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A B S T R A C T

The pronounced impact of topography on meteorological conditions has largely limited evapotranspiration (ET)
remote sensing techniques to relatively flat terrains. This study addresses this limitation by adapting and
assessing the performance of two common ET models based on thermal infrared data in rugged mountainous
regions: a physically-based energy balance model (TSEB-PT), and a contextual model (LST-VI). The latter derives
the evaporative fraction (EF), defined as ratio of the latent flux (LE) to available energy, from spatial relation-
ships between land surface temperature (LST) and Vegetation Index (VI), by assuming uniform meteorological
conditions. The LST-VI model hence requires the normalization of LST data for meteorological variability effects
induced by topography prior to EF estimation, while TSEB-PT requires the spatialization of meteorological data
at the thermal sensor’s resolution. This study provides for the first time a quantitative assessment of methods for
correcting topographical effects at thermal data resolution within a steep-sided valley, and compares them when
applied to EB- and EF-based models. Both ET models are applied to 30 m resolution Landsat data across a 20 km
by 44 km area in the High Atlas mountain of Morocco from 2020 to 2022. The models’ results are evaluated at
two eddy covariance sites with or without considering topographic effects: an agricultural foothill site, and an
elevated rocky site, located at 900 and 3850 m.a.s.l., respectively. By taking into account topography, the RMSE
(and % error) on simulated LE at the foothill site was reduced by 29 W/m2 (29 %) and 10 W/m2 (16 %) for
TSEB_PT and LST-VI respectively. At the elevated site however, the RMSE (and % error) reduction was 50 W/m2

(50 %) and 64 W/m2 (59 %) for TSEB_PT and LST-VI respectively. Analysis of the spatial variability over the
study area indicates that the EF distributions (corrected for topographical effects) between east-facing and west-
facing slopes are similar for LST-VI (mean difference of 0.01) and significantly different for TSEB_PT (mean
difference of 0.19). Normalizing LST for topographic effects at the thermal sensor resolution is hence an effective
way of estimating ET in mountains despite the inherent uncertainties in the available meteorological data.

1. Introduction

Globally, mountains represent about 39 % of continental surfaces
and play a fundamental role in water availability and distribution
(Viviroli et al., 2007; Viviroli et al., 2020). Often described as ‘water
towers’ (Viviroli et al., 2007; Immerzeel et al., 2010), they capture more
precipitation than their surrounding lowlands, and act as key reservoirs
of water resources in regions otherwise marked by water scarcity. A

prime example of such regions is Morocco, a country with a semi-arid
climate, facing complex water resource management and allocation
challenges, and home to prominent mountain ranges like the High Atlas
and the Rif (Schulz and de Jong, 2004; Marchane et al., 2015; Baba et al.,
2019; Hanich et al., 2022; Ouassanouan et al., 2022). In these ranges,
both solid and liquid precipitations collectively contribute to a sub-
stantial 47–53 % of the groundwater recharge (Rhoujjati et al., 2023).
Given their importance for water resources, a better understanding of
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the hydrological dynamics and contributions of these ‘water towers’ is
needed.

Quantifying evapotranspiration (ET) is one way of understanding the
hydrological dynamics of these water-rich environments. This flux,
which accounts for water evaporation from the land surface and tran-
spiration by vegetation, provides key information on water loss to the
atmosphere. An effective strategy to capture the spatio-temporal varia-
tions in ET, is the combination of process-based models and satellite
remote sensing (Fisher et al., 2008; Jung et al., 2010; Miralles et al.,
2011; Mu et al., 2011; Ryu et al., 2011; Wei et al., 2017). A diverse range
of models has been developed, broadly classified into three main cate-
gories: ET models based on the water balance, ET models based on land
surface temperature (LST) data, and ET models based on conductance
formulations (Kool et al., 2014; Zhang et al., 2016; Chen and Liu., 2020).
Among these, LST-based ET models are particularly advantageous in
capturing spatial and temporal variations of ET in water-limited con-
ditions using the LST images derived from remotely sensed thermal
infrared data (Chen and Liu, 2020).

LST data can be used to feed three main categories of thermal-based
ET models (Chen and Liu., 2020). The first and second categories
comprise one-source and two-source ET models, both rooted in the
surface energy balance (EB). These models utilize the LST data to esti-
mate the sensible heat (H) and, subsequently, to compute the latent heat
flux (LE) or the energy associated with the ET process as a residual of the
EB (Bartholic et al., 1972; Soer, 1980; Norman et al., 1995; Bastiaanssen
et al., 1998a, 1998b; Su, 2002; Norman et al., 2003; Allen et al., 2007;
Kustas and Anderson, 2009). The third category encompasses the
models based on the evaporative fraction (EF) defined as the LE to
available energy ratio. In these models, EF is derived from an interpre-
tation of the feature space defined by plotting LST as a function of a
vegetation index (VI). EF is then transformed into ET given the available
energy (Nemani and Running, 1989; PRiCE, 1990; Carlson et al., 1995;
Gillies et al., 1997; Jiang and Islam, 2001; Sandholt et al., 2002; Nishida
et al., 2003; Long and Singh, 2012; Merlin et al., 2014; Yang et al., 2015;
Minacapilli et al., 2016).

EB- and EF-based ET models have been extensively and successfully
applied in relatively flat regions. However, their implementation in
mountainous areas presents a significant challenge due to the complex
interplay of topography, vegetation, and meteorological factors. This
complexity arises from small-scale variations in elevation, slope, and
aspect, which greatly influence local meteorological forcing, vegetation
and soil properties (Nippgen et al., 2011). For instance, air temperature
(Ta) and precipitation vary with elevation, and incoming shortwave
radiation (Rg) is affected by the surface’s topographic geometry (Pepin
et al., 2015; Malbéteau et al., 2017; Hao et al., 2021). Additionally, the
diverse vegetation types and soil conditions present within mountainous
regions add to the heterogeneity of those landscapes (Tague et al.,
2009). Such a variability in surface and meteorological conditions
(induced by topography) poses challenges for a generic usage of these ET
models.

To accurately estimate ET in mountainous regions and evaluate the
performance of EB- and EF-based models, it is imperative to account for
topography and its impact on meteorological and surface conditions. On
the one hand, EB-based models require high-resolution meteorological
forcing and input parameters. The point is that the spatialization of
meteorological and surface variables in mountain is a difficult task
(Terzago et al., 2020; Evin et al., 2024), and given the uncertainties
associated with these input data at high spatial resolution, the relevance
of EB-based models in such complex landscapes has yet to be demon-
strated. On the other hand, EF-based models are known for requiring
fewer input variables and for being less sensitive to errors in meteoro-
logical variables compared to EB-based models (Majozi et al., 2017;
Chen and Liu, 2020). Nevertheless, EF-based models rely on the
assumption that meteorological forcing is uniform across the study area
(Stisen et al., 2008), which is absolutely not the case in mountainous
regions (de Tomás et al., 2014). Therefore, the applicability of the EF-

based approach in these environments requires a prior normalization
procedure to account for topography-induced variations in the remotely
sensed LST (Hais and Kučera, 2009; Malbéteau et al., 2017; Firozjaei
et al., 2020).

To date, a limited number of studies have applied thermal-based ET
models in mountainous regions. Table 1 provides a summary of the key
papers found in literature. Four different EB-based models have been
utilized: Gao et al. (2011) employed the SEBTA model, incorporating
specific adjustments for solar exposure and elevation to account for
topographical influences on ET estimation. Castelli et al. (2018) inves-
tigated the ALEXI/DisALEXI model’s performance, focusing on flux
disaggregation without implementing topographic corrections. Han
et al. (2021) adopted the SEBS model, integrating algorithms designed
to address subgrid-scale topographical variations. Guzinski et al. (2021)
used the TSEB and ET-Look models, incorporating elevation and
exposure-based corrections. Conversely, the EF-based models have been
applied in two distinct studies. Zhao and Liu (2014) utilized the surface-
air temperature difference versus the VI space (LST-Ta)-VI, with cosine
adjustments for LST and albedo. More recently, Zhu et al. (2023)
enhanced ET estimations by employing the LST-VI model with a modi-
fied temperature vegetation dryness index at a pixel scale, considering
solar exposure.

A common limitation among these studies is the use of low (1 km or
lower) resolution LST data as input, which does not reflect the great
variability of mountain surface conditions. More fundamentally, while
most of these studies have incorporated terrain corrections, no quanti-
tative evaluation was proposed to assess the performance of such cor-
rections on ET estimates at the LST data resolution (Castelli et al., 2018;
Han et al., 2021; Guzinski et al., 2021). The lack of validation strategy at
the scale of topographic effects was due to either the unavailability of in
situ measurements as in the case of Zhao and Liu (2014) and Zhu et al.
(2023), or the unavailability of monitoring stations located at different
elevations (Gao et al., 2011). Consequently, the topography-induced
variability of meteorological and surface conditions, and its impact on
ET estimates remains largely underexplored across mountainous re-
gions. In addition, there has also been no comprehensive intercompar-
ison of EB- and EF-based models on areas with a pronounced
topography. Such a comparison would be particularly useful in assessing
the relative impact of meteorological forcing uncertainties on each of
the two ET modeling approaches.

In this context, the aim of this study is to adapt, evaluate, and
compare the ability of two EB- and EF-based ET modeling approaches at
fine resolution in a steep-sided watershed. Input data notably include 30
m resolution Landsat visible/near-infrared, thermal-based LST data
(resampled at 30 m), and meteorological data including Rg, Ta, wind
speed (Ws), and air relative humidity (Rh). The Priestley-Taylor version
of the Two Source Energy Balance model (TSEB-PT) is used as the EB-
based approach, and the LST-VI model is used as the EF-based
approach. Both models are implemented over a 20 km by 44 km area
in the High Atlas mountain range for the period 2020–2022. The eval-
uation is based on measurements collected from six automatic weather
stations (AWS) at varying elevations and two EC towers positioned at
different elevations: one at 900 m above sea level (m.a.s.l.) at the
foothills and the other at 3850 m.a.s.l., the highest flux station in North
Africa.

First, meteorological data are spatialized at the Landsat spatial res-
olution using disaggregation, modeling, and resampling techniques.
Then, the LE estimated by TSEB-PT and LST-VI models, with or without
considering topographic effects, is assessed against localized EC mea-
surements. Finally, a regional-scale analysis is carried out to compare
the spatial distribution of LE and EF derived by both models, providing a
comprehensive evaluation of their performance in accounting for
topographical effects.
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2. Study area and data

2.1. Study site

The 860 km2 study area is located in the High Atlas mountain range
in Morocco, approximately 40 km south of Marrakech city (Fig. 1). It
includes the 225 km2 Rheraya catchment, which constitutes a segment
of the Tensift watershed and displays a diverse array of elevations,
extending from 1060 m.a.s.l. at its lowest point to the zenith of North
Africa’s highest mountain, Mount Toubkal, at 4167 m.a.s.l.
(Chaponnière et al., 2008). Geological features within the Rheraya
catchment entail sedimentary formations within the northern foothills
and magmatic rock structures in the southern elevated mountainous
regions. These elevated areas exhibit cool temperatures and limited
vegetation cover, in contrast to the river valleys where most agricultural
activities are concentrated (Simonneaux et al., 2015). The land use in
the region includes degraded rangelands on mountain slopes with sparse
chamaephyte cover due to overgrazing, cedar woodlands located on the
northern foothills with higher precipitation levels, irrigated crops
around the primary hydrological network (comprising 5 % of the total

area), and dry crops on some gentle limestone slopes to the north of the
watershed (Simonneaux et al., 2015).

Since 1989, the Rheraya catchment has been monitored for hydro-
logic characteristics. In the framework of the SUDMED program
(Chehbouni et al., 2008) and Joint International Laboratory LMI-
TREMA (Jarlan et al., 2015) activities, the Tensift Observatory has
established two EC flux towers and multiple AWS within the area
(Fig. 1). One of the AWS (Aremd at 1940 m.a.s.l.) had recorded during
the 2003–2006 period an average Penman-Monteith reference ET value
of 1073 mm per year. Precipitation levels within the catchment exhibit
considerable variability, with annual rates ranging between 300 and
700 mm, depending on site location. The watershed’s average precipi-
tation is estimated to be approximately 490 mm, with one-third of this
amount falling as snow and a minimum monthly rainfall rate typically
reached between June and September (Cheggour et al., 2008; Simon-
neaux et al., 2015).

2.2. Ground-based measurements

The two sites (Tazaghart and Tahanaout, ref. to Fig. 1) equipped with

Table 1
Summary of studies implementing thermal-based ET models in mountainous regions.

Study ET model Spatial resolution
of LST data

Spatial resolution of
meteorological data

Topographical corrections
of meteorological/surface

conditions

Validation strategy Quantitative evaluation (in
W/m2 and/or %) of the

impact of topography on ET
and/or EF retrieval (with/

without topographical
corrections)

Gao et al.
(2011)

Surface Energy
Balance with

Topography and
Land-cover Effects

(SEBTA)

1 km 1 km

A shading coefficient is
applied to the solar

radiation estimated by
taking into account solar

exposure.

LST is corrected for
elevation by using a
constant lapse rate

(− 6.5 ◦C/km) relative to
the mean elevation of the

study area.

Comparison with lysimeter
and EC data at a single site

(28 m.a.s.l.).
No evaluation

Zhao and
Liu

(2014)
(LST-Ta)-VI

1 km resized to 250
(nearest-neighbor)

5 km resized to 250
(nearest-neighbor)

Cosine correction to LST
and albedo.

Comparison against ET
estimates derived from the
water balance at sub-basin
(over 1500 m.a.s.l.) and

annual scales.

The average
relative error of the

retrieved ET is 18.0 % and
− 7.1 % before

and after topographic
correction, respectively.

Castelli
et al.

(2018)

Two Source Energy
Balance

Atmosphere Land
EXchange Inverse
(ALEXI/ DisALEXI)

3.5 km (ALEXI)
1 Km (DisALEXI)

3 Km No topographical
correction.

Comparison with EC data at
two sites (elevation

information not provided)
located 500 m apart

(irrigated meadow and
rainfed pasture), and with

TSEB simulations applied to
local meteorological data and

considered as benchmark.

No evaluation

Han et al.
(2021)

Surface Energy
Balance System

(SEBS)

1 km (remapped
onto 10 Km grid) ~10 Km

The form drag caused by
the subgrid-scale

topographical obstacles is
taken into account in SEBS.

Comparison with EC data at
six sites (3326, 3668, 4264,
4276, 4509, 4730 m.a.s.l.).

No evaluation

Guzinski
et al.

(2021)
TSEB /ET-Look

1 km sharpened to
300 m and
bilinearly

interpolated to
100 m and 20 m

30 km spatialized to
300 m and bilinearly
interpolated to 100 m

and 20 m

Ta and dew temperatures
are spatialized using a

standard lapse rate value
(of − 6.5 and − 2 ◦C/km,

respectively).
Solar radiation is corrected

for elevation and solar
exposure.

Comparison with EC and
lysimeter data at six sites
(elevation information not

provided).

No evaluation

Zhu et al.
(2023)

LST-VI applied at
pixel scale

1 km 1 km Solar radiation takes into
account solar exposure.

Comparison to other remote
sensing-based (GLEAM,

SSebop, ET_Ma, and GRACE-
derived ET) ET products.

No evaluation
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the EC system have distinct geographic characteristics. The Tazaghart
tower is positioned on a high plateau, approximately 3850 m.a.s.l., with
mainly black rocks and an underlying silty-clay soil. Vegetation is absent
for most of the year within a radius of at least 200 m. At the southern end
of the Haouz plain, the Tahanaout tower is situated in a foothill site. It is
positioned at the outlet of the Rheraya and is approximately 900 m.a.s.l.
The area is mainly occupied by traditional agriculture that primarily
relies on the water of Rheraya. Land use comprises mainly a combina-
tion of trees (olives) and annual crops (cereals).

Both sites are equipped with sensors that measure flux and meteo-
rological variables. These include LE (Campbell Scientific Ltd. KH20), H
(Campbell Scientific Ltd. CSAT3), net radiation’s (Rn) four components
(Campbell Scientific Ltd. CNR4), and G, the ground heat flux (Campbell
Scientific Ltd. HPF01, with heat plates positioned at the vicinity of the
towers). The Tazaghart EC tower’s equipment is located at an approxi-
mate height of 2 m above ground level (a.g.l.), while at Tahanaout, it is
positioned at a height of about 17.6 m a.g.l. Average fluxes over 30 min
measured by the flux stations (LE, H, Rn and G) from 2020 to 2022 were
used to evaluate the performance of ET models. At Landsat overpass
times, the mean EB closure calculated is about 90 % and 70 % for
Tazaghart and Tahanaout sites, respectively. To ensure EB closure, any
residual energy imbalance was allocated to the LE flux. This decision
was based on the recognition that measuring LE accurately poses greater
challenges in terms of humidity sensor calibration compared to the
measurement of H using temperature sensors (Foken et al., 2011;
Guzinski et al., 2020). The Flux tower’s footprint analyses were con-
ducted using a Python script based on the Flux Footprint Prediction
(FFP) model, available at http://footprint.kljun.net/ (last accessed 15/
10/2023). This model, developed by Kljun et al. in 2015 (Kljun et al.,
2015), represents a prominent Lagrangian statistical technique for
estimating tower-based source areas. Its accuracy and ease of use have
been well-established in the field (e.g., Chu et al., 2021; Mbabazi et al.,
2023; Volk et al., 2023).

Meteorological data are collected from six AWS positioned at
different elevations (Fig. 1). In addition to Tahanaout and Tazaghart, the

AWS sites include Imskerbour (1404 m.a.s.l.), Aremd (1940 m.a.s.l.),
Neltner (3207 m.a.s.l.), and Oukaimden (3207 m.a.s.l.). These AWS
exhibit variability in instrumentation configurations, with certain sta-
tions capturing only a subset of the five meteorological variables. For
this study, the ground AWS measurements were not used as input to ET
models. They solely contributed to calibrating and/or validating spa-
tialized high-resolution meteorological data. A more detailed descrip-
tion of both towers and AWS network locations and set-up can be found
at https://www.lmi-trema.ma/, last accessed 03/10/2023.

2.3. DEM data

The Shuttle Radar Topography Mission’s (SRTM) 1 arc sec DEM is
used here as the primary topographic dataset. Developed collaboratively
by the NASA Jet Propulsion Laboratory and the National Geospatial-
Intelligence Agency, the SRTM’s 1 arc sec DEM provides a high-
resolution spatial representation with an approximate 30 m resolution,
encompassing global coverage (freely available at: https://eart
hexplorer.usgs.gov/ last accessed on 03/10/2023). Its main objective
in the study is to account for topographic effects on LST and meteoro-
logical data, focusing particularly on the impact of elevation and sun
exposure. To this end, two specific SRTM 1 Arc-Second tiles
(SRTM1N31W008V3 and SRTM1N31W009V3) were mosaicked, gap
filled to generate a 30 m resolution DEM subset over the study area
(Fig. 1).

2.4. High-resolution meteorological data

2.4.1. Ta, Rh and Ws data
The state-of-the-art ERA5-Land reanalysis provides a comprehensive

global dataset for land applications (Muñoz-Sabater et al., 2021). It is
generated by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and produces a total of 50 variables at 9 km spatial resolution
on an hourly timestep. Notably, three products included in this dataset
are used in this study: 2 m Ta (t2m), 2 m dew point temperature (d2m),

Fig. 1. Study area’s location (left), land-cover map (middle), and topographic map (right).
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and 10 m horizontal Ws of air moving towards the east and north (U10
and V10, respectively). The ERA5-Land Ta, Rh, and Ws data are spatially
distributed at 30 m resolution across the study area based on the pro-
cedure described in the following.

The influence of elevation on Ta is addressed through a disaggre-
gation approach at 30 m resolution of 9 km resolution ERA5-Land t2m
data (Sebbar et al., 2023). This methodological choice represents a
substantial advance over traditional downscaling methods, such as the
use of the global mean ELR typically set at − 6.5 ◦C.km− 1 or the
MicroMet model (Liston and Elder, 2006). It also has the advantage of
already being specifically calibrated within the Rheraya catchment,
which is included in the study area of this study. The methodology in
Sebbar et al. (2023) comprises three main steps:

1. The ERA5-Land t2m data at the 9 km spatial resolution is adjusted (at
its native resolution) to remove any persistent bias against in-situ
measurements. This adjustment is performed using an XGBoost
model (Chen and Guestrin, 2015) that was trained over the basin
using hourly ground observations collected over five years (2016 to
2020). The model’s dependent variables include hourly ERA5-Land
t2m and corresponding ELR, daily mean and daily standard devia-
tion of t2m values, and ERA5-Land DEM data. This process results in
corrected t2m values for the area, referred to as t2m_corr.

2. The ELR is updated at 9 km resolution based on the previously cor-
rected t2m_corr data, effectively capturing the complex relationship
between Ta and elevation in real time.

3. The t2m_corr data, corrected at a 9 km resolution, are then down-
scaled to the finer resolution of 30 m using SRTM’s DEM. This
disaggregation follows the equation:

Ta30m = t2m corr9 km +ELR9 km(DEM30 m − DEM9 km)

Here, ELR9 km represents the updated ELR, DEM30 m is the 30 m res-
olution DEM from SRTM, and DEM9 km is DEM at ERA5-Land resolution.

Rh is spatialized at 30 m resolution from the downscaled d2m (Tdew)
and Ta data. ERA5-Land d2m data are disaggregated using the same
approach as for Ta described above, where the temperatures are Tdew,
and the ELR is the dew point temperature lapse rate. Note that the direct
use of the ELR method may result in errors, especially in regions where
humidity fluctuates dramatically. However, in this study, by incorpo-
rating real conditions through model training, the aim is to reduce errors
as much as possible when downscaling Tdew using this ground-informed
disaggregation ELR method. Vapor pressure (eact) is computed using the
Magnus-Tetens formula (Magnus, 1844; Monteith and Unsworth, 2013)

expressed as: eact = 0.61078× e
17.27Tdew
Tdew+237.3. Similarly, the saturation vapor

pressure (esat) is estimated using the same formula, but with 30 m res-

olution downscaled Ta as the input variable: esat = 0.61078× e
17.27Ta
Ta+237.3.

Both eact and esat are in kPa, while Ta and Tdew are in ◦C. Finally, the 30
m resolution Rh is estimated as Rh = 100× eact

esat .
There is currently no widely accepted and satisfactory model that

fully accounts for the complex topographical effects on Ws. Existing
models and tools, constrained by simplifications and assumptions, are
unable to fully account for the complex dynamics of Ws or are imprac-
tical for regional runs (e.g., measurement strategy unmanned aerial
vehicle (UAV) outlined by Ingenhorst et al., 2021 (Ingenhorst et al.,
2021)). Therefore, ERA5-Land derived Ws data are simply resampled to
30 m resolution using the bilinear interpolation approach.

Note that other ancillary meteorological data such as barometric
pressure, air density or air heat capacity are needed as input to ET
models. Those variables are thus distributed spatially either by using the
30 m resolution DEM data directly, or from the downscaled Ta dataset
that integrates the high-resolution DEM information.

2.4.2. Rg data
The complex interactions between mountainous terrains and Rg pose

challenges for accurately capturing and representing this relationship in
reanalysis such as ERA5-Land datasets. In this study, the 30 m resolution
Rg maps are instead simulated by considering three different compo-
nents: direct solar radiation (Rgdir), diffuse solar radiation (Rgdiff), and
the solar radiation (Rgadj) reflected from adjacent surfaces. The direct
component is estimated proportionally with the cosine of the solar
incidence angle using the semi-empirical model developed by Samani
et al. (2007):

Rgdir = Gsccosθdrτsw (1)

With Gsc being the solar constant (1367 W/m2), θ the solar incidence
angle determined from the metadata of Landsat images, dr the inverse
relative earth-sun distance, and τsw the atmospheric transmissivity. The
formula for calculating dr is provided by Allen et al. (1998) and involves
the Julian day of the year (J) as expressed by the equation dr = 1+

0.033cos2πJ
365. The equation for deriving τsw is also proposed by Allen et al.

(1998) and utilizes the DEM as follows: τsw = 0.75+ 2× 10− 5(DEM).
The diffuse component of Rg is approximated using a quadratic

function with Rgdir as the input. Likewise, the adjacent component Rgadj
is represented as a linear function of elevation. These parametric func-
tions recenter the errors relative to simulations from DART (Discrete
Anisotropic Radiative Transfer), a three-dimensional radiative transfer
model (Gastellu-Etchegorry et al., 2004) used as a reference in this
study. DART is widely regarded as one of the most complete models for
simulating the radiative transfer in heterogeneous three-dimensional
landscapes using advanced kernel and discrete ordinate methods. It
should be noted that the direct implementation of DART at the scale of
the study area was not pursued due to its extensive computational re-
quirements. Generating a single Rg map requires considerable time and
resources. Instead, DART is used herein as a benchmark for assessing the
semi-empirical Rg model on a subset of the study area.

2.5. Remote sensing data

2.5.1. Landsat data
The primary source of remote sensing reflectance and thermal

infrared observations used in this study for ET modeling comes from the
latest Collection 2 Level 2 (C2L2) products of Landsat-7, Landsat-8, and
Landsat-9 satellites. Generated by the USGS Earth Resources Observa-
tion and Science (EROS) Center, these products offer key characteristics
that make them an excellent source of atmospherically corrected in-
formation for remote sensing applications. The thermal infrared bands,
originally captured at 100 m resolution for Landsat-8 and Landsat-9 and
60 m for Landsat-7, are resampled to a 30 m resolution in the final C2L2
products. Additionally, the enhanced vertical accuracy from multiple
DEM sources within the Landsat Collection 2 DEM improves the overall
quality of the data, especially in mountainous regions (Franks et al.,
2020). Vegetation indices are calculated from the top-of-canopy reflec-
tance bands and Landsat LST is derived from the thermal band as
described in Landsat 4–7 and Landsat 8–9 Collection 2 (C2) Level 2
Science Product (L2SP) Guides.

For the EB-based ET approach, the 30-m resolution LAI product used

in this study is computed as =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

NDVI 1+NDVI
1− NDVI

)√

, based on Landsat NDVI

following Wang et al. (2008). The fraction of vegetation that is green
and actively transpiring (fg) is derived using NDVI and Enhanced
Vegetation Index (EVI). For most land cover classes, fg is estimated ac-
cording to the approach stated in Guzinski et al. (2013), whereby fg =
1.2 EVI

NDVI (0 < fg < 1). For croplands, a distinct approach is applied to fg,
which is set to be equal to EVI solely during the crop senescence period
(occurring between day-of-year 160 and 230), and as 1 during other
time periods (Guzinski et al., 2013).The fractional vegetation cover (fc)
is estimated as a non-linear function of LAI based on the Beer-Lambert
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law (e.g., Trebs et al., 2021) as fc = 1 − e

(
− k.LAI
cos(vza)

)

, with K being the
attenuation coefficient of Rg within the canopy that depends on the
land-cover type of the pixel, and vza standing for the satellite’s viewing
zenith angle.

For the EF-based ET approach, fc is derived directly from NDVI and
used as the VI for constructing the LST-VI feature space. As a first-order
estimate, Gutman and Ignatov (1998) proposed fc = NDVI− NDVIs

NDVIv− NDVIs,where
NDVIs and NDVIv corresponds to bare soil and full vegetation cover
respectively. Due to our adherence to the original formulas and meth-
odologies employed in the works we are building upon. The choice of
using two different fc formulas is primarily due to adherence to the
original formulas and methodologies employed in the foundational
works that this study builds upon to ensure consistency and methodo-
logical integrity. Note that during the study period (2020− 2022),
Landsat observations over the study site were available on 38 dates.

2.5.2. Land-cover data
Besides the information obtained from satellite observations,

running ET models on a regional scale requires additional spatially
distributed data like vegetation height and average leaf size. Such var-
iables can be derived from a land-cover map which, in conjunction with
empirical models and look-up conversion tables (e.g., Table.1 in
Guzinski and Nieto, 2019, Table.2 in Guzinski et al., 2020, and
Tables A1–A5 in Floors et al., 2021) assigns input surface parameters
that cannot be directly estimated from satellite observations (Schaudt
and Dickinson, 2000).

The 2019 version of the Copernicus Global Land Service’s Land
Cover 100 m resolution product is used as the primary data source for
generating a land cover map for each satellite over-pass date. The
dataset offers comprehensive global coverage, obtainable from the
Copernicus Land Monitoring Service (http://land.copernicus.eu,
accessed on 15/10/2023). To prepare the land cover map for high-
resolution model runs, it is regrouped to a smaller number of classes
and resampled from its original 100 m resolution to 30 m resolution.
Furthermore, to ensure a more up-to-date representation of herbaceous
classes heights, which have a substantial impact on aerodynamic
roughness (Raupach, 1994; Schaudt and Dickinson, 2000; Guzinski
et al., 2020), a power law scaling method is employed, following the
approach described in Guzinski et al. (2020). This method considered

both the Plant Area Index

(

PAI = LAI
fg

)

, and the maximum vegetation

height indicated in Table 2. The minimum value for the scaled vegeta-
tion height was set to one tenth of the maximum value.

Additional ancillary parameters are also shown in Table 2: the fClump

represents the portion of ground covered by a clumped canopy (fClump =

1 indicates a homogenous canopy). The wc/hc parameter represents the
canopy width to canopy height ratio, the average leaf size (lw), and the
Campbell’s leaf angle distribution (χ) parameter (Campbell, 1986).
Aerodynamic roughness length for momentum transfer and zero-plane-
displacement height were estimated using canopy heights and land
cover type based on the Raupach formulations (Raupach, 1994; Schaudt
and Dickinson, 2000).

3. ET models

The flowchart in Fig. 2 provides a graphical representation of the
overall methodological approach adopted in this paper. The EB-based
and EF-based ET estimation approaches are presented separately in
this section.

3.1. EB-based ET model

To analyze the surface EB from a physically-based perspective, TSEB-
PT model is used in this study. It is an enhanced version of the TSEB
model, which builds upon the original model proposed by Norman et al.
(1995) and further improved by Kustas and Norman (1999). TSEB-PT
decomposes the directional radiometric LST into distinct components
for vegetation and soil. This division enables the independent estimation
of Rn, LE and H for each component. The estimated fluxes are then in-
tegrated to determine bulk surface fluxes.

To facilitate the complex heat transfer between these components
and the surrounding atmosphere, the model incorporates resistances
that emulate the behavior of electrical systems. These resistances
depend on aerodynamic and meteorological conditions and play an
essential role in regulating the interaction of the turbulent fluxes origi-
nating from vegetation and soil. A fundamental aspect of the modeling
process is the iterative computation of canopy temperature and soil
temperature, since these variables are not known at the outset. The core
of the TSEB-PT model is based on the assumption of a canopy potential
transpiration rate, derived from the Priestley-Taylor formula (Priestley
and Taylor, 1972):

LEc = αPTfg
Δ

Δ + γ
Rn,c (2)

where αPT is the Priestley-Taylor coefficient (initially set to its default
value of 1.26), Δ the slope of the vapor pressure to Ta curve, γ the
psychrometric constant, and Rn,c denotes the canopy net radiation.

In this study, the partitioning of Rn into soil and canopy components
is carried out by considering both shortwave and longwave radiations
from soil and canopy. Shortwave net radiation was modeled using the
approach proposed by Kustas and Norman (1999) driven by the 30 m
resolution Rg. The longwave radiation emitted by the land surface was
calculated using the Stefan-Boltzmann equation, which takes into ac-
count the LST and emissivity. Finally, the atmospheric irradiance
absorbed by the surface is calculated on the basis of Kirchhoff’s law,
using 30 m resolution Ta, surface emissivity and atmospheric emissivity
data. Note that for barren pixels, the EB equation is solved as single
source using the one-source EB-based model instead of TSEB-PT. In this
case, no canopy/soil partitioning is required, Rn is calculated as in
Malbéteau et al. (2017) (Eq. A.2), and the LST is used to calculate ET as
follows (Bartholic et al., 1972; Brown, 1975; Stone and Horton, 1974;
Heilman et al., 1976; Clothier et al., 1986; Kustas and Daughtry, 1990;
Sandholt and Andersen, 1993; Chen and Liu, 2020):

ET = Rn − G − ρcp
LST − Ta

ra
(3)

Where ρ stands for the density of air, cprefers to the air’s specific heat,
while ra denotes the total aerodynamic resistance, which is the aggre-
gate of the fundamental aerodynamic resistance and the excess

Table 2
Ancillary parameters derived from land cover classes in the study area. CGLS
land cover legend can be found in the product user manual provided by Buch-
horn et al. (2020).

CGLS_LC
code

hc, max

(m)
PAImax

(− )
fclump

(− )
wc/hc

(− )
lw
(m)

χ

20 2 2 0.15 1 0.05 1
30 1 5 1 1 0.02 0.5
40 1.2 5 1 1 0.02 0.5
50 20 0 0 0 0 0
60 0 0 0 0 0 0
90 1 5 1 1 0.02 0.5
112 10 5 1 1 0.15 1
114 10 5 1 1 0.15 1
115 15 5 1 1.5 0.1 1
116 15 5 1 1.5 0.1 1
122 10 5 1 1 0.15 1
124 10 5 1 1 0.15 1
125 15 5 1 1.5 0.1 1
126 10 5 1 1 0.15 1
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resistance (Eq. 2, Chen and Liu, 2020). The excess resistance component
is crucial as it compensates for the differences between the remotely
sensed LST and the aerodynamic canopy temperature. Several variables
were considered for the partitioning between soil and vegetation com-
ponents, namely LAI, χ, bi-hemispherical reflectance and transmittance
for the soil and a single leaf, and fclump (for dealing with heterogeneous
canopies). In line with previous studies, the current investigation adopts
a series configuration of resistances (e.g., Morillas et al., 2013; and
Guzinski and Nieto, 2019). Moreover, G is approximated as a percentage
of Rn, depending on whether it is a high canopy, a short canopy, or bare
soil using the methodology proposed in GLEAM by Miralles et al. (2011).

For a more detailed understanding of TSEB-PT model and its

implementation, the complete source code of Python implementation is
publicly available online (https://github.com/hectornieto/pyTSE
B/releases/tag/v1.4, last accessed on 03/10/2023), as well as the
cited publications that thoroughly describe the TSEB model and its
adaptations.

3.2. EF-based ET model

3.2.1. EF formulation
The acquisition of regional-scale meteorological measurements and

the accurate estimation of aerodynamic temperature and resistance for
H calculations are common issues. To overcome these challenges,

Fig. 2. Flowchart of the input/output data and the different models used to implement and evaluate two (EB- and EF-based) high-resolution ET estimation ap-
proaches in mountainous areas.
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numerous models have been developed to exploit the spatial contextual
information provided by remotely sensed LST data in areas character-
ized by a wide range of vegetation fractions. These models estimate EF,
which is used to calculate LE, taking into account the energy available at
the surface (Goward et al., 1985; PRiCE, 1990; Merlin et al., 2008;
Merlin, 2013; Chen and Liu, 2020).

Briefly, using the EF-based ET models, also referred to the triangle/
trapezoidal method due to the shape formed by the LST-VI scatter plot,
LE can be estimated as follows (Jiang and Islam, 1999; Chen and Liu,
2020):

LE = EF(Rn − G) = ϕ
[

(Rn − G)
Δ

Δ + γ

]

(4)

where ϕ can be interpreted as an equivalent to αPT (Priestley and Taylor,
1972). ϕ reaches a maximum value (ϕmax) of 1.26, and for a pixel i, a
minimum value (ϕmin,i) that can be approximated by fc×ϕmax (Chen and
Liu, 2020). For a point i in the LST-VI space, EF can be expressed as
follow:

ϕ =
LSTmax − LSTi
LSTmax − LSTmin

(
ϕmax − ϕmin,i

)
+ϕmin,i (5)

Where LSTmax and LSTmin represent, for a given pixel i, the corre-
sponding LST on the dry edge and the corresponding LST on wet edge,
respectively. The dry edge refers to conditions with the highest possible
LST and the lowest ET rate for a given fc, while the wet edge corresponds
to conditions where the EF is at its maximum.

Determining the value of ϕ, by interpolating the relative position of
each point within the LST-VI space between the dry and wet edges,
highlights the importance of exercising when determining these edges,
although the contextual approach is generally perceived as straightfor-
ward. The dry and wet edges estimation is particularly challenging in
mountains as the landscape is characterized by steep-sided valleys and
significant elevation gradients, where the wet edge is likely to be
influenced by distortions caused by the variability of Ta and shadowed
slopes with low LST values.

3.2.2. Normalizing LST for topographic effects
One way of addressing the impact of topography (notably slope

exposure and elevation effects) on the determination of wet/dry edges in
EF-based ET models is through the normalization of LST data for
topography-induced variability of the atmospheric forcing. This tech-
nique involves a systematic removal of the topographic effects from the
remotely sensed LST values, enabling them to exhibit behavior within
the LST-VI space consistent with that observed in uniformly flat areas. As
a result, it would be possible to retrieve EF values regardless of topo-
graphic influence, and eventually estimate ET, as is commonly done over
flat areas.

The adopted LST normalization technique was developed by
Malbéteau et al. (2017). This method stands out as a remarkable
advancement in the state-of-the-art of LST topographic normalization
through a physically-based soil and vegetation EB inversion. The
normalization model is written as:

LSTnorm = LSTLandsat − LSTEB(Rg, E)+ LSTEB(〈Rg〉, 〈E〉) (6)

Where LSTnorm represents the Landsat LST normalized for topo-
graphic effects using the Malbéteau et al. (2017) approach and
LSTLandsat the observed Landsat LST. LSTEB(Rg, E) represents the LST
simulated via the EB solving, using pixel-scale elevation and
Rg. LSTEB(〈Rg〉, 〈E〉) refers to the LST simulated by the EB equations
using the average values of elevation and Rg at the scale of the study
area. LST is estimated as a linear function of component temperatures, as
described in studies by Merlin and Chehbouni (2004), Anderson et al.
(2008), Long and Singh (2012), and Malbéteau et al. (2017):

LSTEB = fc ×TsEB +(1 − fc)×TvEB (7)

TvEB = fsv ×Tv,dryEB +(1 − fsv)×Tv,wetEB (8)

TsEB = fss ×Ts,dryEB +(1 − fss)×Ts,wetEB (9)

with TsEB being the simulated soil temperature, fss a dryness index of
the soil surface (fss equals to 1 when the soil is fully dry and to 0 when
the soil is fully wet), TvEB the simulated vegetation temperature, fsv a
vegetation water stress index (fsv is equal to 1 when the root zone soil
moisture is above field capacity and to 0 when the root zone soil
moisture is below the wilting point) and Tv,dryEB , Tv,wetEB , Ts,dryEB , and Ts,wetEB
the simulated temperature of fully stressed vegetation, unstressed
vegetation, dry soil, and wet soil respectively. The four simulated tem-
perature endmembers (Tv,dryEB , Tv,wetEB , Ts,dryEB , and Ts,wetEB ) and the simu-
lated component temperatures (TsEB , TvEB ) are estimated by solving the
EB numerically using Newton’s method (Bristow, 1987).

The LST normalization approach of Malbéteau et al. (2017) is
parameterized as a function of three parameters: fss and fsv in Eq. (8) and
(9) and ELR, which is used to spatialize Ta at the Landsat resolution
within the study area. The method initializes the ELR with a first-guess
value of − 6 ◦C.km− 1, and then iterates on adjusted ELR values for
inverting both fss and fsv parameters by minimizing the RMSE difference
between simulated and observed LST. In this study, ELR is estimated
independently from the method in Sebbar et al. (2023), so that only fss
and fsv parameters are inverted from the LST normalization approach.
Note that fss and fsv, as well as the temperature endmembers are defined
at the scale of the study area in Malbéteau et al. (2017). For a thorough
understanding of the EB-based topographic normalization process,
including detailed equations and explanations, readers are encouraged
to refer to the work of Malbéteau et al. (2017).

Note that, to avoid any confusion, we clarify that the normalized LST
is not used as input to TSEB-PT. The TSEB-PT model operates on a pixel-
by-pixel basis. Each pixel is treated as an isolated piece of land, and the
inputs are iterated until energy balance convergence is achieved. This
approach makes it unnecessary and irrelevant to normalize the LST in
the TSEB-PT model. In contrast, the influence of topography is
accounted for using meteorological variables spatialized at the oper-
ating scale of TSEB-PT.

3.2.3. Consolidating the dry edge determination
Remaining pixels outside the designated polygon in the LST-VI space

can lead to overestimation of the dry edge or underestimation of the wet
edge. These outliers could potentially be attributed to a combination of
factors, including uncertainties in the fine-scale meteorological forcing,
uncertainties in the DEM and micro-topography at the sub-pixel scale
DEM. To make the determination of the dry edge more robust (than
relying on the EB-simulated temperature endmembers) and to remove
outliers, Tang et al. (2010) method is used. This iterative approach
implements binning and sub-binning of LSTnorm values according to
their corresponding fc values. The algorithm identifies the maximum
value within each bin, and these maximum values collectively
contribute to the determination of the dry edge. For a detailed under-
standing of these steps, it is recommended to refer to the study con-
ducted by Tang et al. (2010). As to the wet edge, it is represented as a
quasi-horizontal line relating the Tv,wetEB and Ts,wetEB simulated by the EB
in the normalization step (under wet conditions, Tv,wetEB is marginally
lower than Ts,wetEB ).

3.2.3 Sensitivity analysis to meteorological forcing and LST errors

A sensitivity analysis is undertaken to identify the input parameters
whose deviation significantly changes the predicted output (Sanjeev
et al., 2024). In this study, we assess the sensitivity of ET models’ out-
puts to meteorological parameters (Ta, Rg, Ws, Rh) and LST un-
certainties. The goal is to understand the differences in ET estimates of
the TSEB_PT and LST_VI models using downscaled meteorological data
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and observed/normalized LST in mountainous areas.
To conduct the sensitivity analysis, we incrementally adjust each

input value by ±k%, one at a time, to determine the sensitivity order of
the selected parameters. Time series simulations are run for each input
variable using perturbed values. The overall sensitivity (Sp) of both
models is calculated by summing the daily relative sensitivity (Spi)
values to changes in input parameter p over the entire time series (N
days), as shown below (Zhan et al., 1996; Anderson et al., 1997; Sánchez
et al., 2008):

Sp =
1
N

∑

Overpass dates
Spi =

1
N

∑

Overpass dates

(
LE(paltered+) − LE(paltered− )

LEbaseline

)

(10)

Where LEbaseline is the LE estimate from high-resolution run,
LE(paltered±) is the LE estimate using the increased or decreased input
value (paltered+ or paltered− ) of one of the altered variables (Ta, Rg, Ws, Rh,
and LST) with increments of ±k%. The percent change in LE estimates to

±k% change in an input is calculated using the relative error of

LE(paltered±) to LEbaseline calculated as follow: LE(paltered±)− LEbaseline
LEbaseline

.

4. Results and discussion

In this section, the performance of both EB- and EF-based ET ap-
proaches over the mountainous study area is evaluated and inter-
compared. First, the quality of the meteorological forcing variables
disaggregated and spatialized at the 30 m resolution is assessed against
AWS measurements. Then, the 30 m resolution fluxes simulated by
TSEB-PT are evaluated at the Tazaghart and Tahanaout EC sites. Next,
an analysis of the topographic LST normalization procedure and of the
performance of the LST-VI ET model is carried out, involving a com-
parison between simulated and Landsat LST over the study area and
between the retrieved and observed fluxes at both EC sites respectively.
Finally, the TSEB-PT and LST-VI ET modeling approaches are

intercompared by focusing on the spatial variability of ET estimates
within the study area.

4.1. Assessment of the 30 m resolution meteorological dataset

The scatterplots in Fig. 3 compare the spatially distributed (30 m)
and the uncorrected (9 km) meteorological variables to AWS measure-
ments at the Landsat overpass dates. Overall, the simulated 30 m reso-
lution data show better agreement with ground measurements. The
evaluation of the disaggregated Ta across six AWS locations shows an
RMSE of 1.6 ◦C, an R-coefficient of 0.98 and almost no bias, indicating
high accuracy. In contrast, the 9 km resolution ERA5-Land Ta data has
an RMSE of 6.4 ◦C and an R of 0.79, and an overall bias of 3.3 ◦C (Fig. 3
(a)). This overestimation is particularly observed at the three elevated
AWS locations (Neltner, Oukaimeden, and Tazaghart, all above 3200 m.
a.s.l.), mainly due to the corresponding 9 km pixels average elevations
being much lower than these sites elevations.

The evaluation of Rh for the 30 m resolution data shows an RMSE of
8.1 %, a bias of − 4.2 %, and an R value of 0.73. This indicates moderate
quality compared to Ta, but it is acceptable given Rh’s lower impact on
ET modeling relative to Ta and Rg. In contrast, the 9 km resolution
ERA5-Land Rh data exhibit a higher RMSE of 12.1 %, a larger bias of 7.6
%, and a lower R value of 0.67, highlighting the accuracy improvement
with higher resolution data (Fig. 3(b)). Despite showing less alignment
with measurements than Ta due to the less accurate Tdew values used in
calculating Rh, the high-resolution Rh data still demonstrate better
correlation with measurements compared to the uncorrected low-
resolution products.

The calibration of diffuse and reflected radiations obtained through
the Samani-based approach against the DART model for modeling Rg
shows a mean RMSE of 50 W/m2 and an R value of 0.9. Although the
DART model was tested and used for calibrating the Samani-based
approach within a smaller area around the Aremd AWS and was not
directly validated in this study, the simulated Rg values at a 30 m

Fig. 3. Scatterplots comparing the 30 m and 9 Km meteorological products against ground measurements of Ta (a), Rh (b), Rg (c) and Ws (d) at the 6 AWS lo-
cations separately.
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resolution compare well to ground measurements. The 30 m resolution
data displays an RMSE of 55 W/m2, a relatively insignificant bias of − 6
W/m2, and an R of 0.92, as depicted in Fig. 3(c). In contrast, the 9 km
resolution ERA5-Land Rg data shows an RMSE of 145 W/m2, a large
negative bias of − 105 W/m2, and an R of 0.71, indicating a significant
improvement with the 30 m resolution modeled data. This improvement
is particularly evident in elevated areas. Pronounced underestimations
of Rg are observed at Aremd, Oukaimeden, and Tazaghart, while the
piedmont site Tahanaout shows reasonable alignment with measure-
ments. Similar to Ta, this discrepancy is due to averaging values over the
9 km pixels. For elevated sites, the averages are lower compared to
measurements, mainly due to the presence of shadowed pixels and slope
orientations. In contrast, for the piedmont site, the average values
closely match the site values due to gentle topography resulting in
minimal variation in the 30 m pixel elevations and slopes within the 9
km area.

The left plot in Fig. 3(d) displays the 30 m resolution resampled
ERA5-Land Ws compared to in-situ measurements. The RMSE, bias and
R are estimated as 1.3 m/s, − 0.5 m/s and 0.41, respectively. The results
indicate a general agreement for low wind conditions (in-situ values
below 2 m/s). However, as Ws increases, the disparity between the
resampled ERA5-Land and measured values increases, with the under-
estimation becoming more pronounced. Despite the discrepancy
observed, the 30 m resolution resampled ERA5-Land Ws is assumed
applicable in our case, as the underestimation of Ws is only occasionally
observed for strong wind. Comparatively, the 9 km derived ERA5-Land
Ws data has an RMSE of 1.5 m/s, a bias of − 0.9 m/s, and an R of 0.44.
This slightly lower accuracy is expected, as the 9 km Ws data was only
bilinearly resampled to 30 m.

4.2. Evaluation of TSEB-PT flux estimates

Table 3 reports the performance metrics of the TSEB-PT model when
comparing the four simulated fluxes (Rn, G, LE and H) to in situ mea-
surements at Tahanaout and Tazaghart EC sites. Due to the exclusion of
snow and cloud periods and problems with tower-based flux measure-
ments at the Tazaghart site, and cloudy scenes over the Tahanaout site,
the modeled fluxes could be compared to measurements on 11 and 31
dates respectively. TSEB-PT estimates are assessed in two cases by using
the 30 m resolution spatialized meteorological data (so-called Topo+
case) and the 9 km resolution ERA5-Land meteorological data (so-called
Topo- case) as input to the ET model. Such a comparison allows for
evaluating the impact of the spatial resolution of meteorological input
data and their associated uncertainty to TSEB-PT flux estimates. The
scatterplots of modeled versus measured fluxes for both cases are shown
in Fig. 4.

At the Tazaghart site, the inclusion of topography leads to significant
improvements in model performance, as shown by the drop in RMSE
values for all flux components. In particular, Rn, LE, and H experience
substantial reductions in RMSE, with values falling from 165 to 38 W/
m2 for Rn, from 100 to 50 W/m2 for LE, and from 227 to 60 W/m2 for H.

The R values also indicate a better match between modeled and
observed fluxes when topography is taken into account. Particularly, the
R between simulated and observed H increases from 0.22 to 0.51.
Furthermore, when using meteorological data at 30 m resolution as
input to TSEB-PT, the bias between simulated and observed fluxes is
much reduced, with values of − 26, − 18 and 2 W/m2 for Rn, LE and H,
respectively.

TSEB-PT is run with low-resolution meteorological inputs yields a
tendency to underestimate Rn (bias of − 161 W/m2) despite the good
correlation (R = 0.92). This underestimation seems to directly affect H
(R= 0.22 and bias = − 218 W/m2) more than LE (R= 0.74 and bias = 84
W/m2). This can be attributed to two key factors. Firstly, at low spatial
resolution, the assumption of uniformity in mountainous regions results
in a consistent underestimation of Rg mostly due to sub-grid shadowed
slopes. Secondly, due to the elevated position of the site, the local Ta
falls below the average value (an elevation difference of 1533 m).
Regarding G, between the two runs (Topo +and Topo-), it exhibits a
decreased bias of − 15 W/m2 and quite similar R and RMSE values, with
R (RMSE) values of 0.78 (24 W/m2) and 0.79 (30 W/m− 2) respectively.

On the relatively flat Tahanaout piedmont area, TSEB-PT simulated
fluxes are less affected by topography. Nonetheless, significant im-
provements can still be observed by using 30 m resolution (instead of 9
km resolution) meteorological data as input. These improvements are
visible for LE and H, as reflected by the increased R values by 0.24 and
0.11, as well as by the reduced RMSE values by 29 and 31 W/m2

respectively. The absolute bias is also improved for both LE (from − 19 to
9 W/m2) and H (from 23 to − 7 W/m2). Between the two runs, it can be
observed that Rn experiences minimal variations, which is evident from
the consistent metrics obtained. Comparatively, G also exhibits a level of
stability, attributable to the intrinsic relationship between the two var-
iables. Specifically, when high-resolution inputs are considered, the
values of R, RMSE, and bias for Rn are found to be 0.93, 53 W/m2, and 8
W/m2 respectively, while for G, they are 0.60, 8 W/m2, and 7 W/m2

respectively.
Overall, compared to Tazaghart, the absence of complex topography

and substantial elevation gradients in Tahanaout surroundings results in
less significant changes between Topo+ and Topo- cases. The relative
difference of elevation between the site and corresponding ERA5-Land
pixel elevations is approximately 11 % with a standard deviation of
80 m within the 9 km pixel. It turns out that averaged Rg and ERA5-Land
Ta at 9 km spatial resolution closely match the local measurements at
this foothill site, which explains the smaller differences in ET estimates
between the two runs.

4.3. Evaluation of EF-based flux estimates

4.3.1. Assessment of LST topographic normalization
Normalizing LST for topographic effects is a prerequisite for applying

the EF-based ET model. Since the normalization procedure is based on
an EB to simulate LST in a range of meteorological conditions (in
particular a range of Rg and Ta values), a first assessment of the LST

Table 3
Performance metrics of TSEB-PT flux estimates at the Tazaghart and Tahanaout EC sites for input meteorological data at 30 m (Topo+), and at 9 km (Topo-) resolution
(shown in parentheses).

Rn G LE H

Tazaghart
sitea

RMSE(W/m2) 38 (165) 23 (41) 50 (100) 60 (227)
Bias (W/m2) − 26 (− 161) − 10 (− 26) − 18 (84) 2 (− 218)

R (− ) 0.95 (0.92) 0.78 (0.76) 0.63 (0.74) 0.51 (0.22)
Tahanaout

siteb
RMSE(W/m2) 53 (55) 8 (8) 70 (99) 44 (75)
Bias (W/m2) 8 (10) 7 (7) 9 (− 19) − 7 (23)

R (− ) 0.93 (0.92) 0.6 (0.64) 0.81 (0.57) 0.78 (0.67)

a EC Tazaghart was installed in September 2020, with two major shutdowns due to high winds in the springs of 2021 and 2022. Local validation dates correspond to
snow and cloud-free periods in the summers of 2021 (4 dates) and 2022 (7 dates).

b EC Tahanaout was dismantled in May 2022. All cloud-free dates from September 2020 to April 2022 were used for validation: 5 dates in 2020, 16 dates in 2021, and
9 dates in 2022. More details can be found in Fig. 6.
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Fig. 4. Scatterplots of TSEB-PT simulated fluxes versus in situ measurements at Tazaghart (top row) and Tahanaout (bottom row) EC sites for the Topo+ (left
column, using 30 m resolution meteorological data as input) and Topo- (right column, using 9 km resolution meteorological data as input) cases separately.
Regression lines match the colors of their corresponding fluxes.

Fig. 5. Scatterplots of EB-simulated versus Landsat LST over the study area for three selected dates separately. Red colour indicates higher density of points, and
white colour lower density. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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normalization step is proposed by comparing the EB-simulated to the
Landsat LST.

Fig. 5 shows scatterplots of simulated versus Landsat LST for three
dates selected for their contrasted conditions: July 14, 2021 (hot dry
date in summer), March 19, 2022 (wet date in growing season) and
October 15, 2020 (intermediate date). The scatterplots show satisfying
results, and the consistency between the three selected dates reflects a
certain robustness of the EB inversion technique. The EB-based inversion
model reproduced the spatial patterns of the observed Landsat LST with
an R greater than 0.9 for these three dates, and RMSE values of 2.7 ◦C,
2.8 ◦C and 2.0 ◦C for the intermediate, dry, and wet dates, respectively.
The chart of Fig. 6 details the obtained R and RMSE values between the
EB-based inverted and Landsat LST for all Landsat overpass dates
separately. Note that a considerable number of pixels were contami-
nated by clouds and cloud shadows on several October dates from 2020
to 2022. This could explain why the results are slightly poorer in October
for each year than during the remaining period. The mean R and RMSE
for all dates are 0.89 and 2.8 ◦C, respectively. Note that all biases are
canceled out as a result of the calibration procedure of the normalization
model using Landsat LST observations (i.e., the minimization of the
RMSE during the inversion of fss and fsv parameters).

The effectiveness of the normalization procedure in reducing topo-
graphic effects on LST data is illustrated in Fig. 7. When looking at the
LST images before and after normalization in Fig. 7, one observes that
the elevated parts of the study area show a significant increase in LST
with the topographic correction. Additionally, a significant contrast in
LST still remains after normalization. These variations can be attributed
to the diversity of vegetation and soil moisture conditions in the riparian
zones along the Rheraya river, the agricultural zones located down-
stream, and the cedar forest that crosses from east to west.

Examination of the LST-VI feature space after topographic normali-
zation, as illustrated by the scatterplots in Fig. 7, reveals a distribution
that closely reflects typical patterns observed in flat regions (Stefan
et al., 2015). Notably, the topographic normalization method consid-
erably reduced the presence of pixels located outside the LST-VI (prior to
topographic normalization) polygon constructed using the four EB-
simulated temperature endmembers (Ts, dry; Tv, dry; Ts, wet; and Tv, wet),
specifically those above or below the boundaries defined by the dry and
wet edges estimated by the EB model. This result is particularly note-
worthy for pixels close to the wet edge, where distortions caused by low
values of fc and LST can occur, as shown in the scatters presented in
Fig. 7.

Before applying the contextual formula (eq. 3) to estimate EF for any
point in the LST-VI feature space, the determination of the dry edge is
further consolidated by using Tang et al. (2010) approach. For

illustration, Fig. 8 plots the normalized LST-VI feature spaces overlaid
with the dry edge simulated by the EB model and estimated by Tang
et al. (2010) technique. An interesting feature is that simulated and
observed dry edges are quasi parallel for the three dates (and overlap in
the scatterplot on the right), which is an indicator of the consistency
between the two approaches.

4.3.2. Evaluation of LST-VI flux estimates
The performance metrics of the LST-VI ET model are shown in

Table 4. The four simulated fluxes (Rn, G, LE, and H) are compared to in-
situ measurements at Tahanaout and Tazaghart EC sites. The compari-
son is conducted for three input cases: 1) using topographically
normalized LSTnorm and high-resolution (30 m) meteorological data
(Topo+ case), 2) using Landsat LST and high-resolution (30 m) data
(intermediate case), and 3) using Landsat LST and low-resolution (9 km)
data (topo- case). Such a comparison allows for evaluating the impact of
the normalization procedure and high-resolution meteorological forcing
on LST data to LST-VI flux estimates. The scatterplots of modeled versus
measured fluxes for the three cases are shown in Fig. 9.

The Tazaghart site is a convincing example of the effectiveness of LST
topographic normalization. When the traditional LST-VI model is
applied directly, as is generally the case over flat regions, it leads to an
overestimation of LE even when using high-resolution meteorological
data as input. This overestimation can be attributed to the unique
characteristics of the location of this very high site, where LST tends to
be colder, and therefore, when not normalized it stands further from the
dry edge. Consequently, the increased distance from the dry edge leads
to higher EF values, ultimately resulting in an overestimation of LE (as
evidenced by a bias of 100 W/m2), and an underestimation of H (bias of
− 116 W/m2). Before normalization, both the simulated LE and H show
large RMSE values for the Intermediate case (109 and 125 W/m2,
respectively). After normalization, results are much improved for LE
(and H) with an RMSE of 45 W/m2 (54 W/m2), a bias of 13 W/m2 (− 24
W/m2), and an increase in R (by 0.16) in case of H.

As the same Rn (and G) values were used for LE and H estimation in
both Topo+ and Intermediate cases (high-resolution meteorological
forcing), their metrics remain consistent with an RMSE of 38 W/m2

(− 23 W/m2), an R of 0.95 (0.78) and a bias of − 25 W/m2 (− 12 W/m2),
respectively. As to the Topo- run, a large bias is introduced in Rn (− 161
W/m2) which seems to affect H (− 193 W/m2) and brings down LE’s bias
from 100 W/m2 to 58 W/m2 in comparison to intermediate run. RMSE
and R values are 165 W/m2 and 0.92 for Rn, 73 W/m2 and 0.77 for LE,
and 197 W/m2 and 0.66 for H. The metrics for G are slightly degraded
(RMSE = 41 W/m2, bias = − 26 W/m2, and R= 0.76) which is attributed
to the relatively smaller magnitude of G when compared with other

Fig. 6. RMSE and R between simulated and Landsat LST over the study area for each Landsat overpass date separately. Numerical values of RMSE and R are shown
inside bars in black colour, and next to scatter points in red colour, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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fluxes.
The improved performance of the LST-VI ET model after LST

normalization is also illustrated at the Tahanaout site although to a
much lesser extent. The bias values between simulated and measured LE
and H are − 3 and 1 W/m2, respectively, which are slightly better than
the values of − 10 and 8 W/m2 for the Intermediate case and − 31 W/m2

and − 12 W/m2 when switching to Topo- configuration. Similarly, the
RMSE values are slightly reduced for LE going from 62 to 56 and then to
52 W/m2, and for H, dropping from 50 to 49 and finally to 48 W/m2

across the three runs (Topo-, Intermediate, and Topo+). Additionally,
switching from Topo+ to Topo- runs, no significant changes are
observed in R values for LE (0.77 against 0.78 and 0.77) and H (0.81
against 0.79 and 0.77).

For Topo+ and Intermediate cases, the metrics for Rn (RMSE = 53
W/m2, R = 0.93, and bias = 28 W/m2) and G (RMSE = 30 W/m2, R =

0.56, and bias = 30 W/m2) showed good and moderate match to mea-
surements, respectively. The use of low-resolution meteorological inputs
(Topo-) resulted in no significant changes. The only noticeable change

was a slight underestimation in Rn, which shifted from a bias value of 28
to − 15 W/m2. As was clarified earlier, the gentle slopes and the negli-
gible elevation difference between the foothill site’s location and cor-
responding ERA5-land’s pixel explains the small differences in Rn (and
eventually G) estimates for all runs.

In contrast to the Tazaghart site, overall, the model run with non-
normalized LST data at the Tahanaout site results in no significant
change. This is attributed to the same reason as that highlighted when
using the TSEB-PT model and can be analyzed from two points of view:
1) whether LST underwent normalization process or it was used in its
original form, and 2) the fineness of resolution (high or low) of the
meteorological forcing data. On one hand, the LST normalization for the
meteorological effects induced by topography brings minimal changes
to LST at Tahanaout being a foothill site. Additionally, given the trian-
gular shape of the feature space formed by the wet and dry edge, which
narrows at higher fc values, one would anticipate closely aligned EF
values when using normalized and original Landsat LST. On another
hand, the slight slopes and minimal difference between foothill site and

Fig. 7. LST maps (top) and LST-VI feature spaces (bottom) before (left) and after (right) normalization for topographic effects on three Landsat overpass dates
separately. Black lines represent the elevation contour. Red quadrilaterals vertices represent the temperature endmembers (Tv,dryEB , Tv,wetEB , Ts,dryEB , and Ts,wetEB )
simulated by the EB model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Normalized LST-VI feature spaces overlaid with the wet edge simulated by the EB model (blue line), the dry edge simulated by the EB model (red line) and the
dry edge determined by Tang et al. (2010) method (orange dotted line). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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corresponding ERA5-land’s pixel elevations explain the minor differ-
ences in Rn (and consequently G) estimates between high- and low-
resolution runs.

4.4. Discussions

4.4.1. Quantitative comparison between EB- and EF-based ET models
At the Tazaghart site, the surface energy, used for determining H and

LE, is similarly calculated using both EF- and EB-based models. This
consistency arises due to the site’s pixel being processed as a single-
source surface in the EB-based model. Hence, neither surface anisot-
ropy nor bidirectional effects are considered during the retrieval of both
longwave and shortwave net radiation. For the Topo+ run, the resulting
metrics are: RMSE = 38 W/m2, bias = − 25 W/m2, and R = 0.95. For
Topo-, the values are: RMSE = 165 W/m2, bias = − 161 W/m2, and R =

0.92.
However, at the vegetated Tahanaout site, the TSEB-PT model con-

siders those effects and demonstrates a slightly lower absolute bias in Rn
than the LST-VI model (8 W/m2 against 28 W/m2 for Topo+ and 10 W/
m2 against − 15 W/m2 for Topo-). Despite this minor discrepancy, Rn
and G, whether used in the LST-VI approach or computed using the
TSEB-PT model, produce quite similar metrics across all runs at both
sites. The localized comparison in the following focuses on LE and H
fluxes.

Accounting for the influence of topography (the Topo+ case), TSEB-
PT model has an RMSE of 50 W/m2, a bias of − 18 W/m2, and an R of
0.63. In contrast, the LST-VI model shows a reduced RMSE (45 W/m2)
and a lower absolute bias (13 W/m2), while a marginally lower corre-
lation (0.60). For the H flux at the same site, the TSEB-PT model shows
an RMSE of 60 W/m2, a bias of 2 W/m2, and an R of 0.51. The LST-VI

Table 4
Performance metrics of LST-VI model at the Tazaghart and Tahanaout EC sites for Topo+ run (LSTnorm and input meteorological data at 30 m), intermediate run
(Landsat LST and input meteorological data at 30 m), and Topo- run (Landsat LST and input meteorological data at 9 km). Table values are represented as: Topo+
(intermediate, Topo-).

Rn G LE H

Tazaghart
Sitea

RMSE(W/m2) 38 (38, 165) 23 (23, 41) 45 (109, 73) 54 (125, 197)
Bias (W/m2) − 25 (− 25, − 161) − 10 (− 10, − 26) 13 (100, 58) − 24 (− 116, − 193)
R (− ) 0.95 (0.95, 0.92) 0.78 (0.78, 0.76) 0.60 (0.62, 0.63) 0.65 (0.49, 0.59)

Tahanaout
sitea

RMSE(W/m2) 53 (53, 52) 30 (30, 29) 52 (56, 62) 48 (49, 50)
Bias (W/m2) 28 (28, − 15) 30 (30, 28) − 3 (− 10,− 31) 1 (8, − 12)
R (− ) 0.93 (0.93, 0.92) 0.56 (0.56, 0.57) 0.77 (0.78, 0.77) 0.81 (0.79, 0.66)

a the validation dates align with those detailed in Table 3.

Fig. 9. Scatterplots of LST-VI simulated fluxes versus in situ measurements at Tazaghart (top row) and Tahanaout (bottom row) EC sites for the Topo+ (left column,
using the normalized LSTnorm data and high-resolution meteorological data as input), Intermediate (middle, using the original LST data and high-resolution
meteorological data as input) and Topo- (right column, using the original LST data and low-resolution meteorological data as input) cases separately.
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model performs slightly better in terms of RMSE (54 W/m2) and R (0.65)
but shows a larger negative bias (− 24 W/m2). At the Tahanaout site, the
TSEB-PT model for the LE flux has an RMSE of 70 W/m2, a bias of 9 W/
m2, and an R of 0.81. In contrast, the LST-VI model again exhibits a
lower RMSE (52 W/m2) and a lower bias (− 3 W/m2), but with a slightly
lower correlation (0.77). For the H flux, the TSEB-PT model reports an
RMSE of 44 W/m2, a bias of − 7 W/m2, and an R of 0.78. Comparatively,
the LST-VI model shows a slight increase in RMSE (48 W/m2), a positive
bias (1 W/m2), and a slight improvement in R (0.81).

When examining the metrics for the Topo- case, the comparison
between the TSEB-PT and LST-VI models offers some key insights on
their sensitivity. At the elevated Tazaghart site, the TSEB-PT estimated
LE flux shows an RMSE of 100 W/m2 and a bias of 84 W/m2, with an R of
0.75. In contrast, the LST-VI model yields better accuracy, with a lower
RMSE of 73 W/m2 and a smaller bias of 58 W/m2, albeit a lower R value
of 0.63. As for the H flux at the Tazaghart site, the TSEB-PT model’s
RMSE and bias, at 227 W/m2 and − 218 W/m2 respectively, are larger in
absolute value than the LST-VI model’s corresponding values of 197 W/
m2 (RMSE) and − 193 W/m2 (bias). Moreover, the LST-VI model ex-
hibits a stronger correlation between predicted and observed values,
with an R value of 0.59 versus the TSEB-PT model’s R value of 0.22.

Switching to the foothill site of Tahanaout, when evaluating the LE
flux, the TSEB-PT model in comparison to the LST-VI approach, exhibits
a larger RMSE (99 against 62 W/m2) and a lower correlation (0.57
against 0.77). Although the TSEB-PT model shows a smaller bias (− 19
W/m2 versus − 31 W/m2), suggesting less underestimation, the LST-VI
model’s lower RMSE and R value closer to 1 suggest a better overall
predictive performance for LE flux at this site. When assessing H flux at
the Tahanaout site, the TSEB-PT model provides reasonable results with
an RMSE of 75 W/m2, an R value of 0.67, and a bias of 23 W/m2.
However, the LST-VI model delivers slightly better performance metrics,
with an RMSE of 50 W/m2, an R value of 0.77, and a bias of − 12 W/m2.

In essence, following the above evaluation of TSEB-PT and LST-VI,
both models demonstrate closely matched performance metrics across
the two distinct EC sites when considering the influence of topography.
Notwithstanding the similarities, the LST-VI model generally shows
slight improvements in terms of RMSE and absolute bias values for both
sites and both turbulent fluxes. However, the R values are mixed, in
some cases, the TSEB-PT model shows better R values, indicating a
better fit to the observed data. Furthermore, when focusing on the Topo-
case, the LST-VI model also tends to outperform the TSEB-PT, providing
less deviated predictions for both LE and H fluxes across both EC sites, as
evidenced by their comparative metrics. The overall slightly superior
performance of the LST-VI model can be credited to the process of
topographic normalization of LST, coupled with its relatively simpler
requirements for input variables and parameters. Compared to the
TSEB-PT model, this simplicity makes the LST-VI model less susceptible
to uncertainties that are tied to these inputs.

4.4.2. Assessment of the spatial distributions of LE and EF estimates
The spatial differences and similarities in the LE and EF simulated by

both models are qualitatively examined over the entire study area.
Fig. 10 presents for the three dates selected for their contrasted overall
conditions (wet on 10/15/2020, dry on 07/14/2021 and intermediate
on 03/19/2022) the maps of instantaneous LE estimated by taking into
account topography (Topo+ case) using TSEB-PT and LST-VI models
separately. The maps of NDVI and Rg on those dates are also shown for
analyses purposes.

At the scale of the study area, the spatial distribution of LE looks
relatively similar for both models. The apparent alignment is particu-
larly true on wet and intermediate dates, but it is less prominent on the
dry date. At a finer scale upon closer inspection, there are disparities
between the results of the models even on wet and intermediate dates.
These differences are most apparent in steeply sloping areas, where
there is a clear contrast in slope on either side of the ridges found in the
higher parts of the area. The divergence in results between the two

models probably stems from their unique approaches to managing and
correcting terrain topography.

For a more quantitative analysis, the scatterplots between TSEB-PT
and LST-VI simulated LE are showcased in Fig. 11 over the entire
study area (roughly 1 million pixels) for the three selected dates sepa-
rately. The clustering of data points, along with the resulting metrics,
further confirms the observations discerned from the maps. High cor-
relation (0.88 and 0.85), and a low mean difference (− 14 and 17 W/m2)
between the LE simulated by both models are obtained for the wet and
intermediate dates respectively. The same metrics are degraded for the
dry date with a correlation and mean difference of 0.74 and 70 W/m2,
respectively.

Two hypotheses could explain the larger difference between TSEB-
PT and LST-VI LE estimates on the dry date. On one hand, it is well
known that uniformly low soil moisture makes it particularly difficult to
identify the actual wet edge. Although our study area is large enough to
encompass a wide range of pixels with varying soil moisture and frac-
tional vegetation cover, the contextual ET approach is potentially biased
under drought conditions (Long and Singh, 2012; Long et al., 2012; de
Tomás et al., 2014; Chen and Liu, 2020).

On the other hand, when using EB-based ET models in drought
conditions, considerations need to be made regarding the level of water
stress by adjusting the excess aerodynamic resistance to heat transfer
relative to momentum transfer (kB− 1 parameter). Research, such as that
by Gokmen et al. (2012), underscores a progressive reduction in kB− 1 as
water stress levels intensify. However, in our approach, we did not
adjust kB− 1 values based on intensifying water stress levels. Instead, we
set average values that provided the most favorable outcomes, such as a
value of 2 for the bare soil class. This decision is further complicated by
the fact that literature presents a lack of consensus regarding the optimal
values for this coefficient, with a diverse range of values being reported
(e.g., Kustas et al., 1989; Troufleau et al., 1997; Verhoef et al., 1997; and
Yang et al., 2008).

To further assess the spatial distribution of the LE simulated by TSEB-
PT and LST-VI approaches, an additional analysis is carried out by
examining the contrast between east- and west-facing slopes. The
rationale for focusing on the east-west gradient, as opposed to the north-
south for instance, lies in the assumption that soil moisture (and
therefore EF) can be considered relatively uniform. If the correction for
topography in TSEB-PT and LST-VI ET approaches was efficient, then the
distribution of the EF simulated in east- and west-facing slopes should be
rather similar. Note that over the course of a day, the amount of radi-
ation received on the east and west slopes is nearly identical. But at the
time (around 11 am) of Landsat overpass, Rg is expected to be larger on
east- than on west-facing slopes. Consequently, at constant EF, the
simulated LE should be larger in east- than in west-facing slopes. This is
why the east-west gradient of EF (instead of the east-west gradient of LE)
is used here as an indicator of the performance of ET modeling ap-
proaches in the mountains.

The aspect of the terrain makes it possible to extract and separate the
pixels (and their associated Rg, LE, EF values) in east- and west-facing
slopes. By setting an altitude threshold at 1600 m.a.s.l., it becomes
possible to pinpoint areas that not only manifest distinct directional
characteristics but also present marked steepness.

Fig. 12 showcases the spatial distribution of Rg and of the EF and LE
simulated by TSEB-PT and LST-VI separately. The observed disparity of
Rg distributions in the east- and west-facing slopes is in line with ex-
pectations. Given that the satellite overpass occurs at around 11 am, the
land to the east naturally receives more energy with an average differ-
ence of 487 W/m2.

When looking at EF distributions in Fig. 12, the TSEB-PT model
provides asymmetrical distributions in east- and west-facing slopes. The
dominant value across all dates for land to the west is zero. This is
especially noticeable on the dry date, when zero LE is reached by 60 % of
the pixels. In contrast, the LST-VI model appears to perform more uni-
formly as the EF distributions in east- and west-facing slopes are very
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Fig. 10. Maps of NDVI (Left column), modeled Rg (central left column), and modeled LE simulated by TSEB-PT (central right column) and LST-VI models (right
column) are shown for each of the three selected dates (rows 1–3).
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consistent. Although no spatially distributed soil moisture (or flux)
measurements were available to assess the actual variability of EF in
east- and west-facing slopes, the results indicate that the LST-VI ET
modeling approach effectively corrects for topographic effects regard-
less of Rg. Supporting this analysis with quantitative metrics, the EF
contrast for east versus west is consistent at an absolute value of 0.01
across all dates for the contextual method. Comparatively, the EF
contrast for TSEB-PT varied with wetness/dryness conditions: 0.20, 0.14
and 0.23 for wet, dry, and intermediate conditions, respectively
(average contrast of 0.19).

When looking at the LE distributions in Fig. 12, the LE contrast be-
tween east and west for TSEB-PT model is 205, 107, and 173 W/m2, for
the wet, dry, and intermediate date respectively. Comparatively, the
LST-VI model reports LE contrasts of 156, 79, and 153 W/m2 for the
same dates respectively. Differences in LE estimates between east- and
west-facing slopes are more difficult to interpret than differences in EF
estimates, because LE depends on both Rg and EF. However, the lower
east-west LE gradient observed for LST-VI than for TSEB-PT model is due
to the lower EF gradient observed for LST-VI model.

4.4.3. Sensitivity analysis results
In sensitivity analysis, a typical input variation range of ±10 % (k =

10) is often assumed. However, this assumption may not accurately
reflect the uncertainty for certain inputs and could be overly conserva-
tive for others, especially in mountainous regions where topography
significantly influences the spatial distribution of these inputs. To ac-
count for the pronounced effects of elevation and sun exposure, the
variations in LST and Ta are adjusted up to ±15 % (in degrees Celsius),
corresponding to potential ranges of ±0.5 ◦C to ±6.3 ◦C for LST and ±

1.7 ◦C to ±5.1 ◦C for Ta at fluxes stations. For Rg, the commonly
assumed ±5 % variation (e.g., Sánchez et al., 2008) is unrealistic for
mountainous areas. Consequently, Rg is varied by up to ±25 %, corre-
sponding to ranges of ±21 W/m2 to ±243 W/m2. The same adjustment
percentage is applied to perturb Ws and Rh, with potential variations of
±0.05 m/s to ±2 m/s for Ws and ± 2.5 % to ±17.5 % for Rh.

A list of the input variables, as well as their assigned uncertainties
and resulting Sp by site, are provided in Table 5. Average Sp values
greater than 20 % are denoted in bold to indicate parameters that have a
significant effect on LE retrieval. Accompanying Table 5, tornado charts
that visually depict the percent change in simulated LE in response to a
± k% change in each input variable are featured in Fig. 13.

Interestingly, Ws shows a small influence on LE at Tahanaout, but its
effect becomes more significant at Tazaghart, likely due to stronger
winds at higher altitudes. Changes in Ws up to ±25 % result in LE

changes of up to 34 % at Tazaghart, making it more influential than Ta at
this site. In contrast, Rh remains insignificant at both sites, showing
minimal sensitivity values and negligible changes in LE.

In contrast, for the LST_VI model, Rg emerges as the most critical
input affecting LE at both sites, (although to a lesser extent compared to
TSEB_PT), indicating that solar exposure significantly impacts LE esti-
mates in the LST_VI model. At Tahanaout, Sp values for Rg reach 0.68 at
±25 %, resulting in LE changes of up to 36 %. At Tazaghart, the sensi-
tivity to Rg is higher, with an Sp value of 0.91 at ±25 %, leading to LE
changes of up to 49 %. Only larger perturbations (greater than ±12.5 %)
in LST and Ta begin to affect LE significantly. Ws and Rh have minimal
impact on LE estimates at both sites, and Rh shows negligible effects. To
avoid confusion, please note that the LST-VI does not require Ws or Rh as
direct inputs. Instead, these variables are indirectly used in the LST
normalization process, which then serves as input for the contextual
model.

The overall reduced sensitivity observed in the LST_VI model can be
attributed to three main factors: 1) the contextual approach is known for
requiring fewer inputs compared to physically based models, 2) esti-
mations of EF and Rn are independent from each other by this method,
and 3) the reduced sensitivity of the LST normalization process. In fact,
although LST normalization utilizes a dual-source energy balance LST
inversion and relies on the same meteorological forcing as TSEB_PT,
Newton’s iterative process significantly reduces errors between the
inverted LST and observed Landsat LST. This effectively minimizes the
impact of uncertainties in the inputs on LST normalization, thereby
reducing errors in EF retrieval. Conclusively, the sensitivity of the
LST_VI model is primarily related to perturbations in Rn components,
which are functions of Rg, Ta, and LST, with Rg being the dominant
factor under clear-sky conditions in a semi-arid climate.

Finally, it has been demonstrated that Rg, LST, and, to a lesser extent,
Ws significantly impact LE retrieval using the TSEB_PT model at higher
elevations. The LST_VI model, which is also sensitive to Rg but corrects
for topographic effects and uses normalized LST instead of observed
Landsat LST, maintains uniform EF estimates. This suggests that the
variability in EF between east- and west-facing slopes observed in the
TSEB_PT model is primarily due to its sensitivity to LST variations and
secondarily to Ws. Notably, as mentioned earlier, Ws is not a direct input
to the LST_VI model and is the only meteorological variable that was
resampled in this study.

4.4.4. Additional remarks on spatialization capabilities of EB- and EF-
based modeling approaches in mountains

TSEB-PT is known for being highly sensitive to the considerable

Fig. 11. Density scatterplots of LST-VI versus TSEB-PT modeled LE for the three selected dates separately. The red. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
dashed line represents the (1,1) line. The colour gradient represents the density of points, where a shift towards red means a higher point density, while a transition
towards blue indicates a lower point density.
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Fig. 12. Distribution of Rg (top panel), LE (central panel), and EF (bottom panel) across the dry, wet, and intermediate conditions of the three selected dates (shown
in rows 1–3 for each panel). Results from the TSEB-PT model are presented in the left column, juxtaposed with those from the LST-VI model in the right column.
Eastern slopes are differentiated in green, while western ones in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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number of high-resolution inputs each having their own uncertainties.
The land-cover data required to characterize the canopy structure and
surface aerodynamic properties (Raupach, 1994; Kustas et al., 1994;
Kustas and Norman, 2000) is based on the static CGLS land cover map at
global scale (Table 2). Despite the reduced spatial resolution between
the Landsat data and the CGLS map (30 m and 100 m, respectively), and
the fact that the CGLS map is reclassified and updated for each satellite
pass, a closer examination revealed several inconsistencies. In particular
discrepancies were found between the land cover type flagged by the
map and the actual type at the elevated parts as well as the foothills in
the study. For instance, the CGLS map flagged large fields as cropland,
thus a maximum height of 1.2 m, but actually those fields are trees of 3
to 4 m tall regularly spaced by about 3 m. Another example, in the ri-
parian part of the steep-sided valleys, trees with understory apparent
crops on very high-resolution imagery were flagged as closed evergreen
broadleaf trees and assumed not to be clumped. In addition, the pre-
scribed values that were assigned in Table 2 are very general, as they are
trying to fit a global-based land cover legend. Therefore, they can
significantly deviate from the pixel’s actual values. However, the LST-VI
method doesn’t rely on these input parameters, which makes it insen-
sitive to the potential inaccuracies they might introduce.

While every effort is made in this study to ensure precision in spa-
tializing meteorological forcing through various processes like
modeling, disaggregation, and resampling, it inevitably introduces
added uncertainty to the TSEB-PT modeled ET.

5. Summary and conclusion

Mountains, often termed ‘water towers’, are pivotal for hydrological
studies. However, using thermal infrared data to estimate ET in such
terrains remains largely unexplored. In the rugged terrain of the High
Atlas mountain range in Morocco, we adapted, rigorously evaluated,
and intercompared two thermal-based ET models: the EB-based TSEB-PT
model and an EF-based model using the LST-VI feature space. The TSEB-

PT model requires the spatialization of meteorological data and input
parameters at the thermal sensor’s resolution. In contrast, the LST-VI
model necessitates prior normalization of LST data to account for
topography-induced variability in meteorological forcings before esti-
mating EF and ET. Using 30 m resolution LST data derived from the
Landsat constellation (C2L2 resampled product) and spatialized mete-
orological products (Rg, Ta, Rh, and Ws), we focused our assessments on
two EC sites: Tahanaout, an agricultural foothill site, and Tazaghart,
located near North Africa’s highest summit.

Key findings from this study can be concisely summarized as follows:

(i). Energy fluxes from both models demonstrate substantial agree-
ment with measurements. In terms of LE, the TSEB-PT model
provided an RMSE of 50 W/m2 at the elevated site and 70 W/m2

at the piedmont site. Concurrently, the normalized LST-VI model
achieved an RMSE of 45 W/m2 and 52 W/m2 at the respective
sites.

(ii). When accounting for topographic effects, there was a significant
reduction in the uncertainty of ET retrievals at the elevated site,
with a 50 % and 59 % reduction in RMSE for TSEB-PT and LST-VI
model respectively. Conversely, at the piedmont site, despite its
gentler topography, the uncertainties in retrieved ET were still
notably reduced, showing a 29 % and 16 % reduction in RMSE for
TSEB-PT and LST-VI model respectively.

(iii). Normalizing LST data for topographical effects enabled the LST-
VI approach to operate effectively in mountainous terrains but
also to achieve an accuracy in ET estimates that marginally sur-
passed that achieved by TSEB-PT.

(iv). Spatial analysis showed general agreement between the two
models in the distribution of LE under varying soil moisture
conditions within the study area. However, in regions with steep
slopes, minor spatial discrepancies were observed. In particular,
the distributions of EF simulated by LST-VI model are quite
consistent on east- and west-facing slopes with an average

Table 5
The overall relative sensitivity, Sp, of the TSEB_PT and LST-VI models to the uncertainties in the required inputs for estimating LE at the Tazaghart and Tahanaout sites.

Altered input % change TSEB_PT LST_VI

Tahanaout site Tazaghart site Tahanaout site Tazaghart site

LST

± 5 % 0.34 0.66 0.05 0.08
± 7.5 % 0.52 0.92 0.08 0.14
± 10 % 0.67 1.18 0.12 0.20
± 12.5 % 0.80 1.44 0.15 0.26
± 15 % 0.91 1.66 0.19 0.33

Ta

± 5 % 0.28 0.17 0.05 0.06
± 7.5 % 0.43 0.26 0.08 0.11
± 10 % 0.57 0.35 0.12 0.16
± 12.5 % 0.71 0.43 0.15 0.21
± 15 % 0.83 0.52 0.19 0.26

Rg

± 5 % 0.21 0.45 0.14 0.18
± 10 % 0.42 0.76 0.27 0.36
± 15 % 0.63 1.14 0.41 0.54
± 20 % 0.85 1.21 0.55 0.72
± 25 % 1.04 1.34 0.68 0.91

Ws

± 5 % 0.03 0.15 0.01 0.02
± 10 % 0.07 0.31 0.02 0.05
± 15 % 0.11 0.45 0.03 0.07
± 20 % 0.15 0.58 0.04 0.10
± 25 % 0.18 0.69 0.05 0.12

Rh

± 5 % 0.02 0 0 0
± 10 % 0.04 0 0 0
± 15 % 0.06 0.01 0.01 0.02
± 20 % 0.07 0.01 0.02 0.05
± 25 % 0.09 0.02 0.03 0.07

For the TSEB_PT model, errors in LST and Rg have the greatest influence on LE at both sites. At Tahanaout, Sp values reach 0.91 at ±15 % for LST and 1.04 at ±25 % for
Rg, corresponding to LE changes of up to 58 % and 57 %, respectively. Ta also significantly influences LE at Tahanaout, with an Sp value of 0.83 at ±15 %, corre-
sponding to an LE change of up to 51 %. At the elevated Tazaghart site, the sensitivity to LST and Rg becomes even more pronounced, with Sp values of 1.66 at ±15 %
for LST and 1.34 at ±25 % for Rg, resulting in LE changes of up to 101 % for LST and 67 % for Rg. In contrast, the influence of Ta decreases at Tazaghart, with an Sp
value of 0.52 at ±15 %.
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difference of 0.01, whereas this difference is significantly greater
(an average of 0.19) for the EF simulated by TSEB_PT. This tends
to indicate that the LST-VI-based approach is less sensitive to
uncertainties in fine-scale meteorological data – through the
normalization procedure of LST data for meteorological condi-
tions within the study area– than the EB-based model operating at
the pixel scale.

(v). Sensitivity analysis showed that the LST-VI model is less sensitive
to input perturbations compared to the TSEB-PT model due to

three main factors: the contextual approach requires fewer inputs
than physically-based models, EF and Rn estimations are inde-
pendent in the LST-VI model, and the LST normalization process
has reduced sensitivity. The variability in EF between east- and
west-facing slopes observed in the TSEB-PT model is mainly due
to its sensitivity to variations in LST and, to a lesser extent to Ws.

Knowledge of meteorological conditions at fine scale is essential for a
practical application of this methodology across extensive mountainous

Fig. 13. Percentage change in LE estimates by the TSEB_PT model (top row) and LST_VI model (bottom row) in response to artificially perturbed inputs, assumed to
reflect topography-induced variations. Results are presented for the Tahanaout site (left column) and the Tazaghart site (right column).

B.-e. Sebbar et al. Remote Sensing of Environment 315 (2024) 114481 

20 



terrains. Integration of advanced, computationally efficient versions of
radiative transfer models, such as the evolving DART model, will over-
come the limitations of empirical models and pave the way for enhanced
Rg estimates in topographically complex regions. Care must be taken
when using satellite-derived LST to drive EB-based models in areas with
steep slopes. Further research is especially needed to improve the spa-
tialization of Ws. This would require the development of high-resolution
3D Ws products or models that account for the mountains’ unique Ws
patterns (e.g., breezes, downslope winds, Foehn or Chinook winds …).
Caution is also advised when using C2L2 resampled 30 m resolution
TIRS data in highly heterogeneous sites, or the implementation of ap-
proaches at the native TIRS resolution should be considered to guar-
antee accuracy.

The limitations in the TSEB-PT model are mainly associated with the
accumulated uncertainties stemming from the substantial number of
variables and parameters required for its operation, and from the use of
meteorological data as input at the pixel scale. For instance, refining
resistance parameters could potentially improve heat flux estimation,
but is proving difficult in these mountainous regions, particularly for
areas with low vegetation cover on slopes. As to the LST-VI approach, it
is notably based on the principle that the extreme temperatures of
vegetation are representative of all vegetation types, whatever their
height. However, in reality, the maximum temperature of low vegeta-
tion subjected to maximum stress may be very different from that of high
vegetation subjected to similar stress conditions. Consequently, taking
these factors into account could improve the identification of the dry
edge and, ultimately, the estimation of EF and ET. As a significant
perspective, the methodology to implement thermal-based ET models at
high resolution in mountainous areas could be useful in the context of
upcoming global satellite missions such as TRISHNA (CNES/ISRO,
France, India) (Lagouarde et al., 2018), VanZyl-1 (Hydrosat, USA) (Lalli
et al., 2022), LSTM (ESA, Europe) (Koetz et al., 2018), and SBG (NASA,
USA) (Shreevastava et al., 2023). These upcoming missions will supply
thermal infrared data at high spatial (down to a dozen meters and
temporal (a frequency ranging from daily when combined to several
times per week) resolution. Such advances could herald a new era in the
use of thermal remote sensing to describe hydrological functioning in
these complex landscapes.
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Revue des Sciences de l’Eau 21 (3), 311–322. https://doi.org/10.7202/018777ar.

Chehbouni, A., Escadafal, R., Duchemin, B., Boulet, G., Simonneaux, V., Dedieu, G.,
et al., 2008. An integrated modelling and remote sensing approach for hydrological
study in arid and semi-arid regions: the SUDMED Programme. Int. J. Remote Sens.
29 (17–18), 5161–5181. https://doi.org/10.1080/01431160802036417.

Chen, J.M., Liu, J., 2020. Evolution of evapotranspiration models using thermal and
shortwave remote sensing data. Remote Sens. Environ. 237, 111594. https://doi.
org/10.1016/j.rse.2019.111594.

Chen, T., & Guestrin, C. (2015, August). Xgboost: Reliable large-scale tree boosting
system. In Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA (pp. 13-17). https://doi.org/10.1145/293967
2.2939785.

Chu, H., Luo, X., Ouyang, Z., Chan, W.S., Dengel, S., Biraud, S.C., et al., 2021.
Representativeness of Eddy-covariance flux footprints for areas surrounding
AmeriFlux sites. Agric. For. Meteorol. 301, 108350. https://doi.org/10.1016/j.
agrformet.2021.108350.

Clothier, B.E., Clawson, K.L., Pinter Jr., P.J., Moran, M.S., Reginato, R.J., Jackson, R.D.,
1986. Estimation of soil heat flux from net radiation during the growth of alfalfa.
Agric. For. Meteorol. 37 (4), 319–329. https://doi.org/10.1016/0168-1923(86)
90069-9.

de Tomás, A., Nieto, H., Guzinski, R., Salas, J., Sandholt, I., Berliner, P., 2014. Validation
and scale dependencies of the triangle method for the evaporative fraction
estimation over heterogeneous areas. Remote Sens. Environ. 152, 493–511. https://
doi.org/10.1016/j.rse.2014.06.028.

Evin, G., Le Lay, M., Fouchier, C., Penot, D., Colleoni, F., Mas, A., et al., 2024. Evaluation
of hydrological models on small mountainous catchments: impact of the
meteorological forcings. Hydrol. Earth Syst. Sci. 28 (1), 261–281. https://doi.org/
10.5194/hess-28-261-2024.

Firozjaei, M.K., Fathololoumi, S., Alavipanah, S.K., Kiavarz, M., Vaezi, A.R., Biswas, A.,
2020. A new approach for modeling near surface temperature lapse rate based on
normalized land surface temperature data. Remote Sens. Environ. 242, 111746.
https://doi.org/10.1016/j.rse.2020.111746.

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land–atmosphere
water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET
sites. Remote Sens. Environ. 112 (3), 901–919. https://doi.org/10.1016/j.
rse.2007.06.025.

Floors, R., Badger, M., Troen, I., Grogan, K., Permien, F.H., 2021. Satellite-based
estimation of roughness lengths and displacement heights for wind resource
modelling. Wind Energy Sci. 6 (6), 1379–1400. https://doi.org/10.5194/wes-6-
1379-2021.

Foken, T., Aubinet, M., Finnigan, J.J., Leclerc, M.Y., Mauder, M., Paw, U., K. T, 2011.
Results of a panel discussion about the energy balance closure correction for trace
gases. Bull. Am. Meteorol. Soc. 92 (4), ES13–ES18. https://doi.org/10.1175/
2011bams3130.1.

Franks, S., Storey, J., Rengarajan, R., 2020. The new landsat collection-2 digital elevation
model. Remote Sens. 12 (23), 3909. https://doi.org/10.3390/rs12233909.

Gao, Z.Q., Liu, C.S., Gao, W., Chang, N.B., 2011. A coupled remote sensing and the
surface energy balance with topography algorithm (SEBTA) to estimate actual
evapotranspiration over heterogeneous terrain. Hydrol. Earth Syst. Sci. 15 (1),
119–139. https://doi.org/10.5194/hess-15-119-2011.

Gastellu-Etchegorry, J.P., Martin, E., Gascon, F., 2004. DART: a 3D model for simulating
satellite images and studying surface radiation budget. Int. J. Remote Sens. 25 (1),
73–96. https://doi.org/10.1080/0143116031000115166.

Gillies, R.R., Kustas, W.P., Humes, K.S., 1997. A verification of the ‘triangle’ method for
obtaining surface soil water content and energy fluxes from remote measurements of
the normalized difference vegetation index (NDVI) and surface e. Int. J. Remote
Sens. 18 (15), 3145–3166. https://doi.org/10.1080/014311697217026.

Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., van der Tol, C., 2012.
Integration of soil moisture in SEBS for improving evapotranspiration estimation
under water stress conditions. Remote Sens. Environ. 121, 261–274. https://doi.org/
10.1016/j.rse.2012.02.003.

Goward, S.N., Cruickshanks, G.D., Hope, A.S., 1985. Observed relation between thermal
emission and reflected spectral radiance of a complex vegetated landscape. Remote
Sens. Environ. 18 (2), 137–146. https://doi.org/10.1016/0034-4257(85)90044-6.

Gutman, G., Ignatov, A., 1998. The derivation of the green vegetation fraction from
NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote
Sens. 19 (8), 1533–1543. https://doi.org/10.1080/014311698215333.

Guzinski, R., Nieto, H., 2019. Evaluating the feasibility of using Sentinel-2 and Sentinel-3
satellites for high-resolution evapotranspiration estimations. Remote Sens. Environ.
221, 157–172. https://doi.org/10.1016/j.rse.2018.11.019.

Guzinski, R., Anderson, M.C., Kustas, W.P., Nieto, H., Sandholt, I., 2013. Using a thermal-
based two source energy balance model with time-differencing to estimate surface
energy fluxes with day–night MODIS observations. Hydrol. Earth Syst. Sci. 17 (7),
2809–2825. https://doi.org/10.5194/hess-17-2809-2013.

Guzinski, R., Nieto, H., Sandholt, I., Karamitilios, G., 2020. Modelling high-resolution
actual evapotranspiration through Sentinel-2 and Sentinel-3 data fusion. Remote
Sens. 12 (9), 1433. https://doi.org/10.3390/rs12091433.
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