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Abstract

Starting from the foundational axiomatization of the perceptual color space initiated by
Schrödinger in 1920 and eventually refined by Resnikoff in 1974, Berthier, Provenzi and their
collaborators have recently proposed a reformulation of perceptual color attributes within the
framework of quantum information. Their work is based on the Jordan algebra formalism
of quantum theories and, more specifically, on a quantum system described by a spin factor
over the field of real numbers. This theoretical framework is not that of ordinary quantum
mechanics, mainly because it requires dealing with rebits, whereas the latter uses qubits.
The aim of this paper is to show that this difference in no way hinders the implementation
of experimental protocols for testing the validity of the predictions of the color perception
model. In particular, we show how to compute the quantum information based perceptual
attributes of perceived colors in terms of qubit density matrices.

Keywords: Color perception, density matrices, color attributes

1 Introduction

In the paper [5], a mathematically rigorous vocabulary for color attributes has been built based
on a prior analysis of color perception. This analysis, presented in a series of papers, provided the-
oretical evidence supporting the development of a quantum-relativistic theory of color perception
free from internal contradictions. For more details, see e.g. [3, 6, 4, 7].

A distinctive feature of this theory is that, unlike the majority of quantum models, the state
space is defined over the real field rather than the complex one. If fact, the quantum system of
this theory is a rebit, the real analogue of a qubit. In this model, the two states correspond to the
degrees of chromatic opposition as described in Hering’s theory of color vision [10]. To the best of
our knowledge, this color perception model is the first factual example of a real quantum theory,
which had previously been explored only theoretically.

It is a challenging problem to validate this new theory experimentally, for example by testing
some of its predictions. In tests designed to characterize a color perceived by a human observer,
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photons of visible light are absorbed by the retinal photoreceptors, changing their electrical po-
tential and triggering a very complicated chain of events that culminate in the brain’s creation of
a color sensation. The perceptual attributes associated with this sensation are defined in the pro-
posed theory from the generalized state of the rebit given by the result of a Lüders measurement
operation. Therefore, in order to perform experiments, we must take into account the inherent
fact that photons are described in quantum mechanics using qubits, while color sensations are
described in the quantum model of color perception using rebits.

Replacing the field of complex numbers of ordinary quantum mechanics by the field of real
numbers is not a trivial matter. For instance, it is underlined in [12] that in real-vector-space
quantum mechanics, one cannot in general determine the density matrix of a composite system
using only local measurements whereas in complex-vector-space quantum mechanics any sets of
measurements which are just sufficient for determining the states of the subsystems are, when
performed jointly, just sufficient for determining the state of the complete system.

Another example is highlighted in [1], where it is shown that Choi’s theorem cannot be ap-
plied in the real-vector-space framework to obtain the classification of rebit channels and another
strategy must be used.

Nevertheless, if we limit the scope of the experiments to be performed, it is possible to express
some of the colorimetric concepts defined in the rebit framework by means of density matrices
associated with qubit states. It is precisely the aim of this paper to elaborate on this last point.

The paper is structured as follows: in section 2, we recall the basic facts about the quan-
tum model of color perception together with the quantum information-based definitions of the
perceptual attributes that characterize perceived colors.

In section 3, we explain how to compute these perceptual attributes using qubit states and
effects, rather than using rebit generalized states and effects. In doing so, we propose an operational
framework for conducting color perception experiments.

Finally, in the conclusions we discuss some perspectives for designing such experiments that
we deem able to test the quantum color perception model.

2 Hering’s rebit of color perception

The historical, physiological and psychophysical motivations as well as the main stages of the
mathematical reasoning that led to the proposal of the model of color perception described below
have already been described in detail, e.g. in the articles [5] and [7].

2.1 Perceived colors and color measurements

The relevant algebraic structure of this model is the spin factor R ⊕ R2 whose Jordan product
is given by (α,v) ◦ (β,w) = (αβ + v · w, αw + βv), with α, β ∈ R and v,w ∈ R2, and where
v ·w denotes the Euclidean inner product of R2. It is a non-associative commutative formally real
Jordan algebra of rank 2 and of real dimension 3 which, as a Jordan algebra, is isomorphic to the
algebra H(2,R) of real symmetric 2 × 2 matrices endowed with the Jordan matrix product, i.e.
A ◦B = (AB +BA)/2, A,B ∈ H(2,R). An explicit isomorphism is given by

χ : H(2,R)
∼−→ R⊕ R2

A =

(
α+ v1 v2
v2 α− v1

)
7−→ χ(A) =

(
α
v

)
, v =

(
v1
v2

)
.

(1)

For more information on Jordan algebras, see e.g. [2]. The trace of an element (α,v) of R ⊕ R2

is equal to 2α, so the unit trace elements of the spin factor are in one-to-one correspondence via
the isomorphism χ with the density matrices of the rebit, i.e. the unit trace matrices belonging
to the domain of positivity H+(2,R) of the algebra H(2,R). We denote

S =

{
ρ(s1, s2) ≡ 1

2

(
1 + s1 s2
s2 1− s1

)
, s1, s2 ∈ R, s21 + s22 ≤ 1

}
∼= D, (2)
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the state space of the rebit, where D is the unit disk in R2, referred to as the Bloch disk.
Vectors of the Bloch disk represent chromatic states, and Hering’s color opponency involving

the two pairs of unique hues is encoded by means of the two Pauli matrices with real entries

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
. (3)

In the sequel, we will denote with σ0 the 2× 2 identity matrix I2.
As in the case of qubits, we can decompose any density matrix of the rebit using the basis

(σ0, σ1, σ2):

ρ(s1, s2) = ρ0 +
s1
2
σ1 +

s2
2
σ2 ≡ ρ0 +

1

2
vρ · ~σ, (4)

where ρ0 := σ0/2 and the components of the Bloch vector vρ = (s1, s2) = (Tr(ρσ1),Tr(ρσ2)) ≡
(〈σ1〉ρ, 〈σ2〉ρ) are the ρ-expectation values of the real Pauli matrices. Using polar coordinates, i.e.
(s1, s2) = (r cosϑ, r sinϑ), r ∈ [0, 1], ϑ ∈ [0, 2π), we can write

ρ(r, ϑ) = ρ0 +
〈σ1〉ρ

2
[ρ(1, 0)− ρ(1, π)] +

〈σ2〉ρ
2

[ρ (1, π/2)− ρ (1, 3π/2)] . (5)

For all ϑ, ρ(1, ϑ) is a rank-1 projector, i.e. a pure state, and ρ(1, ϑ1), ρ(1, ϑ2) project on or-
thogonal directions precisely when ϑ1 and ϑ2 correspond to antipodal points on the unit circle.
Since orthogonality in quantum theories represents incompatible states, eq. (5) codifies a generic
chromatic state as the superposition of two chromatic opponencies between incompatible states,
red-green and yellow-blue in Hering’s theory, see [10], weighted by the expectation values of the
real density matrices, plus an offset state represented by ρ0.

The density matrix ρ0, associated with the center of the Bloch disk D, is the maximally mixed
state, characterized by the fact of having maximal von Neumann entropy, defined as S(ρ) =
−Tr(ρ log2 ρ), and not carrying any chromatic information. Therefore, the density matrix ρ0
represents the achromatic state, and eq. (5) is exactly the quantum description of the chromatic
information that can be gathered from an isolated color stimulus in Hering’s theory, see e.g. [11].

The new paradigm at the heart of the model of color perception is based on the interpretation
of perceived colors as the results of measurements performed by observers from chromatic states.
Perceived colors are no longer simple triplets of coordinates in color spaces derived from XYZ
space, but are produced by the duality between states and effects.

The domain of positivity of the spin factor R ⊕ R2 is the closure L+ of the future lightcone
in the 3-dimensional Minkowski space. Constraints such as the visibility threshold and the glare
limit impose to restrict the set of positive observables to a convex solid of finite volume of L+,
called color solid in colorimetry.

Effects encode the probabilistic nature of quantum measurements and permit to construct in
a natural way a color solid. To see how, we recall that an effect is defined to be an element ηe
of H+(2,R) bounded between the null and the identity matrix σ0 (with respect to the Loewner
ordering of positive semi-definite matrices, i.e. B ≤ A ⇐⇒ A − B ∈ H+(2,R)). The matrix ηe
can be written explicitly as follows

ηe =

(
e0 + e1 e2
e2 e0 − e1

)
, (6)

with e0, e1, e2 ∈ R belonging to the following effect space:

E =
{

(e0, e1, e2) ∈ R3, e0 ∈ [0, 1], e21 + e22 ≤ min
{

(1− e0)2, e20
}}

. (7)

The effect vector in the Bloch disk associated to ηe is given by

ve :=

(
e1
e0
,
e2
e0

)
, e0 6= 0. (8)
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As it can be seen in Figure 1, the effect space E is a closed convex double cone with a circular
basis of radius 1/2 located at height e0 = 1/2 and vertices in (0, 0, 0) and (1, 0, 0), associated to
the null and the unit effect, respectively [7]. E represents the space of colors that can actually be
sensed thanks to a perceptual measurement performed by an observer and its geometry happens
to be in perfect agreement with that of the color solid advocated by Ostwald and de Valois, see
e.g. [9].

Figure 1: The double cone representing the effect space can be interpreted as the color solid of
actually perceived colors inside the infinite cone L+.

Effects parameterize a fundamental class of state transformations called Lüders operations,
which are convex-linear positive functions ψe defined on the state space S and satisfying the
constraint:

0 ≤ Tr(ψe(ρ)) ≤ 1, for all ρ ∈ S. (9)

After a Lüders operation, ρ becomes a generalized density matrix, whose set will be denoted with
S̃, representing a post-measurement generalized state which does not belong to the Bloch disk
anymore, but to the cone generated by S. The analytical expression of the post-measurement
generalized state ψe(ρ), see [8], is:

ψe(ρ) = η1/2e ρη1/2e , (10)

where η
1/2
e is the Kraus operator associated to e, the only symmetric and positive semi-definite

matrix such that η
1/2
e η

1/2
e = ηe.

Given a chromatic state s = (s1, s2) and the corresponding density matrix ρs := ρ(s1, s2) of S,
we denote ψe(s) := ψe(ρs). Thanks to the cyclic property of the trace,

Tr(ψe(s)) = Tr(ρs ηe) = 〈e〉s = e0(1 + ve · vs), (11)

and

ϕe(s) :=
ψe(s)

〈e〉s
(12)

is a density matrix representing to a genuine chromatic state belonging to S.
It is shown in [7] that the state change s 7→ ψe(s) can be computed with a 3-dimensional

normalized Lorentz boost in the direction of ve, which implies

χ(ψe(s)) = e0(1 + ve · vs)
1

2

(
1

ve ⊕ vs

)
∈ S̃. (13)

As a consequence the Bloch vector associated to the state ϕe(s) is the vector

vϕe(s) = ve ⊕ vs, (14)
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where ⊕ denotes the Einstein-Poincaré relativistic sum. When ‖ve‖ < 1, ⊕ is defined by

ve ⊕ vs :=
1

1 + ve · vs

{
ve +

1

γve

vs +
γve

1 + γve

(ve · vs)ve

}
, (15)

where γve is the e-Lorentz factor

γve :=
1√

1− ‖ve‖2
, (16)

and, when ‖ve‖ = 1, ⊕ is defined as follows

ve ⊕ vs := ve. (17)

By convex-linearity, Lüders operations can be extended to generalized states as follows:

ψe(s0s) = s0ψe(s), ∀s0 ∈ [0, 1], (18)

this implies
〈e〉s0s = Tr(s0ρsηe) = s0Tr(ρsηe) = s0〈e〉s = e0s0(1 + ve · vs), (19)

so

ϕe(s0s) =
ψe(s0s)

〈e〉s0s
=
s0ψe(s)

s0〈e〉s
= ϕe(s), (20)

thus the post-measurement chromatic state depends solely on s and not on s0. This implies the
formula

ψe(s0s) = e0s0(1 + ve · vs)ϕe(s), (21)

which shows explicitly how the chromatic information about the state s and the expectation value
of the effect e on s are fused together in the post-measurement generalized state ψe(s0s).

In the case of an achromatic effect ea, for which vea = 0, the previous formula gives

ψea(s0s) = e0s0 ϕea(s), (22)

but η
1/2
ea =

√
e0σ0 so, by eq. (10),

ψea(s0s) = e0s0ρs, (23)

hence ϕea(s) = ρs, or, by identifying ρs with the chromatic state s,

ϕea(s) = s, (24)

this means that the post-measurement state induced by the action of an achromatic effect coincides
with the original state.

2.2 The quantum information of perceived colors

According to the modeling described in the previous subsection, a formal framework for describing
colorimetric perceptual attributes is provided by the following rules [5]:

• any quantity whose chromatic features manifest themselves fused together with a normalized
scalar factor will be described through a generalized state;

• any act of (physical or perceptual) color measurement and the (physical or perceptual)
medium used to perform it will be associated to an effect ;

• the measurement outcome will be identified with the post-measurement generalized state
induced by the action of the effect.
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The color stimulus hitting the eyes of the (human) observer can be either a light emitted by a
source of radiation or a light reflected from the patch of a surface lit by an illuminant. In the
paper [5], both situations were analyzed, however here we will concentrate only on emitted light
because the experiments that we aim at performing will be conducted in the scenario of photons
emitted by a source and sent to the eyes of the observer.

The first set of definitions concerns the emitted light, the observer, and the color perceived by
the observer from the emitted light.

Def. 2.1 (Emitted light stimulus) An emitted light stimulus ` is identified with the generalized
state `0`, `0 ∈ [0, 1] and ` ∈ S. The real quantity `0 is the normalized light intensity and ` carries
the intrinsic physical chromatic features.

Def. 2.2 (Achromatic and white light) An achromatic light is an emitted light stimulus with
`0 ∈ [0, 1] and ` = sa. If, in particular, `0 = 1, then we call it a white light and we write `W = sa.

Since a human observer is the medium through which a perceptual color measurement takes
place, it is modeled as an effect.

Def. 2.3 (Observer) An observer o measuring a color stimulus is identified with an effect o =
(o0,vo) ∈ E, o0 ∈ [0, 1] and vo ∈ D.

The act of measuring an emitted light stimulus ` by an observer o produces a perceived color
through the Lüders operation associated to the effect o.

Def. 2.4 (Perceived color from a light stimulus) Given an observer o and an emitted light
stimulus `, i.e. the couple (o, `0`), the color perceived by o from ` is the post-measurement gener-

alized state ψo(`0`) ∈ S̃.

This definition is coherent with the three-dimensional nature of perceived colors, in fact eq.
(12) implies:

ψo(`0`) = o0`0(1 + vo · v`)ϕo(`) = 〈o〉`0` ϕo(`), (25)

with 〈o〉`0` ∈ [0, 1] and ϕo(`) ∈ S.
Thanks to eq. (24), we know that if an observer oa is associated to an achromatic effect oa,

then ϕoa(`) = `, which means that the chromatic state of the color perceived by oa from the light
source ` = `0` is exactly its intrinsic physical chromatic state `.

The second set of definitions concerns the achromatic perceptual attributes of perceived colors.

Def. 2.5 (Brightness of a perceived color from an emitted light) Given an observer o, o =
(o0,vo), the brightness of the color ψo(`0`) perceived by o from an emitted light stimulus `0` is
given by

B(ψo(`0`)) := Tr(ψo(`0`)) = o0`0(1 + vo · v`). (26)

Given any observer o = (o0,vo), the brightness perceived by o from the white light `W is:

B(ψo(`W )) = o0, (27)

so the brightness of the white light does not depend on the effect vector of o.

Def. 2.6 (Lightness of a perceived color from an emitted light) Given an observer o, o =
(o0,vo), the lightness of the color ψo(`0`) perceived by o from an emitted light stimulus `0` is given
by the ratio between its brightness, eq. (26), and the brightness of the white light, eq. (27), i.e.

L(ψo(`0`)) :=
B(ψo(`0`))

B(ψo(`W ))
= `0(1 + vo · v`). (28)
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The lightness perceived from an achromatic emitted light coincides with its normalized intensity
`0 independently of the observer:

L(ψo(`0sa)) = `0, ∀o. (29)

In particular, the lightness of the white light is normalized to 1.
When vo = 0, the lightness of any color perceived from an emitted light coincides with the

light intensity independently of the chromatic state of the emitted light:

L(ψoa(`0`)) = `0, ∀`. (30)

Finally, the last set of definitions concerns the chromatic perceptual attributes of perceived
colors. Given the perceived color ψo(s), its saturation is

Sat(ψo(ρ)) = R(ρϕo(ρ)||ρ0)

=
1

2
log2(1− r2ϕo(ρ)

) +
rϕo(ρ)

2
log2

(
1 + rϕo(ρ)

1− rϕo(ρ)

)
,

(31)

where R is the relative entropy1 between the states appearing as its arguments and rϕo(ρ) =
‖vϕo(ρ)‖, while its hue is the pure chromatic state ϕ∗o(ρ) defined by

ϕ∗o(ρ) := arg min
ρ∈PS

R(ρ||ρϕo(ρ)), (32)

where PS are the pure chromatic states, parameterized by the points of the border ∂D of the
Bloch disk. The explicit expression of the density matrix associated to the pure chromatic state
ϕ∗o(ρ) is

ρϕ∗
o(ρ)

=
1

2

(
1 + cosϑϕo(ρ) sinϑϕo(ρ)

sinϑϕo(ρ) 1− cosϑϕo(ρ)

)
, (33)

where
cosϑρ,ϕo(ρ) =

vρ · vϕo(ρ)

rϕo(ρ)
. (34)

3 Perceived colors from the qubit point of view

The aim of this section is to show how to compute the perceptual attributes of perceived colors
in the more usual physical context where the Hilbert space of the quantum system is the complex
vector space C2 rather than the real vector space R2 of the rebit system.

3.1 From rebit generalized states and effects to qubit states

The set H(2,C) of 2× 2 hermitian matrices is a R-vector space of dimension 4 with an orthogonal
basis with respect to the Hilbert-Schmidt inner product 〈A,B〉HS := Tr(A†B) given by the Bloch
basis (σ0, σx, σy, σz), where σ0 is again I2 and

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
, (35)

constitute the full set of Pauli matrices. The squared Hilbert-Schmidt norm of all the elements of
the Bloch basis is 2, so a density matrix belonging to H(2,C) can be written as follows:

ρ(x, y, z) =
1

2
(I2 + xσx + yσy + zσz) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
, (36)

1we recall that R(ρs||ρt) := Tr [ρs log2 ρs − ρs log2 ρt].
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where x2 + y2 + z2 ≤ 1, a condition that defines the Bloch sphere. As is well-known, a quantum
system whose states can be described by Bloch vectors belonging to this sphere is a qubit. The
expression of a Bloch vector in spherical coordinates is

v = r (sinϑ cosφ, sinϑ sinφ, cosϑ), (37)

with r ∈ [0, 1], θ ∈ [0, π] and φ ∈ [0, 2π), and the associated density matrix is

ρ =
1

2

(
1 + r cos θ e−iφr sin θ
eiφr sin θ 1− r cos θ

)
. (38)

For the sake of a more concise writing, from now on we will indicate with ‘r-’ and ‘q-’ the
quantities relative to the rebit and qubit formulations, respectively.

First, we discuss how to define an r-emitted light as a q-state. In Def. 2.1, a r-emitted light
stimulus is written as the r-generalized state `0`, with `0 representing the normalized intensity
and ` ∈ S the intrinsic physical chromatic state. In the r-framework, we need a generalized state
in order to take into account the information of both `0 and `, however we are going to show that
in the q-formalism a complex density matrix can carry the entire information. The advantage is
that this density matrix can be more easily associated to the actual preparation of a photon to be
sent in the eyes of an observer.

We are thus led to define a map from the space S̃ of r-generalized states to the Bloch sphere
of q-states. As mentioned earlier, `0 = 0 represents the threshold of photopic visibility, i.e. the
minimal light intensity that can induce the response of a cone in the retina, while `0 = 1 represents
the glare limit, when all light stimuli are perceived as a the brightest possible white and above
that intensity vision is no longer possible because the cones saturate. This means that the only
meaningful light stimuli are those belonging to the subset of S̃ given by all ψe(sa), as e varies in
E , i.e.

E1 :=
{

(`0, `1, `2) ∈ R3, `0 ∈ [0, 1] and (`0`1)2 + (`0`2)2 ≤ min{`20, (1− `0)2}
}
, (39)

see Figure 2.

Figure 2: Geometric representation of the set E1 opened in half at its basis.

The image E2 of the map

β : E1 ⊂ S̃ −→ E2
(`0, `1, `2) 7−→ β(`0, `1, `2) := (`0`1, `0`2, 2`0 − 1)

(40)

is the subset of the Bloch sphere defined by

E2 :=
{

(x, y, z) ∈ R3, z ∈ [−1, 1] and x2 + y2 ≤ (1− |z|)2
}
, (41)

which is a solid convex double cone, with vertices in (0, 0, 1) and (0, 0,−1). Its circular basis is now
of radius 1, located at height z = 0, and it can be interpreted as the Bloch disk of the r-framework,
as depicted in Figure 3.
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Figure 3: Left : geometric representation of the set E2 inside the Bloch sphere. Right : the equatorial
basis of the double cone corresponds to the Bloch disk with Hering’s opponency.

The q-Bloch vector of an r-emitted light `0` belonging to E1 is given by

vq` =

 `0`1
`0`2

2`0 − 1

 , (42)

and the corresponding q-density matrix by:

ρ` =
1

2
(I2 + `0`1σx + `0`2σy + (2`0 − 1)σz) =

1

2

(
2`0 `0`1 − i`0`2

`0`1 + i`0`2 2(1− `0)

)
. (43)

It is also possible to write this last matrix using the following decomposition

ρ` = pw

(
1 0
0 0

)
+ pb

(
0 0
0 1

)
+
pc
2

(
1 se−iφ

seiφ 1

)
≡ pwρw + pbρb + pcρc, (44)

with 
2`0 = 2pw + pc

2(1− `0) = 2pb + pc

`0`1 + i`0`2 = pc se
iφ,

(45)

and where s ∈ [0, 1], φ ∈ [0, 2π), and pw, pb, pc ∈ [0, 1]. The three matrices ρw, ρb, and ρc represent
respectively the white and black r-emitted lights, and the chromatic component of the r-emitted
light `0`.

The q-density matrix of an r-effect e, i.e. an element of E , can be written

ρe :=
1

2

(
1 + ez ex − iey
ex + iey 1− ez

)
, (46)

with ez = 2e0 − 1 ∈ [−1, 1], ex = e0e1, and ey = e0e2. The condition 0 ≤ ρe ≤ I2 is equivalent to
the condition 0 ≤ e2x + e2y + e2z ≤ 1, i.e. the vector vqe := (ex, ey, ez) belongs to the Bloch sphere.

It can be checked that the resolution of the identity can be written as I2 = ρe +ρ−e, so we can
limit the variability of the parameters defining ρe to the upper half Bloch sphere, i.e. ez ∈ [0, 1]
and e2x + e2y + e2z ≤ 1, and reconstruct the information from the lower half Bloch sphere via the
antipodal q-vectors −vqe = −(ex, ey, ez). We adopt the following definition.

Def. 3.1 (q-effect) A q-effect is a q-state

ρe =
1

2

(
1 + ez ex − iey
ex + iey 1− ez

)
, (47)

with ez ∈ [0, 1] and e2x + e2y + e2z ≤ 1.

9



As it is well-known, extremal effects are orthogonal projectors and they are labeled by unit vectors
in the Bloch sphere. As an example, the Bloch-effect vector vqe = (0, 0, 1) labels the orthogonal
projector on the ‘white point’

Pw :=

(
1 0
0 0

)
, (48)

while its antipodal vector −vqe = (0, 0,−1) labels the orthogonal projector on the ‘black point’

Pb :=

(
0 0
0 1

)
, (49)

and together they form a resolution of the identity.

3.2 Color measurements with qubit states and effects

Here we introduce the definitions that permit to describe perceived colors as results of measure-
ments using qubit states and effects, rather than rebit states and effects.

Def. 3.2 (q-emitted light stimulus) A q-emitted light stimulus ` is identified with the following
q-density matrix:

ρ` =
1

2

(
2pw + pc pc s e

−iφ

pc s e
iφ 2pb + pc

)
, (50)

where pb, pw, pc, s ∈ [0, 1] and pb + pw + pc = 1. In particular:

• a q-achromatic light is an emitted light stimulus with pc = 0;

• a q-white light is a q-achromatic light with pw = 1.

Hence, the generic q-achromatic emitted light can be written as

ρa` =
1

2

(
1 + z 0

0 1− z

)
, z ∈ [−1, 1].

Def. 3.3 (q-observer) A q-observer o measuring a color stimulus is identified with a q-state

ρo =
1

2

(
1 + oz ox − ioy
ox + ioy 1− oz

)
=

1

2

(
1 + ro cos θo e−iφoro sin θo
eiφoro sin θo 1− ro cos θo

)
, (51)

with oz, ro ∈ [0, 1], o2x + o2y + o2z ≤ 1, and2 θo ∈ [0, π2 ], φo ∈ [0, 2π).

In the r-framework, we obtain a perceived color from an emitted light stimulus `0` by applying
on it the Lüders operation ψo related to the effect that represents the observer o. The result is the
r-generalized state ψo(`0`). As we have seen in eq. (43), the r-generalized state `0` is represented
in the q-framework by the q-density matrix ρ`. So, also the perceived color from an emitted light
stimulus, i.e. the r-generalized state ψo(`0`), will be represented in the q-framework as a q-density
matrix that we indicate with ρo` := ϕo(ρ`).

If we denote with c0, c1, c2 the matrix element of ρo`, then by eq. (43) we have

ρo` =
1

2

(
2c0 c0(c1 − ic2)

c0(c1 + ic2) 2(1− c0)

)
, (52)

and, by eq. (42), the relative Bloch vector is

vo` :=

 c0c1
c0c2

2c0 − 1

 . (53)

2taking θo ∈ [0, π
2
] is equivalent to considering only the upper half cap of the Bloch sphere.
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In order to find the explicit expression of the entries c0, c1, c2, let us introduce the following
‘chromatic q-Bloch vectors’:

vq` :=

(
`1
`2

)
, vqo :=

(
ox/oz
oy/oz

)
, vo` :=

(
c1
c2

)
, (54)

where the presence of oz in vqo is reminiscent of the presence of e0 in eq. (8). Using equations
from (13) to (17) and eq. (25), with straightforward computations we find

• if ‖vqo‖ < 1, thenc0 = oz`0(1 + vqo · v
q
`)

vo` =
1

1 + vqo · v
q
`

{
vqo +

1

γo
vq` +

γo
1 + γo

(vqo · v
q
`)vqo

}
, (55)

where
γo := 1/

√
1− ‖vqo‖2; (56)

• if ‖vqo‖ = 1, then c0 = oz`0(1 + vqo · v
q
`)

vo` =
eq. (17)

vqo
. (57)

It follows that the definition of perceived color from an emitted light stimulus can be formalized
as follows.

Def. 3.4 (q-perceived color from an emitted light stimulus) Given the q-effect ρo as in
Def. 3.3 associated to the observer o and an the emitted light stimulus ` described by the q-state
ρ` as in eq. (43), the color perceived by o from ` is the post-measurement q-state

ρo` =
1

2

(
2c0 c0(c1 − ic2)

c0(c1 + ic2) 2(1− c0)

)
(58)

where

• c0 = oz`0(1 + vqo · v
q
`), with vqo and vq` as in eq. (54);

• and (
c1
c2

)
:=

vqo if ‖vqo‖ = 1
1

1 + vqo · v
q
`

{
vqo +

1

γo
vq` +

γo
1 + γo

(vqo · v
q
`)v

q
o

}
otherwise

, (59)

with γo as in eq. (56).

It can be seen that the q-chromatic vector vo` = (c1, c2) coincides with the vector vϕe(s) in eq.
(14) defining the post-measurement chromatic state in the r-framework.

3.3 Computing perceptual attributes with qubit states and effects

It can be seen that c0 has the same expression of the brightness of a light stimulus defined in eq.
(26) which may seem odd because the brightness was obtained in the r-framework by taking the
trace of the post-measurement generalized states ψo(`0`). However, in the q-formalism we cannot
hope to obtain the brightness through the trace of ρo`, because this quantity is always equal to 1.

For this reason, we have to come up with a novel and meaningful way to compute the brightness
in the q-formalism which has to be coherent with the result obtained in the r-framework. To this
aim, we observe that the z-axis of the Bloch sphere depicted in Figure 3 contains non-normalized
achromatic values. Moreover, the product of ρo` with the Pauli matrix σz produces the z-component
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of the Bloch vector relative to ρo`. So, it makes sense to compute the brightness of ρo` as the
expectation value of σz on the state defined by ρo`, that is

Tr(ρo` σz) = 2c0 − 1. (60)

However, as previously underlined, the z-component in the Bloch sphere where E2 is embedded is
non-normalized and ranges from −1 to +1, thus, to obtain the brightness of ρo` we need to add 1
and divide by 2 in order to arrive to an achromatic value between 0 and 1.

This explains why in the q-formalism the definition of brightness coherent with the r-framework
is the following.

Def. 3.5 (q-brightness) Given a perceived color ρo` from a light stimulus ρ`, its brightness is
defined as follows

B(ρo`) :=
1 + Tr(ρo` σz)

2
= c0 = oz`0 + ox`0`1 + oy`0`2. (61)

Finally, let us define the concept of lightness of a perceived color from a light stimulus. In order
to be coherent with the r-framework, we notice that we just have to divide the brightness formula
just given by oz. However, oz is the expectation value of σz on the state ρo, thanks to the already
underlined duality state-effect in the q-formalism.

These remarks lead naturally to the following definition.

Def. 3.6 (q-lightness) Given a perceived color ρo` from a light stimulus ρ`, its lightness is defined
as follows

L(ρo`) :=
1 + Tr(ρo` σz)

2Tr(ρo σz)
= `0 +

ox
oz
`0`1 +

oy
oz
`0`2,

where ρo = ρ(ox, oy, oz) is the q-effect associated with the observer o.

In the r-framework, the saturation of a perceived color defined as in eq. (31) provides a measure
of how the post-measurement chromatic state can be discerned from the achromatic one using as
measure of distinguishability the relative quantum entropy.

To translate eq. (31) in the q-framework we need the Euclidean norm of the Bloch vector
vo` = (c1, c2)t, which is

rρo` =
√
c21 + c22, (62)

where c1 and c2 can be obtained via ρo` in an analogous way as c0, namely

c1 =
Tr(ρo` σx)

c0
=

2Tr(ρo` σx)

1 + Tr(ρo` σz)
, c2 =

Tr(ρo` σy)

c0
=

2Tr(ρo` σy)

1 + Tr(ρo` σz)
, (63)

so that

rρo` =
2

1 + Tr(ρo` σz)

√
Tr(ρo` σx)2 + Tr(ρo` σy)2, (64)

with Tr(ρo`σz) > −1.

Def. 3.7 Given a perceived color ρo` from a light stimulus ρ`, its saturation is defined as follows

Sat(ρo`) :=
1

2
log2(1− r2ρo` ) +

rρo`
2

log2

(
1 + rρo`
1− rρo`

)
, (65)

with rρo` as in eq. (64).

Finally, let us discuss the hue. In the r-framework, the hue of a perceived color, see eq. (32),
is the pure state that minimizes the relative entropy with the post-measurement state. As shown
by eq. (33), in its definition there appear the polar angle of the Bloch vector associated to the
post-measurement state.
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In the q-framework, the analogous of that angle is given by

φ = 2 arctan
c2√

c21 + c22 + c1
= 2 arctan

Tr(ρo` σy)√
Tr(ρo` σx)2 + Tr(ρo` σy)2 + Tr(ρo` σx)

, (66)

with at least one between the values Tr(ρo` σx),Tr(ρo` σy) strictly larger than 0.

Def. 3.8 Given a perceived color ρo` from a light stimulus ρ`, its hue is defined as the following
pure chromatic state

ρo`,φ :=
1

2

(
1 e−iφ

eiφ 1

)
,

with φ as in eq. (66).

3.4 The operational framework

The operational framework that we propose to perform experiments regarding the quantum model
of color perception is defined by the following data:

(Λ, ξ, σx, σy, σz, φwhite, φred, φgreen, φyellow, φblue),

where

• Λ is the set of all q-emitted light stimuli

Λ =

{
ρ =

(
pw + pc

2
pc s e

−iφ

2
pc s e

iφ

2 pb + pc
2

)
: pb, pw, pc, s ∈ [0, 1] and pb + pw + pc = 1

}
; (67)

• ξ is the set of q-effects describing q-observers who perform perceptual measurements on Λ
giving rise to post-measurement q-states corresponding to perceived colors

ξ =

{
1

2

(
1 + r cos θ e−iφr sin θ
eiφr sin θ 1− r cos θ

)
: r ∈ [0, 1], θ ∈ [0, π/2], φ ∈ [0, 2π)

}
; (68)

• the Pauli matrices σx, σy, σz can be interpreted dually as extremal effects or pure states
(rank-1 projectors) given by

σx = ξ1,π2 ,0, σy = ξ1,0,π2 , σz = ξ1,0,0 ; (69)

• the constants φwhite, φred, φgreen, φyellow, φblue are pure states associated to the pure white
and the antipodal hues:

φwhite =

(
1 0
0 0

)
, (70)

φred =
1

2

(
1 1
1 1

)
, φgreen = σz φred σz, (71)

φyellow =
1

2

(
1 −i
i 1

)
, φblue = σz φyellow σz. (72)

We remark that the choice of the names red, green, yellow and blue is just a convention, and, in
this abstract setting, any name would be as valid as those used above. Instead, what is really
important to underline the role of σz in this structure. σz acts as a ‘chromatic antipodal operator ’
in the sense that, given any pure hue state, its antipodal state is obtained by conjugation with σz
(given that σz = σ†z = σ−1z ).
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4 Conclusions and future perspectives

In this paper we have shown how to compute the perceptual attributes of perceived colors, initially
defined in the model based on Jordan algebras and Hering’s rebit, by means of the usual qubit
density matrices and effects.

We hope that this will allow scientists familiar with the conventional algebraic language of
quantum theories to have an easier access to that model which, analogously to quantum mechanics,
underscores the pivotal role of the observer and measurement apparatus in comprehending color
perception. This motivates the need of this work, which is a step towards enabling an experimental
verification of the theory.

In future works, we plan to perform a series of experiments which will necessarily involve
chromatic opposition. As an example, we can test entanglement effects associated to center-
surround light stimuli in the following way: from the center stimulus, a minimal number of photons
are sent within a specific time interval to a cone area, activating the observer’s action potentials;
simultaneously, other photons are sent from the surround. The physical properties of the center
and its surround can be encoded in the entangled system of color perception.

Specifically, we envision a density operator representing, say, the blue-yellow and yellow-blue
Bell state, where the first subsystem corresponds to the center and the second to its surround. By
measuring the composite system, we expect a blue center in a yellow surround 50% of the time
and a yellow center in a blue surround the other 50%. If the surround stimulus is measured before
the center stimulus arrives, then we expect an achromatic sensation for the center.

While the results of such experiments could be explained by the quantum model, they pose a
significant challenge to the classical theory of color perception.
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