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Pollen is the male gametophyte of flowering plants, the typically haploid generation of the plant life cycle that 

produces the male gametes. Upon germination, pollen grains extend a pollen tube to transport the male gametes 

(sperm cells) toward the ovules for double fertilization of the female gametes harbored by the female gametophyte 

or the embryo sac.  Pollen grains exhibit a unique “cell(s) within a cell” organization. After meiosis, each single-celled 

microspore divides highly asymmetrically to give rise to a vegetative and a generative cell. The generative cell is 

subsequently engulfed by the vegetative cell, separates from the external pollen wall and thus becomes enclosed 

within the large vegetative cell while migrating to the center of the pollen grain. Later in development, the generative 

cell divides into a pair of sperm cells. As a result of this unique developmental process, a unique membrane surrounds 

the male germ cells (the generative cell and subsequently the two sperm cells). Here we propose to standardize and 

unify the name of this membrane as the peri-germ cell membrane (Fig. 1a).  

Over the past 50 years, only a few studies have examined the peri-germ cell membrane. Nonetheless, it has been 

assigned multiple names. For example, the peri-germ cell membrane was identified in 1969 1 as the “generative cell 

envelope”. Subsequent ultrastructural work in the 1980s led to new peri-germ cell membrane names, including 

“internal plasma membrane of the vegetative cell”, “inner plasma membrane of the pollen grain” and “inner 

vegetative cell plasma membrane” 2–6. Another study referred to it as the “pollen tube inner plasma membrane”  

when considering the pollen tube7. When the Arabidopsis small GTPase RHO OF PLANTS 9 (AtROP9) was identified 

as the first protein reported to locate to this membrane, it was named by the authors as the “Invaginated Pollen Tube 

Plasma Membrane”8. More recently, when the maize NOT-LIKE-DAD/MATRILINEAL/PHOSPHOLIPASE-A1 

(NLD/MTL/ZmPLA1) protein was found to localize exclusively to the peri-germ cell membrane, the authors named it 

the “pollen endo-plasma membrane” 9.  

This diverse nomenclature causes confusion and calls for the implementation of a consensus on terminology. For 

example, the term “generative cell” is too restrictive as the peri-germ cell membrane also encloses the two sperm 

cells. Similarly, the term “pollen tube” is not appropriate since this membrane is also present before pollen 

germination. Furthermore, using “plasma-membrane” could lead to confusion with the classical plasma membrane 

(PM) of the generative cell, sperm cells, or vegetative cell. Additionally, the term “plasma-membrane” is misleading, 

given that the peri-germ cell membrane may differ in protein and lipid composition from the classical PM. 

In Figure 1, we show that three PM marker proteins expressed in the vegetative cell do not localize to the peri-germ 

cell membrane (3×mNG-SYP121, 3×mNG-SYP132, and tdTomato-LTI6b in Fig. 1c, d, e). Conversely, NLD/MTL/ZmPLA1 

(Fig. 1b), the engineered Lyn24 probe (chimeric protein associates with detergent-resistant membranes in metazoan 

cells) 8 (Fig. 1c), AtROP9 8, AtLARP6C (La-related proteins) 10 and the glutamate receptor like channels (AtGLR3.3) 11 

all localize to the peri-germ cell membrane and are either absent from the PM of the vegetative cell, or only weakly 

label the vegetative cell PM at pollen tube tips in the cases of Lyn24 and AtROP9 8 (Fig. 1c). Lastly, lipid sensors 

differentially mark the vegetative cell PM and the peri-germ cell membrane, suggesting a distinct lipid signature of 

the peri-germ cell membrane 9 that may be responsible for the selective sorting of membrane proteins. Taken 

together, these data underscore the importance of avoiding the term “plasma-membrane” when referring to this 



membrane. To reach a consensus on terminology and facilitate integration of future independent studies in the field 

of sexual plant reproduction, we propose to designate the membrane enveloping the generative cell and subsequent 

sperm cells that represent the flowering plants’ male germ cells as the peri-germ cell membrane. We opted for the 

prefix peri-, inspired by examples from cell biology where structures are enveloped by plant membranes. For 

instance, in arbuscular mycorrhiza symbiosis, the fungal hyphae located within the plant cell are encircled by a plant 

membrane known as the periarbuscular membrane 12, and in the symbiotic association between Rhizobium bacteria 

and roots, rhizobial symbionts are enclosed by a membrane derived from the plant PM, referred to as the 

peribacteroid membrane 13. We encourage the research community to adopt the term, peri-germ cell membrane, 

for future use to clarify and unify the nomenclature. To avoid confusion, we advise the community not to use 

abbreviations as much as possible, but in case an abbreviation is needed, then use PGCM. 

As we move forward, it is essential that we deepen our insight into the function and significance of the peri-germ cell 

membrane. Previous work indicated that the peri-germ cell membrane may play a structural role  in pollen grains 

since sperm cells not enclosed within the peri-germ cell membrane do not remain connected as a pair 7. Moreover, 

this “cell(s)-within-a-cell” organization implies that if there is any from of communication between the vegetative 

cell and the germ cells (either generative or sperm cells) it must involve the peri-germ cell membrane. In this context, 

it is also important to note that the inter-membrane space between the peri-germ cell membrane and the PM of 

germ cells should be considered as an apoplast with unique features due to its origin, the extremely close proximity 

of the two membranes (~20-50nm) 1,9,14, and the mobility of the germ cells within the vegetative cell’s cytoplasm. 

Furthermore, the peri-germ cell membrane attaches the germ cells to the neighboring vegetative nucleus in a 

structure named the male germ unit (MGU; Fig. 1a, b, c) 14,15. Consequently, all male gametophytic nuclei move as a 

unit within the pollen tube to reach the embryo sac. Upon delivery of the MGU to the female gametophyte, the peri-

germ cell membrane is removed to allow gamete fusion14. Recent cell biological studies have visualized peri-germ 

cell membrane breakdown upon fertilization 9,16, but any mechanism regulating all these phenomena are unknown. 

Deciphering the roles of the peri-germ cell membrane, both during pollen development and fertilization, will be 

challenging, but will also be pivotal for advancing plant reproductive biology. 

  



 

 

Fig. 1 | Peri-germ cell membrane labelling differs from canonical plasma membrane makers.  
a, Diagram highlighting the peri-germ cell membrane in a pollen grain. 
b, Representative confocal images of a maize pollen tube expressing the peri-germ cell membrane-localized protein 

NLD-mCitrine and a vegetative nucleus-localized H2B-mCherry under control of the maize vegetative cell-specific 
pNLD promoter. Scale bar, 10 µm. 

c, Representative confocal images of pollen tubes expressing the plasma membrane marker proteins 3×mNG-SYP121, 
3×mNG-SYP132, and tdTomato-LTI6b under control of the vegetative cell-specific pLAT52 promoter. The marker 
Lyn24-mNG, expressed under the vegetative cell-specific pACA3 promoter, is used as a marker of the peri-germ 
cell membrane. Sperm and vegetative nuclei were labeled with SYBR Green I in the tdTomato-LTI6b marker line 
or with the ubiquitous H2B-tdTomato nuclear marker in the other three lines. Scale bars, 10 µm. 

d, Plots of fluorescent intensities measuring transverse pollen tube sections at sperm cell connections indicated by 
red dotted arrows in (c). X-axis represents the length along these arrows, zero indicates the starting point of the 
section. Dashed lines indicate limits between outside and inside of the pollen tube. 

e, Confocal images of male germ units (sperm cells and vegetative nuclei) immediately after the discharge from the 
pollen tubes after their rupture. Scale bars, 10 µm. 

Abbreviations: VN, vegetative nucleus; SN, sperm nucleus; PT, Pollen tube; PM, Plasma membrane; mNG, monomeric 
NeonGreen. 



Materials and methods:  

Plasmid construction 

LR recombination was performed between pDM249 destination vector carrying the pLAT52 promoter and the 

pOR129 entry vector containing the 3×mNG-SYP132 sequence to produce pDM478, a plasmid containing 

pLAT52:3×mNG-SYP132 17,18. SYP121 was amplified from Arabidopsis thaliana Columbia-0 genomic DNA by PCR using 

the primers SYP121_F_EcoRI_48 (GGC GGC AGC GAA TTC ATG AAC GAT TTG TTT TCC AG) and SYP121_R_SpeI_49 

(GCG CGC CCA CCC TTA CTA GTT CAA CGC AAT AGA CGC CTT GCC T). The SYP121 fragment was introduced into the 

EcoRI/SpeI site of pOR129 to produce pSG018, an entry vector containing 3×mNG-SYP121 18. LR recombination 

between pDM249 and pSG018 was performed to generate pSG019. 

 

Plant material and growth condition 

Arabidopsis thaliana Columbia-0 was used as the wild-type (WT). The pRPS5A:H2B-tdTomato pACA3:Lyn24-mNG 

double marker line was previously described 17. To generate the pLAT52:3×mNG-SYP121 pRPS5A:H2B-tdTomato 

double marker line, Agrobacterium GV3101 strains containing the pSG019 or DKv278 plasmids, the latter carrying 

pRPS5A:H2B-tdTomato were independently cultured. Then, both cultures were used for simultaneous floral dipping 

of the WT 19,20. Similarly, pLAT52:3×mNG-SYP121 pRPS5A:H2B-tdTomato double marker lines were generated by 

simultaneous floral dipping using pDM478 and DKv278. Seeds of pLAT52:tdTomato-LTI6b transgenic plants were a 

gift from Yoko Mizuta (Nagoya University) and Shiori Nagahara (Kyoto University). Seeds were germinated on 

Murashige-Skoog medium. Plants were transferred to soil and grown at 22 °C under continuous light conditions. 

Maize pNLD:NLD-mCitrine and pNLD:H2B-2xmCherry double marker lines was previously described 9. 

 

Microscopy 

Fresh maize pollen was collected 3-4 h after changing a tassel bag in the morning. 2 ml of pollen germination medium 

[12% (w/v) sucrose, 5mM CaCl2 and 0.01% (w/v) of H3BO3, pH 5.8] was deposited on a microscopy µ-dish (81158, 

Idbidi®) and covered by a layer of pollen (5-10 µl) followed by 2-3 h of incubation at room temperature (about 22°C). 

Germinated pollen tubes were directly observed on the glass bottom µ-dish with an inverted oil immersion objective 

(Plan-Apochr40x/1.4 huile DIC (UV) VIS-IR (#420762-9900-000)) on a LSM800 confocal microscope (Zeiss). Three 

channels were sequentially acquired in the following order: mCherry, mCitrine, brightfield. mCherry and mCitrine 

signals were detected using 561 nm and 488 nm laser excitation and detection at 569-700 nm and 495-555 nm 

respectively. For Arabidopsis, pollen tube growth under semi-in vivo conditions was performed as previously 

described with minor modifications 17. Briefly, emasculated WT pistils were cut beneath the style using a 27-gauge 

needle. The pistils were placed on pollen tube growth media [0.01% (w/v) boric acid, 5 mM CaCl2, 5 mM KCl, 1 mM 

MgSO4, 10% (w/v) sucrose, 1.5% (w/v) NuSieve GTG agarose, pH 7.5] cast in a glass bottom dish (D11130H; 

Matsunami Glass, Osaka, Japan). Subsequently, the stigma was pollinated with pollen from the plant. After 4 h of 

incubation at 22 °C, pollen tubes reached the glass bottom. Z series images of six confocal planes with 1 µm step size 



were captured by the split-view mode of green and red channels using an inverted microscope (IX-73; Evident, Tokyo, 

Japan), equipped with a spinning disk confocal scanning unit (CSU-W1; Yokogawa, Tokyo, Japan), an sCMOS camera 

(Zyla 4.2; Andor, Belfast, Northern Ireland), and 100× objective lens (UPlanSApo 100×; Evident, Tokyo, Japan). To 

induce pollen tube discharge, pollen tubes were irradiated with excitation light from a CFP filter set (U-FCFP; Evident, 

Tokyo, Japan) for 15 s 21. After blue light irradiation, Z-series confocal images were captured every 3 s until the 

observation of released sperm cells. 

 

Image Processing 

We used Fiji software (https://fiji.sc, version 2.9.0) for image processing 22. Z-projections of maximum intensity in 

Figure 1c were generated from best focal planes. Fluorescence intensities in Figure 1d were analyzed in regions-of-

interest (ROIs) with 10-pixel width set between pairs of arrowheads in Figure 1c: total signals of the 10-pixel width 

were calculated in every column along the long axis of the ROIs. 
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