involving a 
mixture of ground and canopy contributions, the retrieval of SSM re
quires the use of backscattering models. Indeed, most of the studies 
aiming to retrieve SSM from SAR data rely on a vegetation backscat
tering model (e.g., Attema and Ulaby, 1978; Karam et al., 1992; Picard 
and Toan, 2002; Ulaby et al., 1990) coupled to a bare soil backscattering 
model (e.g., Dubois et al., 1995; Fung et al., 1992; Oh et al., 1992) to 
disentangle the contributions from each other. Using these models and 
SAR data, several approaches have been proposed (Bai et al., 2017; Bao 
et al., 2014; El Hajj et al., 2017; Gherboudj et al., 2011; He et al., 2014; 
Ouaadi et al., 2020). 

Intercomparison studies are of prime importance to assess product 
performance under different climate and vegetation conditions as well 
as to highlight weaknesses that can be improved (Al-Yaari et al., 2019). 
Coarse-scale products have received considerable attention, with 
extensive literature dedicated to product assessments and in
tercomparisons (e.g., Al-Yaari et al., 2019; Brocca et al., 2011; Gruhier 
et al., 2010; Kim et al., 2018; Qu et al., 2021; Rüdiger et al., 2009; Yin 
et al., 2019). In contrast, there is a lack of similar studies on high spatial 
resolution products that should be better suited for field-scale agricul
tural applications. In this context, the aim of this study is to perform an 
intercomparison of three high spatial resolution SSM products, two of 
which are based on the inversion of Sentinel-1 data (El Hajj et al., 2017; 
Ouaadi et al., 2020), and one relies on the disaggregation of SMAP 
products (Paolini et al., 2022a). These three products have shown 
encouraging results for various applications, including the classification 
of different irrigation systems at the field scale (Paolini et al., 2022b), 
the retrieval of irrigation timing and/or amounts (Le Page et al., 2020; 
Ouaadi et al., 2021) and the mapping of evapotranspiration (Ait Hssaine 
et al., 2021). To this end, a large database of in situ SSM measurements 
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was collected in the Ebro basin (Spain) as part of the LIAISE project 
(https://www.hymex.fr/liaise/). 

The document is organized as follows. Section 2 presents the study 
area, the in situ SSM database, the satellite products and the airborne 
GNSS-R-derived maps (GNSS-R stands for Global Navigation Satellite 
System Reflectometry). Section 3 is devoted to the results of (i) the 
evaluation of satellite products over the entire in situ SSM database, (ii) 
the analysis of SSM time series and (iii) the analysis of the SSM spatial 
patterns. The results are discussed in Section 4, and Section 5 is devoted 
to drawing conclusions. 

2. Materials and methods 

2.1. Study area description 

The study was conducted over the Ebro basin in Catalonia, North
easten Spain (Fig. 1). The climate in the region is semiarid Mediterra
nean and is influenced by a continental climate. This climate is 
characterized by mild winters, hot summers and two rainy seasons 
(autumn and spring) with an annual precipitation amount of approxi
mately 350 mm against a reference evapotranspiration of approximately 
1100 mm/year (Paolini et al., 2022b). 

The study area, which covers 19 × 18 km2 (left map in Fig. 1), is 
located in one of the most important agricultural districts in the region. 
It includes an irrigated section in the northwest and a rainfed section in 
the southeast (cf. Section 3.3). Within the irrigated area, the SSM 
database was gathered for several fields located in two nearby sites 
named “Prat De Boldu” and “Ivars” (Fig. 1, right maps). The irrigated part 
is mainly supported by the Urgell canal, which is fed by Pyrenean sur
face reservoirs. The main irrigation technique is flooding, which is the 
traditional method in the region, using the old canal system. The irri
gation frequency is approximately two weeks. Nevertheless, some fields 
are also irrigated with sprinkler and drip techniques. The irrigation 
frequency of these modern techniques is related to farmer schedules and 

crop types. The area is dominated by maize, wheat, barley and alfalfa, 
which are cultivated as winter and/or summer crops. Fruit trees 
constitute the second largest percentage of the area, and they are 
generally irrigated using either flood or drip techniques (Paolini et al., 
2022b). 

2.2. Surface soil moisture database 

2.2.1. In situ measurements 
SSM measurements were collected at 5-cm depth over different fields 

cultivated with different crops and irrigated using multiple techniques. 
The fields were monitored during the winter and/or summer agricul
tural seasons in 2021, depending on the crop. The SSM database will 
soon be available on the HILIAISE project website (https://www.aeris 
-data.fr/). The rainfall amounts were obtained from the Ruralcat por
tal (https://ruralcat.gencat.cat/agrometeo.estacions), which provides 
meteorological data from several weather stations across Catalonia. The 
Tornabous station, located approximately 7 km away, is the closest 
station to the study site. 

2.2.1.1. Prat De Boldu. SSM data were collected automatically using a 
low-cost sensor network (Fig. 2a and b) which is composed of buried 
sensors connected to a data logger called LoNIM (Low-cost Network for 
Environmental Monitoring), which was designed at CESBIO (https:// 
www.cesbio.cnrs.fr/). The data were acquired with hourly time steps 
for 11 stations installed across different fields. The stations were con
nected to two gateway stations (Fig. 2c), allowing the reception and 
storage of data before it was transmitted to a server via the mobile 
network. The 11 fields were cropped with barley, wheat, maize, peas, 
alfalfa and apple trees (cf. Table 1). Among the 11 fields, 5 were summer 
crops monitored between the end of May and the end of September, and 
5 were winter crops monitored between the end of March and the end of 
May. The field planted with apple trees was monitored from the end of 
March to the end of September 2021. The measurements were calibrated 

Fig. 1. Locations of the two sites, Prat De Boldu and Ivars (maps on the right), in the study area (delimited by the blue rectangle on the left map) in the Ebro basin in 
Catalonia, Spain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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using data from a station located close to the studied fields. 

2.2.1.2. Ivars. The SSM database at the Ivars site was collected manu
ally during field campaigns that were scheduled during the extensive 
observation period of the HILIAISE project, which took place from July 
15 to July 28, 2021. SSM was measured using Thetaprobes (Fig. 2d) that 
were already calibrated over the study area. The field campaign 
included 22 fields cropped with wheat, maize, alfalfa, pear and apple 
trees that were irrigated using the flood or drip technique. The field sizes 
ranged between 0.8 and 22 ha. For each field and for each date, between 
10 and 30 measurements were collected at distributed locations in the 
field and then averaged to provide a representative field value. The field 
campaigns were carried out independently of the Sentinel-1 time 
overpass. 

2.2.2. Satellite surface soil moisture products 

2.2.2.1. Theia product. The Theia pole (https://www.theia-land.fr/) 
provides SSM maps (named hereafter SSMTheia) at the field scale with a 
temporal resolution of 6-day using Sentinel-1 A & B. The land use maps 
are first used to extract the agricultural area, and then the NDVI is used 
to segment the fields based on a mean-shift segmentation algorithm 
(Cheng, 1995). The SSM for each field was estimated using the algorithm 
described in El Hajj et al. (2017), which combines Sentinel-1 and 
Sentinel-2 data by using an artificial neural network algorithm. The 
mean values of the backscattering coefficients (at 20 m resolution) and 
NDVI (at 10 m resolution) are first computed for each field and then used 
to estimate SSM. A backscattering model is used to account for the 
contributions of the soil and of the vegetation by coupling (i) a vege
tation backscattering model named the water cloud model (WCM; 
Attema and Ulaby (1978)) using NDVI from Sentinel-2 as the vegetation 
descriptor and (ii) the soil backscattering model named the modified 
integral equation model (MIEM; Baghdadi et al. (2011)), which in
tegrates a semiempirical calibration with regard to the original IEM 
model (Fung et al., 1992). The coupled WCM-MIEM model was cali
brated using a database collected in Tunisia over wheat and grasslands. 
The SSM measurements ranged between 0.04 and 0.4 m3/m3. A syn
thetic dataset based on the calibrated backscattering model was 

produced by changing the variables and parameters of the model, 
namely, the incidence angle; the SSM; hrms (root mean square height, a 
soil roughness variable, Nolin et al., 2005); and NDVI and by adding 
random noise. This synthetic dataset was then used to train a neural 
network algorithm. The algorithm was validated on a database of 
approximately 289 measurement points that were collected in the 
Occitania region in France with SSM measurements ranging between 
0.07 and 0.36 m3/m3. The SSM was estimated with an accuracy of 
approximately 0.05–0.06 m3/m3 using Sentinel-1 VV polarization data. 
In particular, the authors reported these good results for moderately 
covered soils, typically with NDVI lower than 0.75, because of the 
limited penetration of the C-band in dense canopies. 

2.2.2.2. Coherence product. The coherence product (hereafter named 
SSMρ) is provided at approximately 50-m resolution every 6-day using 
Sentinel-1 A & B. SSMρ is derived from the backscattering coefficient 
and interferometric coherence (at approximately 50-m resolution, i.e., 
the size of the 15 × 3 - range x azimuth pixels of the SLC product win
dow) using a “brute-force” algorithm. Full details on this approach can 
be found in Ouaadi et al. (2020). As for SSMTheia, the WCM is used to 
simulate the canopy backscattering coefficient, while the soil back
scattering model is the Oh model (Oh et al., 1992). The vegetation 
descriptor is the aboveground biomass derived from interferometric 
coherence using an empirical relationship. The coupled model was 
calibrated using data from wheat fields in Morocco. The SSM was 
retrieved by minimizing the distance between Sentinel-1 and WCM- 
simulated backscattering coefficient via the “brute-force” approach 
(Jarlan et al., 2002) by exploring a range of SSM values from 0 to 0.5 
m3/m3 with a step of 0.0005 m3/m3 and an hrms range from 0.7 cm to 
1.5 cm. In this study, the hrms range was broadened from 0.1 cm to 1.5 
cm because the study fields were much smoother than the fields in 
Morocco that were used to calibrate the approach. Over a given field, 
hrms is assumed to be constant throughout the season, as there is usually 
no soil work after sowing, and in situ measurements carried out in 
Morocco have shown that roughness changes are very limited during an 
agricultural season (Ouaadi et al., 2020). The backscattering coefficient 
at VV polarization was found to outperform that at VH polarization in 
estimating SSM. The validation of the retrieved SSM over 445 mea
surements collected from different wheat fields that were both irrigated 

Fig. 2. Low-cost network for environmental monitoring (LoNIM) station (a) installed over a wheat field at a depth of 5 cm (b). (c) A picture of a gateway station. (d) 
The Thetaprobe sensor used to collect SSM over the Ivars site. 

Table 1 
General information about Prat De Boldu fields monitored during 2021.   

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

Season Winter Winter Winter Winter Winter Summer Summer Both Summer Summer Summer 
Crop Barley Pea Alfalfa Barley Wheat Maize Maize Apple Maize Maize Maize 
Irrigation Sprinkler Sprinkler Flood Sprinkler Flood Flood Flood Flood Flood Flood Flood 
Area (ha) 30 4.8 1.4 13 2 1 1.3 2.1 0.8 1.5 0.9  
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and rainfed in Morocco and Tunisia resulted in an RMSE of 0.06 m3/m3. 
The SSM measurements ranged between 0.04 and 0.5 m3/m3. SSMρ will 
soon be available on the HILIAISE project website (https://www.aeris 
-data.fr/). 

2.2.2.3. SMAP20m product. The SMAP20m product (hereafter named 
SSMSMAP20m) is the enhanced SMAP SSM product with a 9-km pixel size 
that is disaggregated at a 20-m resolution using the modified DisPATCh 
algorithm (Merlin et al., 2012) and Sentinel-3 and Sentinel-2 data. First, 
daily LST data from Sentinel-3 with a 1-km resolution are downscaled to 
20 m using the Sentinel-2 reflectances via an ensemble decision tree 
method (Guzinski and Nieto, 2019). Second, the 20-m Sentinel-3 output 
product is used to downscale the enhanced 9-km SMAP product. The use 
of 9 km over 36 km is justified first by the gridding of the product at 9 
km, which avoids the boxy artefacts that appear in the disaggregation 
process. In addition, the interpolation technique adopted explicitly uses 
antenna pattern information and a finer mesh to better capture the high 
spatial frequency information in the original radiometer measurements 
that were oversampled in the scan direction. As a result, although the 
native resolution remains at approximately 36 km, the images of the 9- 
km product reveal enhanced visual features that are not apparent in the 
standard product (Chan et al., 2018). The product provides SSM maps 
every 2–3 days in the absence of clouds. The SSMSMAP20m approach is 
described in detail in Paolini et al. (2022a). The DisPATCh algorithm 
consists mainly of two steps. First, very high-resolution thermal and 
optical data are used to derive the soil evaporative efficiency (SEE), 
which is then used in a linear formula to downscale SSM. DisPATCh is 
modified for application to densely vegetated areas by replacing SEE 
with the temperature vegetation dryness index (TVDI) over the pixels 
where transpiration dominates the evapotranspiration flux (meaning 
high NDVI values), thus assuming that SSM is linked to the root zone soil 
moisture. The authors reported an improvement in the 20-m SSM 
downscaled product at the field scale using SSMSMAP20m products 
compared to the coarser DisPATCh product at 1 km, where increases in 
Pearson’s correlations of 17% and 40% were observed for two validation 
fields in Spain. The SSMSMAP20m product can be obtained upon request 
from the authors. 

Note that field-averaged values are computed for SSMρ and 
SSMSMAP20m to be comparable to SSMTheia provided at this scale. Con
cerning the timing, in situ measurements of the automatic stations (Prat 
De Boldu database) are extracted at the time of satellite overpass, while 
for Ivars, only data collected on the days of satellite overpass are used. 

2.2.3. GNSS-R GLORI maps 
The GLORI maps represent SSM (hereafter named SSMGLORI) ob

tained from airborne GNSS reflectances. Measurements were acquired in 
the L-band with the GLORI instrument (Motte et al., 2016) during three 
flights that were scheduled over the study area as part of the LIAISE 
project campaign in July 2021 using the French research aircraft ATR- 
42. Each flight lasted approximately 4 h between 10 h and 14 h. The 
direct and reflected signals were acquired by two active GPS antennas 
mounted below and above the aircraft to ensure that several parallel 
passages covered the maximum area. The analysis was based on the 
coherent component of the reflected signals. The reflectivity measured 
in copolarization (right–right) was used to derive the SSM maps used in 
this study given the better performance compared to the cross- 
polarization (right–left) reflectivity. SSM was derived from the reflec
tivity by means of an inversion approach that uses a semiempirical 
model requiring the NDVI as input. The model parameters were cali
brated using the Ivars SSM dataset. The maps are produced at 100-m 
resolution for three dates corresponding to three flights on July 22, 
July 27 and July 28 (available at https://www.aeris-data.fr/). Details on 
the SSM retrieval algorithm and validation can be found in Zribi et al. 
(2022). The two maps from July 22 and July 27 are used in Section 3.3 to 
compare the spatial SSM pattern over the study area with the 3 satellite 

products. 

3. Results 

In this section, the satellite products are intercompared and evalu
ated against in situ measurements as follows: (i) a global analysis using 
the entire database from both sites; (ii) a detailed analysis of the sta
tistical metrics for each field over Prat De Boldu by development stages; 
and (iii) a time series analysis. The last part of the section is devoted to 
the analysis of the spatial pattern of the SSM maps over the study area. 

3.1. Evaluation of satellite SSM products at the field scale using in situ 
measurements 

Scatterplots obtained by comparing satellite products to in situ 
measurements over Prat De Boldu, Ivars and both sites are shown in 
Fig. 3. Statistical metrics (e.g., correlation coefficient – R, root mean 
square error – RMSE and bias) and the linear fit are also displayed. The 
number of points for each satellite product differs in relation to the 
revisit time of the sensor used to retrieve SSM. The higher number of 
points for SSMSMAP20m compared to the Sentinel-1-based products is due 
to the high revisit time of SMAP (2 to 3 days versus 6-day). For Ivars, the 
number of points is limited, particularly for the SSMTheia and SSMρ 
products, as some field campaigns were not concomitant with the 
Sentinel-1 time overpass as already mentioned. 

On average, SSMρ performed better than SSMTheia and SSMSMAP20m, 
particularly in terms of range. Indeed, there were almost no SSM values 
that exceeded 0.3 m3/m3 for SSMTheia and, to a lesser extent, for 
SSMSMAP20m, leading to lower statistical metrics than SSMρ. This is 
confirmed by the standard deviations of the products that were 
computed over the entire database, which are equal to 0.094, 0.068 and 
0.060 m3/m3 for SSMρ, SSMTheia and SSMSMAP20m, respectively, to be 
compared to 0.095 m3/m3 for the in situ measurements. For SSM values 
not exceeding 0.3 m3/m3 (see Ivars site for instance), SSMTheia provides 
good estimates that are close to those obtained by SSMρ with similar 
RMSEs and biases. The differences in terms of the correlation co
efficients are only 14% (0.55 and 0.64 for SSMTheia and SSMρ, respec
tively), while they are 34% over Prat De Boldu site. Likewise, the other 
metrics for SSMTheia are much better for Ivars than for Prat de Boldu: 
improvements of 47%, 27%, 60% and 53% in terms of R, RMSE, bias and 
y-intercept, respectively, are observed. In contrast, some retrieved 
values of SSMSMAP20m are greater than 0.3 m3/m3 (see Prat De Boldu), but 
on average, they exhibit very smooth dynamics for SSM > 0.25 m3/m3, 
as shown by the very low y-intercept values <0.1 at both sites. By 
considering the entire database from both sites, SSMSMAP20m showed 
lower metrics for the three products, with, in particular, lower correla
tion coefficients of 53% and 35% compared to SSMρ and SSMTheia, 
respectively. 

As SSMTheia and SSMρ are derived from the same satellite data, 
similar SSM dynamics originating from the information content of the 
Sentinel-1 backscattering coefficient are expected. Table 2 displays the 
metrics obtained when comparing the products with each other. As 
expected, high correlations between the SSMTheia and SSMρ products are 
obtained, while the correlation between the Sentinel-1-based products 
and SSMSMAP20m is low. The higher RMSE and bias values between SSMρ 
on the one hand and SSMTheia and SSMSMAP20m on the other hand are due 
to the abovementioned saturation at 0.3 m3/m3. 

To analyse the influence of vegetation cover on the accuracy of the 
SSM product, Table 3 summarizes the statistical metrics obtained for 
three NDVI ranges at both sites. The accuracy is low when vegetation 
covers the soil (NDVI >0.7), particularly for SSMρ and SSMSMAP20m, due 
to the low contribution from bare soil and the strong attenuation of soil 
backscattering underneath the canopy (Ulaby et al., 1986; Greifeneder 
et al., 2018; Arias et al., 2022). The low statistical metrics obtained for 
NDVI <0.4 are rather surprising because the soil contribution should be 
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high for this range, but this result should be viewed with caution as the 
number of data points in this range (N = 20 data points, cf. Table 3) is 
low, with only a few points at the start and/or the end of the season for 
each field. 

For a finer analysis of the different product behavior field by field, 
Fig. 4 displays the R, RMSE and bias values by field over Prat De Boldu. 
No statistical metrics are available for field P5 for the SSMTheia product 
because the retrieval algorithm does not provide SSM values if the soil 
contribution is assumed to be low. Ivars is not included in Fig. 4 because 
the measurements were collected manually over a few days, so the 
number of data points per field is very limited. Overall, as shown in 
Fig. 3, the Sentinel-1 products outperform SSMSMAP20m, and SSMρ pro
vides better performance than SSMTheia, with correlation coefficients 
ranging between 0.2 and 0.8 depending on the field. Specifically, the 
correlation coefficients are >0.4 for 72%, 40% and 27% of the fields 
according to SSMρ, SSMTheia and SSMSMAP20m, respectively. The bias 
values show underestimations for all the fields using SSMSMAP20m 

Fig. 3. Satellite-derived surface soil moisture versus in situ measurements over Prat De Boldu, Ivars and both sites. The dashed red lines are the linear regressions, and 
the solid black lines are Y = X. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Statistical metrics obtained from intercomparing the three satellite surface soil 
moisture products using the entire database from Prat De Boldu and Ivars sites.   

SSMρ -SSMTheia SSMρ -SSMSMAP20m SSMTheia -SSMSMAP20m 

R 0.69 0.33 0.42 
RMSE (m3/m3) 0.15 0.16 0.07 
Bias (m3/m3) − 0.10 − 0.09 0.00  
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(between 0.05 and 0.1 m3/m3) because the high SSM values following 
an irrigation event are not captured by this product. Overall, un
derestimations are also observed for SSMTheia (biases between 0 and 0.1 
m3/m3), while SSMρ, exhibits either positive or negative bias values of 
approximately 0.05 m3/m3. SSMρ displays RMSE values lower than 
those for SSMTheia and SSMSMAP20m for 80% of the fields. In particular, 
80% of the fields had RMSEs lower than 0.10 m3/m3 using SSMρ, while 
36% had RMSEs lower than 0.10 m3/m3 using SSMTheia, and only 27% 
had RMSEs lower than 0.10 m3/m3 using SSMSMAP20m. Interestingly, a 
greater difference in performance between the Sentinel-1 products and 
SSMSMAP20m is observed for summer crops when the number of irrigation 
events is the higher. For some winter fields, which are mainly irrigated 
using the sprinkler technique, the Sentinel-1 products exhibit limited 
performance (for instance, P1 and P3), and SSMSMAP20m outperforms the 
Sentinel-1 products over these two winter fields, with correlation co
efficients between 0.7 and 0.8. Note that the number of SSMSMAP20m 
points in these fields is low because of several cloudy Sentinel-2 and 3 

images. 

3.2. Time series analysis 

Fig. 5 illustrates some examples of SSM time series from Prat De 
Boldu. Fig. 5a, c and e are summer fields with SSM products available for 
the entire monitored period. As reported in Table 1, the summer crops 
cultivated in the study area are usually maize. Examples of winter fields 
are illustrated in Fig. 5b and d, while Fig. 5f shows the results for the 
apple orchard that was monitored during winter and summer (from 
March 31 to October 1, 2021). 

For the three summer fields, in situ measurements revealed high SSM 
variations across the season, mainly in response to frequent irrigation 
events. As already observed in Fig. 3, the SSMρ approach retrieves a wide 
range of SSM values and is in line with the measurement dynamics, 
while SSMTheia retrievals are always below 0.3 m3/m3. The revisit time of 
SSMSMAP20m is greater than that of the Sentinel-1 products, but the SSM 
values do not exceed 0.25 m3/m3 for most of the time series. For 
instance, from August 8 to September 28, when almost no rainfall was 
recorded (see P9 and P11 in Fig. 5), SSMSMAP20m was not able to capture 
the increases in SSM in response to irrigation events. In contrast, the 
high values of approximately 0.3 m3/m3 that are reported in Fig. 3 can 
be easily identified in the time series. Interestingly, these values are 
reported for all the summer fields on approximately June 20 (cf. Fig. 5a, 
c, e and f). This is most likely related to a rainfall event that wetted the 
whole study area homogeneously. Consequently, this event is captured 
by the original coarse pixel of SMAP (and possibly by the 1 km resolution 
Sentinel-3 pixels), and the information is transferred to the dis
aggregated product. In contrast, irrigation events occurring at the field 
scale likely have limited impacts both on the coarse SSM product and on 
the Sentinel-3 LST used in the disaggregation process. 

Fig. 5b and d display the time series for two fields cropped in winter 
(P2 and P3). As already discussed in the previous section, the data 
availability of SSMSMAP20m is limited by clouds that can persist in winter 
in the study region. Indeed, SSMSMAP20m data are lacking over a long 

Table 3 
Statistical metrics computed for three NDVI ranges for the three satellite surface 
soil moisture products using the entire database from Prat De Boldu and Ivars 
sites.    

NDVI < 0.4 0.4 ≤ NDVI < 0.7 NDVI > 0.7 

SSMρ R 0.2 0.59 0.36 
RMSE (m3/m3) 0.1 0.08 0.11 
Bias (m3/m3) 0.05 0 − 0.02 
Na 20 86 93 

SSMTheia R 0.28 0.32 0.33 
RMSE (m3/m3) 0.1 0.11 0.1 
Bias (m3/m3) 0.03 0.04 0.05 
N 20 68 83 

SSMSMAP20m R 0.08 0.31 0.08 
RMSE (m3/m3) 0.12 0.12 0.13 
Bias (m3/m3) 0.08 0.07 0.09  
N 88 222 269  

a N is the number of data points available for each NDVI range. 
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period extending from April 14 to May 2. For P2, for instance, most of 
the irrigation occurred during the latter period, while the dynamics of 
SSM during the second part of the season, when the product was 
available, were dominated by rainfall. Consequently, the overall metrics 
of SSMSMAP20m in this field are reasonable. In addition, for P3 (Fig. 5d), 
which was cropped with alfalfa, a strong irrigation event at the start of 
the season around April 4 was missed by the three products because it 
fell between two Sentinel-1 acquisition times for the Sentinel-1-based 
products, while the ability to capture localized wetting events such as 
irrigation at the field scale by SSMSMAP20m was limited, as already 
highlighted. Finally, although outside of their validity domain, partic
ularly for the Sentinel-1-derived products that were calibrated and 
validated on annual crops, SSM time series are displayed for an apple 
orchard in Fig. 4f. Even if the SSM increase at the start of the season 
around April 19 is properly captured by the satellite-derived products, 
the three products provide, as expected, poor performance in this field 
with a very limited dynamic compared to the observations. 

3.3. Spatial distribution of SSM 

Figs. 6 and 7 display SSM maps over the study area that are derived 
from the satellite products. The airborne SSMGLORI and Sentinel-2 NDVI 
maps are also shown for comparison purposes. The closest available 
dates of Sentinel-1 and SMAP to GLORI acquisition are chosen. Fig. 6 is 
for July 20, and Fig. 7 is for July 27. All the maps are aggregated to 100- 
m resolution for comparison with SSMGLORI. Buildings and areas with no 
data are masked with red and white colors, respectively. Because of the 
cloud cover, SSMSMAP20m in Fig. 7 is not exploitable. The no data (white 
spots) for the SSMTheia product is due to low soil contribution for densely 
vegetated areas that prevent SSM retrieval, while for SSMSMAP20m, it is 
due to cloud cover. 

The NDVI map in Fig. 6 illustrates the strong contrast between the 
irrigated area in the west/northwest region and the non-irrigated part in 
the east/southeast region. The Sentinel-1-derived products and 

SSMSMAP20m show contrasting spatial SSM patterns. While SSMρ and 
SSMTheia exhibit similar spatial distributions, with the irrigated area 
composed of a mosaic of wet and dry fields in relation to contrasting 
irrigation conditions, SSMSMAP20m displays more homogeneous patterns 
that are similar to the NDVI map, illustrating that the main downscaling 
information is related to the auxiliary disaggregation variables. 
SSMGLORI, whose acquisition time is between one and two days after the 
satellite products overpass, also exhibits a large range of SSM values in 
the irrigated area, from almost 0.0 m3/m3 to 0.52 m3/m3. For the first 
date (Fig. 6), SSMGLORI displays slightly lower values than the Sentinel-1 
products, probably due to the two-day difference between the acquisi
tion times of the products and SSMGLORI maps that can lead to a drying of 
the soil surface in response to the high temperatures encountered at this 
time (approximately 35 ◦C; Zribi et al. (2022)). The SSMGLORI shown in 
Fig. 6 is, however, characterized by a low moisture level, which is in 
agreement with the findings of Zribi et al. (2022), who reported that 
32% of the pixel values are lower than 0.1 m3/m3. The second date 
(Fig. 7) is characterized by higher SSM level for the Sentinel-1-derived 
products as well as for SSMGLORI, most likely as a result of an impor
tant irrigation event rather than rainfall given the remaining contrasting 
hydric conditions between the irrigated and non-irrigated areas. Fig. A1 
in the appendix displays the spatial variability of the hourly accumu
lated rainfall maps that were provided by CNRM/Meteo-France using 
radar and rain gauge data (provided by the Meteorological Service of 
Catalonia) and made available within the framework of the HILIAISE 
project (https://www.aeris-data.fr/). These rainfall maps show that at 
the time of the satellite overpass around 06 h, it has rained almost 
everywhere, meaning that the spatial variability in SSM cannot be 
explained by rainfall. In Fig. 7, the saturation around 0.3 m3/m3 of the 
SSMTheia product smooths the SSM spatial pattern by contrast with the 
SSMρ maps, which show significant variations between fields in the 
range of 0.3–0.5 m3/m3 that corresponding to approximately 25% of the 
SSMρ product pixels. Likewise, the SSMGLORI map for the second date 
also shows that >50% of the pixels are >0.3 m3/m3. For SSMTheia, there 
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Fig. 5. Time series of SSMρ, SSMTheia and SSMSMAP20m surface soil moisture products and in situ measurements over 6 fields at the Prat De Boldu site.  
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was a significant increase between the two dates, with a 41% increase in 
the number of pixels with an SSM >0.2 m3/m3, 65% of which were 
between 0.25 m3/m3 and 0.3 m3/m3. The specific spatial pattern of the 
SSMSMAP20m map for July 27 (Fig. 7) is related to the spatial variability of 
the Sentinel-3 LST map (showing a cool/mild spot to the south and 
hotter pixels to the north). Note that the LST image is contaminated by 
clouds that correspond to the masked pixels on the SSMSMAP20m maps. 
Interestingly, there are some wet pixels on the Sentinel-1 and SSMGLORI 
maps that are located southeast of the study region, while those fields 
are assumed to be rainfed (the three squares in the SSMρ map in Fig. 6, 
discussed in the next section). In particular, similar values of approxi
mately 0.3 m3/m3 are observed for the SSMTheia and SSMρ products 
(Fig. 7) and, to a lesser extent, for the SSMGLORI map that was acquired 
one day after the Sentinel-1 time overpass. This is discussed later in the 
manuscript. 

4. Discussion 

4.1. SSM products: limitations and key areas for improvement 

4.1.1. Sentinel-1 products: SSMTheia and SSMρ 
On average, Sentinel-1-derived products outperform the dis

aggregated SSMSMAP20m and SSMρ product yields slightly better estima
tion compared to SSMTheia. It is however important to highlight that the 
SSMρ method was improved to the specific characteristics of the fields in 
the study area by broadening the range of the soil roughness variable 
hrms in line with the smoother field encountered in the region. By 
contrast, SSMTheia product was assessed without any adaptation of the 
retrieval method. The results of this study showed that SSMTheia product 

suffers from saturation of retrieved values above 0.3 m3/m3 for fields 
with high SSM, while the C-band signal is sensitive to SSM variations of 
up to 0.5 m3/m3 (Hoskera et al., 2020; Huang et al., 2019; Zheng et al., 
2021). It was checked that it could not be attributed to a poor calibration 
of the soil moisture sensors by rescaling the in situ data to the range of 
SSMTheia products with no improvement in the statistical metrics. This 
saturation is not related to the range of the dataset used to train the 
algorithm (Qu et al., 2021) since the training sets range from 0.05 to 
0.45 m3/m3 (El Hajj et al., 2017). During the training phase of the neural 
network that was designed to estimate SSMTheia, minimization of the 
difference between reference values and estimated values (zero overall 
bias for data with SSM between 0.04 m3/m3 and 0.4 m3/m3) is achieved, 
with a slight overestimation of the SSM for reference SSM smaller than 
0.25 m3/m3 and an underestimation of the SSM for reference SSM be
tween 0.25 m3/m3 and 0.40 m3/m3. The saturation problem that is 
observed for high SSM values is therefore mainly due to a saturation of 
the used soil backscattering model MIEM. In addition, the angle of 
incidence of Sentinel-1 (between 30◦ and 45◦), which is not always 
optimal for estimating SSM, amplifies this saturation problem. 

On average, even if the Sentinel-1-derived products provide 
acceptable statistical metrics, the values of the metrics, including RMSE, 
are obviously higher than the errors reported on the site where the 
methods were developed. Indeed, both Sentinel-1 approaches were 
calibrated and validated on annual crops composed mainly of wheat 
fields while the database in this study is more diversified in terms of 
crops (e.g., pea, alfalfa, barley, wheat, and maize) and agricultural 
practices (e.g., sown variety, and soil practices). Both Sentinel-1-derived 
approaches rely on the calibration of the WCM, which was carried out 
mainly on wheat crops in semi-arid regions (see El Hajj et al. (2017) for 

Fig. 6. Surface soil moisture maps over the study area from SSMρ, SSMTheia, SSMSMAP20m and SSMGLORI at the closest dates to the GLORI acquisition date on July 22. 
The NDVI is also displayed to support the analysis. The red areas within the maps are buildings (and water surfaces), and the white areas correspond to no data. The 
three boxes correspond to specific areas discussed in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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SSMTheia and Ouaadi et al. (2020) for SSMρ). They offered reasonable 
results for other annuals with similar canopy structures, including the 
leaf angle distributions close to those of erectophile plants, such as 
barley, but also providing acceptable performance for maize with a 
different geometry (row crop and leaf angle distributions closer to the 
planophile). For the Sentinel-1-derived products, this different geometry 
would most likely impact the calibration of the two parameters that are 
related to the canopy structure in the WCM (parameters A and B; Attema 
and Ulaby, 1978). A specific calibration for maize would probably 
improve the retrieval accuracy. This acceptable performance for maize 
could be due to the “optimal” climatic conditions that could mask the 
effect of canopy geometry. Indeed, maize was cropped in summer, which 
offers the best conditions for soil moisture retrieval, as a strong contrast 
in terms of the SSM can be observed from the very dry upper surface 
before an irrigation event and very wet conditions immediately after. In 
agreement with this assumption, a lower performance of the Sentinel-1 
products was observed for some winter crops than for summer crops. In 
addition to the climatic conditions being more favorable in summer, 
dew and water interception, which are more likely to occur in winter, 
were found to impact the backscattering signal (Khabbazan et al., 2022; 
Riedel et al., 2002), leading to errors in SSM estimations (Hornbuckle 
et al., 2010; Kasischke et al., 2009; Mladenova et al., 2011), as they are 
not accounted for by backscattering models. Poor results are also 
observed for trees for the three satellite products. Indeed, trees are 
characterized by a more complex geometry than annuals and are 
composed of an underlying layer of trunks and an upper layer containing 
crowns with branches and leaves. In addition, it is probable that 
adopting a more complex multilayer model than the simple WCM such 

as Karam (Karam et al., 1992) and MIMICS (Ulaby et al., 1990) would 
better represent the contributions of the different canopy layers and 
canopy attenuation and thus could contribute to improving SSM re
trievals. Nevertheless, such a more realistic representation of the canopy 
would require further variables and parameters characterizing the 
different scatterers of trees (trunk, branch and leaf geometrical and 
dielectric characteristics) that would be difficult to prescribe for large 
areas. 

4.1.2. Disaggregated product: SSMSMAP20m 
SSMSMAP20m has a high temporal resolution with respect to the 

Sentinel-1-derived products, but its ability to detect irrigation signals is 
limited. Given the good results obtained over parts of the season when 
the SSM dynamics are low and/or are dominated by rainfall events, 
SSMSMAP20m, in its actual state of development, would be well suited for 
SSM monitoring over rainfed areas. Indeed, DisPATCH preserves the 
information from the original microwave product (Qu et al., 2021), 
meaning that rainfall events are captured by the disaggregated approach 
because they impact the whole coarse-scale pixel. In contrast, irrigation 
events that occur at the field scale are not captured by the coarse pixel 
that also encompasses the surrounding dry fields (Escorihuela and 
Quintana-Seguí, 2016; Fontanet et al., 2018; Mladenova et al., 2011). 
Consequently, irrigation events are detected only if the very high- 
resolution variable used within the disaggregation process is related to 
the hydric status. Indeed, SSMSMAP20m used Sentinel-3 thermal data 
(LST) that are a good representative of the surface hydric status when 
water is a limiting factor (Long et al., 2019). Unfortunately, due to the 
lack of frequent revisit time and very high spatial resolution thermal 

Fig. 7. Surface soil moisture maps over the study area from SSMρ, SSMTheia, SSMSMAP20m and SSMGLORI at the closest dates to the GLORI acquisition date on July 27. 
The NDVI is also displayed to support the analysis. The red areas within the maps are buildings (and water surfaces), and the white areas correspond to no data. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data from the sensors currently in orbit, the Sentinel-2 reflectances are 
used as proxy information for the 20-m SSM product (via downscaling 
Sentinel-3 LST) but this information is not related to the hydric status of 
the land surface. This means that for a heterogeneous irrigated area in a 
semiarid region, such as our study area, where the SSM are dominated 
by localized irrigation events, the water content of the upper soil surface 
can be locally high immediately after an irrigation event, while two days 
later, the upper soil profile could be completely dry. These contrasting 
conditions cannot be represented by SSMSMAP20m. This was also observed 
by Qu et al. (2021), who reported that disaggregated SSM products were 
not able to capture rapid temporal changes in SSM. In addition, dis
aggregated approaches are generally associated with uncertainties due 
to downscaling and spatial heterogeneity (Al-Yaari et al., 2019; Draper 
et al., 2009). Similarly, this trend was also observed for the SSM spatial 
patterns on two dates in July 2021. Indeed, the spatial patterns of the 
SSMSMAP20m product are similar to those of the NDVI and LST maps. This 
finding is in line with several studies that have pointed out that the 
spatial patterns of the disaggregated products are closely related to the 
spatial patterns of the auxiliary variables used in the downscaling pro
cess (Gruber et al., 2020; Peng et al., 2017; Qu et al., 2021). Interest
ingly, the future launch of thermal sensors that combine very high- 
resolution and frequent revisit time such as TRISHNA and LSTM, will 

offer interesting opportunities to improve SSM products based on mi
crowave brightness temperatures, such as the SSMSMAP20m product, or 
future products that could be derived from SMOS and SMAP data. 

4.2. Irrigation occurrence and subsurface scattering effect 

In contrast to SSMSMAP20m, both Sentinel-1 products depict large 
areas with high SSM values in regions that are known to be non- 
irrigated. This is also observed by the airborne GLORI GNSS-R instru
ment. To investigate this specific point, Fig. 8 displays images from 
Google Earth Pro that were acquired in August 2021 and show three 
sample zones (see Fig. 6) in the non-irrigated area. Fig. 8 demonstrates 
that apart from some fields that could be cropped and thus irrigated 
during this summer period (in particular those close to the Segarra- 
Garrigues irrigation canal; see Zone 2 and Zone 3 in Fig. 8), most of 
the area is composed of dryland crops (see the classification of irrigated 
fields in https://agricultura.gencat.cat/ca/ambits/desenvolupament-ru 
ral/sigpac/mapa-cultius/). In fact, 70.000 ha of non-irrigated land in 
these regions were intended to be converted into irrigated land through 
the Segarra-Garrigues canal as part of a European project since the 
2000s (Cerrillo, 2015). Although most of the area has not been con
verted to irrigation because of ecological considerations (the area is 

Fig. 8. The three enlargements of the non-irrigated areas (see Fig. 6) from Google Earth Pro (images acquired in August 2021) and the SSMρ map of July 20.  
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classified as a special protection area (SPA) of Natura 2000, an EU-wide 
nature protection network; Rojas-Briales (2000)), 11% of this area has 
already adhered to the irrigation system (Cerrillo, 2015). While the re
gion is dryland, large areas with high SSM values are observed on the 
Sentinel-1 products (see, for instance, Zone 1 for SSMρ in Fig. 8). The 
first explanation for these high SSM values could be related to subsur
face scattering that can occur for very dry soils in response to bedrock 
located under the soil surface or in response to distributed rocks and 
stones along the soil’s vertical profile. The microwaves penetrate the soil 
and interact with the underground components, leading to a high level 
of backscattering. This has already been reported for the C-band by 
various authors (Escorihuela and Quintana-Seguí, 2016; Morrison and 
Wagner, 2020; Wagner et al., 2022) over several regions including our 
study region. In this study, the penetration depth at the C-band is 
computed for the loam and silt-loam soils in the regions where subsur
face scattering could occur (Zone 1 in Fig. 8). The penetration depth of 
microwave wavelengths in the soil can be computed using the formula of 
Ulaby et al. (1984): 

δp =
λ

4π

(
ϵ́
2

((

1 +
(ϵ́ʹ

ϵ́

)2
)0.5

− 1

))− 0.5

(1)  

where λ is the wavelength and ϵ́  and ϵ́ʹ are the real and imaginary parts, 
respectively, of the dielectric constant ϵ of the soil. ϵ is computed from 
the SSM and soil texture using the empirical model proposed in Halli
kainen et al. (1985). Table A1 in the appendix summarizes the results for 
the boundary of the loam and silt-loam soil classes in the C-band (λ = 6 
cm). As expected, the penetration of C-band wave is deeper under dry 
soil conditions and can reach up to 17.6 cm for SSM = 0.04 m3/m3. On 
the SSM maps of July 20 and 26, the moistening caused by the precip
itation occurred on July 26 (Fig. A1 in the appendix) is clear for the 
irrigated area while a slight trend to drying between the two dates is 
strangely observed on the non-irrigated region. This could support the 
assumption of subsurface scattering occurrence, as the increase in SSM 
associated with rainfall may have reduced the penetration depth and 
thus the subsurface scattering contribution to the backscattered signal. 
Nevertheless, the high SSM spots in Zone 1 on the Sentinel-1 SSM 
products are not observed at the L-band with the GLORI instrument 
(except for some wet pixels on the right side of Zone 1). This could be 
explained by the deeper penetration of the L-band compared to the C- 
band (20 cm for SSM = 0.04 m3/m3 for instance). In addition, the 
roughness of the subsurface is relative to the wavelength, so the size of 
the scatterers is small for the L-band and consequently the contribution 
from the subsurface is lower for the L-band than for the C-band. The 
second possible explanation is the presence of irrigated fields in this area 
(Zone 1) that could have dried up as the GLORI flights were carried out 
one or two days after the Sentinel-1 overpass, considering the extreme 
temperature encountered in the region in July. Finally, an underesti
mation of the retrieved hrms by the retrieval algorithms of SSMρ and, to a 
lesser extent, SSMTheia could also cause the retrieval of high SSM values: 
the algorithm would compensate a low roughness by high SSM values to 
explain the observed backscattered signal. Nevertheless, an underesti
mation of soil roughness is an assumption that is not favored as (1) 
smooth fields are observed during field visits on Zone 1 and (2) SSMTheia, 
based on a different retrieval algorithm also displays high values of SSM. 

5. Conclusion 

The aim of the present study was to perform, for the first time, an 
intercomparison study of high spatial resolution SSM products derived 
from satellite observations. Three products were compared and evalu
ated using a large database of in situ SSM data that were collected in the 
Ebro Basin (Catalonia, Spain). The results show that SSMρ provides 
better metrics than SSMTheia and SSMSMAP20m, with correlation co
efficients R > 0.4 for 72%, 40% and 27% of the fields for SSMρ, SSMTheia 

and SSMSMAP20m, respectively. The lower performance of SSMTheia and 
SSMSMAP20m is mainly related to (i) a saturation of SSMTheia at approxi
mately 0.3 m3/m3 because of the saturation of the soil backscattering 
model for SSM values above 0.3 m3/m3 and (ii) the insensitivity of 
SSMSMAP20m to SSM variations in response to irrigation. Indeed, the 
Sentinel-2 reflectances used within the disaggregation process are not 
related to the surface hydric status. The main conclusions that aimed at 
improving the current high-resolution mapping of the SSM approaches 
can be summarized as follows:  

(1) The methods based on Sentinel-1 data need improvement for tree 
canopies, as the two approaches were calibrated on cereals and 
validated on annual crops. Multilayer backscattering models 
should be considered to provide a better representation of canopy 
scatterer groups (e.g., leaves, branches and trunks) and their 
contributions and interactions.  

(2) The saturation of the SSMTheia is the main limit of this approach, 
and the use of a soil backscattering model allowing a wider range 
of SSM variations could improve the retrievals. The calibration of 
WCM coefficients for SSMTheia and SSMρ for each crop type and/ 
or different farming practices, instead of using constant co
efficients that have been calibrated mainly for wheat crops, could 
also improve the estimations.  

(3) The use of high spatiotemporal resolution thermal data that will 
be available with future TRISHNA and LSTM missions instead of 
optical data will probably improve the methods based on the 
disaggregation of SSM derived from coarse-scale microwave 
radiometer data, such as SSMSMAP20m. 

It is important, however, to stress the need for further intercom
parison studies that cover other regions, including additional data and, 
notably, other products. Indeed, with future missions that involve do
mains with different wavelengths, new SSM products will be available, 
and important improvements in the available approaches are expected. 
This should obviously be accompanied by extensive and extended in situ 
measurement campaigns on contrasting eco-agro-systems. Indeed, 
intercomparison studies should cover not only crops but also natural 
vegetation, which are vital for local and global studies such as carbon 
balance, wildfires and drought monitoring. 

Finally, the penetration depth of the C-band signal within canopies is 
low and limits the contribution of the ground to the total backscattered 
signal (Das and Kumar, 2015; Ulaby et al., 1996; Wang et al., 2018). This 
highlights the potential added value of future missions using low fre
quencies, such as the L-band NISAR (NISAR, 2019), which will be 
launched in 2024. Indeed, the L-band was found to be less sensitive to 
dense vegetation cover than the C-band and provides an important 
contribution from the soil because of its greater penetration ability (Das 
and Kumar, 2015; Wang et al., 2000). The combination of the C- and L- 
bands could lead to better characterizations of soil and vegetation 
contributions for a more accurate estimations of SSM with good 
spatiotemporal resolution, particularly with the future ESA Sentinel-1 
NG (for New Generation) C-band mission with a revisit time objective 
of 4 days and resolution of 5 m (Mariantonietta Zonno et al., 2021). 
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Appendix

Fig. A1. Hourly rainfall maps between 04 h and 07 h on 26 July over the study area (blue box). The green box is Zone 1 (Fig. 8). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)  

Table A1 
Penetration depths at the C-band computed for loam and silt-loam class boundaries (obtained from the triangular diagram of soil texture) for two SSM levels.    

Soil composition Penetration depth (cm) 

Sand Clay for SSM = 0.04 m3/m3 for SSM = 0.1 m3/m3 

Loam Soil 1 52.5 20 13.213 3.341 
Soil 2 22.5 27.5 15.889 3.582 
Soil 3 42.5 7.5 12.828 3.291 
Soil 4 52.5 7.5 12.344 3.243 
Soil 5 45 27.5 14.261 3.448 

Silt-Loam Soil 1 50 0 11.990 3.198 
Soil 2 22.5 27.5 15.802 3.582 
Soil 3 0 27.5 17.670 3.724 
Soil 4 0 12.5 15.823 3.561 
Soil 5 7.5 12.5 15.292 3.518 
Soil 6 20 0 13.443 3.340  
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Viovy, N., Wang, Y.P., Weber, U., Zaehle, S., Zeng, N., 2017. Compensatory water 
effects link yearly global land CO 2 sink changes to temperature. Nature 541, 
516–520. https://doi.org/10.1038/nature20780. 

Karam, M.A., Fung, A.K., Lang, R.H., Chauhan, N.S., 1992. Microwave scattering model 
for layered vegetation. IEEE Trans. Geosci. Remote Sens. 30, 767–784. https://doi. 
org/10.1109/36.158872. 

Karthikeyan, L., Pan, M., Wanders, N., Kumar, D.N., Wood, E.F., 2017. Four decades of 
microwave satellite soil moisture observations: part 1. A review of retrieval 
algorithms. Adv. Water Resour. 109, 106–120. https://doi.org/10.1016/j. 
advwatres.2017.09.006. 

Kasischke, E.S., Bourgeau-chavez, L.L., Rober, A.R., Wyatt, K.H., Waddington, J.M., 
Turetsky, M.R., 2009. Remote sensing of environment effects of soil moisture and 
water depth on ERS SAR backscatter measurements from an Alaskan wetland 
complex. Remote Sens. Environ. 113, 1868–1873. https://doi.org/10.1016/j. 
rse.2009.04.006. 

Kerr, Y.H., 2007. Soil moisture from space: where are we? Hydrogeol. J. 15, 117–120. 
https://doi.org/10.1007/s10040-006-0095-3. 

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J., Font, J., Berger, M., 2001. Soil 
moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. 
IEEE Trans. Geosci. Remote Sens. 39, 1729–1735. https://doi.org/10.1109/ 
36.942551. 

Kerr, Y.H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B., Leroux, D., 
Bircher, S., Mahmoodi, A., Mialon, A., Richaume, P., Delwart, S., Al Bitar, A., 
Pellarin, T., Bindlish, R., Jackson, T.J., Rüdiger, C., Waldteufel, P., Mecklenburg, S., 
Wigneron, J.P., 2016. Overview of SMOS performance in terms of global soil 
moisture monitoring after six years in operation. Remote Sens. Environ. 180, 40–63. 
https://doi.org/10.1016/J.RSE.2016.02.042. 

Khabbazan, S., Steele-Dunne, S.C., Vermunt, P., Judge, J., Vreugdenhil, M., Gao, G., 
2022. The influence of surface canopy water on the relationship between L-band 
backscatter and biophysical variables in agricultural monitoring. Remote Sens. 
Environ. 268, 112789 https://doi.org/10.1016/j.rse.2021.112789. 

Kim, D., Moon, H., Kim, H., Im, J., Choi, M., 2018. Intercomparison of downscaling 
techniques for satellite soil moisture products. Adv. Meteorol. 4832423. https://doi. 
org/10.1155/2018/4832423. 

Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., 
Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., 
McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.C., 
Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y., Yamada, T., 2004. Regions of strong 
coupling between soil moisture and precipitation. Science (80-. ) 305, 1138–1141. 
https://doi.org/10.1126/science.1100217. 

Koster, R.D., Guo, Z., Yang, R., Dirmeyer, P.A., Mitchell, K., Puma, M.J., 2009. On the 
nature of soil moisture in land surface models. J. Clim. 22, 4322–4335. https://doi. 
org/10.1175/2009JCLI2832.1. 

Kustas, W.P., Zhan, X., Schmugge, T.J., 1998. Combining optical and microwave remote 
sensing for mapping energy fluxes in a semiarid watershed. Remote Sens. Environ. 
64, 116–131. https://doi.org/10.1016/S0034-4257(97)00176-4. 

Le Page, M., Toumi, J., Khabba, S., Hagolle, O., Tavernier, A., Hakim Kharrou, M., Er- 
Raki, S., Huc, M., Kasbani, M., El Moutamanni, A., Yousfi, M., Jarlan, L., 2014. A life- 
size and near real-time test of irrigation scheduling with a sentinel-2 like time series 
(SPOT4-Take5) in Morocco. Remote Sens. 6, 11182–11203. https://doi.org/ 
10.3390/rs61111182. 

Le Page, M., Jarlan, L., El Hajj, M.M., Zribi, M., Baghdadi, N., Boone, A., 2020. Potential 
for the detection of irrigation events on maize plots using Sentinel-1 soil moisture 
products. Remote Sens. 12, 1–22. https://doi.org/10.3390/rs12101621. 

Le Page, M., Nguyen, T., Zribi, M., Boone, A., Dari, J., Modanesi, S., Zappa, L., 
Ouaadi, N., Jarlan, L., 2023. Irrigation timing retrieval at the plot scale using surface 
soil moisture derived from sentinel time series in Europe. Remote Sens. 15, 1449. 

Lesiv, M., Laso Bayas, J.C., See, L., Duerauer, M., Dahlia, D., Durando, N., Hazarika, R., 
Kumar Sahariah, P., Vakolyuk, M., Blyshchyk, V., Bilous, A., Perez-Hoyos, A., 
Gengler, S., Prestele, R., Bilous, S., Akhtar, I.ul H., Singha, K., Choudhury, S.B., 
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Blöschl, G., Eitzinger, J., Steinnocher, K., Zeil, P., Rubel, F., 2013. The ASCAT soil 
moisture product: a review of its specifications, validation results, and emerging 
applications. Meteorol. Z. 22, 5–33. https://doi.org/10.1127/0941-2948/2013/ 
0399. 

Wagner, W., Lindorfer, R., Melzer, T., Hahn, S., Bauer-Marschallinger, B., Morrison, K., 
Calvet, J.C., Hobbs, S., Quast, R., Greimeister-Pfeil, I., Vreugdenhil, M., 2022. 
Widespread occurrence of anomalous C-band backscatter signals in arid 
environments caused by subsurface scattering. Remote Sens. Environ. 276, 113025 
https://doi.org/10.1016/j.rse.2022.113025. 

Walker, J.P., Houser, P.R., Willgoose, G.R., 2004a. Active microwave remote sensing for 
soil moisture measurement: a field evaluation using ERS-2. Hydrol. Process. https:// 
doi.org/10.1002/hyp.1343. 

Walker, J.P., Willgoose, G.R., Kalma, J.D., 2004b. In situ measurement of soil moisture: a 
comparison of techniques. J. Hydrol. 293, 85–99. https://doi.org/10.1016/j. 
jhydrol.2004.01.008. 

Wang, K., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration: 
observation, modeling, climatology, and climatic variability. Rev. Geophys. 50 
https://doi.org/10.1029/2011RG000373. 

Wang, Y., Kasischke, E.S., Bourgeau-Chavez, L.L., O’neill, K.P., French, N.H.F., 2000. 
Assessing the influence of vegetation cover on soil-moisture signatures in fire- 
disturbed boreal forests in interior Alaska: modelled results. Int. J. Remote Sens. 21, 
689–708. https://doi.org/10.1080/014311600210515. 

Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R.B., Cox, P., Heimann, M., 
Miller, J., Peng, S., Wang, T., Yang, H., Chen, A., 2014. A two-fold increase of carbon 
cycle sensitivity to tropical temperature variations. Nature 506, 212–215. https:// 
doi.org/10.1038/nature12915. 

Wang, C., Zhang, Z., Paloscia, S., Zhang, H., Wu, F., Wu, Q., 2018. Permafrost soil 
moisture monitoring using multi-temporal TerraSAR-X data in Beiluhe of northern 
Tibet, China. Remote Sens. 10, 1577. https://doi.org/10.3390/RS10101577. 

Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications : a 
meta-review. Remote Sens. Environ. 236, 111402 https://doi.org/10.1016/j. 
rse.2019.111402. 

Yin, J., Zhan, X., Liu, J., Schull, M., 2019. An Intercomparison of Noah model skills with 
bene fi ts of assimilating SMOPS blended and individual soil moisture retrievals. 
Water Resour. Res. 55, 2572–2592. https://doi.org/10.1029/2018WR024326. 

Zhang, D., Zhou, G., 2016. Estimation of soil moisture from optical and thermal remote 
sensing: a review. Sensors (Switzerland) 16. https://doi.org/10.3390/s16081308. 

Zheng, X., Feng, Z., Li, L., Li, B., Jiang, T., Li, Xiaojie, Li, Xiaofeng, Chen, S., 2021. 
Simultaneously estimating surface soil moisture and roughness of bare soils by 
combining optical and radar data. Int. J. Appl. Earth Obs. Geoinf. 100, 102345 
https://doi.org/10.1016/j.jag.2021.102345. 

Zonno, Mariantonietta, Matar, Jalal, de Almeida, Felipe Queiroz, Younis, Marwan, 
Reimann, Jens, Rodriguez-Cassola, Marc, Krieger, Gerhard, Perrera, Andrea, 
Tossaint, Michel, 2021. Sentinel-1 Next Generation: main mission and instrument 
performance of the Phase 0. In: 13th European Conference on Synthetic Aperture 
Radar (EUSAR2021). 

Zribi, M., Dehaye, V., Dassas, K., Fanise, P., Le Page, M., Laluet, P., Boone, A., 2022. 
Airborne GNSS-R polarimetric multiincidence data analysis for surface soil moisture 
estimation over an agricultural site. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
15, 8432–8441. https://doi.org/10.1109/JSTARS.2022.3208838. 

N. Ouaadi et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0445
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0445
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0445
https://doi.org/10.1163/156939302X00093
https://doi.org/10.1163/156939302X00093
https://doi.org/10.1016/j.jhydrol.2020.125616
https://doi.org/10.1016/j.jhydrol.2020.125616
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0460
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0460
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0460
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0460
https://doi.org/10.1016/j.agwat.2007.09.012
https://doi.org/10.1016/j.agwat.2007.09.012
https://doi.org/10.1093/forestry/73.2.199
https://doi.org/10.1175/2008JHM997.1
https://doi.org/10.1175/2008JHM997.1
https://doi.org/10.1016/j.rse.2019.111586
https://doi.org/10.1016/j.rse.2019.111586
https://doi.org/10.1175/1520-0450(1978)017<1549:RSOSSM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1978)017<1549:RSOSSM>2.0.CO;2
https://doi.org/10.1109/TGRS.1983.350563
https://doi.org/10.1109/TGRS.1983.350563
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0495
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0495
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0495
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0500
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0500
https://doi.org/10.1109/TGRS.1984.350604
https://doi.org/10.1109/TGRS.1984.350604
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0510
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0510
https://doi.org/10.1080/01431169008955090
https://doi.org/10.1080/01431169008955090
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0520
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0520
https://doi.org/10.1007/s007030170038
https://doi.org/10.1016/J.JHYDROL.2013.11.061
https://doi.org/10.1016/J.JHYDROL.2013.11.061
https://doi.org/10.1016/j.agrformet.2003.11.005
https://doi.org/10.1016/j.agrformet.2003.11.005
https://doi.org/10.1109/36.739155
https://doi.org/10.1029/2003JD003663
https://doi.org/10.1127/0941-2948/2013/0399
https://doi.org/10.1127/0941-2948/2013/0399
https://doi.org/10.1016/j.rse.2022.113025
https://doi.org/10.1002/hyp.1343
https://doi.org/10.1002/hyp.1343
https://doi.org/10.1016/j.jhydrol.2004.01.008
https://doi.org/10.1016/j.jhydrol.2004.01.008
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1080/014311600210515
https://doi.org/10.1038/nature12915
https://doi.org/10.1038/nature12915
https://doi.org/10.3390/RS10101577
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1029/2018WR024326
https://doi.org/10.3390/s16081308
https://doi.org/10.1016/j.jag.2021.102345
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0610
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0610
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0610
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0610
http://refhub.elsevier.com/S0034-4257(24)00243-8/rf0610
https://doi.org/10.1109/JSTARS.2022.3208838

	Intercomparison of very high-resolution surface soil moisture products over Catalonia (Spain)
	1 Introduction
	2 Materials and methods
	2.1 Study area description
	2.2 Surface soil moisture database
	2.2.1 In situ measurements
	2.2.1.1 Prat De Boldu
	2.2.1.2 Ivars

	2.2.2 Satellite surface soil moisture products
	2.2.2.1 Theia product
	2.2.2.2 Coherence product
	2.2.2.3 SMAP20m product

	2.2.3 GNSS-R GLORI maps


	3 Results
	3.1 Evaluation of satellite SSM products at the field scale using in situ measurements
	3.2 Time series analysis
	3.3 Spatial distribution of SSM

	4 Discussion
	4.1 SSM products: limitations and key areas for improvement
	4.1.1 Sentinel-1 products: SSMTheia and SSMρ
	4.1.2 Disaggregated product: SSMSMAP20m

	4.2 Irrigation occurrence and subsurface scattering effect

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References


