
HAL Id: hal-04764100
https://hal.science/hal-04764100v1

Submitted on 3 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Aeroelastic stability of a labyrinth seal coupled to a
flexible stator, with a one control-volume bulk-flow

model including temperature fluctuations
Marine Fleury, Fabrice Thouverez, Laurent Blanc, Patrick Girard

To cite this version:
Marine Fleury, Fabrice Thouverez, Laurent Blanc, Patrick Girard. Aeroelastic stability of a labyrinth
seal coupled to a flexible stator, with a one control-volume bulk-flow model including temperature
fluctuations. International Conference on Noise and Vibration Engineering (ISMA) / International
Conference on Uncertainty in Structural Dynamics (USD), KU Leuven, Sep 2020, Leuven, Belgium.
pp.269-284. �hal-04764100�

https://hal.science/hal-04764100v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Ac
ce

pt
ed

 M
an

us
cr

ip
t

Aeroelastic stability of a labyrinth seal coupled to a

flexible stator, with a one control-volume bulk-flow model

including temperature fluctuations

M. Fleury 1,2, F. Thouverez 1, L. Blanc 1, P. Girard 2

1 Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes,
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Abstract
In turbomachinery, labyrinth seals are key components to reach high performance of the engine. To that

end, manufacturers of sealing systems tend to reduce the radial clearance between stationary and rotating

parts of the turbine to increase efficiency. They also reduce the thickness of structural parts to get lighter

designs. These new designs could lead to aeroelastic instability issues. To prevent such instability problems,

an accurate prediction of the aeroelastic effective damping is necessary. Stability criteria used in the industry

are mainly based on empirical observations and show limitations. A more representative prediction can be

done using CFD calculations, but it remains computationally expensive. In this paper, a semi-analytical

model is developed to analyze the fluid-structure interaction inside a multi-fins straight labyrinth seal. Fluid

equations are written using a one control-volume bulk flow model, and assuming temperature fluctuations.

This last feature is rarely addressed in the literature and is expected to provide better fidelity.

1 Introduction

In gas turbomachinery, labyrinth seals are used to control the leakage between high-pressure and low-

pressure regions. They are located between the rotating and stationary parts of the structure. They are

composed of several radial fins, forming annular cavities with gas recirculation inside. The axial leakage

is allowed by a clearance of a few hundreds of microns, that leads to pressure drops all through the seal.

New designs of seals present more deformable structural parts and even reduced clearances. Under certain

operating conditions, this can lead to aeroelastic instabilities, such as flutter, which entails fatigue cracks.

Such phenomenon has been historically observed on different labyrinth seals [1, 2] and becomes nowadays

even more sensitive. Thus, it is necessary to achieve an accurate prediction of the seal behavior, to prevent

damage.

Sealing systems stability has been studied for many years. In the 1960s, Alford [3] and Ehrich [4] are the

first to highlight different parameters of influence. Radial clearance and fin-support position (high-pressure

or low-pressure side) are shown to have both critical impact. Alford also proposes a stability criterion

[1], considering radial deflection, and based on empirical results. This model neglects a lot of physical

parameters, such as radial clearance, and cannot be used to predict flutter in seals. In the early 1980s, Lewis

et al. [2] and Abbott [5] propose an improvement of Alford model. Abbott’s criterion suggests that in the

case of a high-pressure side support, the seal is stable as long as the mechanical frequency is lower than the

acoustic frequency, at same nodal diameter. The phenomenon is reversed in the case of a low-pressure side

support. This model, even if employed in the industry, assumes a weak coupling between fluid and structure,

and remains poorly predictive in some cases.
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Then, in the 1990s, a semi-analytical model, based on Iwatsubo work [6], was proposed by Childs and

Scharrer [7]. The continuity and momentum equations are written for a control volume in each cavity,

assuming isothermal flow along the seal. Resolution is carried out in two steps, assuming small perturbations

around the steady state, leading to linearized equations for the resolution of the unsteady problem. The main

flaw of this model is to consider a whole rigid structure, whereas new geometries of aircraft engines present

thin parts, that might undergo deformations.

Then, developments in CFD calculations allowed better understanding of labyrinth seal behavior. In their

different works, Rhode [8], Kwanka, Tsukuda and Hirano [9, 10] perform predictions of rotordynamic co-

efficients of the seal. Although reliable, CFD approach remains computationally expensive with respect to

bulk-flow model, and cannot be used for pre-design studies. Recently, Cangioli et al. [11, 12] propose a one

control-volume bulk-flow model involving thermodynamics, by introducing the energy equation at steady-

state, with an enthalpic formulation. Corral and Vega [13, 14] also propose a stability criterion based on an

explicit expression of the work per cycle: stability is assessed through the comparison between discharge

time and acoustic propagation time along cavity.

The purpose of this paper is to propose a new semi-analytical model, rewritting the Navier-Stokes continuity

and momentum equations, adding the energy equation to take the effect of temperature fluctuations into ac-

count, at both steady and unsteady states - this last point being the most remarkable novelty. One considers

a simplified but representative design of phenomena occuring in labyrinth seals. For confidentiality issues,

tested geometries presented are not real industrial seals. The model includes a rigid shaft, supporting the

seal, and a flexible stator. It allows for different configurations of seal (multi-cavities, shaft rotation, inlet

circumferential velocity). The structural motion induces pressure and velocity fluctuations inside the cavities

of the labyrinth seal. The structure dynamics is described using a cylindrical shell model taking into account

the support position (high-pressure side or low-pressure side, hereinafter ’HP’ or ’LP’). A monolithic res-

olution of fluid and structural equations is carried out, leading to a strongly coupled model. While models

historically used to be based on isothermic approaches [7, 15], or adiabatic ones [13], the approach in this

paper is more general. With this model, these two limit cases can be identified and a better interpretation of

seal behavior is obtained.

2 Fluid governing equations

2.1 Problem definition and hypotheses

This model is based on the one-control volume bulk-flow model of Childs and Scharrer [7]. It includes

multi-cavities and shaft rotation. Each cavity i is represented by one control-volume (Fig. 1). The fluid

characteristics assumptions are as follows :

1. Air is supposed to be a perfect gas ; consequently, the ideal gas law will be used to describe the fluid

state;

2. Air is a compressible gas, its density will vary in time and space.

3. A viscous flow is considered : the circumferential shear stresses will be calculated using a Colebrook

model [16];

4. Pressure variations inside a cavity is negligible with respect to pressure variations between the cavities;

5. A choked flow condition is assumed on the last fin of the labyrinth seal.

Thermodynamically, rotor and stator are supposed to be adiabatic walls. The main contribution of this work is

to introduce the energy equation to the model, allowing to consider the influence of temperature fluctuations

through the seal. Indeed, this new approach enables to be more representative of industrial configurations,

where shaft rotation might introduce heating due to wall friction. Moreover, a formulation in temperature

has been preferred to an enthalpic one [11], because it enables a better physical interpretation of the results,

as it is a measurable variable. The temperature fluctuation is taken into account at both steady and unsteady
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states. The implementation of energy equation at unsteady state represents the main improvement of this

model with respect to other one control-volume models such as Cangioli’s one [11].
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STATOR

ṁi+1ṁi
1 CV

Pi−1

Ti−1

Ui−1

Hi−1
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Ti
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Figure 1: Control Volume of the i-th cavity with thermodynamic and kinematic variables

Fluid behavior is described by the Navier-Stokes equations in each cavity, that leads to a highly non-linear

system. Variables describing the system in a cavity i (Fig. 1) are: pressure Pi, temperature Ti, circumferential

velocity Ui, fluid density ρi , radial displacement Hi and mass flow rate ṁi. Nominal radial clearance Cr

denotes the distance between teeth tip and stator at rest.

2.2 Navier-Stokes equations

The model governing fluid behavior within a cavity is inspired by Childs work [17, 7] and based on Navier-

Stokes equations. Unlikely to Childs hypotheses, one does not consider an isothermic flow. For each control

volume of a cavity i, the fluid integrated governing equations are the following:

• Continuity equation:
∂

∂t
(ρiAi) +

1

Rs
[
∂

∂θ
(UiAiρi)] + ṁi+1 − ṁi = 0 (1)

• Circumferential momentum equation:

∂

∂t
(ρiUiAi) +

1

Rs

∂

∂θ
(ρiAiU

2
i ) + Uiṁi+1 − Ui−1ṁi = −Ai

Rs

∂Pi

∂θ
+ τr,iar,iL− τs,ias,iL (2)

The fluid shear stress τr,i and τs,i (respectively for the rotor and the stator) are expressed using a

Colebrook formulation [16]. This formulation as been preferred to a Blasius one as it shown better

results, especially for high Reynolds number [15].

• Energy equation:

∂

∂t
((CpTi +

U2
i

2
)ρiAi) +

∂

∂θ
((CpTi +

U2
i

2
)
ρiAiUi

Rs
) + ṁi(CpTi +

U2
i

2
)− ṁi−1(CpTi−1 +

U2
i−1

2
)

= τr,iar,iLiRsω +
∂

∂t
(PiAi)

(3)

This last equation is based on the White’s enthalpic formulation [18], assuming we have:

ui = hi − Pi

ρi
, and hi = CpTi + h0, where h0 is an arbitrary constant.

Here, a temperature formulation is chosen as it is a physical and measurable variable.

Finally, to represent fluid leakage behavior in axial direction, a mass-flow equation is necessary. This last
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one induces pressure coupling between cavity i and cavity i − 1. Here, mass flow-rate is modeled using a

modified form of the Neumann’s empirical formula [19]:

ṁi = µ0µiHi

√

P 2
i−1 − P 2

i

RTi
, (4)

with µi being the kinetic carry-over coefficient, and µ0 the discharge coefficient.

The system of equations (1), (2), (3), (4) provides a fully-coupled and highly non-linear problem to describe

fluid behavior within the seal. Small perturbation method is carried out below.

2.3 Linearized problem

To predict system’s dynamics, equations (1), (2), (3), (4) are developed using a perturbation method. It

assumes small variations around a mean value. In cavity i, thermodynamic and kinematic variables are

written as sums of a mean term (zeroth order) and a fluctuation term (first order), where ǫ denotes the

perturbation parameter:

Pi = P0i + ǫP ′
i ,

Ti = T0i + ǫT ′
i ,

Ui = U0i + ǫU ′
i ,

ρi = ρ0i + ǫρ′i,

Hi = Cr + ǫH ′
i,

ṁi = ṁ0i + ǫṁ′
i.

(5)

Equations (5) can be solved separately, cascading linear algorithms to solve zeroth and first epsilon orders.

2.3.1 Steady-state problem

Equations at steady-state are established here to provide mean distributions of pressure, circumferential

velocity and temperature within the seal. At steady-state, Navier-Stokes equations are reduced to :

• Continuity equation:

ṁ0i+1 = ṁ0i = ṁ0 ∀i (6)

• Circumferential momentum equation:

ṁ0(U0i − U0i−1) = τr0,iar0L− τs0,ias0L (7)

with

τr0,i =
1

2

P0i

RT0i
(Rsω − U0i)

2nr(
|Rsω − U0i|Dh

ν
)

mr

sgn(Rsω − U0i) (8)

and

τs0,i =
1

2

P0i

RT0i
U0i

2nr(
U0iDh

ν
)

mr

sgn(U0i) (9)

• Energy equation:

ṁ0(CpT0i +
Ui

2

2
)− ṁ0(CpT0i−1 +

Ui−1
2

2
) = τr0,iRsωL (10)

To solve this system, we need to provide fluid input parameters and evaluate the mass flow rate assuming a

choked flow hypothesis [20].

Problem inputs are inlet and outlet pressures, inlet temperature, inlet velocity, and shaft rotation velocity. To

obtain solution at steady-state, a first approximation of the flow-rate has to be achieved. To that end, choked
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flow conditions are assumed on the last fin [20]. This enables to define the ratio between the oultet pressure

PS and the last cavity pressure P0N−1 as 0.528 [15]. then, the steady mass flow-rate in the last cavity is

given by Fliegner’s formula [21]:

ṁ0 =
0.510µ0√

RT0
P0N−1Cr. (11)

By means of this equation and Neumann’s one (eq. (4)) , we get a closed system of fully-coupled equations.

The addition of the energy equation induces a coupling between the three equations at zeroth order. More-

over, the cavities are linked to each other : the state of the cavity i clearly depends on the cavities i − 1

and i + 1. This implies a monolithic resolution of the steady state problem, involving a Newton-Raphson

algorithm. To perform the resolution, a well chosen initial point is necessary to prevent convergence issues.

The solution result of the Navier-Stokes equations without the energy equation is chosen as initial point.

It is to be noticed that the choked flow condition is checked after each iteration of the whole procedure, and

a correction on the flow-rate is made until satisfactory convergence on the pressure distribution. This first

step provides pressure, circumferential velocity and temperature distributions at steady-state.

2.3.2 First-Order problem

As stated before, the governing equations (1), (2), (3) are expanded using a perturbation analysis method (eq.

(5)). The linearized equations at order ǫ are presented in Appendix A of this paper.

Due to the geometry, the solution is expanded as Fourier series (according to the angle θ); each fluctuation

variable y′i is written as follows:

y′i =
J
∑

n=1

[ycn,icos(nθ) + ysn,isin(nθ)], (12)

where n is the spatial harmonic and J is the truncature order.

Pressure, circumferential velocity, radial displacement and temperature variables are expressed by means

of the relation (12) and susbtituted into the linearized system (cf. appendix A) leading to a trigonometric

equations system. The resolution of the new system is carried out using a Galerkin approach in order to

obtain a linear algebraic problem. We may note that such projection lead to a separation of the harmonics

between them.

3 Structural equations

The structural model assumes a rigid shaft and a deformable stator. This last point constitutes the main differ-

ence with the Childs’ structure modelling [17] and is expected to provide a more representative description.

Fins can be located either on rotor or stator. We assume there is no excentricity between rotor and stator axis;

the displacement fluctuation is due to the flexibility of stator part. A flexural cylindrical shell theory [22] is

used to describe the stator dynamic behavior.

The structure undergoes flexural vibration along the axis, as illustrated in figure 2. This kinematics is intro-

duced adding a quadratic factor depending on axial position and clamping condition to the radial displace-

ment.

The radial displacement is expanded as a Fourier series. Due to the fact that the spatial harmonics are

uncoupled, we will consider the harmonics one by one. With such formulation, each harmonic n can be

directly identified to the nodal diameter of the structure.

The radial displacement for a given harmonic n takes the form (with function z defined in Fig. 2):

w(x, θ, t) = z(x)[an(t)cos(nθ) + bn(t)sin(nθ)].
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Figure 2: First bending mode for high-pressure support side (left) and low-pressure support side (right)

The stator dynamics equations are obtained calculating the Lagrangian L of the problem:

L = Ec − Ed +Wext.

with, Ec being the kinetic energy, Ed the strain energy and Wext the work of external forces.

The strain energy is calculated from the Frey model [22]:

Ed =
1

2

∫∫

D
[

(
1

R2

∂2w

∂θ2
)
2
+ 2

ν

R2

∂2w

∂x2
∂2w

∂θ2
+ (

∂2w

∂x2
)
2
+

2(1− ν)

R2
(
∂2w

∂x∂θ
)
2
]

Rdθdx. (13)

The kinetic energy is expressed as follows:

Ec =
1

2

∫∫∫

ρẇ2
(x, θ, t)rdrdθdx. (14)

The fluid work on the structure is given by:

Wext = −
∫ 2π

0

∫ Ltot

0
P (x, θ, t)~u.~nRsdθdx, (15)

where ~u = w(x, θ, t)~er is the radial displacement, and ~n is the normalized surface normal vector.

As the pressure is variable within the seal, the work calculation is performed cavity per cavity, the fluid work

then takes the form of a sum of contributions:

Wext = −
N
∑

i=1

∫ 2π

0

∫ L(xi)

L(xi−1)
Pi(θ, t)~u(xi).~nRsdθdx. (16)

Coefficients resulting from the calculation of Lagrangian equations are given in appendix B. We define S1,

S2, S3,i and S4,i the coefficients respectively associated with kinetic energy, strain energy, work induced by

pressure fluctuation and work induced by mean pressure. This enables to write the matrix system associated

to the structural equation of one cavity i:





S1 0 0 0

0 S1 0 0





















än

b̈n

p̈cn,i

p̈sn,i

















+





S2 + S4,i 0 S3,i 0

0 S2 + S4,i 0 S3,i





















an

bn

pcn,i

psn,i

















= 0. (17)

Natural frequencies of a given geometry of cylindrical shell have been calculated, and compared to results of

experimental modal analysis. For a large frequency range (the first 6 nodal diameters have been considered),

results between numerical model and experimental data were consistent, allowing to validate the structural
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model. FE simulations also confirm the correct prediction of mechanical frequencies. Moreover, based on

experimental results, a correction can be added to the flexural rigidity to obtain more accurate values of

mechanical frequencies for a given nodal diameter.

4 Strong fluid-structure coupling

To couple fluid and structural equations, one have to link the kinematics variables describing the stator

motion. For each fluid cavity i, the radial displacement H ′
i (corresponding to the clearance variation) can be

expressed as a function of the generalized coordinates of the cylindrical shell an and bn, depending on the

clamping condition, then:

H ′
i(θ, t) = w(xi, θ, t). (18)

This rearrangement allows to describe the kinematics of whole problem with the variables an and bn.

Considering (N-1) cavities, the fluid system provides a set of 6(N − 1) equations. Two additional equations

are added coming from the structural problem. The global system can be written as follows:

[M ]Ẍ+ [C]Ẋ+ [K]X = 0, (19)

where [M ], [C] and [K] are [6(N − 1) + 2]× [6(N − 1) + 2] banded matrix. X is containing kinematic and

fluid variables, with the following arrangement:

[X]
T
= [an bn X1 ... Xi ... XN], (20)

with

[Xi]
T
= [pc

n,i ps

n,i uc

n,i us

n,i Tc

n,i Ts

n,i],

where i is the cavity number and n the harmonic number. We will seek the complex eigenvalues (λk) of (19)

to analyze the evolution of the pulsation (associated to the imaginary part) and the stability (associated to the

real part). In order to connect the results to the classical mechanical analysis [23], we will prefer display the

following quantities: ζk =
Re(λk)
|λk|

, fk =
1
2π

Im(λk)√
1−ζ2

k

. By convention, a positive value of ζk is associated to an

unstable system.

5 Results

5.1 Global view of operating strategy

Different modal analyses are carried out to highlight critical parameters on seal stability. Results of these

analyses are presented in this section. Tested geometries and operational fluid parameters are representative

of industrial seals. Configuration data inputs are presented in table 1. The considered solicitation mode is the

2 nodal diameter one, as it is commonly among the most subject to aeroelastic issues. Sensitivity analyses

presented here give some qualitative results, to be compared and correlated with empirical knowledge of seal

stability. The analysis is performed on a range of fluid inlet circumferential velocities (preswirl). Figures

show evolution of fully-coupled acoustic and structural frequencies, and the corresponding evolution of

reduced damping ratios.

Also, to evaluate the coupling effect, acoustic frequency and natural mechanical frequency of the cylinder in

vacuum are plotted with dashed lines. The theoretical acoustic frequency is given by the formula:

fac =
nc

2πRs
, (21)

where n is the nodal diameter and c the sound velocity.

Firstly, a one-cavity seal is studied to highlight the influence of seal-cavity length on the structural and

acoustic frequencies in section 5.2. The model enables to evaluate sensitivity to different notable parameters,
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Table 1: Data inputs of tested configurations - invariant parameters: inlet pressure Pin = 8 bar, outlet

pressure Pout = 1 bar, inlet temperature Tin = 293 K, shaft radius Rs = 76.4 mm, stator thickness

e = 4.5mm, stator length Lt = 130mm, nodal diameter n = 2 , varying parameters are given below.

Configuration reference C1 C2 C3 C4 C5 C6 C7

Support side HP HP HP HP HP HP LP

Nominal clearance Cr[µm] 150 150 150 150 500 150 150

Number of cavities Ncav 1 1 1 1 1 3 3

Length L1[mm] (cf.Fig. 3) 5 5 5 5 5 5 5

Length L2[mm] (cf. Fig. 3) 105 5 50 90 90 50 20

Cavity length Lcav[mm] 20 120 75 35 35 75/3 105/3

Shaft rotation ω[rpm] 0 0 0 0 0 0 5000

such as inlet pressure, radial clearance, number of cavities, nodal diameter, clamping condition. In section

5.3, we present the stability sensitivity to the radial clearance and number of cavities. Finally, the influence

of energy equation is illustrated for a 3 cavities seal, showing our results changes when the energy equation

is removed .

5.2 Fluid-Structure coupling sensitivity to seal cavity length

In this section, attention is paid to the influence of cavity length on the fluid-structure coupling. For a given

configuration (fixed fluid parameters and cylinder geometry), the varying parameter is the cavity length

(Fig. 3). The evolution of frequencies appears to be very different from one case to another (Fig. 4). For

Figure 3: Cavity length description

configuration C1 (Fig. 4.a), the smallest cavity, there is no visible coupling between the acoustic frequency of

the cavity and the structural frequency of the cylinder. For this case, the structural frequency does not appear

to vary with preswirl, and its value is equal to the uncoupled natural frequency (1086 Hz). A difference

between the fixed acoustic frequency (absence of preswirl) and theoretical acoustic frequency (represented

with dashed lines at 1430 Hz) is observed. This point is due to the presence of leakage flow in axial direction

(in opposition to a closed acoustic cavity). Conversely, in configuration C2 (Fig. 4.b), the one-cavity seal

presents a very large cavity length, almost equal to the cylinder length. In this configuration, the structural

frequency changes according to the preswirl, and differs from the uncoupled natural frequency. A split

between these two modes is well observed. In this case, interaction between the acoustic and structural

waves is notable. In configuration C3 (Fig. 4.c), the cavity length is approximately equal to half the cylinder

length. The coupling between the acoustic backward wave and structural wave is notable. Indeed, from a

preswirl of 70 m/s, a mode shape exchange is visible between acoustic and structural modes. This result

highlights the influence of cavity geometry on fluid-structure coupling. This point is consistent with other

literature studies [24].
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(a) Configuration C1 (b) Configuration C2

(c) Configuration C3

Figure 4: Acoustic and structural frequencies evolutions for 3 different cavity lengths

(—) Forward acoustics dominated mode, (—) Backward acoustics dominated mode, (—) Forward structure

dominated mode, (—) Backward structure dominated mode, (- -) Uncoupled acoustic frequency, (- -) Natural

mechanical frequency.

5.3 Stability analysis: results

5.3.1 Radial clearance influence

In this section, we will present the influence of radial clearance on configurations C4 and C5. First, focusing

on frequencies in figures 5.a and 5.b, we note a coupling between structural and acoustic waves: an exchange

of mode shapes is visible at around 50 m/s. Frequencies evolution between the two configurations are similar.

Thus, it can be noticed that the forward acoustic wave tends to evolve more with respect to the preswirl, in

the case of a radial clearance of 500 µm. This can be explained by a greater mass flow rate through the seal,

allowed by a bigger clearance. It is to be noticed that the choked flow condition is verified in both cases.

Damping ratios evolutions (Fig. 5.c and 5.d) present notable differences. In the case of a smaller clearance,

an instability appears for a preswirl of 50 m/s whereas the other configuration remains stable until a preswirl

of 140 m/s. This instability is assigned to the acoustic wave. The high sensitivity to radial clearance is in

agreement and confirms the known trends of seal stability [2, 13, 24].
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(a) Configuration C4 - frequencies (b) Configuration C5 - frequencies

(c) Configuration C4 - reduced damping ratios (d) Configuration C5 - reduced damping ratios

Figure 5: Frequencies and reduced damping ratios evolutions for a 150 and a 500 µm clearance seals

(—) Forward acoustics dominated mode, (—) Backward acoustics dominated mode, (—) Forward structure

dominated mode, (—) Backward structure dominated mode, (- -) Uncoupled acoustic frequency, (- -) Natural

mechanical frequency.

5.3.2 Number of cavities influence

To provide a more comprehensive analysis, the model is extended to the study of a 3 cavities labyrinth seal.

This section presents behavior differences between a single cavity and a 3 cavities seals (configurations C3

and C6 respectively). Focusing on the coupled frequencies of the 3 cavities seal (Fig. 6.b), one identifies this

time 2 additional couples of forward and backward (hereinafter respectively fwd and bwd) waves, associated

with the acoustic frequencies of second and third cavities. Also, at zero preswirl velocity, a closer look reveals

slightly different values of frequencies from one cavity to another, which is due to the pressure distribution

along the seal. This last point also explains the difference in the evolution of acoustic frequencies with

preswirl. Considering respective damping ratios evolutions (Fig. 6.c and 6.d), a stabilizing effect is clearly

visible between configurations C3 (single cavity) and C6 (3 cavities). Whereas the one cavity seal appears to

be unstable for values of preswirl over 30 m/s, the 3 cavities seals remains stable at any preswirl value. We

may note that minimal damping ratio values for C6 are one order of magnitude larger than for configuration

C3.
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(a) Configuration C3 - frequencies (b) Configuration C6 - frequencies

(c) Configuration C3 - reduced damping ratios (d) Configuration C6 - reduced damping ratios

Figure 6: Evolutions of acoustic and structural frequencies for a single cavity and a 3 cavities labyrinth seals

(—) Fwd acoustics dominated mode 1, (—) Bwd acoustics dominated mode 1, (—) Fwd structure dominated

mode, (—) Bwd structure dominated mode (—) Fwd acoustics dominated mode 2, (—) Bwd acoustics

dominated mode 2, (—) Fwd acoustics dominated mode 3, (—) Bwd acoustics dominated mode 3, (- -)

Uncoupled acoustic frequency, (- -) Natural mechanical frequency.

5.3.3 Energy equation influence

This section focuses on the effect of energy equation. We will compare results obtained from the whole

model (including energy equation) with the one without the energy equation, for configuration (C7).This

configuration is a 3-cavities labyrinth seal, considering a shaft rotation of ω = 5000 rpm, and LP clamping

condition. Results are given in figure 7. Figures 7.a and 7.b show acoustic and structural frequencies evo-

lutions. At zero preswirl velocity, gaps between forward and backward waves are observed due to the shaft

rotation ω. In this configuration, energy equation has a weak influence on frequencies evolution. But, we

may note a strong dependency on the stability. Focusing on the damping ratios evolutions (Fig. 7.c and 7.d),

the backward structural mode appears to be unstable on a larger range of preswirl for the whole model. A

positive damping ratio is observed for preswirl values of 25 to 170 m/s compared to 30 to 100 m/s for the

model without energy equation.
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(a) Frequencies without energy equation (b) Frequencies with energy equation

(c) Reduced damping ratios without energy equation (d) Reduced damping ratios with energy equation

Figure 7: Frequencies and reduced damping ratios evolutions of config. C7 with and w/o energy equation

(—) Fwd acoustics dominated mode 1, (—) Bwd acoustics dominated mode 1, (—) Fwd structure dominated

mode, (—) Bwd structure dominated mode (—) Fwd acoustics dominated mode 2, (—) Bwd acoustics

dominated mode 2, (—) Fwd acoustics dominated mode 3, (—) Bwd acoustics dominated mode 3, (- -)

Uncoupled acoustic frequency, (- -) Natural mechanical frequency.

6 Conclusions

This work proposes a new analytical model, considering a full coupling between fluid behavior and stator

dynamics. It enables to take temperature fluctuations into account, including energy equation at both steady

and unsteady states. The model allows to conduct quick stability analyses and identify notable influence

parameters. Results show that coupling phenomenon and system stability are both very sensitive to param-

eters like radial clearance, cavity length, number of cavities, and inlet circumferential velocity. This novel

approach agrees with literature trends. The model is expected to provide better fidelity results, especially

for operating conditions where temperature fluctuations have significant impact. Temperature do not have

notable effect on coupled frequencies, but we observed a strong dependency of energy equation on stability

results. This last point constitutes the main novelty of this new model. At the moment, a lack of experimental

data cannot allow to conduct a correlation between numerical and experimental results. This point will be

addressed in further investigation.
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Appendices

A Nomenclature

A Cross-sectional area

Cp Heat capacity at constant pressure

Cr Nominal radial clearance

c Sound velocity

D Flexural rigidity

Dh Hydraulic diameter

Ed, Ec Strain energy, Kinetic energy

fac Uncoupled acoustic frequency

H Radial displacement, also radial clearance

h Enthalpy per mass unit

L Seal cavity length

ṁ Mass-flow rate per circumferential length unit

N Number of teeth

n Nodal diameter, also spatial harmonic

P Pressure

Rs Shaft radius

R Specific gas constant

T Temperature

U Fluid circumferential velocity

Wext Work of external forces

u Internal energy per mass unit

ω Shaft rotational speed

ρ Fluid density

τr, τs Rotor shear stress, Stator shear stress

ν Poisson ratio

γ Heat capacity ratio

µ0=

(

N
(1−j)N+j

)1/2
. Kinetic energy carry-over coefficient

j = 1−
(

1 + 16.6Cr

L

)−2

µi =
π

π+2−5si+2si2
. Discharge coefficient for the i-th cavity

si = −1 + (
Pi−1

Pi
)

γ−1

γ

Sub-scripts and Super-scripts

i Of the i-th cavity

0 Steady state
′ Fluctuation term
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B Linearized fluid equations

The developments of the linearization of fluid equations, using the small perturbation method.

• Continuity equation:

ρ0iL
∂H ′

i

∂t
+A0i

∂ρ′i
∂t

+
1

Rs
[U0iA0i

∂ρ′i
∂θ

+A0iρ0i
∂U ′

i

∂θ
+ U0iρ0iL

∂H ′
i

∂θ
] + ṁ′

i+1 − ṁ′
i = 0 (22)

• Circumferential momentum equation:

ρ0iU0iL
∂H ′

i

∂t
+A0iU0i

∂ρ′i
∂t

+A0iρ0i
∂U ′

i

∂t
+

1

Rs
[2ρ0iA0iU0i

∂U ′
i

∂θ
+A0iU

2
0i

∂ρ′i
∂θ

+ ρ0iU
2
0iL

∂H ′
i

∂θ
]+

U ′
iṁ0i+1 − U ′

i−1ṁ0i + U0iṁ
′
i+1 − U0i−1ṁ′

i = −A0i

Rs

∂P ′
i

∂θ
+ τ ′riariL− τ ′siasiL (23)

• Energy equation:

ρ0iA0i[Cp
∂T ′

i

∂t
+U0i

∂U ′
i

∂t
]+

ρ0iA0iU0i

Rs
[Cp

∂T ′
i

∂θ
+U0i

∂U ′
i

∂θ
]+ṁ′

i+1(CpT0i+
U2
0i

2
)−ṁ′

i(CpT0i−1+
U2
0i−1

2
)

+ ṁ0i+1(CpT
′
i + U0iU

′
i)− ṁ0i(CpT

′
i−1 + U0i−1U

′
i−1) = τ ′r,iar,iLiRsωrotor +A0i

∂P ′
i

∂t
(24)

C Structural equation coefficients

The calculation of kinetic energy, strain energy and fluid work respectively give:

Ec =

N
∑

n=2

1

2
ρ
(e2 + 2Re)

2

πL

5
(ȧ2n + ḃ2n) (25)

Ed =

N
∑

n=2

RDπ

2
(a2n + b2n)

[Ln4

5R4
+

4νn2

3LR2
+

4

L3
+

8(1− ν)n2

3LR2

]

(26)

W =

N
∑

i=1

(

− πRs
L(xi)

3 − L(xi−1)
3

3L2
tot

(pcn,ian + psn,ibn)− π
L(xi)

5 − L(xi−1)
5

5L4
tot

P0i(a
2
n + b2n)

)

(27)
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