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ABSTRACT

Recent progress on audio-based music structure analy-
sis has closely aligned with the appearance of new deep
learning paradigms, notably for the extraction of robust
spectro-temporal audio features and their sequential mod-
eling. However, most recent methods resort to supervised
learning, which requires careful annotation of audio music
pieces. Such annotations may sometimes operate at differ-
ent temporal scales from one dataset to another or comprise
inconsistent variation markers across repetitions of identi-
cal segments. This work explores language models as an
alternative to manual pre-processing of the section label
space, thus facilitating training and predictions across dif-
ferent annotated corpora. We propose a joint audio-to-text
embedding space in which latent representations of audio
frames and their respective section labels are close. We
take inspiration from recent works on cross-modal con-
trastive learning and demonstrate the plausibility of this
paradigm in the context of music structure analysis.

1. INTRODUCTION

Music structure analysis is the task of dividing a given
piece into non-overlapping segments, with a label corre-
sponding to semantic information about the segment [1].
Existing methods typically use labels with no semantic in-
formation (e.g. A, B, C...) [2–5], or explicitly consider the
semantics of musical section labels [6, 7], where predicted
categories now hold a specific meaning that is shared
across tracks. These methods generate labels based on pre-
defined taxonomies. When working with several datasets,
manual pre-processing of the labels is necessary to en-
sure compatibility among their distinct taxonomies. As
such, previous work generally restrains the label space to a
handful of categories, representing common musical sec-
tions such as Intro, Verse, Chorus, Bridge and Outro [6].
Doing this discards valuable information that is contained
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in the original form of the annotations before being pro-
cessed. For example, variation markers between identical
segments may indicate important musical changes (Verse
A, Verse B), into which several degrees of similarity be-
tween sections may be encapsulated.

In the meantime, the intrinsic relationship between text
and audio has been an active area of research. Notably,
multi-modal pre-training strategies based on contrastive
learning have shown great promise at learning joint audio-
text embedding spaces [8–11], benefiting tasks such as
few-shot sound event detection, text-to-music retrieval and
classification [12].

In this work, we investigate how fine-tuning via adapter
networks may address annotation inconsistencies and am-
biguities across datasets.

2. METHOD

The goal of the method presented in this work is to learn
a shared audio-text embedding space in which latent rep-
resentations of a given audio frame will be located near
semantically relevant section labels. This process is sum-
marized in Figure 1. From here, the decoded labels can
be used to simultaneously define segmentation boundaries
and labels associated with each predicted segment.

Figure 1: Audio and section labels of a given track are passed through
modality encoders and adapter networks to learn the (dis)similarity of
audio and section label pairs using contrastive learning. Both the audio
and text encoders are kept frozen, and only the adapters are trained.

During inference, segmentation predictions are ob-
tained through a simple frame-wise nearest-neighbor de-
coding, where the section label of an individual audio
frame is deduced from its most similar label embedding.
We use discriminative Viterbi decoding to reduce small



Figure 2: Segmentation example for the track n°1634 from the SALAMI
dataset [15].

discontinuities in the final section assignment predictions.
Here, we consider three cases where test audio frames are
decoded using: (1) section labels present in the training
set; (2) section labels present in the test set; (3) section
labels present in a single test track. Note that in the last
two cases, the model may have never seen some of the test
labels during training (i.e. zero/few-shot setting) [13, 14].
Figure 2 illustrates an output segmentation example.

3. EXPERIMENT

Our system uses an audio encoding system from [16] and a
text encoder from [17], a 2-layer MLP adapter network at-
tached to the output of the text encoder and a 2-layer trans-
former encoder after the audio encoder. Both adapters pro-
duce 128-dimensional embeddings. We train the system on
the Harmonix dataset [18] and evaluate it on the functional
labels from the SALAMI dataset [15], which amounts to a
total of 123 distinct section labels used during training and
37 for testing. We also train an equivalent audio-specific
model, which only comprises the audio adapter and uses
a classification loss (denoted as Classif.) over the training
label taxonomy. We use common music segmentation met-
rics for evaluation [1], using a 3-second tolerance window
for evaluating boundary hit rates (P3, R3, F3) and summa-
rize results in Table 1 below:

P3 R3 F3 PFC NCE

Classif. .254 .665 .349 .494 .511
Ours (1) .399 .553 .439 .468 .579
Ours (2) .371 .570 .425 .483 .577
Ours (3) .339 .493 .372 .572 .536

Table 1: Segmentation results on the SALAMI dataset [15].

4. ANALYSIS

The decoding method (1) provides less noisy frame-wise
section decoding (higher precision, P3) than the classifica-
tion baseline on boundary detection, yielding better bound-
ary detection and NCE results. On the other hand, the base-
line returns a higher pairwise frame clustering score (PFC),
possibly because the model is trained to classify audio
frames among all possible labels in the training set. Test
labels also tend to be well-separated in the learned audio-
text latent space, as relatively consistent segmentation can
be seen between strategies (1) and (2). This demonstrates
that the text encoder somewhat generalizes across labels
not observed during training. Finally, decoding only with
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Figure 3: A heatmap showing label predictions on [15], normalized per
ground-truth label. Red labels indicate that the labels were not present in
the dataset [18] used for training the adapter networks.

track-specific labels retrieves a much lower proportion of
segment boundaries (lower recall, R3). This also reduces
the number of distinct segment labels produced during de-
coding, improving PFC.

When examining the cross-prediction of labels, we can
see that while mislabeling occurs, a good amount of se-
mantic information translates between different labels, al-
lowing for relatively good zero-shot performance. Despite
the different label spaces between the two sets, our learned
joint embedding space is able to correctly decode labels
outside of the original training set due to its semantic simi-
larity to the original training dataset. Due to a large im-
balance in classes, the predictions typically favor more
common/well-defined labels such as Chorus, Verse, Solo,
Introduction, etc. Class-balancing our training set to limit
the effect of dominant labels could help regularize our re-
sults and better investigate labels’ semantic proximity.

5. CONCLUSIONS

This work proposed a novel approach to music structure
labeling by learning a joint audio-text embedding space.
We demonstrated that this method improves upon audio-
only segmentation strategies and can generalize to out-of-
distribution segmentation labels leveraging the semantic
information captured by the text encoder. Further exten-
sions of this work could include experimenting with more
task-appropriate text encoders, such as ones pre-trained on
musically relevant semantic information. Our label space
is also relatively limited due to the standardization of our
datasets [15, 18]; methods in augmenting the label space
could help better disperse the text embeddings. Finally,
this approach could be coupled with existing music seg-
mentation methods to retrieve labels of predicted segments
at one or multiple structural levels.

This material is based upon work supported by the National Science
Foundation under NSF Award 1922658.
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