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Discrete-time general nonlinear robust control:
stabilization with closed-loop robust DOA

enlargement based on interval analysis
Chaolun Lu, Yongqiang Li, Alexandre Goldsztejn, Zhongsheng Hou, Fellow, IEEE, Yu Feng, Senior

Member, IEEE, and Yuanjing Feng

Abstract—For discrete-time nonlinear systems with uncer-
tainty, this paper presents an interval analysis approach to design
controller and compute the estimate of the closed-loop robust
domain of attraction (RDOA). The dynamics of the system is
modelled using difference inclusions. A robust negative-definite
and invariant set (RNIS) in the state-control space is proposed.
An RNIS is defined by the combination of a robust negative-
definite set (RNS) and a robust controlled invariant set (RCIS),
which leads to sufficient conditions for Lyapunov stability of the
system. The estimate of RDOA can be obtained by projecting
an RNIS along the state space. However, the RNIS is hard to
obtain by its definition. Drawing inspiration from the RCIS-
computation approach, we define a mapping that utilizes the
predecessor operator in the state-control space to compute a set
limit. Then, the RNIS can be obtained by finding the limit set
for an RNS. The computations of RNS and the limit set are
based on interval analysis. An algorithm to estimate the RNIS
is introduced with rigorous convergence analysis. Finally, we
formulate an optimization problem that is solvable, and enlarges
the RNIS and the estimate of RDOA. The method is validated
on examples of nonlinear systems subject to actuator saturation.

Index Terms—Robust control, robust domain of attraction,
invariant set, discrete-time systems, interval analysis, actuator
saturation.

I. INTRODUCTION

MODELING physical systems often result in discrete-
time state space models with measurement noises [1].

In the early 1970s, the emphasis of research shifted from
optimal control to robust control in response to unexpected
failures caused by discrepancies between mathematical models
and real-world scenarios [2]. At first, control researchers
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mostly supposed that the models were linear [3], [4]. However,
the main weakness of a linear robust controller is that it is
very conservative when the nonlinearities are significant. The
development of nonlinear robust control methods was strongly
motivated by this factor, such as the Lyapunov minimax
approach [5], H∞ optimal control [6], [7], and the robust back-
stepping approach [8]. Most published nonlinear robust control
methods primarily focus on studying nominal models that
exhibit affinities concerning the control input. These methods
ignore information from nonaffine nonlinearities, which may
decrease controller performance. Some works have attempted
to solve the control problem using data-driven methods, which
design controllers directly from data without the need for
modelling [9], [10]. However, the robust control problem
considering the general nonlinear nominal model remains a
challenge. Therefore, the aim of this study is to explore
a control method that can work properly for the general
nonlinear discrete-time models.

Recently, the investigation of domain of attraction (DOA)
estimation has witnessed growing popularity across various
systems [11]–[15]. The DOA plays a significant part in
system analysis and system synthesis [16] because it is an
asymptotically stabilizable region containing an equilibrium
point that reflects the performance of the designed control
law [17]. For system analysis, [18] introduces an interval
analysis approach to estimate the ROA based on a given
Lyapunov candidate function, while [19] presents an approach
for evaluating the ROA in non-smooth systems with uncertain
parameters. Regarding controller design, several studies have
focused on investigating the ROA of closed-loop systems. For
general nonlinear discrete-time systems, [20] proposes a data-
driven method for configuring robust controllers. The central
concept is to filter simulation data points that result in a
negative-definite Lyapunov function. However, these proposed
methods have a drawback, the invariant sets of the RDOA
estimation are limited by the level sets related to the Lyapunov
functions, which makes the estimate of RDOA conservative.
Also, the data-driven methods involve state-control spatial
discretization and random sampling, which means that the set
estimation has no quantitative analysis error results.

In this study, the discrete-time general nonlinear systems
are modelled by difference inclusions [21]. We propose a
robust negative-definite and invariant set in the state-control
space (RNIS-SC) to obtain the controller and the estimate of
RDOA. RNIS-SC is defined as the combination of a robust
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negative-definite set (RNS-SC) [20] and a robust controlled
invariant set (RCIS) [22]. Negative-definiteness and invariance
can be guaranteed, respectively, which are sufficient conditions
to prove the Lyapunov stability of the system. Consequently,
all controllers within the RNIS-SC can stabilize the system
asymptotically, and the projections of RNIS-SC onto the state
space serve as the estimate of the RDOA. However, obtaining
the RNIS-SC by its definition is difficult. Building upon the
work of [22], [23], to incorporate the state-control space, an
expansion of the predecessor operator is employed, allowing
for a set mapping definition between two sets. We utilize
multiple mappings to compute the invariant set limit of RNS-
SC, which is equivalent to RNIS-SC. Then, based on interval
analysis, the inclusion function is extended to difference
inclusions, and the convergence can be guaranteed. Next, we
propose a numerical algorithm for estimating the RNIS-SC
utilizing a given Lyapunov function. This algorithm is based
on the set inversion via interval analysis (SIVIA) algorithm,
which is a well-established technique in interval arithmetic.
The SIVIA algorithm offers a reliable numerical approach to
approximate the desired set with a specified tolerance [24].
Additionally, we provide proof of convergence for the pro-
posed algorithm in approximating the RNIS-SC. The RDOA
estimate varies depending on the given Lyapunov function,
and the volume of the estimate is straightforward to compute
because it is composed of non-overlapping hyperrectangles
using the interval analysis algorithm. Finally, we formulate a
solvable optimization problem aimed at expanding RDOA. We
construct a set of parameterized Lyapunov candidate functions,
and the problem entails selecting an appropriate Lyapunov
function from this set.

Regarding the general nonlinear robust control problem, the
main contributions of this study are as follows: 1) In order
to stabilize the general nonlinear system with uncertainty,
we expanded the RCIS concept to include the state-control
space. As a result, our method yields an unstructured controller
set RNIS-SC. For a given Lyapunov function, any controller
within the proposed RNIS-SC can robustly stabilize the sys-
tem. Compared to the existing structured robust controllers,
RNIS-SC offers greater flexibility in terms of design and
implementation. In the field of optimal control for nonlinear
systems with uncertainty, most existing methods require a
good dataset to train their optimal controllers. The proposed
unstructured controller set can serve as the initial control laws
and the stability can be guaranteed. 2) The concept of RNIS-
SC relies on computing a controlled invariant set, allowing
the estimated RDOA to extend beyond the level set of the
Lyapunov function. This broader applicability enables a wider
range of potential uses. 3) The algorithm for obtaining the
estimate of RNIS-SC utilizes the interval analysis approach,
which ensures a rigorous convergence analysis. The challenges
of this study are as follows: 1) RNIS-SC is defined in state-
control space and is estimated based on interval arithmetic.
To reduce the conservatism of interval arithmetic, we split
the intervals, which leads to an exponential increase in com-
plexity corresponding to the number of state variables. 2) The
method for robust DOA enlargement relies on meta-heuristic
algorithms, and its convergence time and enlargement results

are unknown.
Notation and basic definitions: For given vectors x, y ∈

Rn, x < y denotes that x is less than y for each component.
The function L(x) represents a Lyapunov function in this
study, which is supposed to be continuous and non-negative
with L(0) = 0. For a given compact set W ⊆ Rn+m, ∂W
represents the boundary of the compact set, Ŵ represents
the internal estimation of W and consists of non-overlapping
hyperrectangles. The image of a set is classically defined
by f(W) = {f(w)|w ∈ W} =

⋃
w∈W{f(w)} for a real-

valued function f : Rn+m → Rn, and F(W) =
⋃

w∈W F(w)
for a set-valued map F : Rn+m ⇒ Rn. In particular,
x+W = {x+ y|y ∈ W} is the classical Minkowski addition.
The closed ball of radius γ is denoted by Bγ . A set-valued map
F is upper semi-continuous (u.s.c.) at w if ∀γ > 0,∃ω > 0
such that F(w + Bω) ⊆ F(w) + Bγ . Furthermore, the set-
valued map F is upper semi-continuous (u.s.c.) on the set W
if it is so at every w ∈ W.

II. ROBUST STABILIZATION CONTROLLER SET

Consider the nonlinear discrete-time system

xk+1 ∈ F(xk, uk), k = 0, 1, 2, ... (1)

where xk ∈ Rn is the state of the system at time k, uk ∈ Rm

is the control input at time k. The set-valued map F : Rn ×
Rm ⇒ Rn is the model with unmodelled uncertainty (see
Remark 1 below). We furthermore require that F is u.s.c. on
Rn,F(0, 0) = 0 and F(x, u) is nonempty and compact. The
system (1) around the origin is assumed to be controllable by
some linear controllers, this small region around the origin
is denoted by X0. For example, ∀x ∈ X0, one can find a
controller u = Kx, which can asymptotically stabilize the
system (1). Our focus is on state-control spaces of interest
Wx,u ⊆ Rn+m, which we consider to be a compact set. For
any nonempty compact subset W ⊆ Wx,u, the projections
of W onto the state space and control space are denoted by
projx(W) ⊆ Rn and proju(W) ⊆ Rn, respectively. A set
W∗ ⊆ Wx,u is a controller set for system (1) if: any controller
µ : Rn → Rm matches up to ∀x ∈ projx(W∗), (x, µ(x)) ∈
W∗, is capable of asymptotically stabilizing the system (1),
which satisfies

∀(x0, µ(x0)) ∈ W∗, lim
k→∞

(xk, µ(xk)) = (0, 0), (2)

and the RDOA for (1) is projx(W∗).
The main objective of this paper is to compute estimates

of the controller set W∗ and RDOA for (1) in the form of a
robust controlled invariant set of a given Lyapunov function.
Subsequently, we aim to increase the estimates of both the
controller set W∗ and RDOA. To achieve this, we select a
suitable Lyapunov function from a set of Lyapunov candidate
functions.

Remark 1. If the uncertainty comes from the system and it
is bounded, then it can be described by set-valued map F.
Here we introduce two typical forms of set-valued maps: 1)
F(x, u) = f(x, u,Ω) where f(x, u,Ω) = {f(x, u, ω)|ω ∈ Ω},
f(x, u, ω) is a continuous function and differentiable at the
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origin, Ω is a compact set that represents the uncertainty
in the parameters ω, and f(0, 0, ω) = 0,∀ω ∈ Ω. 2)
F(x, u) = (I + D)f(x, u), I is an identity matrix and
D = diag([−δ, δ], ..., [−δ, δ]) is an interval diagonal matrix
whose diagonal intervals have radius δ ≥ 0, a tunable
constant that determines the range of the uncertainty. Note
that F is required to be u.s.c. in both cases.

A. Robust Negative-definite Set in State-Control Space

In this subsection, we briefly introduce the robust negative-
definite set in state-control space (RNS-SC) [16]. For the sake
of readability, we omit the time instant k in the dynamic
system (1). Then xk, xk+1 and uk are simplified as x, x+ and
u, respectively. For a given Lyapunov function L, state x and
control input u, the worst case time difference is defined as

∆L(x, u) = maxL(F(x, u))− L(x), (3)

the maximum is attained because set-valued maps are sup-
posed to have nonempty compact values. Based on the worst
case time difference ∆L(x, u), we give the definition of RNS-
SC.

Definition 1. For a given Lyapunov function L, an interested
domain Wx,u ⊆ Rn+m, a set WN(L) ⊆ Wx,u is RNS-SC for
the system (1) if

∀(x, u) ∈ WN(L),∆L(x, u) < 0. (4)

Lemma 1. For the system (1), if a Lyapunov func-
tion L and a controller µ : Rn → Rn exists and
∀x ∈ projx(WN(L)), (x, µ(x)) ∈ WN(L), then ∀x ∈
projx(WN(L)), L (x+)− L (x) < 0.

Proof. We have (x, µ(x)) ∈ WN(L), depending on Def-
inition 1, we have ∀x+ ∈ F(x, µ(x)), L(x+) − L(x) ≤
∆L(x, µ(x)) < 0. Hence, ∀x ∈ projx(WN(L)), L(x+) −
L(x) < 0 is satisfied.

Since we assume F(0, 0) = 0 ,then we have ∆L(0, 0)=0,
hence the origin (0, 0) is not in the RNS-SC. Note that the
set RNS-SC defined by (4) is not closed and it is hard to
estimate. This issue will be handled in Sec. II-D. According
to Lemma 1, it might seem that projx(WN(L)) could be
considered as an estimate of RDOA. This is not correct
because if x+ is out of projx(WN(L)), it is clear that the time
difference of L is no longer negative-definite. One solution is
to find a level set that provides an enclosure of the Lyapunov
function [13], [18], [19], but this leads to a conservative result.
Our goal is to remove the limitations of the level set by
constructing a robust controlled invariant set, which we will
introduce in the next subsection.

B. Robust controlled invariant set in state-control space
(RCIS-SC)

The theory of set invariance has been well established since
the seminal paper by Bertsekas [25], and numerous results
have been proposed for linear systems [26]. In systems that
are prone to uncertainty or noise, one advantage of RCIS is
it allows ensuring safety by guaranteeing invariance even in

the presence of disturbances. Another advantage of RCIS is
its broader range of estimated RDOA results compared to the
level set of Lyapunov function. For general nonlinear systems,
starting with the pioneering work of Bravo et al. [22] on
their interval arithmetic-based computation approach, many
other contributions have been made [23], [27]. While these
methods ensure invariant sets, the requirement of accuracy
introduces additional computational complexity. The accuracy
must be sufficiently fine to accurately capture the nonlinear
dynamics of the system. Consequently, applying these methods
to systems with multiple inputs becomes challenging. Most of
the proposed methods focus on the RCIS in the state space.
To ensure that the next state x+ remains negative-definite, it
is important to consider the control space as well. Therefore,
we extend the RCIS to RCIS-SC as defined below.

Definition 2. A set WI ⊆ Wx,u is an RCIS-SC for system (1)
if:

∀(x, u) ∈ WI,F(x, u) ⊆ projx(WI). (5)

For a given controller µ, the set WI has the following
property.

Lemma 2. For the system (1), if a controller µ meets the
condition that

∀x ∈ projx(WI), (x, µ(x)) ∈ projx(WI), (6)

then, for any initial state x0 ∈ projx(WI), the orbit ϕ(x0, k)
of the closed-loop xk+1 = F(xk, uk) is in projx(WI) for all
k > 0.

Proof. We prove Lemma 2 through an induction process.
Consider k = 0, we have ϕ(x0, 0) = x0 ∈ proj(WI). We
also have that ϕ(x0, k + 1) ∈ projx(WI) when ϕ(x0, k) ∈
projx(WI). Because xk = ϕ(x0, k) ∈ projx(WI), from (6),
(xk, µ(xk)) ∈ WI is obtained. Based on Definition 2, we can
conclude that xk+1 = ϕ(x0, k + 1) ∈ projx(WI).

C. RNIS-SC

By combining the definitions of RNS-SC WN(L) and RCIS-
SC WI, we can define RNIS-SC for a given L.

Definition 3. A set WN&I(L) ⊆ Wx,u is an RNIS-SC for the
system (1) if for all state-control pair (x, u) ∈ WN&I(L), the
following conditions are satisfied:

F(x, u) ⊆ projx(WN&I(L)), (7)
∆L(x, u) < 0. (8)

Since WN&I(L) is robust negative-definite, as defined in (4),
∀(x, u) ∈ WN&I(L), the time difference ∆L(x, u) is negative-
definite. Furthermore, since WN&I(L) is also a robust invariant
set, ∀(x, u) ∈ WN&I(L), the set of possible next states F(x, u)
is contained in proj(WN&I(L)). This implies the existence of
a subsequent control input u+ such that the time difference
of the Lyapunov function remains negative-definite at the next
state. The property leads to the following theorem.
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Theorem 1. Given an RNIS-SC WN&I(L) ⊆ Rn+m for the
system (1) and a positive definite function L : Rn → R+, if a
controller µ : Rn → Rm satisfies µ(0) = 0, and

∀x ∈ projx(WN&I(L)), (x, µ(x)) ∈ WN&I(L), (9)

then, for all initial states x0 ∈ projx(WN&I), the closed-
loop systems xk+1 = F(xk, µ(xk)) are asymptotically stable,
indicates that WN&I ⊆ W∗.

Proof. We define ϕ(x0, k) as the orbit of xk+1 =
F(xk, µ(xk)), where k ∈ N. Based on Definition 3, we can
conclude that WN&I(L) is a set that is robustly negative-
definite. Utilizing (9) and Lemma 1, we obtain the following
result:

L(ϕ(x0, k + 1))− L(ϕ(x0, k)) < 0, (10)

when ϕ(x0, k) ∈ projx(WN&I(L)). Based on Definition 3,
WN&I(L) is a robust invariant set. Moreover, from (9) and
Lemma 1, we can deduce that ∀x0 ∈ projx(WN&I(L)), ∀k ≥
0,

ϕ(x0, k) ∈ projx(WN&I(L)). (11)

From (10) and (11), we have ∀x0 ∈ projx(WN&I), the values
of Lyapunov function L(ϕ(x0, k)) are all monotonically de-
creasing. Furthermore, L is a positive definite function, which
means the limit point of the orbit L(ϕ(x0, k)) approaches zero
as k approaches infinity. Hence, we have

∀x0 ∈ projx(WN&I(L)), lim
k→∞

L(ϕ(x0, k)) = 0. (12)

Based on (12), it can be derived that

∀x0 ∈ projx(WN&I(L)), lim
k→∞

ϕ(x0, k) = 0. (13)

The process of (12) to (13) is omitted. One can refer to
the proof of Theorem 13.2 in [28], in which the reductio ad
absurdum is used.

With Theorem 1, once the RNIS-SC WN&I(L) has been
derived, any controller that satisfies (9) can effectively stabilize
the system (1). However, seeking out the solution of WN&I(L)
is onerous due to the nonlinearities and uncertainty of F. It is
worth noting that RNIS-SC WN&I(L) is a subset of RNS-SC
WN(L). In the next subsection, we present an iterative method
for obtaining an invariant subset of RNS-SC, which serves as
the fundamental basis for the numerical technique proposed in
Section III.

D. Finding RNIS-SC by predecessor operator

The predecessor operator, which is also referred to as the
one-step backward operator, is a type of preimage, plays a
crucial role in computing invariant sets. Predecessor operators
have been extensively studied in the literature [25], [29], [30].
Most of the predecessor operators in the existing literature are
defined in the state space. Here we broaden the concept of
predecessor operators within the state-control space.

Pre(W) = {(x, u) ∈ Rn+m|F(x, u) ⊆ projx(W)}. (14)

The predecessor operator Pre(W) for W ⊆ Rn+m is a
key tool for computing invariant sets in the state-control

space. Based on this predecessor operator, we introduce a new
mapping denoted as I that establishes a connection between
two sets within the state-control space.

Definition 4. For a nonempty compact subset W ⊆ Rn+m,
let mapping I be

I(W) = Pre(W) ∩W = {(x, u) ∈ W|F(x, u) ⊆ projx(W)},
(15)

The multiple mapping Ii denotes the composition of the
mapping I with itself i times. A significant property of the
mapping I is shown in the following lemma, see proof in
Appendix A.

Lemma 3. For any W ⊆ Rn+m, the set limit I∞(W) :=
limi→∞ Ii(W) :=

⋂∞
i=1 Ii(W) exists and is invariant for

system (1).

Remark 2. Similar findings to Lemma 3 have been extensively
discussed and reported in the literature, starting with the
conclusion of Problem 8 in [31]. The lemma is the basis for
many iterative algorithms [23], [25], [26]. In the context of
infinite-time reachability analysis, a succinct proof in the state
space can be found in Proposition 4 of [25]. Additionally, a
more comprehensive proof is provided in Theorem 5.2 of [32]
(pp. 154). In the case of switched systems, a comparable
proof is outlined in Theorem 1 of [23]. All the aforementioned
work relates to the state space. In this study, we extend
the lemma to difference inclusions and sets in the state-
control space. Two challenges that arise when implementing
iterative computation are the computation of reachable sets
and ensuring finite termination [23]. A branch-and-bound
algorithm can be employed to realize this computation [33].

According to Lemma 3, the existence of I∞(W) is guar-
anteed, and it serves as the invariant set for a given set W ⊆
Rn+m. However, the RNS-SC WN(L) is generally not closed
because it is defined by the strict inequality ∆L(x, u) < 0,
so the origin can not belong to it. Since the system (1) is
assumed to be controllable near the origin, we can safely make
a modification to the definitions given in (4) to ensure the
closedness of WN(L):

WN(L) = {(x, u) ∈ Wx,u|∆L(x, u) ≤ −α}, (16)

and (8) is modified as follows

∆L(x, u) ≤ −α, (17)

where α represents a positive minuscule constant. By adding a
constant scalar α to satisfy the Lyapunov function’s decreasing
condition, a small-scale region Xα = [xα, x̄α] around the
origin is removed from WN(L). In this study, it is assumed
that the system (1) is controllable in the origin region X0.
If we choose an appropriate α such that Xα ⊆ X0, then
projx(WN&I) ∪ Xα is an estimate of RDOA.

Corollary 1. Given RNIS-SC WN&I(L) that satisfies (17) for
the system (1) and a Lyapunov function L, if the controller
µ satisfies (9), there exists a constant α such that, for all
x0 ∈ projx(WN&I) ∪ Xα, the closed-loop systems xk+1 =
F(xk, µ(xk)) are asymptotically stable.
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Proof. According to (1), we still have (13) because the orbit
L(ϕ(x0, k)) continues to exhibit a monotonically decreasing
trend. Then, we aim to show the existence of a parameter α
such that Xα = [xα, x̄α] ⊆ X0. Since α is an arbitrarily small
constant, we have limα→0,x→0 L(xk+1) − L(xk) = 0, which
implies limα→0 xα = 0, limα→0 x̄α = 0 ⇒ limα→0 Xα =
{0}. The set X0 is a fixed nonempty region around the origin,
therefore there must exist a small constant α such that Xα =
[xα, x̄α] ⊆ X0. It can be obtained that

projx(WN&I) ∪ Xα = projx(WN&I) ∪ X0. (18)

The system (1) is assumed to be controllable in the
origin region X0. Hence, ∀x0 ∈ projx(WN&I) ∪
Xα, limk→∞ ϕ(x0, k) = 0.

Remark 3. In this work, we assume that the system around
the origin is controllable and that the state in the small-
scale region can be stabilized using existing linear controllers.
The range of the controllable set X0 can be computed by
using some specific techniques such as interval Lyapunov
equation [19]. Under this assumption, RNIS-SC WN&I(L)
with new condition (17) is compact and the above corollary
proves the stability for WN&I(L).

With the fulfillment of the closedness condition of WN(L),
as defined in (16), and the compactness of the set WN(L), the
following theorem enables us to obtain the RNIS-SC.

Theorem 2. The RNIS-SC WN&I(L), as stated in Theorem 1,
complies with the following condition:

WN&I(L) = I∞(WN(L)). (19)

Proof. Lemma 3 asserts the existence of the set limit
I∞(WN(L)) = limi→∞ Ii(WN(L)). Moreover, this set limit
is invariant under system(1), which confirms the satisfaction
of (7).

Given the definition of I, it can be observed that

I∞(WN(L)) ⊆ · · · ⊆ I2(WN(L)) ⊆ I(WN(L)) ⊆ WN(L).

Hence, WN&I(L) belongs to WN(L). It can be concluded
that I∞(W) exhibits negative-definiteness for system (1),
thus verifying the satisfaction (17). Consequently, we obtain
WN&I(L) = I∞(WN(L)).

Remark 4. The theorem presented in this paper is akin to
Proposition 2 of [16], with the main distinction being that
we take into account a system with uncertainty, which is not
addressed in [16].

III. ESTIMATING RNIS-SC VIA INTERVAL ANALYSIS

In this section, we propose a computational method for
estimating the RNIS-SC. Firstly, we introduce the SEVIA
algorithm, an interval analysis method, for estimating a spe-
cific set. Secondly, we introduce an algorithm that utilizes the
SEVIA algorithm to estimate the RNIS-SC WN&I(L). Lastly,
we establish the convergence of the proposed algorithm.

A. Introduction of SEVIA

Interval analysis is a methodology used to approximate
sets when the actual solution of the problem is known. This
methodology guarantees an expected level of tolerance for
the approximations of sets [24]. The foundational concepts of
interval analysis include the construction of interval vectors
and the formulation of inclusion functions. These concepts
are introduced as follows (for more details, refer to [24]). An
interval is denoted by [xi] = [xi, x̄i]. [xi] is a compact set
of real numbers within boundaries so that xi ≤ xi ≤ x̄i,
where xi ∈ R denotes the lower boundary and the x̄i ∈ R
denotes the upper boundary of [xi]. An interval vector (or
box) [x] belongs to Rn1 . Similar to the definition of vector,
[x] = [x(1)] × [x(2)] × · · · × [x(n1)], where the i-th interval
[x(i)] is defined as previously, the lower boundary of [x]
is x = (x1, x2, ..., xn1

) and the upper boundary is x̄ =
(x̄1, x̄2, ..., ¯xn1). The interval union of two intervals, denoted
as [a]⊔[b], is represented by [min a, b,max ā, b̄]. Let IR1 repre-
sent the set of all interval numbers and let IRn1 represents the
set of hyperrectangles in n1-dimension. If a function is defined
as f : Rn1 → Rn2 and ∀[x] ∈ IRn1 , f([x]) ⊆ [f ]([x]), then
the inclusion function for f is defined as [f ] : IRn1 → IRn2 .
Let d([x]) = max1≤i≤n1(x̄(i) − x(i)) represent the width of
interval vector [x], if ∀[x] ∈ IRn1 , limd([x])→0 d([f ]([x])) = 0,
the inclusion function [f ] is convergent. Note that there exist
different inclusion function forms for a given function.

Suppose the estimated set W ⊆ Wcons is defined in the
form

W = {w ∈ Wcons|w satisfies CONDITIONS} , (20)

where CONDITIONS refers to the constraints imposed on
w, such as ||w|| < 1, w ̸= ∅, etc. The SEVIA algorithm is
similar to the SIVIA algorithm in [24], but this study focuses
more on set estimation than set inversion. The approach to
estimate the set W ⊆ Wcons using the SEVIA algorithm
can be outlined as follows: 1) Convert the CONDITIONS
into an interval inclusion function expression, which allows
us to verify whether a given hyperrectangle [w] ⊆ Rn+m is
completely within or outside of W. 2) Begin with an initial set
Ŵinit of hyperrectangles. 3) Utilize the SEVIA algorithm to
recursively explore different cases and determine the suitable
actions for each case. (1) Inner condition tests: If [w] is inside
the set W, then it will be saved in the hyperrectangle set
Ŵin, which is executed in Lines 7 and 8 of Algorithm 1.
(2) Outer condition tests: If [w] is out of W, then [w] will
be saved in the set Ŵout, which is executed in Lines 9 and
10 of Algorithm 1. (3) If [w] fails to meet both the inner
and outer tests, it indicates that [w] is bounded by W and is
called an indeterminate box. The width of [w] is denoted by
d[w]. If d[w] is smaller than a tolerance parameter ϵ > 0,
then [w] is deemed sufficiently small to curve the bound and
is saved in the set Ŵbou. This process is shown in Lines 11
and 12 of Algorithm 1. (4) If [w] is indeterminate but d[w]
is larger than ϵ, it will be split into two new hyperrectangles
through a bisection process. This results in the creation of
two distinct hyperrectangles. These hyperrectangles should be
explored further, so they are saved in the set Ŵdo, as shown
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in Lines 13-15 of Algorithm 1.
The algorithm should execute the entire exploration proce-

dure recursively if the set Ŵdo is not empty.

Algorithm 1 SEVIA

1: Input Inner test, Outer test, Ŵx,u, ϵ
2: Initialize the sets Ŵin, Ŵout, Ŵbou as empty sets
3: Ŵdo := Ŵx,u

4: while Ŵdo not empty do
5: Retrieve a hyperrectangle [w] from Ŵdo

6: Delete [w] from Ŵdo

7: if [w] meets Inner test then
8: Append [w] to Ŵin

9: else if [w] meets Outer test then
10: Append [w] to Ŵout

11: else if ϵ ≥ d([w]) then
12: Append [w] to Ŵbou

13: else
14: Bisect the hyperrectangle [w] and append the

newly generated hyperrectangles to Ŵdo.
15: end if
16: end while
17: Output Ŵin

B. Estimating RNIS-SC via interval analysis

This subsection introduces the RNISEVIA algorithm
(RNIS-SC estimation via interval analysis) for estimating the
RNIS-SC WN&I(L) through the utilization of the SEVIA
algorithm.

The inclusion function, which is well-defined and exten-
sively studied, is applicable to functions defined from Eu-
clidean space to Euclidean space [24]. However, the existing
literature does not provide a definition for the inclusion
function of the difference inclusion F. Let w = (x, u), the
functions f, f̄ : Rn × Rm → Rn are defined as

f(w) = (f1(w), f2(w), ..., fi(w), ..., fn(w)), (21)

f̄(w) = (f̄1(w), f̄2(w), ..., f̄i(w), ..., f̄n(w)), (22)

where fi(w) = min{xi ∈ R : x ∈ F(w)} and f̄i(w) =
max{xi ∈ R : x ∈ F(w)}. The interval function [F] :
IRn+m → IRn is defined as

[F]([w]) = [f ]([w]) ⊔ [f̄ ]([w]). (23)

Lemma 4. The interval function [F] defined by (23) is the
inclusion function of F, namely ∀[w] ∈ IRn+m,F([w]) ⊆
[F]([w]).

Proof. According to the (22), we know that F(w) ⊆
[f(w), f̄(w)], which indicates that

F([w]) ⊆ [inf{a ∈ Rn|∀x ∈ f([w]), a ≤ x},
sup{b ∈ Rn|∀x ∈ f̄([w]), x ≤ b}]. (24)

Based on the properties of the inclusion function, we have

∀[w] ∈ IRn+m, f([w]) ⊆ [f ]([w]),

∀[w] ∈ IRn+m, f̄([w]) ⊆ ¯[f ]([w]).

We have

∀[w] ∈ IRn+m, inf{a ∈ Rn|∀x ∈ f([w]), a ≤ x} ∈ [f ]([w]),

∀[w] ∈ IRn+m, sup{b ∈ Rn|∀x ∈ f̄([w]), x ≤ b} ∈ ¯[f ]([w]).

which means[inf{a ∈ Rn|∀x ∈ f([w]), a ≤ x}, sup{b ∈
Rn|∀x ∈ f̄([w]), x ≤ b}] ⊆ [f ]([w]) ⊔ [f̄ ]([w]). Hence, we
have ∀[w] ∈ IRn+m,F([w]) ⊆ [F]([w]).

Based on the inclusion function [F]([w]) of F(w), the
RNS-SC WN(L) can be computed by utilizing the SEVIA
algorithm. By (16), ∀w ∈ WN(L),∆L(w) ≤ −α. Hence, if
[w] = [x]× [u] ⊆ WN(L), [w] satisfies

L(F([w]))− L([x]) ⊂ (−∞,−α]. (25)

By utilizing the properties of interval operations, we can
derive

L(F([w]))− L([x]) ⊂ [L]([F]([w]))− [L]([x]). (26)

By (26), if

[L]([F]([w]))− [L]([x]) ⊂ (−∞,−α], (27)

then (25) holds true so that [w] ⊆ WN(L). Similarly, if

[L]([F]([w]))− [L]([x]) ∩ (−∞,−α] = ∅, (28)

then L(F([w])) − L([x]) is outside (−∞,−α] and [w] is
outside WN(L). With the internal validation expressions (27)
and external validation expressions (28), the estimated set
ŴN(L) of RNS-SC WN(L) can be obtained by

ŴN(L) := SEVIA((27), (28), {[wx,u]}, ϵ), (29)

where [wx,u] ⊆ IRn+m is a hyperrectangle, representing the
interested region.

Now that we have the initial set ŴN(L), the approximation
of mapping I can be obtained by executing the SEVIA
algorithm. According to Theorem 2, the internal estimation
of RNIS-SC WN&I(L) can be acquired. The steps outlined in
Lines 4-10 of the Algorithm 2 demonstrate the process.

For any hyperrectangle set Ŵ1 ⊆ ŴN(L), from (15), we
know that for any [w] ⊆ I(Ŵ1), [w] satisfies that

F([w]) ⊆ projx(Ŵ1). (30)

Since solving for the function range can be challenging, the
interval inclusion function is employed as a substitute to verify
the aforementioned formula. Since F([w]) ⊆ [F]([w]), we have

[F]([w]) ⊆ projx(Ŵ1), (31)

then (30) can be satisfied, which implies that [w] ⊆ I(Ŵ1).
Similarly, if

[F]([w]) ∩ projx(Ŵ1) = ∅, (32)

then [F]([w]) must be outside proj(Ŵ1), therefore [w] is
outside I(Ŵ1). Using the internal validation expressions (31)
and the external validation expressions (32), the estimated Ŵ2

of I(Ŵ1) can be derived using the following formula:

Ŵ2 := SEVIA((31), (32), Ŵ1, ϵ). (33)
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The full implementations are introduced in the Algorithm 2.

Algorithm 2 RNISEVIA

1: Input F, L, [winit], ϵ
2: Obtaining the internal validation expressions (27) and

external validation expressions (28) by utilizing F and L.
3: ŴN(L) := SEVIA((27), (28), {[winit]}, ϵ)
4: Obtaining the internal validation expressions (31) and

external validation expressions (32) by utilizing F and L.
5: Ŵ1 := ∅
6: Ŵ2 := ŴN(L)
7: while Ŵ1 ̸= Ŵ2 do
8: Ŵ1 := Ŵ2

9: Ŵ2 := SEVIA((31), (32), Ŵ1, ϵ)
10: end while
11: ŴN&I(L) := Ŵ1

12: Output ŴN&I(L)

Lemma 5. RNIDEVIA is a finite algorithm that terminates
after executing SEVIA less than (d([winit])/ϵ)

n+m times.

Proof. Firstly, SEVIA algorithm is a finite algorithm,
the maximum number of generated hyperrectangles is
(d([winit])/ϵ)

n+m. These hyperrectangles are called unit hy-
perrectangles [wu], which satisfy d([wu]) = ϵ. Secondly, the
SEVIA algorithm in (33) causes the number of [wu] inside
Ŵ1 to decrease monotonically. Hence RNIDEVIA is a finite
algorithm and the worst case is executing (d([winit])/ϵ)

n+m

SEVIA times.

Remark 5. If the algorithm reaches the maximum execution
times, it means the whole state-control space has been par-
titioned into unit hyperrectangles with width of ϵ. Each unit
hyperrectangle has been analyzed by SEVIA algorithm. Since
the SEVIA algorithm in (32) causes the number of [wu] inside
Ŵ1 to decrease monotonically. The worst case scenario is that
the output set Ŵ1 = ∅, then the stopping criterion Ŵ1 = Ŵ2

is finally satisfied. However, the induced set is useless in this
case because the tolerance ϵ is too large. If ϵ is small enough,
the induced set can present the required properties. How-
ever, Lemma 5 indicates that the computational complexity
of system (1) is O(2n+m). This means that the procedure
RNIDEVIA is computationally expensive if we choose small
ϵ, particularly for high-dimensional systems. In fact, most set
estimation methods have exponential complexity [18]–[20],
[22], and designing more efficient algorithms is a focus of
our future work.

It is important to note that the output of Algorithm 2 can be
∅. The convergence of Algorithm 2 depends on the choice of
tolerance ϵ, and if ϵ → 0, its convergence can be guaranteed.
This will be discussed in the next subsection.

C. Convergence of RNISEVIA algorithm

Based on the (23), [F]([w]) represents the interval union of
two inclusion functions in Euclidean space. For a comprehen-
sive analysis of various types of inclusion functions, including
convergent forms such as natural, center, and Taylor, please

refer to [24] (pp. 27-38). Extending the convergence property
to the interval union [g] ⊔ [h] of two inclusion functions [g]
and [h], we have:

Definition 5. For [f ]([w]) : IRn+m → IRn and [f̄ ]([w]) :

IRn+m → IRn, the inclusion function [F]([w]) = [f ]([w]) ⊔
[f̄ ]([w]) : IRn+m → IRn is convergent if, for all sequences
of hyperrectangles [w](k), the following condition holds:

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

d([F]([w](k))) = D, (34)

where D = max1≤i≤n+m(f̄(w)i − f(w)i).

Lemma 6. If both inclusion functions [f ]([w]), [f̄ ]([w]) are
convergent, then [F]([w]) that satisfies (23) is also convergent.

Proof. Since [F]([w]) = [f ]([w])⊔ [f̄ ]([w]), it follows that for
any sequence of hyperrectangles [w](k)

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

d([F]([w](k))) =

max
1≤i≤n+m

(sup(x ∈ [f̄ ]([w](k))i)− inf(x ∈ [f ]([w](k))i)). (35)

The inclusion functions [f ]([w]), [f̄ ]([w]) are convergent, this
implies that

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

d([f ]([w(k)])) = 0,

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

d([f̄ ]([w](k))) = 0.

Hence,

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

[f ]([w](k)) = f(w),

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

[f̄ ]([w](k)) = f̄(w).

We have D = max1≤i≤n+m(f̄(w)i − f(w)i), then we can
rewrite (35) as

lim
k→∞

d([w](k)) = 0 ⇒ lim
k→∞

d([F]([w](k))) = D,

this completes the proof.

Definition 6. Let clo(A) represents the closure of the set A
and int(A) represents the interior of the set A, the compact
set A is said to be full if clo(int(A)) is equal to A [34].

Theorem 3. For a full set WN&I(L), the set ŴN&I(L)
evaluated by RNIDEVIA (F, L, [winit], ϵ) satisfies the following
property:

lim
ϵ→0

ŴN&I(L) = WN&I(L).

Proof. To establish convergence, we need to demonstrate
that as ϵ approaches 0, the ŴN(L) obtained at step 3
converges to WN(L). In (29), there are two functions
involved: [L] and [F]. The convergence of [F]([w]) is es-
tablished in Lemma 6, which states that F([w]) is a sub-
set of [F]([w]) and as d([w]) approaches 0, [F]([w]) con-
verges to F([w]). The function L is in Euclidean space.
Then, the inclusion function [L] : IRn → IR+ exhibits
the properties such that [L](F([w])) ⊆ [L]([F]([w])) and
lim[F]([w])→F([w])[L]([F]([w])) = [L](F([w])). Consequently,
we have limd([w])→0 [L]([F]([w])) = L(F([w])), limd([w])→0

[L]([x]) = L([x]).
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After the completion of the SEVIA algorithm at step 3, if
[w] ∈ Ŵbou, then it implies that d([w]) < ϵ. As ϵ approaches
0, d([w]) tends to 0 as well. To rephrase, the inner test (27)
and the outer test (28) can be reformulated as follows:

L(F([w]))− L([x]) ⊆ (−∞,−α], (36)
L(F([w]))− L([x]) ∩ (−∞,−α] = ∅. (37)

If [w] ∈ Ŵbou does not satisfy (36) or (37), it follows that
L(F([w]))− L([x]) = 0 as ϵ approaches 0. Hence,

∀[w] ∈ Ŵbou, limϵ→0 h∞([w], ∂WN(L)) = 0

⇒ limϵ→0 h∞(Ŵbou, ∂WN(L)) = 0, (38)

where h∞(Ŵbou, ∂WN(L)) denotes the Hausdorff distance
between Ŵbou and ∂WN(L)). The Hausdorff distance, defined
using the infinity norm, serves as a metric between the sets
of compact subsets of Rn+m (e.g., Definition 10 in [34]). It
is straightforward that ∂WN(L) ⊆ Ŵbou. When ϵ = 0, it
follows that h∞(Ŵbou, ∂WN(L)) = 0, implying h∞(Ŵbou =
∂WN(L)). Therefore, we can conclude that limϵ→0 Ŵbou =
∂WN(L).

Now that we have identified the boundary ∂WN(L), the rest
of the hyperrectangles are either outside (36) or inside (37).
The set WN&I(L) is full and WN&I(L) ⊆ WN. Hence the set
WN is full, indicating the existence of a finite hyperrectangles
Ŵin that satisfy (36). We have limϵ→0 Ŵbou = ∂WN(L), the
rest hyperrectangles are either inner or outer. We can finally get
limϵ→0 ŴN(L) := Ŵin = WN(L). Based on the convergent
inclusion function [F]([w]), SEVIA ensures the convergence
of the output as ϵ approaches zero.

Similarly, regardless of the number of times the SEVIA al-
gorithm is executed in the loop from Step 7-10 of Algorithm 2,
the inclusion function [F]([w]) in (32) is convergent, SEVIA
iterations satisfy that

lim
ϵ→0

h∞(Ŵbou, ∂W) = 0.

This implies that h∞(Ŵ2,W2) approaches zero as ϵ ap-
proaches zero. Therefore, the output set ŴN&I(L) := Ŵ1 =
Ŵ2 satisfies that

lim
ϵ→0

h∞(ŴN&I(L),WN&I(L)) = 0.

Since ŴN&I(L) ⊆ WN&I(L). When ϵ = 0, we
have h∞(ŴN&I(L), WN&I(L)) = 0, which implies
ŴN&I(L) = WN&I(L). Consequently, we can conclude that
limϵ→0 ŴN&I(L) = WN&I(L).

Based on Theorem 3, when ϵ approaches zero, the in-
ner approximation ŴN&I(L) converges to the set WN&I(L).
This indicates that RNIDEVIA can approximate RNIS-SC
WN&I(L) with arbitrary precision. However, it is worth noting
that the complexity of the resulting description imposes a
limitation on the achievable tolerance [35]. By using the
RNIS-SC estimation method, the estimate of RDOA can be
obtained. In the next section, the RDOA enlargement approach
is introduced.

IV. CLOSED-LOOP RDOA ENLARGEMENT AND
CONTROLLER DESIGN

A. Closed-loop RDOA Enlargement
According to Algorithm (2), the estimate set ŴN&I(L)

can be attained and the estimate of RDOA is given by
projx(ŴN&I(L)). Since various Lyapunov functions can lead
to completely different RNIS-SCs ŴN&I(L) and their projec-
tions projx(ŴN&I(L)), we aim to select the best Lyapunov
function for which the related projection projx(ŴN&I(L))
is the largest. To achieve this aim, we construct a set of
Lyapunov candidate functions that are parameterized by sum-
of-squares (SOS) polynomials [36]. Then, we formulate an
optimization problem to select a proper Lyapunov function
from the set. The estimate of RDOA can be obtained using
the algorithm proposed in the previous subsection, and its
volume is easy to calculate and compare for a given set of
Lyapunov candidate functions [37]. Let m(projx(ŴN&I(L)))
represent the Lebesgue measure, such as volume if the space
is 3D Euclidean space. Let Ln,2d represent a subset of SOS
polynomials Rn,2d [38], n is the number of variables, and its
degree is less than 2d. Ln,2d is in the form of

Ln,2d =
{
L ∈ Rn,2d

∣∣∣L(x) = ST
d (x)P

TPSd(x), x ∈ Rn
}
,

where P ∈ Rr×r is a matrix,

Sd(x) = (x(1), · · · , x(n), x(1)x(2), · · · , xd
(n)) ∈ Rr,

r = ( n+d
d )− 1 denotes the dimension of matrix P .

To search for a proper function from a set of Lyapunov
candidate functions that maximizes the estimate of RDOA,
we define the optimization problem as follows

max
L∈Ln,2d

m(projx(ŴN&I(L))). (39)

Remark 6. For a given function L, according to Algorithm 2,
we know that projx(ŴN&I(L)) is a set of hyperrectangles, and
its volume is easy to calculate because each hyperrectangle is
known.

The function L is chosen from the set of Lyapunov candi-
date functions, and the parameter P ∈ Rr×r is our primary
focus since L(x) = ST

d (x)P
TPSd(x). Applying Algorithm 2

yields the estimation of ŴN&I(L). Let m : Rr×r → R be
defined as

m(P ) = m(projx(ŴN&I(L))). (40)

By utilizing the function defined in (40), the optimization ex-
pression (39) can be reformulated as an equivalent expression:

max
P∈Rr×r

m(P ). (41)

Due to the difficulty of obtaining the analytical expression
of (40), (41) cannot be solved using traditional optimiza-
tion approaches such as gradient descent algorithms. We
observe that evaluating m(P ) is easier. Therefore, we use
meta-heuristic optimization approaches to handle (41). The
advantage of meta-heuristic optimization approaches is that
the objective functions only need to be evaluable. Some
popular meta-heuristic optimization approaches include the
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particle swarm optimization (PSO) method [39], evolution
strategies [40], and differential evolution algorithm [41]. Since
there are many publications on meta-heuristic optimizers [42],
we omit a more detailed explanation of these approaches.
The convergence time of the meta-heuristic algorithm is not
guaranteed. In practice, we set termination conditions to limit
the algorithm’s running time, such as convergence to a specific
threshold or reaching the maximum iteration count. Therefore,
its actual convergence time and enlargement results are un-
known. However, for a given system, our approach first deter-
mines the Lyapunov function and then designs the controller,
as shown in the Algorithm 3. Therefore, the convergence time
of the meta-heuristic algorithm does not affect the time it takes
to stabilize the system through the controller.

B. Controller Design

As stated in Corollary 1, there exists a small-scale domain
Xα around 0 ∈ Rn that is not a subset of projx(ŴN&I(L)),
but there must be some hyperrectangles near the origin
0 ∈ Rn+m that are part of ŴN&I(L). Actually, the volume
of the small-scale domain Xα depends on the tolerance ϵ.
Since the system(1) is assumed to be controllable around
the origin 0 ∈ Rn+m, all states in the small-scale domain
X0 can be stabilized by some existing linear controllers, and
Xα ⊆ X0. Consequently, the estimate of RDOA is in the form
of projx(ŴN&I(L)) ∪ X0.

Let Kx,K ∈ Rm×n represent the linear controller that
can be obtained by linearizing of system (1). According to
Theorem 1, any controller which belongs to the ŴN&I(L) can
robustly stabilize the system (1). Let µ̃ : Rn → Rm represent
the controller when x ∈ projx(ŴN&I(L)). µ̃ matches up to

∀x ∈ projx(ŴN&I(L)), (x, µ̃(x)) ∈ ŴN&I(L).

By combining these two closed-loop controllers, the unified
controller is in the form

µ(x) =

{
Kx, if x ∈ X0

µ̃(x), if x ∈ projx(ŴN&I(L))
. (42)

Note that we assume the linear feedback controller µ = Kx
is given. The process of estimating RNIS-SC ŴN&I(L) is
already a controller design process. The difference from other
methods is that we obtain a set of controllers. To examine
the effectiveness of our methods, we propose the following
specific continuous controller design approach for a given
ŴN&I(L).

First, for a given RNIS-SC ŴN&I(L), a training set
Wtran = {(xi, ui), i = 1, ..., N} ⊆ ŴN&I(L) is selected
by uniformly sampling in the state-control space. For the
training set Wtran, some function estimation methods can
be used to obtain the specific controller µ̃, such as inter-
polation, Gaussian processes regression. The output of the
controller µ̃ is restricted in RNIS-SC. Note that in the pro-
cess of adding constraints to the controller, the restriction
µ(0) = 0 is also included. Then, the controller µ̃ acquired
from the function estimator can be assured to satisfy ∀x ∈
projx(ŴN&I(L)), (x, µ̃(x)) ∈ ŴN&I(L), see also [20]. For
the linear feedback controller, we assume the closed-loop

gain K is given. If K is unknown, for a given system, we
can linearize the system via the Taylor series expansion of
functions around the equilibrium point. Then the closed-loop
gain K can be obtained by solving the discrete-time algebraic
Riccati equation (DARE) equation.

The global algorithm that includes a controller design and
an optimization routine is introduced in the Algorithm 3.

Algorithm 3 Full implementation for obtaining controller

1: Input F, [winit], ϵ,X0, d,K
2: Constructing the Lyapunov function set Ln,2d, n is the

number of variables of F.
3: Obtaining the P ∗ by solving (41) based on a meta-

heuristic optimization approach, e.g., PSO function in
MATLAB: P ∗ = particalswarm(fun, nvars, lb, ub),
where fun is (40), nvars is the number of the variables
of P and lb, ub is the boundary of P . Note that ŴN&I(L)
in (40) is obtained via Algorithm 2.

4: Obtaining L∗(x) = ST
d (x)P

∗TP ∗Sd(x)
5: Obtaining ŴN&I(L

∗) := RNISEVIA(F, L∗, [winit], ϵ)
6: Obtaining the unified controller µ(x) with Kx and

projx(ŴN&I(L
∗)) by (42).

7: Output µ(x)

V. ILLUSTRATIVE EXAMPLES

A. Nonlinear system with uncertainty

Consider F(x, u) = f(x, u,Ω),Ω = [−δ(x, u), δ(x, u)]
where:

f(x, u,Ω) = − sin(2x)− xu− 0.2x− u2 + u+Ω,

δ(x, u) = 1− exp
(
−0.5(x2 + u2)

)
,

the function δ : R×R → R denotes the modelling error bound,
the interested domain is Wx,u = [−2, 2]× [−2, 2].

The system under study is identical to that presented in
[10], [13], and the modelling error bound Ω is also the same
as that used in [20] for comparison purposes. Various interval
software packages that implement interval operations, such as
IBEX-LIB [43] and Rump’s INTLAB [44], are available, we
utilized the former for this work. To reduce the conservatism
of interval arithmetic, we split the intervals, which leads
to an exponential increase in complexity corresponding to
the number of state variables. In Appendix B, we provide
the computation code of our method for reference to other
systems.

1) Stabilization: Let the Lyapunov function be L(x) = x2.
In Algorithm 2, the tolerance ϵ is set to ϵ = 1e−4. By applying
step 3 of Algorithm 2, we obtain the internal estimation
ŴN(L) of the RNS-SC WN(L), which is shown in Figure 1
(a) and represented by blue rectangles. The projection of
ŴN(L) onto the control space, denoted as projx(ŴN(L)) =
[−2,−1.25 × 10−4] ∪ [1.25 × 10−4, 0.105] ∪ [1.315, 2] is
represented by blue line segments in state space. By applying
Algorithm 2, The internal estimation ŴN&I(L) of RNIS-
SC WN&I(L) is obtained which is shown in Figure 1 (d)
represented by blue rectangles. The projection of WN&I(L)
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Fig. 1: (a) Internal estimation ŴN(L) and projx(ŴN(L)). (b, c) The 200 state trajectories of xk and actual model error
trajectories ek. (d) RNIS-SC ŴN&I(L), controller µ̃ and projx(ŴN&I(L)). (e, f) The 200 state trajectories of xk of µ̃ and
actual model error trajectories ek of µ̃.

along the control space projx(ŴN&I(L)) = [−2,−1.25 ×
10−4]∪ [1.25×10−4, 0.105]∪ [1.315, 2] is also represented by
blue line segment in state space. The small-scale domain X0

in (42), which is represented by a green line segment in state
space, is [−0.03, 0.03]. Consequently, the RDOA estimate
we acquire is [−2, 0.105] ∪ [1.315, 2]. The RDOA estimates
obtained from other methods in [13], [18] are constrained by
the level set of Xls(L, 1.17× 10−2). Their RDOA estimation
is [−0.108, 0.108], illustrated in Figure 1 (d) by a magenta
line segment in the state space. Compared to these methods,
our result is broader. We set K = 1.8357 for the linear
controller in (42). The linear controller is represented by the
green straight line between the boundaries of the small-scale
domain X0 in Figure 1 (d). To confirm that the system (1)
can be stabilized by any controller belonging to ŴN&I(L), we
randomly select 200 initial states from [−2, 0.105]∪ [1.315, 2].
For each state, we randomly select the control input from
U(x), where U(x) = {u ∈ R|(x, u) ∈ ŴN&I(L)} is the
controller set. The 200 state trajectories of the simulation
are shown in Figure 1 (b). The 200 model error trajectories
ek ∈ [−δ(xk, uk), δ(xk, uk)] are shown in Figure 1 (c). To
obtain the controller µ̃ in (42), we choose a training dataset
represented by black ′×′s in Figure 1 (d). We utilize the
Gaussian processes regression method to obtain the nonlinear
controller µ̃, which is represented by a red line in Figure 1
(d). We choose the same 200 initial states to examine the
controller µ̃. The state and actual model error trajectories of
the simulation are shown in Figure 1 (e,f). All trajectories of
both controllers converge to the origin.

As can be observed from the Figure 1 (b,e), no state belongs
to (0.105, 1.315) ⊆ R. This confirms that the uniting set
ŴN&I(L) ∪ {(x, u)|u = 1.8357x, x ∈ X0} is an invariant
set.

2) Enlarge the closed-loop RDOA: Based on the given
system and the number of state-control space dimensions, we
have n = 1, d = 2, and P ∈ R2×2. Therefore, the set of
Lyapunov candidate functions in (39) is

L1,4 =
{
L ∈ R1,4

∣∣∣L(x) = (x, x2)TPTP (x, x2), x ∈ R
}

We use the PSO method to solve the optimization problem
(41). The appropriate Lyapunov function acquired by the
PSO method is L∗(x) = 1.1285x2 + 2.3112x3 + 1.5328x4.
By applying step 3 of Algorithm 2, we obtain the inter-

nal estimation ŴN(L
∗) of the RNS-SC WN(L

∗), which is
represented by blue rectangles in Figure 2 (a). By applying
Algorithm2, we also obtain the internal estimation ŴN&I(L

∗)
of the RNIS-SC WN&I(L

∗), which is represented by blue
rectangles in Figure 2 (d). The projection projx(ŴN&I(L

∗)) =
[−2,−1.25×10−4]∪[1.25×10−4, 2], is represented by the blue
line segment in state space. The small-scale domain (42) is
[−0.03, 0.03], which is represented by the green line segment
in state space. Therefore, we derive an RDOA estimate of
[−2, 2]. The RDOA estimation in the approach introduced in
[13] is limited by the level set Xls(L, 10.5408) and the RDOA
result is [−2, 1.27], depicted as a magenta line segment in the
state space of Figure 2 (d). Our findings offer a wider range
in comparison to this method. The value of K for the linear
controller in (42) is also K = 1.8357. The linear controller is
represented by the green dashed line between the boundaries
of the small-scale domain X0 in Figure 2 (d). To confirm that
the system (1) can be stabilized by any controller belonging to
ŴN&I(L

∗), we randomly select 200 initial states from [−2, 2].
For each state, we choose the control input in the same way
as in the previous subsection. The 200 state trajectories and
actual model error ek trajectories of the closed-loop system are
shown in Figure 2 (b,c). To obtain the controller µ̃ in (42), we
choose a training dataset represented by black ′×′s in Figure 2
(d). We utilize the Gaussian processes regression method to
obtain the nonlinear controller µ̃, which is represented by a red
line in Figure 2 (d). We choose the same 200 initial states to
examine the controller µ̃. The 200 state trajectories and actual
model error ek of the simulation are shown in Figure 2 (e,f).
All trajectories of both controllers converge to the origin.

B. System subject to actuator saturation

In this subsection, we are interested in the control of the
example subject to actuator saturation where

f(x, u,Ω) = − sin(2x)− xsat(u)− 0.2x− sat(u)2

+sat(u) + Ω, δ(x, u) = 1− exp
(
−0.5(x2 + sat(u)

2
)
)
.

The function sat() is the standard saturation function, here we
set sat(u) = min{0.5,max{−0.5, u}} for this example. For
the Lyapunov function L(x) = x2, we use the same tolerance
ϵ = 1e− 4. By applying Algorithm 2, The internal estimation
ŴN&I(L) of RNIS-SC WN&I(L) is obtained which is shown
in Figure 3 (a) represented by blue rectangles. As a result,
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Fig. 2: (a) Internal estimation ŴN(L
∗) and projx(ŴN(L

∗)). (b, c) The 200 state trajectories of xk and actual model error
trajectories ek. (d) RNIS-SC ŴN&I(L

∗), controller µ̃ and projx(ŴN&I(L
∗)). (e, f) The 200 state trajectories of xk of µ̃ and

actual model error trajectories ek of µ̃.
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Fig. 3: For system subject to actuator saturation: (a) ŴN&I(L) and the estimate of RDOA projx(ŴN&I(L)). (b, c) The 100 state
trajectories of xk and 100 actural model error trajectories ek. (d) ŴN&I(L

∗) and the estimate of RDOA projx(ŴN&I(L
∗)).

(e, f) The 100 state trajectories of xk and 100 model error trajectories ek.

we obtain an estimate of RDOA, which is [−0.455, 0.105].
The estimates of RDOA from the other methods in [13], [18]
are limited by the level set of Xls(L, 1.17 × 10−2). Their
RDOA result is [−0.108, 0.108]. To confirm that the system (1)
can be stabilized by any controller belonging to ŴN&I(L),
we randomly select 100 initial states from [−0.455, 0.105].
For each state, we randomly select the control input from
U(x) ⊆ R. The 100 state trajectories and actual model
error ek of the simulation are shown in Figure 3 (b,c). Fig-
ures 3 (d,e,f) show the same result for the Lyapunov function
L∗(x) = 1.1285x2 + 2.3112x3 + 1.5328x4. The estimate of
RDOA is [−0.57, 0.293]. In the other method which is limited
by the level set of Xls(L, 0.1004), the RDOA results are
[−0.57, 0.238]. All trajectories of both controllers converge
to the origin, and for the system subject to actuator saturation,
our RDOA results are also broader. It is also observed that
the larger the range of inputs, the more effective our method
becomes.

C. Discretized continuous system

For continuous systems, a discretizing procedure must be
applied in order to implement our method. The selection
of the sampling time can significantly impact the overall
performance of a controlled system. To conduct an analysis,
a benchmarking nonlinear continuous system is employed.
Consider the nonlinear continuous system from [47]:

ẋ = f(x, u) = x(1− x2) + u, (43)

where x and u denote the state and the control input, respec-
tively. Firstly, we discretize the continuous model (43). We
consider two classic discretization methods, the Euler method

and the fourth-order Runge-Kutta method with a sampling
time ∆t. Then, the discretized system via the Euler method is

xk+1 = xk +∆tf(xk, uk), (44)

where f(xk, uk) = xk(1 − x2
k) + uk. The discretized system

via the fourth-order Runge-Kutta method is

xk+1 = xk +
∆t

6
(h1 + 2h2 + 2h3 + h4), (45)

where h1 = f(xk, uk), h2 = f(xk + ∆t
2 h1, uk), h3 = f(xk +

∆t
2 h2, uk), h4 = f(xk + ∆th3, uk). Consider the Lyapunov

function L = x2, Wx,u = [−4, 4] × [−4, 4], ϵ = 0.01 and
X0 = [−0.2, 0.2]. The value of the derivative of the Lyapunov
function L̇ = ∂L

∂x f(x, u) is shown in Figure 4 (a) and the
negative region L̇ < 0 is shown in Figure 4 (b). By applying
our method, we obtain six different results with respect to
the variation of ∆t, which is shown in Figure 5 (a-c) for
model (44), (d-f) for model (45). The set composed of blue
grids is RNIS-SC, and the projection of the set on the x-
axis represents the estimated DOA denoted as the blue line
segment. For each RNIS-SC, we randomly select the control
input from RNIS-SC, and the selected control input is held
constant during the sampling time. We use the ode45 function
in MATLAB to simulate the continuous system (43) and the
100 state trajectories of the simulation are shown in Figure 5
(g-l). From Figure 5, we can see that different discretization
methods lead to different estimation results. The estimated
RNIS-SC via the Runge-Kutta discretization method has a
wider range. However, from Figure 5 (d, e), we can see that
due to a too large sampling time, some parts of the estimated
RNIS-SC are in the region L̇ ≥ 0 for system (43), these



12

(a) (b)

Fig. 4: (a) For continuous system (43), the value of the deriva-
tive of the Lyapunov function L̇, the gray plane represents
L̇ = 0 . (b) The colorful region denotes L̇ < 0.

parts lead to bad control performance as shown in Figure 5 (j,
k). As the sampling time decreases, the estimation results of
the two discretization models both tend towards the negative
definite region of the continuous system. We believe the proper
sampling time should be less than 0.1 for the continuous
system (43). For different continuous systems, the selection
of sampling time and sampling methods have varying impacts
on performance. It is generally believed that a shorter sampling
time is better. Our method can serve as a tool for analysis in
this regard.

VI. CONCLUSION

We have introduced an interval analysis approach to obtain a
set of unstructured robust controllers for difference inclusions.
The presented results show the usefulness of our approach
in the following ways: 1) By utilizing a specific Lyapunov
function, we have successfully obtained a wider estimate of
RDOA in comparison to the Lyapunov function constrained
by the level set. This achievement was made with respect to
the RNIS-SC. 2) The estimate of RDOA is totally different for
different Lyapunov functions. After formulating the resolvable
optimization problem, we expanded the estimate of RDOA by
selecting an appropriate Lyapunov function. The effectiveness
of the proposed method is validated by the improved suitability
of the enlarged RDOAs. For difference inclusions, the next
state xk+1 can be considered in a bounded interval vector.
Hence, the proposed RNIDEVIA algorithm, which is built
upon interval arithmetic, exhibits great potential in tackling
this problem effectively. Furthermore, the utilization of RNIS-
SC and the representation of the estimated RDOA in hyper-
rectangle form ensure the rigor and reliability of the computed
result. The controller can be designed directly in RNIS-SC,
which might be helpful in the field of optimal control.

APPENDIX A
PROOF OF LEMMA 3

Depending on the mapping I definition (15), it is obvious
that

Ii+1(W) =
{
(x, u) ∈ Ii(W)

∣∣∣F(x, u) ∈ projx(Ii(W))
}
. (46)

Rely on (46), we have Ii+1(W) ⊆ Ii(W), i ≥ 1. It can
be concluded that sets sequence {Ii(W)} are monotonically
decreasing. Furthermore, Ii(W), i ≥ 1 is closed, there exists
a set limit of Ii(W) (refer to [45], pp. 111). First, we want to
prove the compactness of I∞(W). The set W is a compact set,
meaning it is both bounded and closed in the metric space [46]
(pp.77). Hence the projection sets projx(W) and proju(W)
are both bounded. The difference inclusions F is u.s.c. over
Rn×Rm, this implies that the image of W under the mapping
I is bounded. Next, we aim to show that I(W) is closed.
To begin, consider a sequence (xi, ui) that converges within
I(W). As both projx(W) and proju(W) are compact sets, we
can conclude that the limit points x̄ = limi→∞xi ∈ projx(W)
and ū = limi→∞ui ∈ proju(W). Let yi = F(xi, ui), we have
yi ∈ projx(I(W)). By utilizing the upper semi-continuity
of F, it can be obtained that lim

i→∞
yi ⊆ lim

i→∞
F(xi, ui) ⊆

F( lim
i→∞

xi, lim
i→∞

ui) ⊆ F(x̄, ū) ⊆ projx(I(W)). Conse-
quently, (x̄, ū) ∈ I(W), it follows that I(W) is closed.
Hence, I(W) is a compact set. Furthermore, it can be
inferred that I∞(W) is a compact set as well. To prove
that I∞(W) is invariant (Definition 2), we need to demon-

strate that ∀(x, u) ∈ I∞(W) =
∞⋂
i=0

Ii+1(W),F(x, u) ⊆

projx(I∞(W)) = projx(
∞⋂
i=0

Ii+1(W)).

For all i ≥ 1, by Definintion 4, we have ∀(x, u) ∈
Ii+1(W),F(x, u) ∈ projx(Ii(W)), which implies ∀(x, u) ∈
∞⋂
i=0

Ii+1(W),F(x, u) ∈
∞⋂
i=0

projx(Ii(W)). Next, we aim

to demonstrate that
∞⋂
i=0

projx(Ii(W)) = projx(
∞⋂
i=0

Ii(W)).

Since projx(
⋂∞

i=0 Ii(W)) ⊆ projx(Ii(W)),∀i ≥ 0, in gen-
eral that projx(

⋂∞
i=0 Ii(W)) ⊆

⋂∞
i=0 projx(Ii(W)). Then we

aim to prove the reverse inclusion.
Suppose x ∈

⋂∞
i=0 projx(Ii(W)). This implies that

there exists a sequence Ui = {u ∈ Rm|∃x ∈
projx(Ii(W)), (x, u) ∈ Ii(W)} so that (x, uj) ∈
Ii(W), uj ∈ Ui. Given that I(W) and proju(W) are com-
pact, according to the compactness definition [46], we can
find a convergent subsequence U∞ ⊆ Ui. This subsequence
U∞ contains at least one limit point ū = limj→∞uj ,
ū ∈ U∞. As a consequence, we have (x, ū) ∈ I∞(W) =⋂∞

i=0(Ii(W)), implying that x ∈ proj(
⋂∞

i=0(Ii(W))). Con-
sequently,

⋂∞
i=0 projx(Ii(W)) ⊆ projx(

⋂∞
i=0 Ii(W)), this

completes the proof.

APPENDIX B

The example is computed by Python binding of IBEX-LIB
[43]. The entire code and computation time are available at
https : //github.com/CharlieLuuke/IDRCS.
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