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Abstract
Given a set A consisting of positive integers a1 < a2 < · · · < ak and a k-term par-

tition P : n1 +n2 + · · ·+nk = n, find the extremal denominators of the regular and
semi-regular continued fraction [0;x1, x2, . . . , xn] with partial quotients xi ∈ A and
where each ai occurs precisely ni times in the sequence x1, x2, . . . , xn. In 1983, G.
Ramharter gave an explicit description of the extremal arrangements of the regular
continued fraction and the minimizing arrangement for the semi-regular continued
fraction and showed that in each case the arrangement is unique up to reversal and
independent of the actual values of the positive integers ai. However, an explicit
determination of a maximizing arrangement for the semi-regular continuant turned
out to be substantially more difficult. Ramharter conjectured that as in the other
three cases, the maximizing arrangement is unique (up to reversal) and depends
only on the partition P and not on the actual values of the ai. He further verified
the conjecture in the special case of a binary alphabet. In this paper, we confirm
Ramharter’s conjecture for sets A with |A| = 3 and give an algorithmic procedure for
constructing the unique maximizing arrangement. We also show that Ramharter’s
conjecture fails for sets with |A| ≥ 4 in that the maximizing arrangement is in general
neither unique nor independent of the values of the digits in A. The central idea,
is that the extremal arrangements satisfy a strong combinatorial condition. This
combinatorial condition may also be stated more or less verbatum in the context
of infinite sequences on an ordered set. We show that in the context of bi-infinite
binary words, this condition coincides with the Markoff property, discovered by A.A.
Markoff in 1879 in his study of minima of binary quadratic forms. We further show
that this same combinatorial condition is the fundamental property which describes
the orbit structure of the natural codings of points under a symmetric k-interval
exchange transformation.

Keywords: Continued fractions, extremal values of continuants, Markoff prop-
erty, Sturmian words and interval exchange transformations.
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1 Introduction
Given a finite sequence of positive integers y = y1, y2, . . . , yn, describe an arrangement
or permutation x = x1, x2, . . . , xn of the sequence y which maximizes (resp. minimizes)
the regular continuant K(x) = Kn(x1, x2, . . . , xn). The continuant Kn(x1, x2, . . . , xn) is
defined recursively by K0() = 1, K1(x1) = x1 and

Kn(x1, x2, . . . , xn) = xnKn−1(x1, x2, . . . , xn−1) +Kn−2(x1, x2, . . . , xn−2) (1)

and is equal to the denominator of the finite regular continued fraction [0;x1, x2, . . . , xn].
This problem appears to be first attributed to C.A. Nicol (see [27]). There is no
reason a priori that such an extremal arrangement should be unique. In fact, since
Kn(x1, x2, . . . , xn) = Kn(xn, . . . , x2, x1), the reversal (or mirror image) of any extremal
arrangement is again extremal. But more generally, the function K(·) is far from being
injective and it happens that many different permutations of the sequence y have the
same K value [33]. There are many open questions concerning the distribution of the
continuants Kn(x1, x2, . . . , xn) (n ∈ N) where the xi are restricted to a bounded subset
of positive integers, including the famous Zaremba conjecture [37]. The distribution of
the continuants with the xi belonging to a bounded subset A is also extremely relevant in
estimating the Hausdorff dimension of the set EA ⊂ R consisting of all finite and infinite
(regular) continued fractions whose partial quotients all belong to A (see for instance
[10, 9, 19]).

T.S. Motzkin and E.G. Straus [27] provided a first partial answer to Nicol’s question
in the special case in which y1, y2, . . . , yn, are pairwise distinct. In [9], T.W. Cusick
found the maximizing arrangement for an arbitrary sequence y1, y2, . . . , yn consisting
of 1s and 2s. But the general problem was settled by G. Ramharter [29]. He gave an
explicit description of both extremal arrangements and showed that they are unique (up
to reversal) and independent of the actual values of the digits (see Theorem 1 in [29]). For
example, if y = y1, y2, . . . , yn is given in the form an1

1 · · · a
nk
k with 1 ≤ a1 < a2 < · · · < ak

and n1 + n2 + · · ·+ nk = n, then the maximizing arrangement for K(·) is unique up to
reversal and given by:

akLk−1ak−2Lk−3 · · · an1
1 · · · ak−3Lk−2ak−1Lk

where Li = ani−1
i . The fact that the extremal arrangements are unique is quite surprising

as is remarkable that they do not involve the ring structure of the integers but rather
only the relative order of the digits involved. Ramharter’s theorem was later reproved by
C. Baxa in [4] and used to prove a criterion for the transcendence of continued fractions
whose partial quotients are contained in a finite set (see also [13]).

Motivated by a question in diophantine approximation [32], Ramharter also consid-
ered the analogous problem in the context of the semi-regular continuant

.
Kn(x1, x2, . . . , xn)

defined recursively by
.
K0() = 1,

.
K1(x1) = x1 and

.
Kn(x1, x2, . . . , xn) = xn

.
Kn−1(x1, x2, . . . , xn−1)−

.
Kn−2(x1, x2, . . . , xn−2). (2)
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For semi-regular continuants, the digit 1 needs to be excluded and in this case,
.
K(x) is

the denominator of the terminating semi-regular continued fraction

[x]• =
1

x1 −
1

x2 −
1

. . . −
1
xn

Letting X be the tridiagonal matrix

X =



x1 1 0 · · · 0
1 x2 1 . . . ...
0 1 . . . . . . 0
... . . . . . . xn−1 1
0 · · · 0 1 xn


we have that Kn(x1, x2, . . . , xn) = perm(X) while

.
Kn(x1, x2, . . . , xn) = det(X) where

perm(X) (resp. det(X)) denotes the permanent (resp. determinant) of the matrix X.
As in the case of the extremal arrangements for the regular continuant, Ramharter

showed that the minimizing arrangement for
.
K(·) is unique (up to reversal) and inde-

pendent of the choice of digits a1, . . . , ak. However, the determination of the maximizing
arrangement for

.
K(·) turned out to be more difficult. In fact, Ramharter points out

that in contrast with the other three cases, there is an infinity of essentially different
patterns and the maximizing arrangements for

.
K(·) must be described in terms of an

algorithmic procedure as “their combinatorial structure is exceptionally complicated.”
Ramharter conjectured that, as in the case of the other three extremal arrangements,
for general sequences an1

1 · · · a
nk
k the maximizing arrangement for the semi-regular con-

tinuant
.
K(·) is always unique (up to reversal) and independent of the values of the digits

2 ≤ a1 < a2 < · · · < ak. The conjecture has been verified by Ramharer in two special
cases : i) for sequence y = y1, y2, . . . , yn on a binary alphabet, i.e., y1, . . . , yn ∈ {a1, a2}
for some choice of positive integers 2 ≤ a1 < a2 (see theorems 1 and 2 in [29]); ii) for
sequences y1, y2, . . . , yn with pairwise different entries (see Theorem 1 in [31]).

The central idea, as was first observed by Ramharter in [29], is that the extremal
arrangements for both the regular and semi-regular continuants satisfy a very special
combinatorial condition. In the case of the maximising arrangement x = x1, x2, . . . , xn
(with each xi ≥ 2) for the semi-regular continuant, this condition, denoted

.
Kmax, is as

follows :
.
Kmax: For each factorization x = uvw with v 6= v and u 6= w one has that v < v if and

only if w < u.

Here u denotes the reversal of the sequence u, (i.e., if u = u1, u2, . . . , uj then u =
uj , . . . , u2, u1), and < denotes the lexicographic order induced by the natural order on
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R where however one takes the opposite convention of the true dictionary order with
respect to proper prefixes, i.e., we declare u < v whenever v is a proper prefix of u.
We remark that condition

.
Kmax makes sense for any finite sequence x over any totally

ordered set A, i.e., the entries of x need not be positive whole numbers. As Ramharter
points out, the central question is to understand whether for each sequence y over an
ordered alphabet A there exists a unique permutation x of y verifying condition

.
Kmax,

which, if true, would imply a unique global maximum for the semi-regular continuant.
He further conjectured that this should be the case in general [31].

The following theorem confirms Ramharter’s conjecture for sequences y over any
ternary ordered alphabet A :

Theorem 1. Let A be any totally ordered ternary alphabet and y = y1, y2, . . . , yn be
any sequence with each yi ∈ A. Then there is precisely one permutation x of y (up to
reversal) which verifies condition

.
Kmax.

We also give an algorithmic procedure for constructing the permutation x verifying
condition

.
Kmax. It follows that for each sequence y = an1

1 an2
2 an3

3 of positive integers with
2 ≤ a1 < a2 < a3, there exists a unique (up to reversal) permutation x of y which
maximizes the semi-regular continuant

.
K(·). Moreover the maximizing arrangement

is independent of the actual values of the digits a1, a2 and a3 and depends only on
the vector (n1, n2, n3). Thus for sequences y involving at most three distinct positive
integers, condition

.
Kmax gives a full characterization of the maximizing arrangement for

the semi-regular continuant
.
K(·).

However, for sequences y over ordered alphabets A of cardinality 4 or more, it may
happen that y admits more than one permutation verifying condition

.
Kmax. This in

itself does not disprove the existence of a unique global maximum for the semi-regular
continuant

.
K(·) which is independent of the actual choice of positive integers assigned to

the elements of A, however, it provides a basis for constructing such examples. In fact,
we show the existence of a sequence y over an ordered alphabet A = {a < b < c < d}
having two permutations x and x′ (with x′ 6= x) each verifying

.
Kmax and depending on

the values assigned to each of a, b, c, and d in the sequence y, the maximum of
.
K(·) is

assumed at x and not at x′, or inversely the maximum occurs at x′ and not x or the
maximum occurs simultaneously at both x and x′ (see Example 3.23). It follows from
this that for sequences y involving 4 or more distinct positive integers,

.
Kmax is not a

strong enough condition to guarantee a maximizing arrangement.
A primary objective of this paper is to study condition

.
Kmax in its full generality.

Given a totally ordered set A, let A+ denote the free semigroup generated by A consisting
of all finite words x = x1x2 · · ·xn with each xi ∈ A. We let A∗ = A+ ∪ {ε} be the free
monoid generated by A in which we adjoin the empty word ε regarded as the unique word
of length 0. We also let AN (resp. AZ) denote the set of all one sided (resp. two-sided)
infinite words x = x1x2x3 · · · (resp. x = · · ·x−2x−1x0x1x2 · · · ) with each xi ∈ A.

We introduce the following definition which amounts to a reformulation of
.
Kmax to

a more general setting which includes both finite and infinite words:
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Definition 2. Let A be any totally ordered alphabet, and x ∈ A+ ∪ AN ∪ AZ. We say
that x is singular if for all factorizations x = uvw (v ∈ A+, u, w ∈ A∗ ∪ AN) with v 6= v
and u 6= w we have v < v if and only if w < u.

The order < is taken to be the lexicographic order on A∗ ∪AN induced by the order
on A (where as in

.
Kmax, we take the opposite convention of the true dictionary order

when it comes to proper prefixes).
In [31, 30], Ramharter showed that each finite singular word x over a binary alphabet

A = {a, b} is a finite Sturmian word, and that the palindromic binary maximizing
arrangements for

.
K(·) are in one-to-one correspondence with the extremal cases of the

Fine and Wilf theorem [17] with two co-prime periods (see Theorem 3 in [31]). We give a
more precise reformulation of this result in terms of more standard notions in the theory
of finite Sturmian words and already existing algorithms:

Theorem 3. A finite word x over a binary ordered alphabet {a < b} is singular if and
only if x or x is of the form bn, abn (n ≥ 0) or aya where ayb is a power of a Christoffel
word Cp,q with co-prime periods p and q.

If we now consider bi-infinite words x over a binary alphabet A = {a, b}, then we show
that the singular property in Definition 2 coincides with the so-called Markoff property,
first identified by A.A. Markoff in [24] in his study of minima of binary quadratic forms,
and again in [25] (see in particular page 28) in which he answers a question posed by
J. Bernoulli in [5]. The Markoff property applies to bi-infinite words x over a binary
alphabet A = {a, b} and may be formulated as follows:

(M) For each factorization x = ua′b′w with {a′, b′} = {a, b} and u,w ∈ AN, either
u = w or if i ∈ N is the least index j for which uj 6= wj , then ui = b′ and wi = a′.

Although both
.
Kmax and property (M) were discovered in the context of extremal

problems involving continued fractions, the former relates to semi-regular continuants
while the latter concerns inequalities relating real numbers and convergents of infinite
continued fractions. So the connection between the two is not fully transparent. As was
first observed by T.W. Cusick and M.E. Flahive in [11] and later proved by C. Reutenauer
in [34], property (M) is equivalent to the balanced property of Morse-Hedlund [26].

We show that a bi-infinite binary word verifies the Markoff property (M) if and only
if it is singular (see Corollary 4.2). One way to establish the equivalence is to show that
a bi-infinite binary word is singular if and only if it is balanced (see Proposition 4.1) and
then use Theorem 3.1 in [34]. Alternatively, a direct proof (which bypasses the balance
property) may be given using Sturmian morphisms. As for one sided-infinite binary
words, we show

Theorem 4. Let x ∈ {a, b}N be an aperiodic binary (one sided) infinite word. Then x
is singular if and only if x is a Sturmian Lyndon word.

Recall that a finite or infinite word x over an ordered alphabet is said to be Lyndon
if and only if x is lexicographically smaller than each of its proper suffixes.

5



The next question is to understand bi-infinite singular words over higher alphabets.
We show that the singular property is the fundamental property which distinguishes the
orbit structure of codings of symmetric interval exchange transformations from other
subshifts of the same factor complexity including Arnoux-Rauzy subshifts [2]. A sym-
metric k-interval exchange transformation I is given by a probability vector of k lengths
(α1, . . . , αk). The unit interval is partitioned into k subintervals of lengths α1, . . . , αk la-
beled 1, 2, . . . , k which are then re-arranged according to the permutation σ(j) = k+1−j.
A natural coding of a point x ∈ [0, 1] under I is given by a bi-infinite word (xn)n∈Z over
the alphabet {1, 2, . . . , k} where xn = i whenever the n-th iterate of x lies in ith inter-
val. By the language of I we mean the language defined by all natural codings under I.
We obtain the following characterization of singular bi-infinite words x whose associated
language is symmetric (i.e., closed under reversal) and which constitutes a generalization
of Theorem 3.1 in [34]:

Theorem 5. Let Ak = {1, 2, . . . , k} (k ≥ 2) and let x ∈ AZ
k be uniformly recurrent and

assume that each i ∈ Ak occurs in x. Then the following are equivalent:

1. L(x) is the language of a symmetric k-interval exchange transformation.

2. x is singular and L(x) is symmetric.

As in Theorem 4, if we take x to be a one-sided infinite word, then in item 2. of
Theorem 5 we need to add the condition that x is Lyndon. We also give a characterization
of natural codings of symmetric k-interval exchange transformations satisfying Keane’s
infinite discrete orbit condition (or i.d.o.c.) in terms of infinite singular words.

2 Preliminaries
Let A = {a1, a2, . . . , ak} be a totally ordered set with a1 < a2 < · · · < ak. For each
x ∈ A+ and a ∈ A we let |x|a denote the number of occurrences of the letter a in x
and write |x| = ∑

a∈A |x|a for the length of x. The Parikh vector of x is defined by
(|x|a1 , |x|a2 , . . . , |x|ak

). Two finite words x, y ∈ A+ are said to be abelian equivalent if
they define the same Parikh vector, i.e., |x|a = |y|a for each a ∈ A. We define the abelian
class of a word x ∈ A+ to be the set of all words y ∈ A+ which are abelian equivalent
to x. If x ∈ AN ∪AZ, then a factor u of x is said to be recurrent in x if every suffix of x
contains an occurrence of u. We say x is recurrent if every factor u of x is recurrent in
x. For x ∈ A+ ∪AN ∪AZ, we let L(x) denote its language, i.e., the set of all factors of x.
We say x is balanced if for all factors u, v of x with |u| = |v| we have ||u|a − |v|a| ≤ 1 for
each a ∈ A. For all other word combinatorial definitions which have not been explicitly
defined herein, we refer the reader to [23].

The total order ≤ on A defines a lexicographic order on A∗ ∪ AN, also denoted ≤,
where we write x < y if either y is a proper prefix of x (so we are adopting the opposite
convention of the true dictionary order) or if x = uaix

′, y = uajy
′ for some u ∈ A∗,

x′, y′ ∈ A∗ ∪ AN and i < j. For x, y ∈ A∗ ∪ AN, we write x ≤ y if either x = y or x < y.
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Definition 2.1. Let x ∈ A∗ ∪ AN ∪ AZ. A factorization x = uvw (with v ∈ A+,
u,w ∈ A∗ ∪ AN) and with v 6= v and u 6= w is called reversible (resp. singular) if v < v
and u < w or v < v and w < u (resp. if v < v and w < u or v < v and u < w). We say
x is reversible if x admits a reversible factorization.

It follows immediately that each word x ∈ A∗∪AN∪AZ is either reversible or singular,
but not both. A reversible word may admit more than one reversible factorization. For
example, if A = {a, b} with a < b, then the reversible word x = aabb admits the
reversible factorization x = (a)(ab)(b) as well as x = (a)(abb)ε. We also note that the
property of being reversible (resp. singular) is invariant under reversal, i.e., x is reversible
(resp. singular) if and only if x is reversible (resp. singular). To check that a word x is
singular, it suffices to show that any factorization x = uvw with u 6= w and where v
begins and ends in distinct letters is singular. In fact, writing v = zcydz with z, y ∈ A∗
and c, d ∈ A distinct, we see that if the factorization x = uvw is reversible, then so is
the factorization x = zu(cyd)zw.

3 Finite singular words
We begin this section with a characterization of finite binary singular words. We then
study finite ternary singular words and show that corresponding to each Parikh vec-
tor v = (na, nb, nc) there exists a unique (up to reversal) singular word x over the
ordered alphabet {a < b < c} whose Parikh vector is equal to v. We also describe
an algorithm for constructing the singular word x. Finally, we show that on ordered
alphabets of size greater than three, there may exist many abelian equivalent singular
words. In particular, we show that the abelian class defined by the ordered Parikh vector
(na, nb, nc, nd) = (1, 2, 1, 2) over the ordered alphabet {a < b < c < d} contains up to
reversal two distinct singular words x and x′ and that the maximizing arrangement for.
K(·) depends on the actual values of the positive integers assigned to each of the letters
a, b, c and d.

We begin with a simple lemma which applies to arbitrary ordered alphabets A. For
a word x ∈ A+, let min x denote the smallest letter occurring in x.

Lemma 3.1. Let A be a totally ordered alphabet, x ∈ A+ be a singular word, and
a = min x. Then x must either begin or end in a. If x = ax′ (resp. x = x′a) for some
x′ ∈ A+, then x′ ends (resp. begins) with min x′.

Proof. For b ∈ A and u, v ∈ A∗, the factorization x = u · avb · ε is reversible if u 6= ε and
b 6= a. Thus x has a as its first or last letter. Short of replacing x by x, we may assume
without loss of generality that x = avb = ax′. If v = u′cv′ with c ∈ A, then since the
factorization au′ · cv′b · ε is not reversible, we obtain c ≥ b. Hence b = min x′.

Remark 3.2. Note that Lemma 3.1 implies that for a singular word x, if x = sat with
s, t ∈ A+ and a = minA, then a is a prefix of s and a suffix of t; whereas if x begins in
c where c = maxA, then x = cnb for some n ≥ 1 and b ∈ A.

We now study binary singular words.
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Lemma 3.3. Let A be an ordered binary alphabet {a < b} and let x ∈ A∗ ∪ AN ∪ AZ be
singular. Then x is balanced.

Proof. Let x be singular and assume to the contrary that x is not balanced. By Propo-
sition 2.1.3 in [23], there exists a palindrome z ∈ A∗ such that both aza and bzb are
factors of x. Since the factors aza and bzb cannot overlap one another, there exist dis-
tinct a′, b′ ∈ A and a factorization x = uvw where v begins in a′ and ends in b′, za′ is a
prefix of u and zb′ a prefix of w. It follows that a′ < b′ if and only if u < w and hence
we obtain a reversible factorization of x, a contradiction.

Theorem 3.4. A finite word x over a binary ordered alphabet A = {a < b} is singular if
and only if x or x is of the form bn, abn, (n ≥ 0) or aya where y is a bispecial Sturmian
word.

A word y ∈ {a, b}∗ is a bispecial Sturmian word if ay, by, ya and yb are each a factor
of an infinite Sturmian word, or equivalently if they are each balanced (see Proposi-
tion 2.1.17 in [23]).

Remark 3.5. If x ∈ {a, b}N is a Sturmian word, then the bispecial factors of x are called
central words and are bispecial Sturmian words. The factors of x of the form aya, with
y a central word, are already known in the literature and called singular Sturmian words
[36]. The reason for the term singular is that if n = |y|+ 2, then the n+ 1 factors of x
of length n are partitioned into two distinct abelian classes, one class contains n words
(which are all cyclically conjugate to the Christoffel word ayb) while the other class
consists only of the word aya. Thus relative to the order a < b, every singular Sturmian
word of the form aya is singular in the sense of Definition 2, but not every singular
binary word of the form aya is a singular Sturmian word since a bispecial Sturmian
word need not be central (e.g. ab).

Proof of Theorem 3.4. Assume first that x ∈ A+ is singular. By Lemma 3.1, if |x|a = 1,
then x = abn or x = bna with n = |x|b, whereas if |x|a ≥ 2, then we may write x = aya
for some y ∈ A∗. To see that y is a bispecial Sturmian word, it suffices to show that
each of ay, by, ya and yb is balanced (see Proposition 2.1.17 in [23]). Since x itself is
balanced by Lemma 3.3, it suffices to show that by and yb are balanced. Let us assume
to the contrary that by is not balanced, and pick a palindrome z such that aza and bzb
are factors of by. Since y is balanced, it follows that bzb is a prefix of by. Thus we can
write by = bz · v · zay′ with y′ ∈ A∗ and where v begins in b and ends in a. This gives a
factorization x = uvw where u = za and w = zay′a. It follows that v < v and w < u
(since u is a proper prefix of w) whence x is reversible, a contradiction. Similarly, one
shows that yb is also balanced.

For the converse, we first note that any word of the form bn or abn is clearly singular.
So let us assume that x = aya with y a bispecial Sturmian word. To see that x is
singular, fix a factorization x = uvw with v = a′v′b′, u 6= w and {a′, b′} = A. Short of
replacing x by x we may assume without loss of generality that v < v, whence v = av′b.
We will show that w < u. If u is a proper prefix of w, then clearly w < u. So let us
next suppose that w is a proper prefix of u. If w is empty, then v = av′b is a suffix of x,
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which contradicts x = aya. If w 6= ε then we may write w = ra and u = rau′ for some
r ∈ A∗ and u′ ∈ A+. It follows that arvw = arav′bra is a proper suffix of x and hence
arav′brb is a suffix of yb, contradicting that yb is balanced.

Finally, if neither u nor w are proper prefixes of one another, then we may write
u = rcu′ and w = rdw′ where r, u′, w′ ∈ A∗ and {c, d} = A. Thus

x = uvw = u′crav′brdw′.

If w′ is empty, then d = a and so c = b and w < u. If w′ 6= ε, then crav′brd is a
factor of ay and since ay is balanced, it follows that d = a and c = b, whence w < u as
required.

As a consequence, we can now prove

Theorem 3. A finite word x over a binary ordered alphabet {a < b} is singular if and
only if x or x is of the form bn, abn (n ≥ 0) or aya where ayb is a power of a Christoffel
word Cp,q with co-prime periods p and q.

Proof. This follows immediately from the fact that a word y ∈ {a, b}∗ is a bispecial
Sturmian word if and only if ayb or ayb is a power of a Christoffel word Cp,q with
gcd(p, q) = 1 (see Theorem 3.11 in [16]).

Example 3.6. Theorem 3 may be used to construct binary singular words having a spec-
ified Parikh vector (na, nb) via standard algorithms for constructing Christoffel words.
For example, suppose we want to find a singular word x ∈ {a, b}+ whose corresponding
Parikh vector is (7, 14). Then we shall first build a word of the form x′ = ayb (with
y a Sturmian bispecial) with Parikh vector (6, 15) and then x = aya = x′b−1a. To
construct x′, we first note that gcd(6, 15) = 3 and hence we must find the Christoffel
word C2,5. Using standard algorithms (see [6]) we find that C2,5 = abbabbb. It follows
that x′ = C3

2,5 = abbabbb · abbabbb · abbabbb and hence x = abbabbb · abbabbb · abbabba.

Before moving to the ternary case, let us give a few more results which apply to
arbitrary ordered alphabets. We say that a letter a is separating for a word x ∈ A+ if
a occurs in every factor of x of length 2. Notice that two distinct letters a, b are both
separating for x if and only if x is one of the following, for a suitable n ≥ 0: (ab)n, (ba)n,
(ab)na, or (ba)nb.

Lemma 3.7. Let d ∈ {minA,maxA}. If a singular word x has dd as a factor, then d
is separating for x.

Proof. Assume to the contrary that x contains both dd and ab as factors, with a, b ∈
A \ {d}. We may assume without loss of generality that dd occurs in x before ab, and
hence x = ūd · dva · bw for suitable u, v, w ∈ A∗. As d is either smaller or bigger than
both a and b, this factorization is reversible, a contradiction.
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Lemma 3.8. Let a = minA, and x ∈ A∗ be a singular word with |x|a > 1. Then a is
separating in x if and only if

|x|a ≥
∑

a′∈A\{a}
|x|a′ + 1, (3)

and aa ∈ L(x) if and only if the inequality is strict.

Proof. By Lemma 3.1, x begins and ends with a. Thus if a is separating for x, then every
occurrence in x of a letter a′ 6= a must be immediately preceded by a. In particular, if a
is separating, then (3) holds.

Conversely, assume (3) holds, and suppose to the contrary that a is not separating
for x. This means that x has at least one factor bc with b, c ∈ A \ {a}. But then (3)
implies aa ∈ L(x), which is absurd in view of Lemma 3.7. It is now clear that aa occurs
if and only if the inequality in (3) is strict.

The following analogue for maxA can be proved in a similar way.

Lemma 3.9. Let c = maxA, and x ∈ A∗ a singular word. Then c is separating for x if
and only if

|x|c ≥
∑

c′∈A\{c}
|x|c′ − 1.

When |x| − |x|c > 1, the above inequality is strict if and only if cc ∈ L(x).

For a letter d ∈ A, let λd and ρd denote the morphisms defined by λd(d′) = dd′,
ρd(d′) = d′d for letters d′ 6= d, and λd(d) = ρd(d) = d. The following properties are easy
to verify and will be useful in the sequel: for all d ∈ A and x ∈ A∗,

dλd(x) = λd(x)d and dρd(x) = λd(x)d. (4)

Lemma 3.10. Let a ∈ A and x, y ∈ A∗. Then x < y ⇐⇒ λa(x)a < λa(y)a.

Proof. If y is a proper prefix of x, then clearly λa(y)a is a prefix of λa(x), and hence a
proper prefix of λa(x)a. Conversely, if λa(x)a = λa(y)aWa for some W ∈ A∗, then there
exists w ∈ A+ such that aW = λa(w) and x = yw.

If x = ubv and y = ucw for some u, v, w ∈ A∗ and b, c ∈ A such that b < c, then in all
cases λa(x)a begins with λa(u)ab and λa(y)a begins with λa(u)ac. Conversely, assume
λa(x)a < λa(y)a, the latter not being a prefix of the former. Their longest common
prefix is then necessarily λa(u)a for a suitable u ∈ A∗. Hence there exist letters b < c
such that λa(u)ab and λa(u)ac are respectively prefixes of λa(x)a and λa(y)a; therefore
x < y, as x begins with ub and y with uc.

For c = maxA we need the following slight variation:

Lemma 3.11. Let c = maxA and x, y ∈ A∗. Then x < y ⇐⇒ λc(x) < λc(y).
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Proof. If y is a proper prefix of x, then λc(y) is a proper prefix of λc(x). Conversely, if
λc(y)W = λc(x) for some nonempty W , then either y is a proper prefix of x, or y = uc
and x = uax′ for some u, x′ ∈ A∗ and a letter a < c. Hence x < y anyway.

If x = uav and y = ubw for suitable u, v, w ∈ A∗ and a, b ∈ A with a < b, then
either c /∈ {a, b} or b = c. In both cases λc(x) begins with λc(u)ca. As for λc(y), it
equals λc(u)c if b = c and w = ε, otherwise it has λc(u)cb as a prefix. Conversely, if
λc(x) < λc(y) and their longest common prefix is shorter than λc(y), then it necessarily
ends in c. In other words, there exist u ∈ A∗ and letters a < b such that λc(u)ca and
λc(u)cb are prefixes of λc(x) and λc(y) respectively. Again, it follows that x begins with
ua, and y with ub.

Lemma 3.12. Let a = minA and x ∈ A∗. Then x is singular if and only if λa(x)a is
singular.

Proof. Equivalently, it suffices to show that x is reversible if and only if λa(x)a is re-
versible. Fix a factorization x = uvw with v 6= v and u 6= w; this is equivalent to

λa(x)a = λa(u)a · a−1λa(v) · λa(w)a (5)

since eq. (4) implies λa(u)a = aλa(u) = λa(u)a. Again by eq. (4) we have a−1λa(v) =
a−1λa(v). Since |a−1λa(v)| = |a−1λa(v)|, we obtain

a−1λa(v) < a−1λa(v) ⇐⇒ λa(v)a < λa(v)a

as well as the same equivalence for the opposite inequality. By applying Lemma 3.10 to
u,w and to v, v, it follows that x = uvw is a reversible factorization if and only the one
in eq. (5) is reversible too.

It remains to show that if λa(x)a has a reversible factorization, then it has one of
the form shown in eq. (5). Let then λa(x)a = UVW be a reversible factorization. We
may assume that the first letter of V differs from its last; in particular, by symmetry we
may assume that the first letter of V is not a, in which case U must begin with a. Now,
W cannot be empty, otherwise V would end in a and the factorization would not be
reversible, as V < V and U < W ; for the same reason, W must begin with a. It follows
that there exist u, v, w ∈ A∗ such that the factorization λa(x)a = UVW coincides with
the one in eq. (5), as desired.

Lemma 3.13. Let c = maxA and x ∈ A+. Then x is singular if and only if ρc(x)c−1

is singular.

Proof. Once again, we prove the contrapositive, i.e., x is reversible if and only if ρc(x)c−1

is reversible. Let x = uvw for some u, v, w ∈ A∗ with v 6= ε, which is equivalent to

ρc(x)c−1 = c−1λc(x) = λc(u) · c−1λc(v) · λc(w) (6)

in view of eq. (4), which also implies c−1λc(v) = c−1λc(v). Since clearly c−1λc(v) is
less (resp. greater) than c−1λc(v) if and only if the same relation holds between λc(v)
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and λc(v), applying Lemma 3.11 to the pairs u,w and v, v we obtain that x = uvw is
reversible if and only if so is the factorization in eq. (6).

It remains to show that if ρc(x)c−1 has a reversible factorization, then it has one like
in eq. (6). Indeed, if ρc(x)c−1 = UVW is reversible, we may assume that V begins and
ends with distinct letters, and by symmetry that V does not begin with c. It follows that
U is either empty or begins with c. Moreover, if W is nonempty then it also must begin
with c, since otherwise V would end in c, yielding W < U and V < V , a contradiction.
It follows that there exist u, v, w ∈ A∗ such that U ·V ·W coincides with the factorization
in eq. (6).

Since Christoffel words are exactly the images of a, b under compositions of λa and
ρb (see for instance [6, 12]), an alternative proof of Theorem 3 can easily be obtained
from Lemmas 3.12 and 3.13.

We now focus on a ternary alphabet. In the following, we let A = {a, b, c} with
a < b < c.

Remark 3.14. Let x ∈ A∗. If ab, cb ∈ L(x), or if ba, bc ∈ L(x), then x is not singular.
Indeed, ua · bvc · bw, uc · bva · bw and their reverses are all reversible factorizations.

Lemma 3.15. Let x ∈ A∗ be a singular word. If ab and bc (resp. cb and ba) occur in
x, then x = abn(ca)m (resp. x = abn(ca)m) for some n,m ≥ 1.

Proof. Suppose ab, bc ∈ L(x). As ab ∈ L(x). it follows that {cb, cc}∩L(x) = ∅. Similarly,
bc ∈ L(x) implies {aa, ba}∩L(x) = ∅. Write x = u·c·z where z follows the last occurrence
of c in x. Then |u|b > 0 and by Lemma 3.1, z is nonempty and hence begins with a. We
claim that |z|b = 0; indeed, x cannot end in b by Remark 3.2, and the last b in x can only
be followed by c. It follows that z = a and hence ca is a suffix of x. Thus x = wabn(ca)m
for some n,m ≥ 1, which implies w = ε otherwise the factorization w ·abn(ca)m ·ε would
be reversible.

Proposition 3.16. Let x ∈ A∗ be a singular word. If |x|a = |x|c+ 1, then x = abn(ca)m
or x = abn(ca)m for some n,m ≥ 0.

Proof. By Lemmas 3.8 and 3.9, aa, cc /∈ L(x). Hence |x|b = 0 if and only if x = a(ca)m
for some m ≥ 0. Let then |x|b ≥ 1. If |x|a = 1, then x = abn with n = |x|b and the
assertion is again verified. Otherwise, x begins and ends with a by Lemma 3.1. Since
|x|a = |x|c + 1 and aa, cc /∈ L(x), it follows that ab and ba are both factors of x if
and only if so are cb and bc. Since this is impossible in view of Remark 3.14, the only
remaining options are ab, bc ∈ L(x) or cb, ba ∈ L(x). The assertion then follows from
Lemma 3.15.

Lemma 3.17. Let x ∈ A∗ be a singular word such that |x| − |x|c > 1, and let δ =
|x|c − |x|a + 1. The following hold:

1. If δ > 0 (resp. δ < 0), then ab and ba (resp. bc and cb) do not occur in x.

2. If |x|b ≥ |δ| > 0, then x has exactly |δ| runs of consecutive occurrences of b.
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Proof. Assume δ > 0 first, that is, |x|a < |x|c + 1. Then |x|b < |δ| is equivalent to
|x|c > |x|a+ |x|b−1, and then to cc ∈ L(x) by Lemma 3.9. In such a case, c is separating
for x, so that ab, ba /∈ L(x). So assume that |x|b ≥ |δ|, in which case cc /∈ L(x). By
Lemma 3.1, c is neither a prefix nor a suffix of x. By contradiction, suppose ab ∈ L(x),
so that cb /∈ L(x) in view of Remark 3.14. Thus all occurrences of c would be followed
by a. As ab ∈ L(x), a occurs in x not only as a suffix; by Lemma 3.1, it must occur as
a prefix too, so that |x|a ≥ |x|c + 1, contradicting δ > 0. Thus ab /∈ L(x), and ba /∈ L(x)
by a symmetric argument. Hence, a can be followed (and preceded) only by c within x.
A simple counting argument then shows that x has exactly |x|c − |x|a + 1 = δ runs of b.

Now let δ < 0, so that |x|a > |x|c + 1, and x begins and ends with a by Lemma 3.1.
By a similar argument as before, we obtain cb, bc /∈ L(x), so that c can be preceded and
followed only by a. If |x|b ≥ |δ|, that is, if |x|a ≤ |x|b + |x|c + 1, we have aa /∈ L(x) by
Lemma 3.8. Therefore, we can count |x|a − |x|c − 1 = |δ| runs of b in x.

Let ξ : A∗ → A∗ be the map defined as follows: for all x ∈ A∗, ξ(x) is obtained by
adding an occurrence of b to all existing runs of consecutive b in x, as well as in the
middle of any occurrence of aa or cc. Unlike the maps we used for adding occurrences
of a and c, this ξ cannot be realized via episturmian morphisms, but it is sequential, i.e.,
obtained as the output of a sequential transducer (cf. [23]), as shown in Figure 1. We
remark that ξ commutes with reversal, that is, for all x ∈ A∗,

ξ(x) = ξ(x).

a/a

c/c

b/bb
c/c

a/ba

b/bb

b/b

a/a

c/c

a/a

b/bb

c/bc

Figure 1: Diagram of a transducer realizing the ξ map. Labels show input/output.

In the following results, we will often need to add an occurrence of b at the end of

13



ξ(x), when x ends in c. This can be expressed as ξ(xc)c−1, i.e.,

ξ(xc)c−1 =
{
ξ(x)b if x ends in c,
ξ(x) otherwise.

(7)

Similarly, c−1ξ(cx) adds a b before a possible leading c, and c−1ξ(cxc)c−1 deals with
both ends (but note that c−1ξ(cεc)c−1 = b).

Remark 3.18. The mapping on A∗ given by y 7→ c−1ξ(cyc)c−1 is injective. Its image
is the regular language of words x ∈ A+ satisfying all of the following conditions:

1. aa, abc, cba, cc /∈ L(x),

2. c is neither a prefix nor a suffix of x,

3. x does not begin with ba or end with ab.

Hence, for each x satisfying such conditions there exists a unique y ∈ A∗ such that
x = c−1ξ(cyc)c−1. This y is obtained from x by simply deleting an occurrence of b from
each run.

Lemma 3.19. Let x, y ∈ A∗. The following are equivalent:

1. x < y,

2. ξ(x) < ξ(y),

3. ξ(xc)c−1 < ξ(yc)c−1.

Proof. Suppose x < y. If y is a proper prefix of x, then ξ(y) is a proper prefix of ξ(x)
since ξ is sequential. Otherwise, let x = ua′v and y = ub′w for some u, v, w ∈ A∗ and
a′, b′ ∈ A with a′ < b′. If u ends in b or is empty, then ξ(x) and ξ(y) begin respectively in
ξ(u)a′ and ξ(u)b′; this also occurs if u ends in a and a′ 6= a, or if u ends in c and b′ 6= c.
If we have a′ = a with u ending in a, then ξ(x) begins with ξ(u)ba while ξ(y) begins
with ξ(u)bb or ξ(u)c; the case where b′ = c and u ends in c is similar. Thus 1⇒ 2.

Next, assume ξ(x) < ξ(y). If ξ(y) is not a prefix of ξ(x), inequality 3 follows in view
of eq. (7); the same happens if ξ(y) does not end in c, since in this case ξ(xc)c−1 ≤
ξ(x) < ξ(y) = ξ(yc)c−1. Let then ξ(y) be a proper prefix of ξ(x), with ξ(y) ending
in c. Now, ξ(x) cannot begin with ξ(y)c, since by definition cc cannot occur in an
image under ξ. Hence ξ(x) has either ξ(y)a or ξ(y)b as a prefix. In both cases we have
ξ(xc)c−1 ≤ ξ(x) < ξ(y)b = ξ(yc)c−1 (note that ξ(xc)c−1 6= ξ(y)b, since ξ(x) 6= ξ(y)).
Hence 2⇒ 3 in all cases.

Finally, suppose inequality 3 from the statement holds. If ξ(yc)c−1 is a proper prefix
of ξ(xc)c−1, then so is ξ(y) in particular, and this implies that y is a proper prefix of
x. If ξ(xc)c−1 = Ua′V and ξ(yc)c−1 = Ub′W for some U, V,W ∈ A∗ and a′, b′ ∈ A with
a′ < b′, then there exist u ∈ A∗ such that either U = ξ(u)b or U = ξ(u). In the first case,
it is easy to see that x and y respectively begin with ua′ and ub′, so that x < y. The
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same happens when U = ξ(u) ends in b. If U ends in c, then a′ = a and b′ = b since cc
cannot appear in an image under ξ; hence x begins with ua while y either equals u, or
it begins with ub or uc. The case where U ends in a is symmetric, except for the x = u
option which cannot occur. In all cases, we get 3⇒ 1 as desired.

We can now prove the analogue of Lemmas 3.12 and 3.13 for the letter b.

Lemma 3.20. A word x ∈ A∗ is singular if and only if X = c−1ξ(cxc)c−1 is singular.

Proof. Assume |X|a = |X|c + 1. By Proposition 3.16, X is singular if and only if either
X or X is abn(ca)m for some m ≥ 0 and n 6= 1 (as abc, cba /∈ L(x)); equivalently, x or
x is abn−1(ca)m (or a(ca)m when n = 0), which happens if and only if x is singular, as
|x|a = |X|a and |x|c = |X|c.

Now suppose |X|a 6= |X|c+ 1. We may also assume that X contains all three letters.
Indeed, if a (resp. c) does not occur, then X = λb(x)b (resp. X = ρb(x)b−1) and the
assertion follows from Lemma 3.12 (resp. Lemma 3.13). If X that does not contain b,
then X is singular only if X = a(ca)m for somem ≥ 0, which contradicts |X|a 6= |X|c+1.

Let X be singular. We need to show that no factorization x = u · v · w is reversible;
without loss of generality, we may assume v = a′v′b′ for some letters a′ < b′. If u = ε,
then w ≤ u and the factorization is not reversible, as desired; let then u1 be the first
letter of u. We have three options for a′, b′:

1. a′ = a, b′ = b.
If w = ε, then X ends in ξ(av′b); by Lemma 3.1, this is impossible if u 6= ε.
Let then w begin with w1 ∈ A. If w1 < u1, then w < u and we are done, so
we only need to check the cases where u1 ≤ w1. By Lemma 3.17, L(X) ∩ A2 is
contained in {ab, ac, ba, bb, ca} if |X|a > |X|c + 1, or in {ac, bb, bc, ca, cb} if the
opposite inequality holds. This excludes the sub-cases where u1 6= c and w1 = c.

• If u1 = w1 = a, then in X a single b is inserted between u1 and a′. Since the
factorization

X = c−1ξ(cu)b · ξ(v)b−1 · bξ(wc)c−1 (8)

cannot be reversible, we have ξ(wc)c−1 ≤ ξ(uc)c−1, so that w ≤ u by
Lemma 3.19.

• If u1 = a and w1 = b, then

X = c−1ξ(cu)b · ξ(v)b−1 · ξ(wc)c−1 (9)

would always be reversible; hence this case cannot happen.
• If u1 = w1 = b, then as

X = c−1ξ(cu) · ξ(v)b−1 · ξ(wc)c−1 (10)

cannot be reversible, we again obtain w ≤ u by Lemma 3.19.
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• Finally, if u1 = w1 = c, the non-reversibility of

X = c−1ξ(cu) · ξ(v) · ξ(wc)c−1 (11)

again implies w ≤ u.

2. a′ = a, b′ = c.
If w = ε, then X ends in ξ(av′c)b; once again, this is impossible if u 6= ε, by
Lemma 3.1. Let w begin with w1 ∈ A such that u1 ≤ w1, again. As in case 1,
the possible factors of length 2 in X exclude some options for u1 and w1. We only
need to examine the following.

• If u1 = w1 = a, then as

X = c−1ξ(cu) · bξ(v) · ξ(wc)c−1 (12)

cannot be reversible, we obtain w ≤ u by Lemma 3.19.
• If u1 = w1 = c, then as

X = c−1ξ(cu) · ξ(v)b · ξ(wc)c−1 (13)

is not reversible, it follows that w ≤ u.

3. a′ = b, b′ = c.
If w = ε, then X ends in V = ξ(bv′c)b, which in turn begins with bb, so that
V < V . Since a factorization X = U · V · ε with U 6= ε (as u 6= ε) is reversible, we
obtain w 6= ε also in this case. If w1 is its first letter and u1 ≤ w1, the following
sub-cases are left to examine after factors of length 2 in X are considered.

• If u1 = w1 = a, then we obtain w ≤ u from the factorization in eq. (11).
• If u1 = w1 = b, then considering the factorization

X = c−1ξ(cu) · b−1ξ(v) · ξ(wc)c−1 (14)

leads to the conclusion w ≤ u as above.
• If u1 = b and w1 = c, then the factorization

X = c−1ξ(cu) · b−1ξ(v) · bξ(wc)c−1 (15)

is always reversible; therefore this cannot occur.
• If u1 = w1 = c, then we get w ≤ u from

X = c−1ξ(cu)b · b−1ξ(v) · bξ(wc)c−1. (16)
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This concludes the proof that if X is singular then so is x.
Conversely, let us suppose that x is singular with |x|a 6= |x|c + 1, and prove the

same for X. We need to show that no factorization X = U · V ·W is reversible, where
V = a′V ′b′ for some a′, b′ ∈ A with a′ < b′, without loss of generality.

If U = ε, there is nothing to prove as W ≤ U , so let U1 be the first letter of U . If W
were empty, then since X cannot end in c, we would have a′ = a and b′ = b. Hence x
would not end in a; by Lemma 3.1, a′ = a would then be a prefix of x, and then of X,
against U 6= ε. Let then W begin with W1 ∈ A, with U1 ≤ W1 (otherwise W < U and
there is nothing to prove).

By Lemma 3.17, the set L(x) ∩ A2 is contained in either {ac, bb, bc, ca, cb, cc} or
{aa, ab, ac, ba, bb, ca}, depending on the sign of |x|c−|x|a+1. This implies that L(X)∩A2

is contained in {ac, bb, bc, ca, cb} or {ab, ac, ba, bb, ca}, respectively. Hence, the only cases
left to examine are the following:

1. U1 = a, a′ = b, b′ = c, and W1 = a.
Then V begins with either ba or bb. In the first case, there exist u, v, w ∈ A+ such
that x = uvw and our factorization X = UVW coincides with eq. (12); as x is
singular, we have w ≤ u and then W ≤ U by Lemma 3.19. In the second case, the
same argument applied to eq. (11) leads to W ≤ U as well.

2. U1 = b, a′ = a, b′ = b, and W1 = b.
By Remark 3.18, X cannot begin with ba, so that U begins with ba or bb. The same
is true for W , for otherwise x would end with b and have an internal occurrence of
a, against Lemma 3.1.

• If U and W both begin with ba, there exist u, v, w such that x = uvw, and
eq. (8) is X = U ·V ·W . Then w ≤ u, which implies W ≤ U by Lemma 3.19.

• If U began with ba, but W with bb, we would obtain eq. (9) and x = uvw for
some u < w, which is impossible.

• If U begins with bb and W with ba, we have W ≤ U as desired.
• Finally, if both U and W begin with bb, eq. (10) and x = uvw describe the

situation; again w ≤ u follows, so that W ≤ U .

3. U1 = b, a′ = b, b′ = c, and W1 = b.
If U = b, then W ≤ U and we are done. If U 6= b and W = b instead, x would end
with c, against Lemma 3.1. Hence we can assume U and W begin in either bb or
bc.

• If U and W both begin with bb, eq. (14) applies and yields W ≤ U .
• If U began with bb while W began with bc, eq. (15) would apply for some
u < w, a contradiction.

• If U begins with bc and W begins with bb, there is nothing to prove.
• If U and W both begin with bc, eq. (16) describes the situation and implies
W ≤ U .
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4. U1 = c, a′ = a, b′ = b, and W1 = c.
Then V ends in either bb or cb, leading to eqs. (11) and (13) respectively, and then
to W ≤ U in both cases.

The proof is now complete.

We now prove one of the main results of this section.

Theorem 3.21. Let A = {a, b, c} with a < b < c. Every abelian class of A∗ contains
exactly one pair {x, x} of singular words.

Proof. Let v = (na, nb, nc) ∈ N3. We need to show that up to reversal, there exists a
unique singular word x with Parikh vector v, i.e., such that |x|a = na, |x|b = nb, and
|x|c = nc. If nanbnc = 0, this follows from Theorem 3, since there exists a unique power
of a Christoffel word for every non-zero Parikh vector. In particular, this proves the
assertion for na + nb + nc = |x| ≤ 2.

Let then nanbnc > 0, and assume that the result holds for all vectors (p, q, r) with
p+ q + r < na + nb + nc. We can identify three cases:

1. If na ≥ nb + nc + 1, then by induction there exists a unique pair of singular words
{x′, x′} with Parikh vector (na − nb − nc − 1, nb, nc). Then x = λa(x′)a and x
have vector v, and are singular by Lemma 3.12. Any other singular word y with
vector v begins and ends with a by Lemma 3.1, and has a as a separating letter
by Lemma 3.8; hence y = λa(y′)a for some y′ with vector (na−nb−nc− 1, nb, nc).
Such a y′ is necessarily singular by Lemma 3.12, so that y′ ∈ {x′, x′}. This case is
therefore settled.

2. If nc ≥ na + nb − 1, then by induction there exists a unique pair of singular words
{x′, x′} with vector (na, nb, nc−na−nb+1) (note that na+nb−1 ≥ 1 since pq > 0).
Then x = ρc(x′)c−1 and x have vector v, and are singular by Lemma 3.13. By
Lemma 3.9, any singular word y with vector v has c as a separating letter, so that
y = ρc(y′)c−1 for some word y′, which is singular by Lemma 3.13 and has vector
(na, nb, nc − na − nb + 1). Thus y′ ∈ {x′, x′}, as desired.

3. If na < nb+nc+1 and nc < na+nb−1, it follows nb > |δ|, with δ = nc−na+1. By
Proposition 3.16, if δ = 0 then x = abnb(ca)nc and x are the only singular words
with vector v. Let us then assume δ 6= 0.
By induction, there exists a unique pair of singular words {x′, x′} with vector
(na, nb−|δ|, nc). Let x = c−1ξ(cx′c)c−1. Then x and x are singular by Lemma 3.20.
Since aa, cc /∈ L(x), by Lemmas 3.8 and 3.9 we obtain |x|b ≥ |δ|. Lemma 3.17 then
implies that x and x have exactly |δ| runs of b, and hence Parikh vector v. If y
is any singular word with vector v, then aa, cc /∈ L(y) by Lemmas 3.8 and 3.9.
Furthermore, by Lemma 3.1, y cannot begins with c or ba, and it cannot end
with c or ab. Finally, we have abc, cba /∈ L(y) by Lemma 3.15, as δ 6= 0. In
view of Remark 3.18, this implies the existence of a unique word y′ such that y =
c−1ξ(cy′c)c−1. By Lemma 3.17, y′ has vector (na, nb−|δ|, nc), and by Lemma 3.20
it is singular. Hence we once again obtain y′ ∈ {x′, x′}.
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Behind induction, the above proof hides the following algorithm for determining the
unique (up to reversal) singular word with a given Parikh vector (na, nb, nc):

1. Starting from the vector (na, nb, nc), we iterate the following rule:

• If na ≥ nb + nc + 1, the next vector is (na − nb − nc − 1, nb, nc);
• If nc ≥ na + nb − 1, the subsequent vector is (na, nb, nc − na − nb + 1);
• Otherwise, the next vector is (na, nb − |nc − na + 1|, nc).

2. Repeat step 1 until a vector (p, q, r) is reached with pqr = 0 or p = r+1 is reached.

3. Use Theorem 3 or Proposition 3.16, respectively, to find the unique (up to reversal)
singular word with vector (p, q, r).

4. Go back through the previous vectors, using the appropriate result (Lemma 3.12,
Lemma 3.13, or Lemma 3.20) to construct the corresponding singular word.

Example 3.22. Let us show that the only singular words with Parikh vector (3, 5, 7)
are x = acbcbcbcacbcbca and its reverse. Step 1 yields vector (3, 5, 0), and since the
only power of a Christoffel word with 3− 1 occurrences of a and 5 + 1 of b is abbbabbb,
Theorem 3 implies that x′ = abbbabba is singular. Hence x = ρc(x′)c−1 is singular too,
by Lemma 3.13.

The singular words with vector (3, 7, 5) are y = acbbbcbbcacbbca and y. Indeed,
the above algorithm gives the sequence of vectors (3, 4, 5) 7→ (3, 1, 5) 7→ (3, 1, 2); by
Proposition 3.16, y0 = abcaca is singular, whence so are y1 = ρc(y0)c−1 = acbccacca,
y2 = c−1ξ(cy1c)c−1 = acbbcbcacbca, and y = c−1ξ(cy2c)c−1.

We observe that Theorem 3.21 is essentially a restatement of the Theorem 1 given in
the introduction. The next example shows that Theorem 3.21 does not extend to larger
alphabets.

Example 3.23. Consider the word y = abbcdd on the ordered alphabet A = {a, b, c, d}
with a < b < c < d. Then the abelian class of y contains two singular words (up to
reversal), namely x = bcdbda and x′ = bdbcda. Thus relative to any order preserving
assignment φ : {a, b, c, d} → {2, 3, 4, . . .}, the maximum of

.
K(·) will be attained at

either x or x′. Now, one can check that for the assignment (a, b, c, d) 7→ (3, 4, 5, 6) one
finds

.
K(x) = 6827 > 6825 =

.
K(x′) and hence amongst all permutations of 344566

the maximum of
.
K(·) is attained uniquely at x (or x). In contrast, if (a, b, c, d) 7→

(3, 4, 15, 16) then
.
K(x) = 171127 < 171135 =

.
K(x′), whence the maximum of

.
K(·)

is attained uniquely at x′. This shows that in this case the maximizing arrangement
depends on the actual values assigned to each of a, b, c and d. Finally, relative to the
assignment (a, b, c, d) 7→ (3, 4, 7, 8) one finds that

.
K(x) =

.
K(x′) = 18247 which shows

that the maximizing arrangement need not be unique.
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4 Infinite singular words
Let A be an ordered set. For x ∈ AN ∪AZ, let L(x) denote the set of all factors u ∈ A+

occurring in x. We do not assume that each a ∈ A occurs in x.We say L(x) is symmetric
if L(x) is closed under reversal, i.e., if u ∈ L(x) then u ∈ L(x).
We begin by investigating infinite binary singular words.

Proposition 4.1. Let x ∈ AZ be a bi-infinite word over an ordered binary alphabet
A = {a, b}. Then x is singular if and only if x is balanced.

Proof. By Lemma 3.3, if x is singular then x is balanced. Conversely, if x is not singular,
then x admits a reversible factorization x = uvw. Thus we may write v = ra′v′b′r,
u = sa′u′ and w = sb′w′ with r, s, v′ ∈ A∗, u′, w′ ∈ AN and {a′, b′} = {a, b}. It follows
that a′sra′ and b′rsb′ are each factors of x, whence x is not balanced.

As an immediate corollary:

Corollary 4.2. Let x ∈ AZ be a bi-infinite word over a binary alphabet A = {a, b}.
Then x verifies the Markoff property (M) if and only if x is singular for every linear
order < on A.

Proof. Fix a linear order < on A. Then by Proposition 4.1, x is singular if and only if
x is balanced. The result now follows from Proposition 3.1 in [34].

In order to characterize one sided infinite binary singular words, we first establish
the following general lemma:

Lemma 4.3. Let A be any ordered alphabet. Let x ∈ AN and assume L(x) is symmetric.
If x is singular, then x ≤ x′ for each suffix x′ of x. In particular, if x is not (purely)
periodic, then x is Lyndon.

Proof. Assume to the contrary that x′ < x for some proper suffix x′ of x. Then there
exist z ∈ A∗, a, b ∈ A with a < b such that zb is a prefix of x and za a prefix of x′. Let
v be a prefix of x beginning in zb and ending in az. Then we have x = vw for some
w ∈ AN and v < v. It follows that the factorization x = uvw with u = ε is reversible,
whence x is not singular, a contradiction. Finally, if x is not purely periodic, then x 6= x′

for each proper suffix x′ of x. It follows that x < x′ for each proper suffix x′ of x and
hence x is infinite Lyndon.

Theorem 4. Let x ∈ {a, b}N be an aperiodic binary (one sided) infinite word. Then x
is singular if and only if x is a Sturmian Lyndon word.

Proof. Without loss of generality we may assume that a < b. First assume x is singular.
Then x is balanced by Lemma 3.3. It follows that x is Sturmian (see Theorem 2.1.5 in
[23]). Since L(x) is symmetric (see Proposition 2.1.19 in [23]), it follows from Lemma 4.3
that x is Lyndon.

For the converse, assume x is a Sturmian Lyndon word, and suppose to the contrary
that x admits a reversible factorization x = uvw. Of all such factorizations, pick one
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with the length of v minimal. It follows that the first and last letter of v are distinct.
Thus, assume v begins in c and ends in d with {c, d} = {a, b}. If u is a prefix of w, then
w < u and hence v < v which implies that c = b and d = a. If follows that au is a
factor of x and hence so is ua. But x begins in ub which contradicts the fact that x is
Lyndon. Thus u is not a prefix of w. In this case we have u = zeu′ and w = zfw′ with
z, u′ ∈ A∗, w′ ∈ AN and e and f distinct letters. In particular z is a right special factor
of x. But since zc and zd are also factors of x, it follows that z is also right special,
whence z = z. Thus ezc and dzf are each factors of x. If v < v (i.e., c < d) then u < w
(i.e, e < f) whence a = c = e and b = d = f from which it follows that aza and bzb are
each factors of x, a contradiction. Similarly, if v > v then u > w whence b = c = e and
a = d = f which again leads to the contradiction that aza and bzb are both factors of
x. This concludes our proof of Theorem 4.

Corollary 4.4. Let x ∈ AN be an aperiodic word over an ordered binary alphabet A =
{a, b}. If x is singular then x is uniformly recurrent.

Proof. This follows immediately from Theorem 4 together with the fact that every Stur-
mian word is uniformly recurrent (see for instance Proposition 2.1.25 in [23]).

Corollary 4.5. Let x ∈ AN be a uniformly recurrent aperiodic word over an ordered
binary alphabet A = {a, b}. Then the shift orbit closure of x contains a singular word if
and only if x is Sturmian. Furthermore, this singular word is unique.

Proof. If x is Sturmian, then the unique Lyndon word in the shift orbit closure of x is
singular by Theorem 4. Conversely, assume y is a singular word in the shift orbit closure
of a uniformly recurrent aperiodic binary word x. Then y is also uniformly recurrent,
aperiodic and binary, whence y is Sturmian Lyndon by Theorem 4. It follows that x is
also Sturmian.

The binary case is quite special as already on a ternary alphabet infinite singular
words display a much different behavior. As we saw an infinite singular aperiodic word
over a binary alphabet is necessarily uniformly recurrent and its set of factors is closed
under reversal. Furthermore, a uniformly recurrent word x over a binary alphabet
contains a singular word in its shift orbit closure if and only if x is Sturmian, and
moreover, this singular word is unique. This is in general not the case on alphabets of
cardinality greater than 2. For example, it is easy to see that over the ternary alphabet
A = {a, b, c} with a < b < c, any infinite concatenation of ac and abc is singular. This
implies in particular that there exist non recurrent singular words or recurrent aperiodic
singular words which are not uniformly recurrent. It also shows that in general the set
of factors of an infinite singular word need not be closed under reversal.

We next investigate the structure of infinite singular words whose set of factors is
closed under reversal. In what follows, let Ak = {1, 2, . . . , k} be ordered by 1 < 2 <
· · · < k.
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Definition 4.6. Let L ⊆ A∗k. We say that L satisfies the symmetric order condition if
whenever

asd, bsc ∈ L with a 6= b and c 6= d (a, b, c, d ∈ Ak), then a < b ⇔ c < d (17)

for each s ∈ A∗k.

Theorem 4.7. Let x ∈ AN
k ∪ AZ

k . Assume L(x) is symmetric.

1. If x ∈ AZ
k , then x is singular if and only if L(x) satisfies the symmetric order

condition.

2. If x ∈ AN
k , then x is singular if and only if L(x) satisfies the symmetric order

condition and x ≤ x′ for each suffix x′ of x.

Proof. We begin by showing that if x ∈ AN
k ∪ AZ

k is singular, then L(x) verifies the
symmetric order condition. So assume that asd, bsc ∈ L(x) with a 6= b and c 6= d. Since
L(x) is symmetric both dsa, bsc ∈ L(x). Furthermore, these two words cannot overlap
one another. Thus there exists r ∈ A∗k such that dsarbsc ∈ L(x) or bscrdsa ∈ L(x). If
dsarbsc ∈ L(x), then we can write x = uvw with v = arb, and where w begins in sc and
u begins in sd. Then a < b ⇔ v < v ⇔ w < u ⇔ c < d. Similarly, if bscrdsa ∈ L(x)
then we can write x = uvw with v = crd, and where w begins in sa and u begins in sb.
Then c < d ⇔ v < v ⇔ w < u ⇔ a < b. Also, if x ∈ AN

k , then by Lemma 4.3 we have
x ≤ x′ for each suffix x′ of x.

For the converse, first assume that x ∈ AZ
k . We will show that if x = uvw with

v ∈ A+
k and v 6= v and u 6= w then v < v if and only if w < u. Without loss of generality

we may assume that v begins and ends in distinct letters c and d. Thus fix a factorization
x = uvw with u 6= w and with v = cyd with y ∈ A∗k and c, d ∈ Ak distinct. Let us write
u = sbu′ and w = saw′ with s ∈ A∗k, u′, w′ ∈ AN

k and a, b ∈ Ak distinct. Since L(x)
is symmetric, both asd and bsc belong to L(x). It follows from the symmetric order
condition that if a < b⇔ c < d. In other words, if w < u⇔ v < v as required.

Next assume that x ∈ AN
k and L(x) satisfies the symmetric order condition and

x ≤ x′ for every suffix x′ of x. Fix a factorization x = uvw with v = cyd with y ∈ A∗k
and c, d ∈ Ak distinct and u 6= w. Then, the same proof as in the case of x ∈ AZ

k shows
that if u is not a proper prefix of w, then v < v ⇔ w < u. So it remains to consider
the case when u is a proper prefix of w in which case w < u. As L(x) is symmetric and
du ∈ L(x) it follows that ud is a factor of x. Let x′ be a (proper) suffix of x beginning
in ud. Since uc is a prefix of x and x ≤ x′, it follows that c < d and hence v < v as
required.

We will now use Theorem 4.7 to show that infinite singular words x ∈ AZ
k , with L(x)

symmetric, arise as natural codings of symmetric k-interval exchange transformations.
In fact, the symmetric order condition is precisely the combinatorial criterion which
distinguishes the language of symmetric interval exchange transformations from other
symmetric languages of the same factor complexity including Arnoux-Rauzy subshifts
or more generally Episturmian subshifts.
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Interval exchange transformations were originally introduced by Oseledec [28], fol-
lowing an idea of Arnold [1], see also [20]. A k-interval exchange transformation I is
given by a probability vector (α1, α2, . . . , αk), 0 < αi < 1, together with a permutation
π of {1, 2, . . . , k}. The unit interval [0, 1] is partitioned into k sub-intervals of lengths
α1, α2, . . . , αk labeled 1, 2, . . . , k which are then rearranged according to the permutation
π−1. (Note: In some definitions, the intervals are rearranged according to the permuta-
tion π.)We will only be interested here in symmetric interval exchanges, that is, where
the permutation π is given by π(i) = k + 1− i :

Definition 4.8. A symmetric k-interval exchange transformation I is a k-interval ex-
change transformation with probability vector (α1, . . . , αk), and permutation σ(i) =
k + 1− i, 1 ≤ i ≤ k defined by

I(x) = x+
∑

π−1j<π−1i

αj −
∑
j<i

αj

when x belongs to the (half open) interval

Ii =

∑
j<i

αj ,
∑
j≤i

αj

 .

We denote by βi (1 ≤ i ≤ k − 1), the i-th point of discontinuity of I−1, namely βi =∑k
j=k+1−i αj and by γi is the i-th discontinuity of I, namely γi = ∑i

j=1 αj . Then
I1 = [0, γ1), Ii = [γi−1, γi), 2 ≤ i ≤ k − 1 and Ik = [γk−1, 1).

Two points x, y ∈ [0, 1] are said to belong to the same I-orbit if In(x) = y for some
n ∈ Z. This defines an equivalence relation on [0, 1] and the equivalence classes are
called orbits. To each point γ ∈ [0, 1], one associates a bi-infinite word (xn)n∈Z ∈ AZ

k ,
called the natural coding of γ under I, where xn = i whenever In(γ) ∈ Ii. We define
the language of I, denoted L(I), to be the language generated by all natural codings,
i.e., w ∈ L(I) if and only if w is a factor of the natural coding of some point γ under I.

Via a decomposition result due to D. Gaboriau, G. Levitt and F. Paulin which applies
generally to all systems of partial isometries (see Theorem 3.1 in [18]), every symmetric
k-interval exchange transformation I decomposes canonically into a finite number of
invariant sub-systems Ji. Moreover on each Ji, either every orbit is finite, meaning each
corresponding natural coding is periodic, or each orbit is dense, in which case Ji is said
to be minimal. In particular, the closure of an orbit is not a Cantor set and every natural
coding under I of a point γ ∈ [0, 1] is uniformly recurrent.

We will make use of the following recent result due to S. Ferenczi, P. Hubert and
the third author [14] characterizing symmetric k-interval exchange transformations lan-
guages (see the proof of Theorem 13 and Lemma 11 in [14] or Proposition 4 in [15]):

Theorem 4.9. [Theorem 13 in [14]) A language L ⊆ A∗k is the language of a symmetric
k-interval exchange transformation I with interval lengths (α1, α2, . . . , αk) if and only if
the following two conditions are satisfied:
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• L satisfies the symmetric order condition

• measure condition: there exists an invariant probability measure µ on the symbolic
dynamical system (XL, S) generated by L such that µ([w]) > 0 for each w ∈ L and
µ([i]) = αi for each i ∈ Ak ∩ L.

The language L in Theorem 4.9 is assumed to be factorial and extendable. That is,
writing L = ⋃

i≥0 Li with L0 = {ε} and Ln ⊆ Ank for all n, we have that for each each
v ∈ Ln there exists a, b ∈ Ak with av, vb ∈ Ln+1 and each v ∈ Ln+1 may be written as
v = au = u′b with a, b ∈ Ak and u, u′ ∈ Ln. A language L is minimal if for each v ∈ L
there exists n such that v is a factor of each word w ∈ Ln. The symbolic dynamical
system (XL, S) generated by a language L is the two-sided shift S : XL → XL where XL

consists of all bi-infinite words x ∈ AZ
k such that L(x) ⊆ L and where the shift operator

S is defined by S((xi)i∈Z)n = xn+1. Finally, by [w] we mean the cylinder set defined by
w ∈ L, i.e., [w] = {x ∈ XL : x0x1 · · ·x|w|−1 = w}.

Proposition 4.10. Let x ∈ AZ
k be uniformly recurrent and assume that each i ∈ Ak

occurs in x. If L(x) satisfies the symmetric order condition, then L(x) is symmetric and
hence x is singular.

Proof. Since x is uniformly recurrent, it follows that L(x) is minimal. Minimality of
L(x) in turn implies the measure condition given in Theorem 4.9. In fact, as in [7], let
µ be any invariant probability measure on the shift orbit closure of x, which is the same
as the symbolic system generated by L(x). Then for each positive integer n there is at
least one word v(n) ∈ L(x) of length n with µ([v(n)]) > 0. Now for each w ∈ L(x), as
x is uniformly recurrent, it follows that w is a factor of v(n) for all n sufficiently large.
Hence µ([w]) ≥ µ([v(n)]) > 0 for all n sufficiently large. It follows from Theorem 4.9
(applied to L(x)) that L(x) = L(I) for some minimal symmetric k-interval exchange
transformation I with interval lengths (µ([1]), µ([2]), . . . , µ([k])).

Now consider x ∈ AZ
k . Then L(x) = {w ∈ A∗k : w ∈ L(x)}. Then L(x) also verifies

the symmetric order condition. Furthermore, we can define an invariant probability
measure µ′ on the shift orbit closure of x by µ′([w]) = µ([w]) for each w ∈ L(x).
It follows that L(x) also satisfies the measure condition and hence by Theorem 4.9,
L(x) = L(I ′) where I ′ is a minimal symmetric k-interval exchange transformation with
interval lengths (µ′([1], µ′([2]), . . . , µ′([k]). Since µ([i]) = µ′([i]) for each i ∈ Ak, it follows
that I = I ′ and hence L(x) = L(I) = L(I ′) = L(x). This proves that L(x) is symmetric.
Finally, that x is singular now follows from Theorem 4.7.

Theorem 5. Let Ak = {1, 2, . . . , k} (k ≥ 2) and let x ∈ AZ
k be uniformly recurrent and

assume that each i ∈ Ak occurs in x. Then the following are equivalent:

1. L(x) is the language of a symmetric k-interval exchange transformation.

2. x is singular and L(x) is symmetric.

Proof. Let x ∈ AZ
k and assume L(x) = L(I) for some symmetric k-interval exchange

transformation I. We will show that x is singular and L(x) symmetric. By Theorem 4.9,
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L(x) satisfies the symmetric order condition. As x is uniformly recurrent, it follows from
Proposition 4.10 that L(x) is symmetric and x singular.

For the converse, let x ∈ AZ
k be uniformly recurrent. Assume x is singular and

L(x) is symmetric. It follows from Theorem 4.7 that L(x) satisfies the symmetric order
condition. Also, as x is uniformly recurrent, it follows (as in the proof of Proposition 4.10)
that L(x) satisfies the measure condition. Hence by Theorem 4.9, we have that L(x) =
L(I) for some minimal k-interval exchange transformation I.

We now give a characterization of natural codings of symmetric k-interval exchange
transformations satisfying Keane’s infinite distinct orbit condition [21]:

Definition 4.11. A k-interval exchange transformations I satisfies the infinite distinct
orbit condition (or i.d.o.c. for short) if the k − 1 negative trajectories {I−n(γi)}n≥0
(1 ≤ i ≤ k − 1) of the discontinuities of I are infinite disjoint sets.

If I satisfies i.d.o.c., then I is minimal but not conversely. A complete characteri-
zation of languages of interval exchange transformations satisfying i.d.o.c. was obtained
by S. Ferenczi and the third author in [15] (see Theorem 4.13 below). It is based on
Kerckhoff’s definition of k-interval exchange transformations which involves two per-
mutations (π0, π1) in which the unit interval [0, 1] is partitioned into k sub-intervals of
lengths α1, α2, . . . , αk ordered according to the permutation π−1

0 and then rearranged
according to the permutation π−1

1 (see [22]). We first need to recall some terminology:

Definition 4.12. For a permutation π of {1, 2, . . . , k}, we define the π-order by a <π b
whenever π(a) < π(b). A π-interval is a nonempty set of consecutive integers in the
π-order.

Let L be a language. For w ∈ L, we define arrival set of w, denoted A(w), as the set
of all letters a such that aw is in L, and the departure set of w, denoted D(w), as the
set of all letters a such that wa ∈ L.

The following theorem gives a characterization of languages generated by a k-interval
exchange transformation satisfying i.d.o.c.:

Theorem 4.13. [Theorem 2 in [15]] A language L is the language of a k-interval ex-
change transformation I, defined by permutations (π0, π1) such that π−1

0 ({1, ...j}) 6=
π−1

1 ({1, ...j}) for every 1 ≤ j ≤ k − 1, and satisfying i.d.o.c., if and only if L satisfies

(H0) L1 = {1, . . . , k},

(H1) L is minimal,

(H2) if w is a bispecial word, A(w) is a π1-interval,

(H3) if w is a bispecial word and a ∈ A(w), D(aw) is a π0-interval,

(H4) if a, b ∈ A(w) with a <π1 b, c ∈ D(aw), d ∈ D(bw), then c ≤π0 d,

(H5) if a, b ∈ A(w) are consecutive in the π1 order, D(aw) ∩D(bw) is a singleton.

25



We will also be needing the following lemma:

Lemma 4.14. [Lemma 6 in [15]] If L satisfies (H0) to (H5) for π0 = Id, π1 = σ : i 7→
k + 1− i, then L is symmetric.

As observed in [15], condition (H5) precludes the existence of weak bispecial factors
(see [8]). It is implied by i.d.o.c.. In general, a natural coding x of a symmetric k-interval
exchange transformation may contain weak bispecial factors as the following example
illustrates:

Example 4.15. Let y = 01001010010 · · · be the Fibonacci word fixed by the morphism
0 7→ 01, 1 7→ 0. Let x ∈ {1, 2, 3}N be the image of 0y under the morphism 0 7→ 1213,
1 7→ 12213.

x = 12131213122131213121312213121312213121312131221312131 · · · .

Then it is readily verified that x is an aperiodic uniformly recurrent singular word and
L(x) is symmetric (in fact, x begins in infinitely many palindromes). It follows that L(x)
satisfies the symmetric order condition and the measure condition, whence L(x) = L(I)
for some symmetric 3-interval exchange transformation I. However, I does not satisfy
i.d.o.c. since L(x) does not verify (H5). In fact, consider the bispecial factor w = 1. Then
2, 3 ∈ A(1) are consecutive in the π1-order. However, D(21) = {3} while D(31) = {2}
whence D(21) ∩D(31) = ∅.

Theorem 4.16. Let x ∈ AZ
k be uniformly recurrent and assume each i ∈ Ak occurs in

x. Assume that for each w ∈ L(x) there exists a ∈ A such that D(aw) = D(w). Then
the following are equivalent

1. x is singular and L(x) is symmetric.

2. L(x) is the language of a symmetric k-interval exchange transformation satisfying
i.d.o.c..

Proof. That 2. implies 1. follows from Theorem 5. To see that 1. implies 2. we begin
with the following lemma:

Lemma 4.17. Let x ∈ AZ
k . Assume that L(x) is symmetric and that each i ∈ Ak is

recurrent in x. If x is singular, then A(s) and D(s) are both intervals for each s ∈ L(x).

Proof. Fix s ∈ L(x). It suffices to show that D(s) is an interval. In fact, since L(x) is
symmetric it follows that A(s) = D(s) for each s ∈ L(x). So assume that there exist
a < b < c in Ak with a, c ∈ D(s). We will show that b ∈ D(s). Since b is recurrent in
x we may write x = ubw with u,w ∈ AN

k and with sa and sc each occurring in u. Thus
we may write x = u1v1w where v1 begins in a and ends in b and u1 begins in s. Since
v1 < v1 and x is singular, it follows that w ≤ u1. Similarly, we may write x = u2v2w
where v2 begins in c and ends in b and u2 begins in s. Since v2 < v2 we have that u2 ≤ w.
Since s is a prefix of both u1 and u2 it follows that s is a prefix of w, whence bs ∈ L(x)
from which it follows that sb ∈ L(x) as required.
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We now prove that 1. implies 2. So assume that x ∈ AZ
k satisfies the hypotheses

of Theorem 4.16, x is singular and that L(x) is symmetric. We now show that L(x)
verifies each of the conditions in Theorem 4.13. Condition (H0) is immediate since each
i ∈ Ak occurs in x. Condition (H1) follows from the fact that x is uniformly recurrent.
Conditions (H2) and (H3) follow immediately from Lemma 4.17. Condition (H4) applied
to π0 = Id and π1 = σ is merely a reformulation of the symmetric order condition. Thus
(H4) follows from Theorem 4.7. To show (H5), suppose a, b ∈ A(w) are consecutive.
Without loss of generality, we may assume that a < b. Let c, d ∈ D(aw) ∩D(bw). We
will show that c = d. We have awc, awd, dwb, cwb ∈ L(x). Considering the factors awc
and dwb, since a < b it follows that wc ≥ wd and hence c ≥ d. Similarly, considering the
factors awd and cwb, since a < b we get wd ≥ wc and hence d ≥ c. This proves that c = d
and hence that D(aw) ∩D(bw) is at most a singleton. To see that D(aw) ∩D(bw) 6= ∅,
pick c ∈ Ak such that D(cw) = D(w). As a, b ∈ D(w) we get that cwa, cwb ∈ L(x). It
follows that awc, bwc ∈ L(x) and hence c ∈ D(aw) ∩D(bw). This concludes our proof
of Theorem 4.16.
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