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Conway-Bromage-Lyndon (CBL): an exact,
dynamic representation of k-mer sets
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In this paper, we introduce the Conway-Bromage-Lyndon
(CBL) structure, a compressed, dynamic and exact method for
representing k-mer sets. Originating from Conway and Bro-
mage’s concept, CBL innovatively employs the smallest cyclic
rotations of k-mers, akin to Lyndon words, to leverage lexico-
graphic redundancies. In order to support dynamic operations
and set operations, we propose a dynamic bit vector structure
that draws a parallel with Elias-Fano’s scheme. This struc-
ture is encapsulated in a Rust library, demonstrating a balanced
blend of construction efficiency, cache locality, and compression.
Our findings suggest that CBL outperforms existing dynamic k-
mer set methods. Unique to this work, CBL stands out as the
only known exact k-mer structure offering in-place set opera-
tions. Its different combined abilities position it as a flexible
Swiss knife structure for k-mer set management. Availability:
https://github.com/imartayan/CBL

k-mers | set | necklaces | data-structures

Correspondence: igor.martayan@univ-lille.fr, camille.marchet@univ-lille.fr

1: Introduction
Recent improvements in sequencing significantly advanced
assembly methods, which feed many downstream analysis.
This progress is reflected in the accumulation of genomes
ready to be integrated into analyses. Real-time analysis be-
comes tangible with current throughputs and will increas-
ingly demand more dynamic data structures. Research in se-
quence data structures stands to benefit by anticipating that
data will soon be amassed so rapidly that we will need to
adapt our algorithms accordingly.
K-mer based methods are valued for their scalability and ver-
satility in sequence analysis. Depending on the application,
even a single dataset can reach billions of k-mers. Different
solutions for representing k-mer sets have been proposed, fo-
cusing on opposed efficiency tradeoffs: speed built on lin-
ear algorithms and cache efficiency, versus space efficiency
through a form of compression. Current literature mainly
presents static k-mer sets, which do not support intensive in-
sertions and deletions of elements. Static methods have been
preferred in the case of large data volumes, for their excel-
lent space/time performances, and because it was sufficient to
build the k-mer index once. The datasets turnover might drive
the problem to a state where an expensive construction time
cannot be paid too often and becomes a bottleneck. There-
fore, the existence of a generic, dynamic structure for general
k-mer set operations is appealing but not yet described. We
aim at discussing novel approaches and implementations to
reach this goal.

To illustrate the interest of a dynamic set structure, we can
examine three examples. Firstly, with current massive se-
quencing data, input/output operations are a critical bottle-
neck. Here, dynamic k-mer sets would ensure datasets can be
streamed and seamlessly processed continuously, even with
interruptions. Secondly, there is an interest for with colored
de Bruijn graphs (i.e., labeled k-mer sets) for their utility
in pangenome exploration, where k-mer are instrumental to
large scale analysisk-mer based methods are also instrumen-
tal in enhancing the scalability (1). Dynamic structures ca-
pable of adding new individual sequences are still relatively
underdeveloped. Lastly, a distinct application lies in adaptive
sampling for Oxford Nanopore long-read sequencing. This
technique uses reference sets in real-time to selectively filter
out irrelevant reads during sequencing. The ability to modify
these reference sets on the fly would offer more options to
sequencing.

A. New results. We introduce a data-structure for the dy-
namic, exact representation of k-mer sets, inspired from
Conway and Bromage’s work. Named Conway-Bromage-
Lyndon (CBL), it stores the smallest cyclic rotations of k-
mers, akin to Lyndon words. This approach leverages the lex-
icographic similarities between consecutive k-mers. We also
describe an accompanying structure enabling insertions and
deletions, showing its competitive edge over current meth-
ods. We jointly provide a Rust library, available at https:
//github.com/imartayan/CBL, which aims at being
an ubiquitous tool for manipulating dynamically k-mer sets.

B. Outline of this work. After describing related work, we
present two main aspects. First we show the contribution
of the k-mer → smallest cyclic rotation to the problem of
locality-preserved k-mer representation, and second, we de-
scribe the data-structures to achieve a dynamic compressed
set representation exploiting this transform. Then we provide
evaluations with regard to state-of-the art approaches on time
and memory for construction, and the different operations. In
the discussion, we recall open problems linked to this contri-
bution and identify ways to go forward.

2: Methods

A. Related work. Exact sets of k-mers data-structures in-
clude solutions that highly vary in efficiency and implemen-
tations. This litterature can be difficult to approach because
some structures include others. We propose a summary
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highlighting connections of the different approaches in Ta-
ble 1, and a survey presents complexities for the main opera-
tions (2).
Succinct representations upon the Burrows-Wheeler trans-
form and its variations take advantage of lexicographic re-
dundancies to build compressed k-mer indexes. Another
direction uses space-efficient hashing combined to k-mer
surperstrings (3) to build associative structures for k-mers.
Other hashing techniques are sometimes employed, such as
quotienting. Earlier lines of work include arborescent struc-
tures to store and index k-mer sets; or exploit specificities of
de Bruijn graphs to represent them in a lossless way in Bloom
filters.
Conway and Bromage (4) is an exception that strikes by
its simplicity, as it neither lexicographically transforms, nor
hashes the k-mers. A bit-vector is created with a length of
4k, where each bit’s position, labeled as i, is set if the binary
representation of a k-mer corresponds to i. This method sets
a lower bound for k-mer representation but faces challenges
in finding a dynamic, compressed data structure for the bit-
vector. It also hypothesizes random k-mer sets, while later
structures capitalized on k-mer overlaps to break this lower
bound.
These diverse data structures support different operations.
Most allow membership queries of k-mers. Some can pro-
pose operations typical of sequence de Bruijn graphs, such as
color (output the sources of a k-mer when the graph is built
from different datasets), navigate (from a given node, visit
the direct neighbours, which allows assembly tasks). Other
set operations such as union or intersection are usually not
supported, and remarkably, these features are being only dis-
cussed in the lossy setting (5, 6). Only a few exact structures
allow insertion of novel k-mers, even less allow deletions (see
Table 1 for a summary of allowed operations per structure).

B. Representing a k-mer set using smallest cyclic ro-
tations. In this work, we transform k-mers into other strings
and insert them in a sparse structure such as Conway and Bro-
mage, with two major advantages over the original Conway
and Bromage approach. The first one is that the transform
and the data-structure allows us to leverage the k-mers over-
laps and locality, and the second is that we present a fully
dynamic sparse structure to dynamically insert the set.

B.1. Necklaces as k-mer representatives. K-mers are finite
strings of size k on the 4-sized alphabet Σ = {A,C,G,T}.
We rely on a k-mer encoding described in (31), that allows
to encode canonical k-mers using 2k − 1 bits when k is odd.
An example is given in Figure 1.
Definition 1: Necklace. We define the necklace of a k-mer
as the smallest string among cyclic rotations of the k-mer.
Necklaces are related to Lyndon words (32), the strings that
are strictly smaller in lexicographic order than any of their
rotations, hence the name of our structure. When encoding
a canonical set of k-mers, we map k-mers and their reverse
complement to the same necklace, thus reducing the space
from [0,22k−1 −1] to [0,22k−1/2−1].

In the following we consider k-mers as binary words of size
2k−1 (for the sake of clarity, most examples and illustrations
will be given using a textual representation of k-mers).
Definition 2: Binary necklace. Binary necklaces are the
smallest bit string among cyclic rotations on the 2k − 1 bits
binary encoding of canonical k-mers.
In the following, we denote binary necklaces simply by neck-
laces. We show an example of k-mers conversion to their
binary necklaces in Figure 1.

starting position 
for the necklace

canonical ✔

canonical

necklace on 2k-1 bits
+ positions in k-mers in 
main structure

ATA

TTG

001000

101011 010000
00001

(CAA)

0 1 2 3 4 5

0 1 2 3 4 5
[2,3]

Fig. 1. Example of conversion into necklace for two k-mers of size 3. This operation
is used for insertion and query to the structure. We show how k-mers with an odd
length are encoded into 2k − 1 bits. We use a parity definition as the parity of the
population count (number of 1’s) of the binary encoding of k-mers to define canon-
ical k-mers. Thus, provided bases and their complement have different parity (e.g.,
A → 00, C → 01, G → 11, T → 10) and since k-mers have an odd length, a
k-mer and its reverse complement have a different parity each. By choosing one
parity as canonical, it is therefore possible to spare a bit for their encoding, i.e. to
use 2k − 1 bits instead of 2k. With a regular encoding, the k-mers’ necklaces
are different, contrary to our example. ATA’s necklace would have been 001100 →
000011 and TTG’s necklace would have been 111110 → 0111111 (note that neck-
laces would have been different even if using reverse complements). In our case,
we first convert k-mers to their canonical versions (here, the canonical version has
an odd number of 1’s), the last bit is then safely removed. The necklaces are com-
puted on these 2k-1 bits, and their starting positions in k-mers are remembered.
Necklaces and positions are stored in the main structure.

We note that the smallest cyclic rotation appears in the lit-
erature outside this paper. It was recently used as a k-mer
sampling technique (33, 34). But we are not aware of other
usage of this technique in the context of exact k-mer set rep-
resentation, and the most widely used k-mer transform for
sequence data-structures remains the Burrows Wheeler trans-
form (BWT). As all the substrings of fixed size of k-mers
are substrings of fixed size of the circularization of these k-
mers, we can find some necklaces as prefixes of all circular
rotations of a sequence. Consequently, the first characters of
the BWT (and thus the BOSS (12) and SBWT (17) repre-
sentations) correspond to necklaces. The similarity of the in-
formation carried by different BWT approaches with CBL is
summed up in Figure 2. Minimizers used in other structures
such as SSHash (20) are the smallest substring of a fixed size
but they do not follow the lexicographic order in practice.

B.2. Distribution of necklaces in the image space. The ini-
tial k-mer set is supposed to come from biological sequences,
and therefore sparse in [0,22k−1 − 1]. So is the correspond-
ing distribution of necklaces. K-mers can have the same
necklace, but the necklace and the position of the corre-
sponding rotation is sufficient to represent distinctly each
k-mer. Hence, the distribution of k-mers’ necklaces over
[0,22k−1/2−1] is skewed towards small values.

B.3. Computing necklaces of consecutive k-mers in
O(logk). Computing the necklace of a k-mer is in O(k)
(since every cyclic rotation must be considered), an operation
that starts to show its cost for large k values. In practice,

2 | bioRχiv Martayan et al. et al. | CBL

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2024. ; https://doi.org/10.1101/2024.01.29.577700doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.29.577700
http://creativecommons.org/licenses/by-nc-nd/4.0/


C Data-structures for k-mer set representation based on necklaces

category k-mer set data-structure implementations using
representation data-structure name the structure (features)

tree/trie

strings

(burst) trie BFT (7) (MEM,COL), RedOak (8) (MEM,COL)
suffix tree splitMEM (9) (COL)

BWT

BWT deGSM (10)
FM-index FM-index DBGFM (11) (NAV)
dynamic BOSS BOSS (12) dynBOSS (13), bufBOSS (14) (MEM,INS,DEL),

VARI-Merge (15) (MEM,COL, INS),
Metagraph (16) (MEM,COL, INS)

Wheeler graph SBWT (17) Themisto (18) (MEM,COL)

hashing

hash table Bifrost (19) (MEM, NAV, COL, INS)
MPHF BLight, SSHash (20) Fulgor (21) (MEM, COL), Reindeer (22) (MEM, COL)

Cuttlefish2 (23) (NAV),Pufferfish2 (24) (MEM, COL, POS)
integers BBHash (25) FDBG (26) (MEM, INS, DEL)

quotient filter Squeakr (27) dynamic Mantis (28) (MEM, COL, INS)

bit-vectors

Bloom Filter Cascading Minia (29) (NAV)
+flagged false positives Bloom filters

bits sparse bit vector Conway & Bromage (4) Gossamer (30) (NAV)
dynamic bit vector CBL (this paper) CBL (MEM, NAV, INS, DEL, ∪, ∩, \

Table 1. K-mer sets data structures for exact representation. The table reads as follows: category denotes one of the four main approaches to represent sets of k-mers.
The second column shows the internal k-mer set representation. Arborescent structures, methods based on BWTs and hashing represent k-mers as (sub)strings or integers,
while bit-vector based methods represent k-mers as bits. The third column shows the data structure that mainly supports the k-mer set. The fourth column recalls these set
data-structure have been named (when there is no specific name we leave a blank). The fifth column details the existing implementations using the structures. For instance,
Fulgor implements k-mer membership (MEM) in a set of k-mer sets (COL), and is based on SSHash, an MPHF hashing approach. Indicated features are those actually
implemented in the tools. Features abbreviations MEM: k-mer membership, COL: set coloration (distinction between different source datasets), NAV: navigation operations,
allowing tasks such as unitig construction, INS: insertion, DEL: deletion, POS: positional queries (localization).

ccgt

acgt

tcgt

cgta

cgtg

cgtc

cgtt

ccgtg
ccgta

{a,c,t}   cgta
{}        cgtc
{}        cgtg
{}        cgtt

{a,c}     cgta
{a,t}     cgtc
{c}       cgtg
{t}       cgtt

acgt     {a,c} 
ccgt     {a,g}
tcgt     {c,t}

dBG k=4
(node-centric)

SBWT, k=4

acgta
acgtc

tcgtc
tcgtt

dBG k=5 
(edge-centric)

EBWT (BOSS idea), k=4 CBL , k=5, p=4

Fig. 2. K-mer information supported in each transform-based data-structure. This
information can be stored as the de Bruijn graph of order k − 1 by using, for ex-
ample, the extended Burrows-Wheeler Transform (EBWT). Indeed, the arcs in the
dBG represent the set of successive k − 1 mers, which is the set of k mers. This
structure stores successively the different labels of the ingoing arcs by lexicograph-
ical order of the nodes, which correspond to the k − 1 mers. Another way is to use
the SBWT structures, which use a k-mer to represent all the arcs ingoing in this, or
similar, k-mers (all k-mers with the same prefix of size k − 1) in the previous struc-
ture. Even if we lose some information (false positive arcs and thus false positive
k-mers), we can recover all k − 1-mers with this structure.

k-mer inserted in sets are extracted from sequences and two
consecutive k-mers only differ by a single nucleotide, thus
have a 1/4 chance (1/|Σ|) to have the same necklace. We
propose a solution to speed-up the computation of necklaces
in the case of consecutive k-mers. Our solution is based on
the observation that the necklaces of two consecutive k-mers
likely share a long common prefix.
We also know that the prefix of size m of a necklace is (lex-
icographically) smaller than any other substring of size m in
the circular word. Thus, in order to find the starting posi-
tion of the necklace in the k-mer, we only consider the start-
ing positions corresponding to the smallest substrings of size
m. Because of circularity, these substrings are either part of
the k-mer or overlap both the k-mer’s start and end (we call
these boundary substrings). Boundary substrings change for
each new k-mer, so we have to recompute them every time.
Inversely, non-boundary substrings are mostly preserved for

consecutive k-mers. By storing them in a monotone queue,
we can access the smallest ones in O(1) and perform updates
in O(1) amortized time. Moreover, we know that if m is
large enough (Ω(logk)) the smallest substring is unique with
high probability (see lemma 9 in (35)). Therefore, by choos-
ing m = Θ(logk), we only have one substring to consider
in the queue w.h.p. and m − 1 boundary substrings to com-
pute, leading to O(logk) time overall. In practice, we found
that using substrings of m = 9 bits gave the best results for k
ranging from 31 to 63. Our implementation of this algorithm
can compute 100M necklaces per second on a laptop with a
M1 processor.

B.4. Rank of necklaces. Since the number of binary neck-

laces of length 2k −1 is approximately 22k−1

2k−1 (36), they only
represent a fraction 1

2k−1 of the k-mer space. Thus, we could
work on a reduced space, 2k − 1 times smaller than the orig-
inal one, and thus save log2(2k − 1) bits to represent a neck-
lace. One way to achieve this is to rank necklaces, i.e. as-
sociating index i to the i-th smallest necklace. Sawada and
Williams proposed an algorithm to compute the rank of a
necklace in O(k2) (32), and we do not know a faster algo-
rithm as of today. Unfortunately, this quadratic complexity
makes it impractical to use as it is two order of magnitude
slower than the other steps of the transformation.

C. Data-structures for k-mer set representation based
on necklaces. Similarly to Conway and Bromage, we pro-
pose to insert and query necklaces from a vector. However, to
retrieve the original k-mers, necklaces must be associated to
their positions in k-mers, and to support insertions and dele-
tion, the associative structure must be dynamic. In the fol-
lowing we propose a compressed, dynamic representation of
the necklaces vector that exactly represents a set of k-mers.
Figure 3 presents a schematized view of the structure.
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C.1. Quotienting necklaces. To achieve compression, we
employ a quotienting strategy on the necklaces. This involves
selecting a prefix size p (the suffix being k−p long). We then
store prefixes and suffixes separately. The rationale behind
this approach is the observation that many necklaces share
prefixes, particularly as their distribution is skewed towards
smaller sequences.

C.2. Prefix data-structure. For the storage of these prefixes,
we utilize a bitvector. To facilitate rapid access and inser-
tion of prefixes in the bitvector using their rank, a structure
capable of performing efficient rank/select operations is re-
quired. Several such structures have been discussed in the lit-
erature (37–39). However, we note a sparsity in the literature
for dynamic structures. Relying on a theoretical proposition
and an implementation (40–42), we adopted a solution with
fast dynamic rank/select operation.
A Fenwick tree, an efficient data structure to compute the
prefix sums of a dynamic array, is behind our prefix data-
structure. In our context, the Fenwick tree is used for an array
of bits, where each tree node stores the cumulative sum of
a specific range of elements. Since our elements are bits,
the binary rank is equal to the prefix sum (cumulative sum
from the left) found in the tree. This arrangement allows for
quick computation (in logarithmic time) of a given rank by
searching the subtree’s nodes corresponding to the interval.

aaaaaccgcc
aaaaaccgct
aa...
aa...
ac...
ac...
ac...

cc...
cc...
cc...
cg...

gg...
gt...

gt...

tt...

aaaa

ac..

cc..

cg..

gg..
gt..

tt..

ac
cg

cc
ct

bitvector 
storing prefixes

tiered vector
storing pointers

vectors/tries 
storing suffixes

rank

plain necklace vector

k-mers

gccaaaaacc

ccaaaaaccg

gctaaaaacc

...

p

CBL's data-structure

Fig. 3. Schematic view of CBL’s data structure. For the sake of simplicity, we show
an example where the necklaces are lexicographic and not binary. On the left we
show the entire necklace vector filled with input k-mers’ necklaces. Two overlapping
k-mers are pictured sharing very locally close necklaces. We depicted how our
structure quotients necklaces, stores prefixes in a bit vector, and associates them
to suffixes.

C.3. Associating prefixes to suffixes. For associating each
prefix with its corresponding list of suffixes, we used a tiered
vector (43). This structure allows the association of a prefix
rank with buckets of suffixes, by storing a pointer to the suffix
bucket at the index corresponding the prefix rank. Insertion
and deletion in this structure are supported at any position in
O(nε) time, where n is the number of elements, and ε < 1,
while access is still in O(1).
Tiered vectors maintain a dynamic array of elements sorted
by ranks. The elements are stored in the leaves of a tree,
with fast insertion facilitated by inserting elements in avail-
able slots. For rapid access, the tree maintains a shallow

depth (in our case the internal depth is 4). While the order
of elements in the leaves is not strictly preserved due to this
insertion process, internal nodes of the tree store the neces-
sary rotations to reorder the leaves.

C.4. Suffixes storage. As indicated in previous studies, the
distribution of small-sized genomic words is highly skewed.
We anticipate many buckets being populated with a single
or a very few suffixes, and a minority containing numerous
suffixes. To address this, we propose an adaptive solution:
for small buckets, we store the set of suffixes in a vector; for
large buckets, we construct a trie over the suffixes. Large
buckets, often resulting from genomic repeats or low com-
plexity regions, are expected to have high suffix similarity.
Thus, a trie can effectively compress and encapsulate much
of this redundancy. Our trie implementation utilizes 1 byte
per level. For vector-based storage of small buckets, we sim-
ilarly divide suffixes into bytes to minimize storage require-
ments. Finally, some bits in the end of suffixes are reserved
to store the necklace’s position in k-mers.

C.5. Operations. The main operations on the data structure
(membership, insertion, deletion) all share the same major
steps:

1. compute the necklace associated to a k-mer and append
the associated position in the k-mer at the end of the
necklace

2. split the necklace into a prefix q of size p and a suffix r

3. look for the prefix in the bitvector

4. compute the rank of this prefix using the Fenwick tree

5. find the bucket associated to this rank using the tiered
vector

6. perform membership/insertion/deletion of the suffix r
in this bucket:

• for small buckets, we scan the vector linearly

• for large buckets, we navigate in the trie byte by
byte

Additionally, when the necklaces of consecutive k-mers
share the same prefix q, we only need to perform steps 1-5
once, and we can group the remaining operations on the same
bucket. This optimization is especially useful when querying
all the k-mers of a sequence.

D. Implementation details. Our structure stores both a
necklace and its position in a single primitive integer (with
up to 128 bits) to perform fast operations. As a consequence,
the number of bits 2k−1+log2(2k−1) must be smaller than
128, and k values are supported up to 59.
The size p of the prefixes stored can be parameterized at com-
pilation time, and is supported for up to 28 bits. We settled
on a default value of p = 24 bits as a good compromise be-
tween the size of the prefix bitvector (2p) and the size the
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A Index construction

suffix buckets. For very large sets, increasing p helps to re-
duce the load on the buckets, speeding up the operations on
the buckets.
By default, buckets store suffixes in a vector, and switch to a
trie structure if they contain more than 1024 elements. This
threshold was selected empirically as a compromise between
the cost of a linear search in a contiguous vector and the cost
of a layered search in a trie.

D.1. Informal comparison to Elias-Fano encoding. A com-
parison can be drawn between CBL and the Elias-Fano en-
coding for compressing sorted integers. Similar to Elias-Fano
encoding, in the CBL approach, the elements are quotiented,
with their prefixes and suffixes stored separately using two
distinct methods. However, a key distinction lies in the treat-
ment of suffixes. Elias-Fano encoding can omit an associative
structure between prefixes and suffixes, and opts to store all
suffixes together in a compact way. Although Elias Fano sup-
posedly achieves higher compression rates, it compromises
efficient dynamism; since inserting a suffix requires shifting
numerous elements. In contrast, CBL may exhibit a lower
compression ratio for the same input but inherently accom-
modates dynamic operations at every stage of the data struc-
ture, offering a more flexible solution for scenarios requiring
frequent updates.

3: Results
We conducted extensive benchmarks on the CBL library, fo-
cusing on its ability to represent and manipulate k-mers in
various biological datasets. All experiments were performed
on a single cluster node running with Intel(R) Xeon(R) Gold
6130 CPU @ 2.10GHz with 128GB of RAM and Ubuntu
22.04. The experiment scripts with all competing tools and
the code to generate the plots are available at https://
github.com/imartayan/CBL_experiments. We
evaluated our structure against various methodologies. We
examined state-of-the-art static structures for k-mer man-
agement: a hash table using minimal perfect hashing
(SSHash (20)) and a k-mer set full-text index (SBWT (17)).
Additionally, we considered dynamic k-mer structures, in-
cluding a colored de Bruijn graph (Bifrost (19)) that supports
insertions, and a BWT-based de Bruijn graph equipped with
buffers for insertions and deletions (BufBOSS (14)). We also
included a generic solution, Rust’s HashSet, which is a hash
table based on Google’s Swiss Tables.

A. Index construction. For our initial experiment, we
benchmarked several state-of-the-art tools using an expand-
ing collection of bacterial genomes. We randomly selected
subsets of bacterial genomes for which we built a compacted
de Bruijn graph (unitig set), each subset doubling in size. The
final unitig file comprised 1024 genomes and 1,574,701,184
distinct k-mers. We built several indexes from those unitigs
and reported the time and memory usage in Figure 4. Multi-
ple observations can be made.
SSHash appears to be the best overall performer, being
very fast to construct and using a low amount of mem-

ory. However, it is indeed a static structure and requires
non-repeating k-mers. HashSet is similarly fast but more
memory-intensive, while CBL is slightly slower but equally
efficient in terms of memory usage. SBWT, despite being
static, is slower than these tools and consumes an amount
of memory comparable to HashSet. Bifrost is significantly
slower but as memory-efficient as SSHash and CBL. Lastly,
BufBOSS is equally slow but very memory-intensive.
The fact that CBL matches the high throughput of a know-
ingly high performance hash table, while being memory effi-
cient is noteworthy.
We aim to emphasize that Bifrost, HashSet, and CBL stand
out as the only tools capable of running directly on any se-
quence set without prerequisite modifications. In contrast,
other tools necessitate preliminary processing of the input file
to ensure the absence of duplicated k-mers. This preprocess-
ing often involves a k-mer counting step, a resource-intensive
operation. For instance, SBWT and BufBOSS employ the
KMC3 k-mer counter, which is notably heavy on disk us-
age, potentially posing challenges in certain environments.
SSHash’s requirements are even more stringent, relying on
overlapping k-mers assembly for efficiency. While such pre-
requisites might be challenging to estimate, Bifrost, HashSet,
and CBL do not externalize a portion of their construction
time.

B. Queries. To evaluate the query performance of the pre-
viously mentioned indexes, we decided to separately bench-
mark positive queries (k-mers present in the index) and neg-
ative ones. For positive queries, we used the input unitigs’
k-mers and queried them against their own index. For neg-
ative queries, we queried randomly generated k-mers that
have an extremely low chance of being present in the index.
We present these results in Figure 5: to illustrate the respec-
tive time/memory trade-offs, we measured the relative query
time and RAM usage with respect to the number of k-mers
queried, averaged over a series of experiments.
As anticipated, static structures and BufBOSS consume a
very low amount of RAM during query execution, whereas
the other dynamic structures are more memory-intensive.
Although SSHash and SBWT provide very fast query re-
sponses, BufBOSS exhibits very slow ones. Among the other
dynamic structures, CBL and Bifrost are the lightest, while
HashSet is more memory-demanding.
Interestingly, their relative speeds vary between positive and
negative queries. While Bifrost is the fastest for positive
queries, with CBL and HashSet being almost identical, it is
the slowest for negative queries. Negative queries seem to be
an ideal scenario for HashSet, being the absolute fastest, even
surpassing SSHash.
Once again being able to achieve very high throughput while
being more memory efficient than other dynamic structures
highlight the overall performance of the structure.

C. Insertion and deletion. To assess index update perfor-
mance, we analyzed the cost of adding and removing k-
mers, with the results presented in Figure 6. Among the
four tools capable of insertion, CBL and HashSet stand out
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Fig. 4. Time and RAM used when constructing various indexes on growing bacterial
genomes collection from Refseq for k = 31 and p = 28 bits.

as the fastest, processing each k-mer in under a microsecond.
In contrast, Bifrost is approximately an order of magnitude
slower, with BufBoss trailing at yet another order of magni-
tude behind. In terms of memory usage, all tools are com-
parably efficient, falling within the same order of magnitude.
BufBoss proves to be the most memory-efficient, followed
by Bifrost HashSet and CBL.
For the deletion, unsupported by Bifrost, the remaining tools
demonstrate similar performance. CBL and HashSet lead in
speed, with BufBoss lagging an order of magnitude behind.
Memory usage is lowest for BufBoss, followed by CBL, and
with HashSet being the most memory-intensive.

D. Set operations. CBL stands out as the sole method of-
fering in-place set operations among the benchmarked ap-
proaches. We assessed its performance in terms of runtime
and RAM usage for intersection (see Figure 7) and union op-
erations (see Figure 8), comparing it with HashSet, our most
comparable dynamic competitor. The results show that both
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Fig. 5. Time/memory trade-off of various tools when performing streaming queries
of present k-mers (up) and absent k-mers (down) for k = 31 and p = 28 bits, each
point is averaged over a series of experiments.

HashSet and CBL efficiently handle intersections and unions
of datasets, each containing tens of millions of k-mers with
a resource advantage for CBL. CBL achieves 200 ns per k-
mer on average during intersection, and 500 ns per k-mer for
union operations, while HashSet requires 400 and 900 ns per
k-mers for the same tasks. Comparable trends were observed
in operations involving set differences and symmetric differ-
ences.

E. Other type of data. While bacterial genome are conve-
nient for benchmark purpose we also try to take into account
other type of data. We performed a wide benchmark on hu-
man RNAseq data that is described in the Appendix. The
same relative behavior and trend are conserved even if we
tend to observe a performance degradation due to the unitig
fragmentation of such graph due to the datasets properties
such as polyA tails, high variability regions, uneven cover-
age.
To validate our result on eukariotic data we decided to also
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Fig. 7. Time/memory trade-off of various tools when performing set intersections
for k = 31 and p = 28 bits.

benchmark CBL and HashSet against human chromosomes
from the T2T human reference genome (44). We present
those results in Figure 9, we show that both implementations
display similar performance results and that indexing large
eukaryotic genome is possible on a small node with less than
a CPU hour.
Bifrost, CBL and HashSet are able to work in a streaming
fashion directly on any FASTA file. To support this claim, we
ran build benchmarks directly on raw reads. In Figure 10 we
report such benchmarks on a growing amount of long ONT
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Fig. 8. Time/memory trade-off of various tools when performing set union for k =
31 and p = 28 bits.
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Fig. 9. Time and RAM used when constructing various indexes on growing amounts
of chromosomes from the T2T human genome for k = 31 and p = 28 bits.

reads from an E. coli sequencing (accession SRR26899125)
that is a recent Nanopore sequencing with low error rate (≈
3%) we observe no practical hindrance compared to indexing
genomes. Additionally we performed an identical benchmark
on a E. coli HiFi dataset (accession SRR11434954) with very
similar results showed in the appendix.
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Fig. 10. Time and RAM used when constructing various indexes on a ONT long
read dataset for k = 31 and p = 28 bits.

4: Discussion

Our experiments establish CBL as a good overall choice, con-
sistently featuring as one of the most rapid and least memory-
intensive tools across construction, querying, or updating
tasks. Without manifesting any tangible drawbacks, it is also
the unique method providing in place set operations.
Dynamicity is rarely completely achieved in the literature, as
many works revolve around static data-structures, with poten-
tial rapid rebuilding or buffer systems. These methods do not
allow versatile inputs as they work on sequences containing
distinct k-mers only. To handle any type of input FASTA,
we showed that for moderate amounts of k-mers, a ratio-
nal choice leads to select modern and efficient hash tables
as those implemented in Rust. However, when the amount
of input data is sufficient, the data-specificity of k-mer data-
structures becomes an asset. Our work with CBL bridges this
gap. Static data-structures remain an interesting choice when
resources are scarce, or to achieve a highly compressed cold
storage.
Future developments for CBL include several aspects. We

aim to align more closely with user needs. It includes al-
lowing k-mer streams as inputs, optimizing CBL’s serializa-
tion to shorten construction times and enabling concurrent
operations by distributing buckets between multiple threads.
Another area for improvement is the implementation of a dy-
namic compression scheme for CBL’s bit-vector, potentially
using the Elias Fano method, despite its current static nature.
As a start, we can dig into the theoretical dynamic adaptations
by Pibiri and Venturini (45). Additionally, the trie structure
in CBL could be made more efficient with a compact layout,
e.g. (46). Finally, we plan to explore future features, such as
incorporating additional data (e.g., counts) with each k-mer.
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Appendix
Supplementary results.

Parametrization of CBL. Using similar bacterial datasets to
those described in the main document, we analyze the impact
of the prefix size in CBL’s performance.
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Fig. 11. Time and RAM used during construction on indexes with growing number
of k-mers from bacterial genomes, for a prefix size of 22.

Differences in RAM usage between sizes 22 and 28 can be
explained by the fact that increasing the prefix size on large
instances implies that tries of suffixes are less populated,
which decrease their overhead. Conversely, jumps to other
suffixes buckets become more frequent during accesses.

Benchmarks on human RNA-seq. Illumina raw reads
FASTA files were downloaded from SRA with acces-
sions SRR972708, SRR975415, SRR962597, SRR976738,
SRR953494, SRR950080, SRR950083, SRR953488,
SRR972717, SRR972716, SRR975416, SRR975412,
SRR962604, SRR976749, SRR953495. Unitigs were built
using BCALM2, keeping k-mers with a multiplicy greater
than 2. Additional files were used for query experiments,
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Fig. 12. Time and RAM used during construction on indexes with growing number
of k-mers from bacterial genomes, for a prefix size of 24.

obtained in a similar setting: SRR975414, SRR950879,
SRR976743, SRR950882, SRR950881, SRR950079,
SRR972713, SRR972715, SRR960732, SRR960733,
SRR975411, SRR962602, SRR962600, SRR950084.
We display here similar analysis of the main document,
benchmarking index building, queries, insertions and dele-
tions.

Benchmarks on HiFi reads. We report a building benchmark
on a growing amount of HiFi reads from a E.coli sequencing
(accession SRR11434954)
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Fig. 13. Time and RAM used during construction on indexes with growing number
of k-mers from bacterial genomes, for a prefix size of 26.
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Fig. 14. Time and RAM used during construction on indexes with growing number
of k-mers from bacterial genomes, for a prefix size of 28.
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Fig. 15. Time and RAM used when construction various indexes on growing number
of k-mers from unitigs built on human RNA-seq.
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Fig. 16. Time/memory trade-off of various tools when performing positive queries
(up) and negative queries (down)
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Fig. 17. Time/memory trade-off of various tools when performing positive queries
(up) and negative queries (down)
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Fig. 18. Time and RAM used when constructing various indexes on a HiFi long
read dataset for k = 31 and p = 28 bits.
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