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Building a Synthetic Vascular Model: Evaluation
in an Intracranial Aneurysms Detection Scenario

Rafic Nader, Florent Autrusseau, Vincent L’Allinec and Romain Bourcier

Abstract— We hereby present a full synthetic model,
able to mimic the various constituents of the cerebral
vascular tree, including the cerebral arteries, bifurcations
and intracranial aneurysms. This model intends to provide
a substantial dataset of brain arteries which could be
used by a 3D convolutional neural network to efficiently
detect Intra-Cranial Aneurysms. The cerebral aneurysms
most often occur on a particular structure of the vascular
tree named the Circle of Willis. Various studies have been
conducted to detect and monitor the aneurysms and those
based on Deep Learning achieve the best performance.
Specifically, in this work, we propose a full synthetic 3D
model able to mimic the brain vasculature as acquired by
Magnetic Resonance Angiography, Time Of Flight principle.
Among the various MRI modalities, this latter allows for a
good rendering of the blood vessels and is non-invasive.
Our model has been designed to simultaneously mimic
the arteries’ geometry, the aneurysm shape, and the
background noise. The vascular tree geometry is modeled
thanks to an interpolation with 3D Spline functions, and the
statistical properties of the background noise is collected
from angiography acquisitions and reproduced within the
model. In this work, we thoroughly describe the synthetic
vasculature model, we build up a neural network designed
for aneurysm segmentation and detection, finally, we carry
out an in-depth evaluation of the performance gap gained
thanks to the synthetic model data augmentation.

Index Terms— Synthetic artery/bifurcation model, Intra-
Cranial Aneurysms detection, Deep Learning

I. INTRODUCTION

THIS work has been carried out in the context of a
wide medical research project in which neuroradiologists

intend to estimate the risk of occurrence and/or rupture
of Intra-Cranial Aneurysms (ICA) [1]. The advent of ICA
formation results from various factors, among which the
genetic risk seems predominant [2]. However, it is commonly
accepted among physicians that the geometric disposition of
the cerebral vascular tree might explain why a weakened vessel
wall (due to genetic or environmental factors) might give rise
to an aneurysm. Untreated brain aneurysms pose a significant
risk of rupture, which can result in a hemorrhagic stroke. In
fact, this rupture can potentially lead to the patient’s death in as
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much as 50% of all cases. Magnetic Resonance Angiography
(MRA), Time of Flight (TOF) modality is frequently used for
aneurysms detection [3]. Unlike other methods like Digital
Subtraction Angiography (DSA) and Computed Tomographic
Angiography (CTA), TOF is radiation-free and doesn’t require
the administration of a contrast agent [4]. Given the mounting
workload and the demanding nature of the detection process
undertaken by radiologists, there is an increasing need for an
automated tool to detect and monitor aneurysms at an early
stage. Prior to the widespread adoption of Deep Learning
(DL), research studies employed imaging filters or traditional
machine learning techniques to detect aneurysms [5], [6].
Recent advances in artificial intelligence, particularly those
involving deep Convolutional Neural Networks (CNNs), have
significantly enhanced the development of automatic tools in
the field of medical imaging [7]. To date, several deep learning
based approaches have been proposed for ICA segmentation
and/or detection [8]–[11]. The ADAM Challenge compared
11 different DL approaches for detecting or/and segmenting
ICAs on TOFs. The best algorithm, [12] achieved notable
results, with an average sensitivity of 0.67 and a false positive
rate of 0.13. It is important to note that a majority of the
existing methods have been formulated using private clinical
data that comes with meticulously refined manual annotations.
Indeed, one of the obstacles in developing deep learning
methods for medical imaging applications is the lack of large
annotated datasets, particularly for the segmentation task. To
mitigate this, Di Noto et al. [13] proposed the use of “weak”
annotations and they obtained good results with an average
lesion sensitivity of 0.83 and a false positive rate of 0.8.
Other studies adopt non-voxel-based methods, such as mesh
convolutional neural networks [14], to overcome limitations
related to modality and scan acquisition parameters.

The rationale behind our work is to try to reduce as much
as possible, or even to free oneself from any manual labeling.
In other words, we expect that using several hundreds or
even thousands of modeled bifurcation to train a network
might provide better performances than using only a couple of
hundreds actual TOF segmentations. Unlike previous works, in
our approach, we investigate the brain aneurysm detection task
by exploiting synthetic data. While data augmentation stands
out as a well-known technique for augmenting the number
of data samples, its application requires careful consideration.
In the context of medical images, such image manipulations
might tamper with the geometrical or statistical properties
in an undesirable way, i.e. render the augmented images too
distant from their corresponding ground truth.
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In the past, several works have been devoted to the design
of computer models intended to mimic arterial trees. At
that time, the studies focused on constrained constructive
optimization [15]. Some models were particularly designed to
offer a high graphical fidelity through a better understanding
of the biophysical properties [16]. A relatively nice rendering
was obtained on liver vascular trees for instance in [17].
Such models were mostly designed in the aim to study
angiogenesis (physiological process leading to the formation
of new blood vessels.). More recently, the VascuSynth
model [18] was proposed in the aim to produce vast amounts
of volumetric vasculature images. Here, the aim was different,
the authors intended to generate a synthetic dataset for image
segmentation. All these computer models achieved a quite
accurate modeling of the acquired medical images (mostly
trying to mimic liver or lung vasculatures). However, modeling
the cerebral vascular tree is more challenging, as the arteries
are commonly longer, and may exhibit a stronger tortuosity.
Moreover, in our study, the goal strongly differs. We intend to
generate vast amounts of images to train a neural network for
a pattern recognition task. Another interesting approach was
proposed in [19], [20] where the authors generate synthetic
MRI patches using Generative Adversarial Networks. Indeed,
random patches were generated along with their underlying
ground truth segmentation. This method has not been designed
to generate a given target bifurcation, or to add an aneurysm
onto the vascular tree, which is an issue we tackle in our work.

In a previous study [21], we have proposed a fully synthetic
model of 3D bifurcations and Intra-Cranial Aneurysms. In
this work, we tried to mimic the geometrical shape of
arterial bifurcations by generating linear segments to be later
convolved by a spherical kernel, and apply some geometric
distortions to model the tortuosity. A particular attention
was devoted to the generation of a plausible background
noise. Ultimately, an intracranial aneurysm was modeled
and superimposed onto the bifurcation. Although this initial
model proved to mimic relatively well 3D bifurcations, it
showed some limitations, regarding the tortuosity, and the
aneurysm location (slightly shifted away from the bifurcation).
In the current work, our model accuracy is considerably
increased, and we intend to propose a set of highly realistic
bifurcations and aneurysms. Since our intended application
involves identifying an aneurysm within a specific bifurcation
or artery from a TOF scan, it is crucial to accurately
model various essential arterial features: the shape, orientation,
diameters, and tortuosity. As for the aneurysms, the model
should allow to adjoin ICAs of various shapes and sizes onto
different bifurcations. Finally, the performances in terms of
image segmentation might depend on the accuracy of the
modeled surrounding background noise, hence, it is important
for the model to faithfully duplicate the background noise.

In section II, we thoroughly describe the synthetic model.
Its three main features are presented, namely i) the arteries
geometry, ii) the surrounding TOF noise and iii) the modeled
aneurysm. Next, in section III we provide an in-depth
description of the generated dataset, we describe the CNN
architecture, evaluate both the ICA segmentation and detection
performances. We try to assess the performance gain brought

by using the synthetic images alongside the manually labeled
ones. To do so, we run two separate experiments involving
either the manually segmented images only or adjoining
the modeled patches. Finally, in section IV, we discuss the
benefit of using the synthetic model for intracranial aneurysm
detection and conclude this work.

II. MATERIAL AND METHOD

Unlike the previous model, proposed in [21], here we
intend to come up with a full synthetic model of 3D cropped
TOF portions, including not only the bifurcation of interest,
but also its whole neighborhood1. Hence, we propose a
completely new method here. Within a 3D cropped portion
of a MRA volume, we collect the 3D coordinates of the
arteries’ skeleton (centerline of the 3D tubes), and we further
fit those centerlines using 3D splines. It is quite vastly
admitted that there can be a significant structural variability
in the vasculature of individuals [22]. Indeed, one can find
relatively strong variations among the shape of the Circle of
Willis (CoW) (some arteries and bifurcations may be missing
for some patients, or even some extra bifurcations could
be present for others), and the anatomical properties of the
cerebral arteries can also strongly differ from one person to
another. The arteries’ angles, their tortuosity, diameters or
even their geodesic length can significantly differ. A schematic
representation of the CoW is given in Fig. 1.
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Fig. 1: Schematic representation of the CoW. The yellow
labels (from A to O) depict the particular bifurcations we are
interested in for this study. The percentages within the gray
discs represent the risk of aneurysm formation.

Such an important variability can make the task quite
difficult for neural networks to properly recognize and/or
segment the bifurcations/arteries of interest. That is why our
aim here is to propose a model being able to generate a
vast amount of highly similar arteries, while adjusting at
will the geometric features and the grey level amplitude
of the vasculature, or even the statistical properties of the

1Source code for the synthetic Vascular Models (VaMos) available here:
https://gitlab.univ-nantes.fr/autrusseau-f/vamos/
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surrounding noise. Not only does our model consider the blood
vessels geometry, but it also able to accurately counterfeit the
background noise. The full process of the vasculature model
is represented in Fig. 2. The blue rectangles represent the
different steps needed to produce one bifurcation model, the
green ellipses show the various parameters we can modulate
to distort the ICA, the bifurcation or the background.

Let us first focus on the shape modeling. The goal being to
come up with similar shapes that can be slightly modified, but
with the strong requirement to still best represent actual human
arteries, the mimicking of true TOF components is crucial.

A. Modeling the arterial geometry

As a very first step, we extract a 3D graph from the
segmented TOF volume (interested reader may refer to [23]
for further details on the graph method being used). Obviously,
any other 3D graph method, such as the one presented in [24]
could be used. Such a graph is simply composed of 3D
branches and nodes. A node is a branch extremity, i.e. either
a bifurcation or a branch end point. From a binary segmented
vasculature, the 3D graph allows to locate a given bifurcation
among the ones composing the CoW and to extract a whole
3D crop around the 3D coordinates of the bifurcation node.
The bifurcations of interest are automatically located thanks
to the works from [25]. A 3D patch is cropped around the
(x, y, z) coordinates of the detected bifurcation of interest (i.e.
bifurcation forming the CoW). Within this cropped portion
of the segmented TOF, the set of all coordinates along the
branches are collected and curve fitting is used to represent
the points using 3D splines functions [26].

Spline functions can be represented by three different
features: i) the knot-points, defining the intervals of the chunks
on which the polynomials are defined, ii) the B-Splines’ (or
polynomials’) coefficients, and iii) the order of the spline,
(i.e. the degree to which the fit was performed). Once these
parameters have been collected for each 3D branch composing
the bifurcation, they can thus be easily modified in order to
distort the centerline coordinates. Specifically, in this model,
we only alter the polynomials coefficients.

Once the centerlines have been tweaked via the spline
function alteration, we shall collect the diameters of all arteries
being accounted for within the 3D crop. This can easily be
handled by using our previous vascular tree characterization
tool [23]. Each centerline (morphological skeleton) being
first tweaked by the spline alteration, can thus go through a
convolution with a spherical kernel which size is adapted to
the corresponding observed diameter. We then thicken each
artery according to its anatomical property.

We show on Fig. 3 some examples of 3D Spline
models. The plots show, for a given bifurcation, three
different 3D representations. The solid gray lines represent
the actual bifurcation coordinates, as collected within the
TOF acquisition, the black dashed lines stand for the spline
functions that best fit the arteries, and finally, the black dotted
curves show the altered spline function (the new centerline of
the bifurcation to be). Besides the convolution with a spherical
kernel, that is needed to set the artery’s thickness, our method

allows to set a target grey level amplitude. We simply multiply
the binary envelope of the modeled vasculature by the desired
target grey level. Moreover, for the thickened artery to have
a realistic shape, it is important that the convolution kernel is
not perfectly spherical. We hence apply elastic deformations
to avoid producing a perfectly tubular modeled artery.

B. Modeling and adjoining the aneurysm
Once the bifurcation has properly been modeled, a synthetic

aneurysm can finally be incorporated. A simple 3D sphere is
first created and then distorted using elastic deformations. We
use the geometric distortions from [27] (with σ ∈ [0, 6] and
a 3× 3 deformation grid). Further, the ICA center is aligned
onto the bisector between the two daughter arteries. Figure 4
shows a configuration of aneurysm positioning.

The distance between point C and A being H + r, we can
easily compute H, as follows:

tan θ =
R

L
(1)

L =
√
H2 −R2 (2)

Hence, √
H2 −R2 =

R

tan θ
(3)

and, thus:

H =

√(
R

tan θ

)2

+R2 (4)

Then, considering a growth parameter (γ), being applied
to modulate the distance H , the distance from the aneurysm
center to the bifurcation node has been computed as in Eq. 5
below.

D = r × γ +

√(
R

tan(Θ/2)

)2

+R2 (5)

where r is the ICA radius, R is the radius of the bifurcation
branches , and Θ stands for the angle formed by the two
daughter arteries (we assume θ = Θ/2). Thanks to the growth
parameter (γ), we can automatically adjust the shift from
the aneurysm center and the vessel wall where the daughter
arteries split. Hence, we can model various states of growth
for a given aneurysm (i.e. a neck being more or less present).

In the forthcoming experiments, the various parameters
of the synthetic model were chosen, in such a way to
best represent the anatomical properties of the vasculature,
i.e. we have conducted a thorough evaluation of both the
modeled bifurcations and the aneurysm sacs. Concerning
the bifurcations, we ensured that the order of magnitude of
the angles, diameters and tortuosities were respected by the
model. As for the aneurysms, various geometric features were
compared, such as the volume, surface, sphericity, elongation
and flatness. This analysis led us to determine the model
parameters as follows : The ICAs radii were chosen such
that r ∈ [0.4, 2.0] mm, the ICA growth parameter was in the
range γ ∈ [0.7, 1.0], the spherical ICA was deformed with
σ ∈ [1.0, 4.0], and the B-Spline coefficients was set to 2.



4 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

MRA-TOF Acquisition

- branch #1
- branch #2
- branch #3
- ...

3D Spline interpolation

Dark matters

White matter

Segmentation, skeletonization 
& 3D graph 

BoI extraction Features extraction &
modeling 3D Model (binary & Grey levels)

3D Conv

Parameters
adjustment

Spline Strengths
(Tortuosity)

Diameters
(conv kernel)

Noise modulation
    

Binary 3D crop

Grey level 3D crop

Binary model

Noisy model

Statistical
analysis

Diameters

Aneurysm model

Modeled bifurcation

(Sphere + elastic
deformations)

ICA features
(size, shape)

Elastic deform

Fig. 2: Schematic representation of the whole bifurcation model. The upper part (yellow shaded block) represents the
background noise modeling, whereas the lower part (light blue shaded block), shows the arterial geometry modeling. The
green ellipses represent the different features the synthetic model can modify.

(a) Spline model with weak
weights

(b) Spline model with larger
modifications

Fig. 3: Examples of modified bifurcation centerlines. The solid
gray line represents the actual 3D branch, the black dashed line
represents the best spline fit, and the dotted line represents an
exaggerated modification of the spline coefficients.

C. Modeling the surrounding brain matters

Now that we have been through the details of the shape
modeling, let us next present the second part of the synthetic
model: the brain, composed of fluids and white/gray matters,
all these, being affected by a reconstruction background noise.

1) Collecting the target statistics : As can be observed on
Fig. 2, for the background generation (brain and noise),
the cropped TOF patch first goes through a separation of
the various brain components. In fact, based on the same
rationale that was previously used (section II-A) to model the
arteries, we can easily imagine to include the various brain

L
H

r

R

Fig. 4: Computation of the distance separating the aneurysm
and the bifurcation center. The ICA is located along the
bisector, the distance separating points A (ICA center) and
C (bifurcation node) needs to be estimated (see text).

matters within the model. Indeed, the cerebral arteries are
surrounded by various matters, each one having a particular
radio-opacity, i.e. a different gray level. The white/gray matter,
when acquired through MRA appears with relatively high gray
levels, the Cerebro-Spinal Fluids (CSF), the ventricle or the
Corpus Callosum are commonly displayed with much lower
luminances. However, unlike our previous study [21], the
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fluid areas (hypointense signal) within the brain are no more
randomly determined; we believe that those local low contrast
shapes may be of paramount importance while modeling
the 3D crops of our arteries and bifurcation, and hence
we intend to include a faithful representation of the fluids
areas within the synthetic model. The separation between
hypointense and hyperintense matters (vasculature excluded)
were obtained via a simple multi-threshold segmentation [28].
Once located, each matter can then be geometrically distorted,
before generating and applying it’s overlaying (modified)
noise.

2) Noise generation: When a Gaussian blur is being applied
onto an input image I(x, y) its filtered version becomes:

O(x, y) =

∞∑
i=−∞

∞∑
j=−∞

1

2πσ2
G

e
− i2+j2

2σ2
G I(x+ i, y + j) (6)

The Bienaymé’s identity states that

V ar (
∑n

i=1 Xi) =∑n
i=1 V ar(Xi) +

∑n
i,j=1,i̸=j Cov(Xi, Xj)

(7)

Thus, the variance of a linear combination is:

V ar (
∑n

i=1 ciXi) =∑n
i=1 c

2
iV ar(Xi) + 2×

∑n
i,j=1,i̸=j cicjCov(Xi, Xj)

(8)

However, if Xi, ..., Xn are pairwise independent integrable
random variables (Cov(Xi, Xj) = 0, ∀(i ̸= j)), which we
assume in the following, then:

V ar

(∑
i

ciXi

)
=
∑
i

c2iV ar(Xi) (9)

where ci are constants. We consider that the variance of
the input image is V ar [I(x+ i, y + i)] = σ2

0 , our goal here
is to estimate the variance of the output (filtered) image
V ar [O(x, y)] = σ2

f . Thus,

σ2
f = σ2

0

∞∑
j=−∞

∞∑
i=−∞

(
1

2πσ2
G

e
− i2+j2

2σ2
G

)2

(10)

For large σG, the squared Gaussian is smooth and the sum
can be approximated as:

σ2
f ≈ σ2

0

∫∞
−∞

∫∞
−∞

(
1

2πσ2
G
e
− i2+j2

2σ2
G

)2

di.dj

=
σ2
0

4πσ2
G

(11)

and thus,

σf ≈ σ0

2σG
√
π

(12)

In summary, when an image composed of Gaussian noise
of standard deviation σ0 is being filtered by a Gaussian filter
of standard deviation σG, the so-obtained filtered image has a
standard deviation of σf according to the Eq. 12.

However, for our particular purpose, we intend to determine
which Gaussian filter (of standard deviation σG) shall be used

on the input image so as to obtain a filtered image with a
given target statistics (σf ), and hence σG ≈ σ0/(2σf

√
π).

The process starts thus with the generation of a high
frequency Gaussian Noise of average set to our target 3D crop.
This noise will then be smoothed out using a Gaussian filter
of standard deviation σG. The resulting image (of standard
deviation σf ) will thus present strong similarities with the
target portion of the TOF being modeled.

The so-obtained noise is then simply added up on top the
geometric modeling (bifurcation and aneurysm as explained
in previous sections II-A and II-B.)

D. Model examples

Concerning the bifurcation model only (i.e. no adjoined
aneurysm), Fig. 5(a) shows, for four different extracted
bifurcation patches, a comparison between the Ground Truth
(GT) crop and the modeled patch. Images on the lower panel
shows a 2D slice of the gray level voxels for both the Ground
Truth and the Model, whereas the upper images represent
the 3D layouts of the arteries. We can notice that both the
geometrical configuration of the bifurcations and the gray
level distribution seem to be efficiently modeled and mimic
very accurately the TOF patch. Indeed, a very wide variety
of bifurcations (no matter how complex the shapes are) can
easily be modeled. We can notice that some subtle diameter or
tortuosity modifications are faithfully brought on the modeled
bifurcations.

Besides the bifurcations themselves, it is crucial for the
aneurysm to be accurately modeled and most importantly well
positioned onto the bifurcation artery wall. We present three
different examples on Fig. 5(b). Again we can observe how
the slice gray levels are faithfully represented in the model.
On the upper images, the aneurysms are represented in blue,
whereas the mother artery is depicted in green.

It is important to note that, so far, the synthetic aneurysm
model can only reproduce the unruptured and untreated
aneurysm. Indeed, ruptured or treated aneurysm presents
significant differences, treated aneurysms are radiolucent
(hypointense signal), and can easily be mistaken by
surrounding fluids, whereas ruptured aneurysms present very
different shapes (higher order spherical aberrations, larger
elongation, etc.).

Naturally, a simple visual inspection by itself (as in Fig. 6)
is not sufficient to accurately estimate the faithfulness of
the synthetic model. Hence, we also provide a quantitative
(objective) assessment of the modeled bifurcations.

We show on Figure 6 the distribution of two distinct
objective quality assessment metrics from 1000 patches (2D
slices randomly extracted from 150 TOF volumes).

Overall, 9 metrics have been tested (MSE, PSNR, NRMSE,
NMI, SSIM, VI, NQM, VIF and UQI) [29], [30], but most
exhibited similar behaviour, and hence, we only present the
results for PSNR and VIF (which was proven to perform
better on MRI/CTA acquisitions [29], [31]). Each sub-plot
in Figure 6 presents, along the x-axis i) the comparison
between distinct patients, ii) the comparison between a given
ground truth patch and its modeled version, and iii) the
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Fig. 5: Comparison between the modeled bifurcations and
the Ground Truth crop from a TOF (with/without ICA). We
show both the gray level voxels patches (lower panels) and
3D bifurcation layout (upper panels).
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Fig. 6: Objective assessment of the similarities between the
ground truth patches and synthetic models.

comparison between a given ground truth patch and the
modeled patch from a different patient. We can observe that
overall, the modeled patches better represent a bifurcation
than the patches collected from another patient. However,
it is important to note that, providing objective quality
measurements, without a ground truth validation (subjective
experiment) is suboptimal, as it is difficult to ensure the
accuracy of the tested quality metrics. Future works will be
devoted to a thorough evaluation of the synthetic patches

fidelity, including subjective experiments.

E. Applications of such a synthetic model
Such synthetic images could be very useful for a large range

of scenarios:
1) In a medical center having few images, one could

imagine generating a massive training dataset targeting
the features of the MRA acquisitions.

2) The synthetic model can be exploited for other computer
vision / pattern recognition tasks, such as vasculature
segmentation, bifurcations detection/classification, or
even stenosis/thrombosis detection.

3) If a new MRA scanner was being brought to the market
(higher magnetic field, better resolution,...), we could
promptly provide a massive annotated dataset, without
resorting to tedious manual annotations from expert.

4) The model can provide a relatively easy adaptation to
other imaging devices (such as DSA or CTA).

5) Ultimately, such a model could be used to detect
aneurysms on a healthy dataset (where no patient
actually bears an aneurysm).

III. EXPERIMENTAL RESULTS

The main purpose of this synthetic model is actually to be
able to effortlessly build up significant images datasets in order
to efficiently train convolutional neural networks for pattern
recognition tasks. In this section, we present experimental
results related to the use of synthetic images as a source of
data augmentation within an intracranial aneurysm detection
scenario. Indeed the synthetic model is used to generate a
substantial training dataset to feed a 3D U-Net model. Fig. 7
shows an overview of the entire aneurysm detection process.
The U-Net is trained on both the synthetically generated
images and some actual TOF acquired from patients with
aneurysm2. The trained U-Net model is then applied onto some
extracted bifurcations during the inference phase.

We will first introduce the Deep Learning based method
being used, along with the corresponding dataset, the training
strategy and the evaluation approach. Finally, we will evaluate
the efficiency of our approach, and estimate the benefit of
adjoining synthetic images for the CNN training step.

A. DL based detection of intracranial aneurysms
1) Dataset: For this study, a total of 190 TOFs scans

of unruptured intracranial aneurysms were collected from
over thirty different French institutions3.These images were
randomly divided into two datasets: a training set comprising
108 images, used for training and validation, and a separate
test set containing 82 images. Furthermore, 14 additional TOF
images not containing any aneurysm were included in the test
set to evaluate the performances of the developed model. Out

2The source code of the neural network (along with its weights)
has been made available here: https://gitlab.univ-nantes.fr/
autrusseau-f/ica-detection

3Our study was conducted on retrospective and fully anonymized data;
According to the french law, written consent was waved and our protocol
was approved by local ethical group (GNEDS)
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Fig. 7: Overview of the global procedure, encompassing the training step using the synthetic images and the inference step.

of these 190 subjects, 58 had more than one aneurysm. Overall
254 aneurysms are included in this study (presenting a mean
radius of 2.49±0.82 mm). Tables I and II show their respective
sizes and locations.

TABLE I: Aneurysms radii in the training and test data sets.

ICA radius ≤ 2 mm 2-3 mm > 3 mm
Train 19 64 44
Test 47 69 11

From now on, when evaluating the detection performances
per bifurcation labels, we will group various labels altogether.
Indeed, we have grouped the three bifurcations along the
basilar artery together (M, N and O), as overall, few aneurysms
pop out along the anterior portion of the Circle of Willis.
Moreover, due to the anatomical configuration of the CoW
on humans, both the PCoA and MCA arteries commonly
reach the Internal Carotid Artery in the same vicinity, and
hence, the bifurcations E (resp. F) are very close to the
bifurcations I (resp. J), and thus, the aneurysms emerge in
a very close neighborhood (possibly within the same cropped
area encompassing two bifurcations of interest).

A trained operator (author F.A.) performed the annotations
to build up the dataset. Subsequently, a neuroradiologist with
10 years of experience (author R.B.), carefully reviewed the

TABLE II: Distribution of the aneurysms based on their
location within the CoW.

Bifurcation A-B C-D E-F-I-J G-H K-L M-N-O Total
Training set 11 1 12 54 48 1 127

Test set 17 6 18 44 37 5 127

cases to ensure the exclusion of any potential false positives
or false negatives that might have been initially reported in
the original annotation.

2) Real patches selection and Neural network: In our study,
we have used a patch-based approach for the aneurysm
detection process. Instead of using entire volumes, we feed
the neural network with 3D patches of size 643 voxels (25, 63

mm). In order to select the 3D training patches, we employed
a random extraction strategy. Specifically, for each aneurysm,
we randomly extract 10 patches centered around the vicinity of
the aneurysm (random shifts along the x, y and z directions).
However, for each extracted patch, we ensure that the entirety
of the ICA is included within the cropped area. This approach
ensures that the training dataset contains diverse samples
representing different locations of the aneurysm within the
extracted patches. For negative samples, we extract some 3D
patches encompassing some cerebral arteries, but without any
aneurysm. For each TOF volume, we extract 20 such patches.
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We have opted for a segmentation network for the dual
tasks of i) ICA mask segmentation and ii) the subsequent
ICA detection. The segmentation process uses a 3D U-Net
architecture [32], which follows an encoder/decoder structure.

Each level in the encoder comprises two consecutive 3D
convolution layers with a kernel size of 3× 3× 3 and a stride
of 1, followed by a batch normalization layer and a Rectified
Linear Unit (ReLU) activation. This sequence is followed by
a max pooling layer with a kernel size of 2 × 2 × 2 and a
stride of 1. The depth of the feature maps doubles with each
downsampling step, starting from 32 and increasing up to 256.
In the decoder path, max pooling layers are replaced with up-
sampling layers. The ReLU activation function was applied to
all layers, except for the final layer, which was followed by a
sigmoid function. The model was trained for 50 epochs with a
batch size of 16 using Adam optimizer with a learning rate of
0.0001. The Combo loss function [33] which combines both
the Dice coefficient and the binary Cross-entropy loss was
used in conjunction with this optimization algorithm. After
each epoch, we evaluated the model on the validation set, and
the model with the lowest validation loss was saved.

3) Data Augmentation: Overall, 134 TOFs free of any
aneurysm were collected from the previous work described in
[25]. These scans were utilized for constructing 3D synthetic
cropped portions mimicking the characteristics of an original
TOF, as explained in the previous section. For this purpose, a
total of 998 synthetic patches were modeled. Each patch was
specifically centered on the bifurcations of interest within the
CoW. Once the bifurcation has been accurately modeled, a
synthetic aneurysm is incorporated thanks to the 3D model.
This is achieved by varying the radius parameter and by
applying degrees of elastic deformations (as explained in
Sec. II-B) to simulate the diverse characteristics observed in
actual aneurysms (average modeled aneurysms radius: 2.33±
0.52). Tables III and IV show the distribution of the modeled
aneurysms with respect to their locations and sizes.

TABLE III: Distribution of modeled patches for each
bifurcation label.

Bifurcation A-B C-D E-F G-H I-J K-L M-N-O
# of ICAs 165 158 156 175 102 111 131

TABLE IV: Number of modeled aneurysms per radius range.

Radius ≤ 2 mm ∈ ]2, 3] mm > 3mm
Count 292 596 110

4) Evaluation approach: To validate the possible
improvements brought by the use of the synthetic model,
we have conducted three separate experiments. In the first
experiment (Exp.#1), we have trained a baseline model using
actual TOFs patches. To assess the performance of our model,
we employed a four fold cross-validation approach. The
dataset was split into four folds with each fold containing
27 samples. During each cross-validation split, three folds
(81 samples) were exploited to train the model, while
the remaining fold (27 samples) was used for validation
purposes and for hyperparameter optimization. This process

was repeated four times, to ensure that all 108 TOFs were
ultimately used for evaluation. In the second experiment
(Exp.#2), we trained another segmentation network but
augmenting the training dataset with 998 synthetic patches.
Similarly, we evaluated the performance of the model using
the same cross-validation split. In Exp.#3, the training dataset
of actual TOF patches was augmented using traditional data
augmentation operations, namely rotations within the interval
[−15◦,+15◦] and (90◦, 180◦, 270◦), as well as horizontal
and vertical flipping. Following the training phase, the model
evaluation employs the holdout test set using the four-fold
models. Subsequently, the resulting predictions from these
four models were averaged to derive the final predictions.
In the inference phase, for the three mentioned experiments,
we adopt a prior anatomical selection of patches. We only
retain the patches being centered onto all the bifurcations of
the cerebral vasculature. By focusing on patches centered
around the cerebral artery bifurcations, the inference process
aims to target the regions being most susceptible to witness
an aneurysm development. This approach is based on the
anatomical knowledge of aneurysm occurrence, enhancing
the accuracy of the results. Hence, as previously explained,
to select the corresponding patches, an automated vessel
segmentation step was performed using a pre-trained U-Net
segmentation algorithm. The details of the specific pre-trained
network can be found in [25]. Then, a 3D undirected graph
[23] is generated from the extracted skeleton to extract the
corresponding bifurcations.

For all the experiments, we have analyzed the lesion-level
sensitivity and the false positive rate (number of false positive
per TOF). The lesion-level sensitivity quantifies the proportion
of true aneurysms correctly identified by our method, while
the false positive count per TOF provides insights about
the method possibly producing an excessive number of false
identifications, which could lead to an unnecessary burden for
the neuroradiologists. To compute the detection performance
evaluation metrics, we consider each segmented connected
component issued from the binary output of the U-Net as a
potentially detected object. Each connected component whose
center of mass falls no farther away from the maximum
radius of a true aneurysm mask, is thus considered as a true
positive detection. Otherwise, it is regarded as a false positive
detection.

In addition, we applied the evaluation protocol for assessing
the segmentation performance of true (ICAs) as described in
the ADAM challenge [11]. This protocol focuses on evaluating
the segmentation metrics only for the true detected ICAs,
excluding any false positives, to simulate how the tool could
be practically used by neuroradiologists.

B. Performance analysis

Let us now examine the performances of our proposed
method on the test set, in terms of global detection rate as
well as on a per-bifurcation scenario.

1) Overall detection performance: As previously mentioned,
the study compares the performances of three CNN training
approaches. In Exp.#1, the CNN which is exclusively trained
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onto real data, successfully identified a total of 96 aneurysms
within a dataset containing 127 instances, which corresponds
to a lesion-level sensitivity of 75.60%. In contrast, Exp.#2
involves training the same CNN using a combination of
real data patches and VaMos data patches. Notably, this
sensitivity further improved to 88.97% for Exp.#2 with 113
detected aneurysms. Meanwhile, when considering traditional
data augmentation techniques in Exp.#3, the CNN identifies
104 aneurysms which corresponds to a lesion-level sensitivity
of 81.88%.

2) False detections: These results show a high diagnosis
performance, with lesion-wise sensitivity notably improving
by incorporating synthetic patches, reaching 89% on the test
set. The synthetic data proved useful as a complementary tool
to reduce the missed aneurysms rate. However, obtaining a
high sensitivity may unfortunately lead to a slightly higher
false-positive detection rate. Overall, the network exhibits an
average false positive rate of 0.22 in Exp.#1, whereas when
incorporating synthetic patches, the false positive rate reaches
0.40. Similarly, traditional data augmentation techniques
employed in Exp.#3 were associated with an increase of
FP rate (0.36). The increase in the false positive rate
upon integrating synthetic patches, along with the significant
sensitivity gain, emphasizes the importance of adopting
Exp.#2. This illustrates the trade-off between sensitivity and
false positive rate and highlights the added value of the
synthetic data augmentation.

Based on a thorough visual inspection of the false-positive
detections, we have identified various reasons for these FP,
including 1) The complex anatomy of the internal carotid
artery, with sometimes rather strong variations in vessel
diameter, a high tortuosity, and a significant bending, right
below the ophtalmic artery that can be confused with a
large aneurysm ; 2) Brain arteries are susceptible to flow-
related changes due to factors such as atherosclerosis (calcified
plaque) or stenosis. These conditions can alter blood flow
patterns and vessel appearance, potentially leading aneurysm-
like vessels shapes, and hence, false-positives. 3) At the
emergence of a daughter artery on a bifurcation, at the very
basis of the artery, an outpouching can be formed. In other
words, the artery stars with a conic shape, exhibiting a broad
base located at the bifurcation. This is clinically referred to as
an infundibulum [34]. Sometimes, such uncommon shapes can
be mistakenly detected as being an aneurysm. 4) Our vascular
model has been designed in such a way to model thrombosed
aneurysms. Indeed, we have noticed that for the larger circular
aneurysms, a thrombosis often appears nearby the ICA center;
the blood flow may circulate along the aneurysm walls,
forming some sort of vortex, and hence, leading to a slower
blood displacement toward the center (inducing a more radio-
opaque area). Unfortunately, such a phenomenon can also
occur along the Internal Carotid Artery, thus leading to false
positive detections.

3) Impact of aneurysms size and locations: The performance
variability when considering aneurysm size, is depicted in
Table V. Exp.#1 yielded a detection rate of 0.5106 for very
small aneurysms (less than 2 mm), while Exp.#2 achieved an
improved rate of 0.7659 and Exp.#3 exhibited a detection rate

of 0.6382 The CNN was able to detect a greater proportion
of aneurysms falling within the size range of 2 mm to 3
mm. This trend was observed in the three experiments, with
a notable increase observed for Exp.#2 (0.8840 and 0.9130
versus 0.9565). All methodologies, however, demonstrated a
detection rate of 1 for aneurysms with a radius exceeding 3
mm.

TABLE V: Lesion-level sensitivity according to the aneurysm
size for the test set

Radius ≤ 2 mm ∈ ]2, 3] mm > 3 mm
Exp.#1 51.06 % 88.40 % 100 %
Exp.#2 76.59 % 95.65 % 100 %
Exp.#3 63.82 % 91.30 % 100 %

Regarding the impact of aneurysm location, Fig. 8 depicts
the number of missed aneurysms per bifurcation of interest.
Specifically, in Exp.#1, the CNN missed a higher number of
aneurysms located along the Middle Cerebral Artery (MCA)
(G-H bifurcations), as well as along the Internal Carotid
Artery, with a significant concentration in the bifurcation
segment separating this artery into the smaller Ophthalmic
Artery (OA) (labels K & L). Additionally, missed aneurysms
are observed within the branches of the Anterior Cerebral
Artery (ACA) and the Posterior Communicating Artery
(PCOM), which corresponds to bifurcations (E, F, I & J).
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Fig. 8: Missed detections with respect to the aneurysms
positions (along the Circle of Willis) in the test dataset for
all three tested experiments.

In contrast, for Exp.#2, there is a substantial decrease in
the number of missed aneurysms within the three locations
cited below. The impact of the aneurysm location on the
detection rates for the three experiments is presented in Table
VI. One can notice on this Table that for each bifurcation
label, the amount of collected aneurysms matches remarkably
well the percentages of occurrences as previously described
on Fig. 1. Hence anatomically, we are able to collect fewer
aneurysms onto certain bifurcations. Moreover, it is important
to highlight that fewer synthetic aneurysms can be modeled
onto the bifurcations labeled C, D, N and O (c.f., Table III) as,
quite often, during the angiography exam, these bifurcations
(at the farther ends of the MRA 3D stack) may be cropped
out of the acquisition area.
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TABLE VI: The detection rates with respect to aneurysms location

Label A-B C-D E-F-I-J G-H K-L M-N-O
Count 17 6 18 44 37 5

Detection (%)
Exp. #1 82.35 100.00 50.00 76.19 83.78 80.00
Exp. #2 88.23 100.00 77.77 90.90 89.18 100.00
Exp. #3 82.35 100.00 61.11 79.54 89.18 100.00

TABLE VII: Ablation study exploring the impact of different
VaMos noise distributions and increased number of augmented
data on the detection performance.

Method Sensitivity(%) FP/case
Noise Distribution

Gaussian 86 0.40
Rician 85 0.50
Perlin 81 0.56

Training data
TOF 76 0.22

TOF+A1 77 0.51
TOF+A2 80 0.46
TOF+A3 89 0.40

4) Segmentation performance of true ICAs: Fig. 9 displays
the distribution of Dice score for the detected aneurysms
within the three experiments #1, #2 and #3. The average
Dice score for Exp.#1 is 0.7585 (±0.13) which indicates
a fairly good similarity with the actual aneurysms masks.
Exp.#2 and Exp.#3 achieve a comparable Dice score of 0.7613
(±0.12) and 0.77 (±0.11). It is important to note that a
direct comparison between the three Dice coefficients is to
be considered carefully, as the number of detected aneurysms
differs between the experiments.
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Fig. 9: Dice similarity coefficient of true ICAs for all three
tested experiments.

However, the visual analysis of the box plots (Fig. 9)
representing the segmentation performance for Exp.#1, Exp.#2
and Exp.#3 reveals similarities in their overall appearance.
Exp.#2 and Exp.#3 appear to have a slightly denser distribution
of Dice coefficients. Such outliers can be attributed to the
smaller aneurysms.

5) Ablation study: To validate the various constituents of
VaMos, we performed an ablation study on the aneurysm
detection task, using different configurations.

In order to assess the impact of the noise on the overall
detection performances, we have modeled the same augmented
ICA patches but with different noise distributions [35]:

Gaussian, Perlin and Rician. The results of our experiments
are summarized in Table VII. Although Gaussian and Rician
displayed similar effectiveness, Gaussian noise demonstrated a
marginally higher sensitivity and a slightly better false positive
detections. Perlin noise, on the other hand, demonstrated lower
sensitivity (81%) and a higher false positive rate (0.56 per
case). Given these factors, Gaussian noise is deemed more
advantageous for our specific task of data augmentation.

Furthermore, we compared the performance of the detection
network using increased number of (VaMos) augmented
patches size : A1 (334 patches), A2 (622 patches) and A3
(998 patches). Obviously, for all three configurations, the test
was conducted on the holdout test data. As illustrated in Table
VII, the addition of synthetic patches consistently improves
sensitivity. This suggests that the model becomes better at
identifying true positives with more diverse training data. The
initial spike in false positives with (TOF+A1) indicates that
while synthetic patches help in identifying more true positives,
they also introduce noise, leading to more false positives.
However, with further augmentation (TOF+A2 and TOF+A3),
the model seems to learn to better distinguish between true
positives and false positives, as witnessed by the reduction in
FP/case.

6) Comparison with nnU-Net: We have assessed the
effectiveness of our method on the traditional detection task by
comparing it with the fully automated state-of-the-art baseline,
nnU-Net [36]. nnU-Net is a self-configuring deep learning
framework designed for biomedical image segmentation that
automatically adapts its architecture and hyperparameters to
optimize performance for different datasets. To ensure a fair
comparison and reproducibility of the results, we employed
4-fold cross-validation. Our method showed competitive
performance achieving a sensitivity of 89% associated with a
FP/case of 0.4. In comparison, nnU-Net achieves a sensitivity
of 82% with a lower FP/case of 0.125. Table VIII illustrates
the reason for our higher sensitivity, which is attributed
to higher detection of small aneurysms (15 % increase).
VaMos introduces variability in small aneurysms. Such a shape
variability cannot be produced by traditional augmentation,
and hence cannot be considered within nnU-Net.

TABLE VIII: Comparison of the sensitivity between our
method and nnU-Net with repesct to aneurysms size

Radius ≤ 2 mm ∈ ]2, 3] mm > 3
nnU-Net 61.7 % 92.75 % 100 %
OURS 76.59 % 95.65 % 100 %

IV. DISCUSSION AND CONCLUSION

In this section, we analyze the contribution brought by
the synthetic vasculature model, being able to faithfully
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counterfeit (while cleverly altering) portions of TOF images.
Indeed, the synthetic model is composed of various processes,
including a meticulous modeling of the cerebral arteries
and bifurcations geometry, alongside the introduction of
surrounding noise and finally, embedding aneurysms of
various sizes and shapes. Our goal is to provide a substantial
dataset that may improve the performances of several deep
learning tasks including the segmentation or detection of the
cerebral aneurysms. A salient highlight of our work is the
successful generation of synthetic aneurysms with varying
sizes, shapes, and locations. These artificial aneurysmal sacs
have been integrated into modeled MRA scans originally
lacking any aneurysm, thus resulting in an augmented
dataset that aligns more closely with real-world scenarios.
The important focal point of this approach is the strategic
positioning of cerebral aneurysms within the Circle of Willis,
enhancing the fidelity of the simulated model.

As the main finding of this study, the CNN trained using
a combination of both genuine and synthetic patches led to
a significantly improved sensitivity in detecting intracranial
aneurysms compared to a CNN trained solely on TOF
data and/or augmented with traditional data augmentation
techniques. While the network missed 24.4% of the lesions on
the test data in Exp.#1, including the VaMos patches during
the training step significantly improved the ICA detection
performances of the CNN. Indeed, the network missed a
smaller portion of aneurysms (only 11%) on the test set.
Only 14 aneurysms were missed in Exp.#2: eleven were
tiny aneurysms, two exhibited uncommon shapes (high order
spherical aberrations), and finally, one was presenting a shape
strongly similar to an infundibulum (no clearly delineated
aneurysm neck). Traditional data augmentation techniques
led to a modest increase in sensitivity (4%) compared to
the significant improvement seen with VaMos (13%). This
disparity highlights the limitations of traditional methods.
These conventional techniques mainly improve the model’s
ability to generalize from existing data but fail to introduce
substantial diversity in critical anatomical features like
aneurysm shape and size. Consequently, they are less effective
in training models to identify a wide variety of aneurysms
across different patients. On the other hand, advanced
generation models like VaMos generate more complex and
varied synthetic examples, incorporating significant variations
in aneurysm characteristics, which enhances the model’s
performance.

This research has successfully achieved a high level of
detection sensitivity, showcasing its potential as supplementary
tool for neuroradiologists to address the issue of overlooked
aneurysms. Nevertheless, it is important to note that the
integration of synthetic patches, while effective in boosting
sensitivity, can potentially contribute to a slightly increased
false-positive rate. This issue might arise if the synthetic
patches actually introduce irregular aneurysms shapes that
do not very faithfully reflect the genuine aneurysm sacs
as acquired on TOFs. However, the training methodology,
employed alongside with a judicious selection of the
synthetic model parameters has yielded an improved detection
performance while maintaining an acceptable rate of false-

positive detections. Specifically, the false-positive detection
rate stood at 0.40 within Exp.#2, in contrast to 0.22 in Exp.#1.
While the increase in the FP from 0.22 to 0.4 represents an
18% absolute increase, this is often considered reasonable
within the healthcare context. False positives primarily lead to
additional diagnostic procedures, which, although not ideal,
are less harmful compared to the risks associated with
undetected aneurysms. The ability to maintain a minimal
count of false-positive detection rate can also be explained
by 2 factors: To begin with, the use of a prior selection of
patches (3D undirected graph generated from the skeleton,
as explained in sec. III-A.4) during the inference phase by
extracting patches around vascular bifurcations. Consequently,
this approach minimizes the susceptibility of the algorithm to
confuse non-vessel structures and reduces the likelihood of
incorrect predictions. Furthermore, the final prediction on the
test set is derived by aggregating the probabilities obtained
from 4 cross validation models. This strategy enhances the
overall robustness of the model’s predictions. Moreover, the
mean Dice score index of true ICAs is 0.76 which is relatively
high. This suggests that this automatic segmentation method
performs at a similar level to manual segmentation once
the true ICA has been correctly identified. The automatic
segmentation could save time and effort in the analysis of
medical imaging data and potentially improve the efficiency
in diagnosing and analyzing ICAs.

Regarding the aneurysm size, our analysis demonstrated
that there were no significant discrepancy in sensitivity
for large aneurysms. Indeed, the sensitivity reached 100%
for aneurysms having a radius larger than 3 mm for all
experiments. The CNN achieved an overall sensitivity of
51.06% for detecting aneurysms being smaller than 2 mm in
Exp.#1, which complies with common findings in state-of-
the-art aneurysm detection studies. For such small aneurysms,
the sensitivity may increase with the number of training
cases involved. Notably, in Exp.#2, the sensitivity value
increased to 76.59% by training the model with small sizes
synthetic aneurysms. Nevertheless, enhancing the diagnostic
performance of the model in detecting small aneurysms may
need further exploration and training with a larger set of
synthetic cases representing small aneurysms.

With regard to the sensitivity at different locations,
the Exp.#2 achieved better performances than Exp.#3 for
aneurysms situated onto the bifurcations G-H, E-F-I-J. It is
important to note that this sensitivity increase appears to
be more strongly linked to the size of aneurysms in these
specific locations rather than solely on the location itself.
In fact, the detection rates stratified according to aneurysm
location and size were compared using Fishers’ exact test. No
significant difference was found between different locations
(p-value=0.69). However, the statistical analysis revealed
a significant difference in aneurysm detection rates when
stratified by different sizes (p-value=0.005).

Indeed, it is important to interpret the sensitivity values for
the categories C-D and M-N-O with careful consideration.
Particularly so, as the dataset comprises only few aneurysms
in those locations compared to other locations. For future
investigations, it could be valuable to explore the CNN
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efficiency with a larger population, i.e., incorporating more
aneurysms located in regions such as M-N-O, and C-D.

This study has been conducted on TOF acquisitions only,
however, the model is, in its very nature, quite flexible and
its adaptation to other modalities, such as CTA or DSA,
should be relatively straightforward. We have made an attempt
to model DSA acquisitions, very slight modifications were
brought to the model (the fluids are not visible within DSA
acquisitions, and hence the corresponding background noise
had to be removed). Eventually, the modeled DSA patches
were reasonably well modeled. Interested reader may refer to
the GitLab repository for some examples. The operating mode
remains the same, only the background noise modeling might
need some slight adjustments.
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