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Abstract 
Motivation: KaMRaT is designed for processing large k-mer count tables derived from multi-sample, RNA-seq data. Its primary objective is to 
identify condition-specific or differentially expressed sequences, regardless of gene or transcript annotation.
Results: KaMRaT is implemented in Cþþ. Major functions include scoring k-mers based on count statistics, merging overlapping k-mers into 
contigs and selecting k-mers based on their occurrence across specific samples.
Availability and implementation: Source code and documentation are available via https://github.com/Transipedia/KaMRaT.

1 Introduction
RNA-seq data analysis commonly involves comparison of se-
quence reads to a reference genome or transcriptome and quan-
tification of annotated genes or transcripts (Van den Berge et al. 
2019). While convenient, this approach ignores a wide range of 
variations present in the original sequence data. These varia-
tions may come from novel RNA isoforms, RNAs from repeats, 
intergenic regions and exogeneous species such as viruses, as 
well as from RNAs with small variations such as SNPs and 
indels. An emerging strategy to investigate all possible RNA var-
iations at once is to use k-mers. First, a k-mer counter (e.g. 
Marçais and Kingsford 2011, Lemane et al. 2022b) extracts 
and counts all successive substrings of length k from the raw se-
quence reads. Various pipelines use k-mer count tables to select 
biologically relevant k-mers, possibly combining k-mers into 
longer contigs (Audoux et al. 2017, Rahman et al. 2018, 
Lorenzi et al. 2020, Lemane et al. 2022a). However, pipelines 
are cumbersome and slow to run. We felt that a standalone pro-
gram performing common operations on k-mer count tables, 
such as k-mer selection and contig assembly would facilitate a 
greater diffusion of k-mer analysis among RNA-seq users. We 
thus developed KaMRaT (k-mer Matrix Reduction Toolkit), a 
lightweight and multi-functional toolkit implemented in Cþþ
for k-mer matrix analysis, filtering and contig assembly.

2 Program description
KaMRaT takes as input a k-mer count table generated by any 
k-mer counter with k-mers as the first column. Other types of 

features are allowed (for instance gene IDs, sequence contigs) 
for certain operations, as long as they are also provided as 
the first column of the table. The program is composed of six 
main modules (Fig. 1 and Supplementary Methods).

� index creates a binary index of the features and counts on 
disk. This allows subsequent modules to randomly access 
count vectors without parsing the whole table. 

� score scores and selects features based on univariate sta-
tistical tests, using categorical or numerical column labels 
provided as input. Available tests include T-test, signal- 
to-noise ratio (Golub et al. 1999), Detection of 
Imbalanced Differential Signal (DIDS) (de Ronde et al. 
2013), logistic regression accuracy, Bayes classifier accu-
racy, Pearson and Spearman correlation. Label-free tests 
are also available, including absolute and relative stan-
dard deviation and information entropy. 

� merge merges k-mers into contigs. By default, overlapping 
k-mers are iteratively merged until an ambiguity is met or 
no more k-mer satisfying a given minimum overlap length 
is available, similar to “unitigs” (Pevzner et al. 2004). An 
optional “intervention” mode uses correlation between 
count vectors to determine whether two k-mers or contigs 
with an acceptable overlap should be merged. 

� filter deletes or selects features based on counts and recur-
rence thresholds. 

� mask deletes or selects features matching given 
fasta sequences. 

� query estimates count vectors of an input list of sequences 
based on their constitutive k-mers. 
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3 Performance overview
We assessed KaMRaT on simulated and real datasets of up to 
150 RNA-seq samples. The index size is about 300 Gb for 
150 samples (Supplementary Fig. S1A), i.e. equivalent to 1/3 
of the original compressed fastq files. Once the index is cre-
ated, score operations run in linear time and memory, allow-
ing to process 420M k-mers or contigs in 85 min on a single 
processor with only 6 Gb RAM. The most ressource-intensive 
module, merge runs in log-linear time and can process 420M 
k-mers in about 3 h, using 80 Gb of RAM (Supplementary 
Fig. S1B). Note that large k-mer tables can be first processed 
with score so that only a subset of high scoring k-mers are fed 
to merge, thus considerably reducing the memory 
requirement.

A key contribution of KaMRaT is the intervention mode 
enabling a significant reduction of misassemblies when merg-
ing k-mers. Using k-mers from simulated reads or real RNA- 
seq reads from human tissues followed by T-test selection 
(Supplementary Material), the various intervention options 
changed 5%–25% of the output contigs compared to 
intervention-free k-mer extension (Supplementary Fig. S2A). 
Contigs produced using any of the intervention options were 
shorter but had higher rates of perfect alignment when 
aligned to reference transcripts (Supplementary Fig. S2B 
and C).

4 Applications
Typical KaMRaT applications are briefly presented below. 
Example workflows and a toy dataset are provided in supple-
mentary material and the KaMRaT github repository https:// 
github.com/Transipedia/KaMRaT/tree/master/toyroom. Although 
RNA-seq data are used in examples, the program can be applied 
to ChiP-seq or ribo-seq experiments as well.

4.1 Supervised feature selection
This is the first intended application of KaMRaT, typically 
achieved using an index-score-merge pipeline. K-mers of in-
terest (for instance differentially expressed) are selected using 
any of the supervised test provided in the score module, and 
selected k-mers are merged into contigs.

4.2 Unsupervised feature selection
KaMRaT score supports unsupervised feature selection using 
standard deviation and information entropy. These methods 

can help reduce a k-mer table dimension independently of the 
variable to be predicted, thus avoiding information leakage in 
machine learning applications.

4.3 Finding features correlated to another feature
KaMRaT score enables retrieving features that correlate with 
a quantitative target vector, such as time, a measure of drug 
effect or the expression of a given gene.

4.4 Retrieving condition-specific k-mers or contigs
KaMRaT filter can be used to identify features expressed ex-
clusively in samples from one condition. For instance, in a 
dataset with normal and tumor samples a KaMRaT index-fil-
ter-merge workflow can retrieve tumor-exclusive contigs.

5 Perspectives
KaMRaT offers a unique suite of tools for studying feature 
dimensionality and RNA variations. Three modules are piv-
otal: score, merge, and filter. KaMRaT score integrates cur-
rently 12 methods to reduce feature dimensionality in a 
supervised or unsupervised fashion, which should fit multiple 
research situations. KaMRaT merge builds on the concept of 
local k-mer extension (“unitigs”) to improve extension preci-
sion by leveraging count data. By our tests, intervention sig-
nificantly improved extension correctness. However, these 
contigs do not compare to those produced by a full-length 
transcript assembler in that they are interrupted whenever 
ambiguities occur in the graph, for instance when encounter-
ing an SNP. KaMRaT filter allows retrieval of condition- 
specific features, which can be useful for collecting all RNA 
variations that are specific to a given sample set.

Although designed primarily for k-mer matrices, the score 
and filter modules apply to any generic count matrix such as 
gene-/transcript-expression matrices. This enables building 
classifiers from reference-free features (k-mers, contigs) and 
reference-based features (genes, transcripts) in a consistent 
and comparable way.
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