N
N

N

HAL

open science

Neural Architecture Search for Extreme Multi-Label
Text Classification
Loic Pauletto, Massih-Reza Amini, Rohit Babbar, Nicolas Winckler

» To cite this version:

Loic Pauletto, Massih-Reza Amini, Rohit Babbar, Nicolas Winckler.
for Extreme Multi-Label Text Classification.

hal-04763781

HAL Id: hal-04763781
https://hal.science/hal-04763781v1

Submitted on 2 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Neural Architecture Search
Neural Information Processing - 27th International
Conference, ICONIP, Nov 2020, Bangkok, Thailand. pp.282-293, 10.1007/978-3-030-63836-8_ 24 .


https://hal.science/hal-04763781v1
https://hal.archives-ouvertes.fr

Neural Architecture Search for Extreme
Multi-Label Text Classification

Loic Pauletto!? (D<), Massih-Reza Amini®, Rohit Babbar®, and Nicolas
Winckler?

! Atos, CGrenoble, France{loic.pauletto,nicolas.winckler}@atos.net
2 University Grenoble Alpes, Grenoble, France
Massih-Reza.Amini@Quniv-grenoble-alpes.fr

3 Aalto University, Helsinki, Finland rohit.babbar@aalto.fi

Abstract. Extreme classification and Neural Architecture Search (NAS)
are research topics which have recently gained a lot of interest. While
the former has been mainly motivated and applied in e-commerce and
Natural Language Processing (NLP) applications, the NAS approach has
been applied to a small variety of tasks, mainly in image processing. In
this study, we extend the scope of NAS to the task of extreme multilabel
classification (XMC). We propose a neuro-evolution approach, which was
found to be the most suitable for a variety of tasks. Our NAS method au-
tomatically finds architectures that give competitive results with respect
to the state of the art (and superior to other methods) with faster conver-
gence. In addition, we perform analysis of the weights of the architecture
blocks to provide insight into the importance of different operations that
have been selected by the method.

Keywords: Neural architecture search - Machine Learning - Extreme
classification - Evolutionary algorithms.

1 Introduction

Neural networks (NNs) have shown impressive performance in many natural lan-
guage tasks, such as classification, generation, translation and many others. One
of the applications that has attracted growing interest in recent years with the
availability of large-scale textual data is the extreme multi-label text classifica-
tion (XMC). The goal in XMC is to classify data to a small subset of relevant
labels from a large set of all possible labels [13,16]. A major problem in apply-
ing NNs to this task is to design an architecture that can effectively capture the
semantics of text. Diverse methods have been employed in the NLP field, such
as convolutional neural networks [25], recurrent neural networks [14] as well as
a combination of both [26]. However, this design phase is complex and often
requires human prior, with a good knowledge of the field and data. Over the
last few years, NAS research has paved the way for the creation of dedicated
neural architectures for a given task or even dataset. Most of the NAS studies,
have focused on search algorithms for a small number of tasks (eg. image clas-
sification) and none of these studies have been applied to XMC before. In this



2 Pauletto et al.

paper, we propose XMC-NAS a NAS-based method for automatically designing
an architecture for the extreme multi-label text classification task, using a min-
imum of prior knowledge. In addition, we define a search space with operations
(e.g. RNN, Convolution,..) specific to the NLP domain. To evaluate our solution,
we have used 3 large scale XMC datasets with an increasing number of labels.
Like popular NAS methods we have uses a proxy dataset to train and evaluate
architectures during the search phase. The discovered architecture gives com-
petitive results with respect to the state of the art on the proxy dataset with
faster convergence. Then we transfer the best performing architecture to other
datasets and evaluate it. Our evaluation shows, the discovered architecture also
achieves results close to the state of the art. Furthermore, this paper presents a
study on the importance of operation types and the network depth with respect
to the obtained results.

In the following section, we briefly review some related state-of-the-art. In
Section 3, we present our solution to extreme multi-label classification with neu-
ral architecture search. Experimental results are presented in Section 4 and the
conclusion and an outcome of this work are presented in Section 5.

2 Related Work

In this section, we will present related work on neural architecture search and
extreme text classification.

Neural Architecture Search. Studies on the subject of NAS date back to the
1990s [9] and they have gained significant interest in the last few years. In the
literature, different approaches have been studied, one of the first approaches was
based on Reinforcement Learning (RL) [27]. In these approaches, architectures
are first sampled from a controller, typically a RNN, and are further trained and
evaluated. The controller is updated from the evaluation results in a feedback
loop, improving the sampled architectures over time. Some other approaches
use Bayesian Optimization (BO) like [6] in order to predict the accuracy of a
new and unseen network and thus select only the best operation or as in [11]
which uses Sequential Model-Based Optimization (SMBO) to predict accuracy
of a network based on a network with fewer operations. Transfer Learning [22]
has also been used in NAS methods [18] allowing more efficient search by weight
sharing of overlapping operations, instead of training each new network from
scratch. Other NAS methods have used gradient descent based approaches such
as in [12] where they use a relaxation, which allows to learn the architecture
and the weight of operation simultaneously, using the gradient descent. More
recent studies have shown great performances using the well-known evolution
algorithms as in [15, 20], which consists in starting with a base population and
successively apply mutation to the best performing architecture.

Extreme Text Classification. Different methods have been proposed to ad-
dress the stakes posed by the extreme multi-label text classification [1,2,7]. The



Neural Architecture Search for Extreme Multi-Label Text Classification 3

most recent of those methods are deep learning based such as XML-CNNJ13],
a structure of convolutional neural network (CNN) and pooling in order to get
a precise text representation. However, it is hard for CNN to capture the most
relevant part of a text and the long term dependency. Other methods, more
similar, to Seq2seq methods have been applied as discussed in MLC2Seq[16],
SGM][23] and AttentionXML [24]. Those methods used recurrent neural network
(RNN) to classify the text. Moreover, a significant interest has been given on
attention mechanism the last few years[10]. Attention mechanism has demon-
strated great performance in sequence modeling, in particular in NLP domain
and has therefore been also applied in the context of XMC [23, 24].

3 Framework and Model

We propose XMC-NAS, a tool to automatically design architecture for the extreme
multi-label classification task. Our approach is based on three main components:
i) the text embedding, ii) the search of the architecture, and iii) output classifi-
cation. These three components form a pipeline in which components i) and iii)
are fixed and excluded from the search task. Thus, the architecture search task is
performed only on the component ii). The first component of our methods con-
sists in transforming the text into word embedding, i.e. numerical vectors. This
embedding step should allow the model to use these representations to produce
a more accurate prediction. The second step is the search phase for the most
performing architecture, using an evolutionary algorithm (c.f. Fig.1). Finally, the
last component classifies the output, in several categories. This last component
is based on attention mechanism and fully connected layers.

|

Comolutions Trained
BILTSM, population
Mutation

process

Fig. 1: I. Architectures are constructed from randomly sampled operations and
then trained and evaluated, II. Randomly sample 10 architectures, and rank
them by Precision@5 obtained on test set. The most performing one is selected
for mutation, ITI. The newly mutated architecture, is trained and evaluated.
Then placed in the trained population. The oldest architecture is removed from
the population.

In the following section, we describe our approach in detail. First, we present
the search space, the search algorithm used and their specificities; and finally,
we describe the different parts of the discovered network.



4 Pauletto et al.

3.1 Architecture search phase

The search phase can be broken down as follows. The architecture is searched in
a search space that defines the possible structure of the final architecture. In this
search space we have candidate operations that can be used in the architecture.
Finally, to research the architecture, we use a search algorithm that searches for
best architectures in the search space.

Search Space. A neural network architecture is represented in the form of
a Direct Acyclic Graph (DAG). Each node in this graph represents a layer. A
layer is a single operation, which is chosen among the set of candidate operations.
The edges of the graph represent the data flow, and each node can have only
one input. The graph is constructed as follows: first, the nodes are sampled
sequentially (i.e. an operation is selected) to create a graph of N nodes. Then,
the input of a node j is selected in the set of previous nodes (i.e. nodes from
1 to 7 — 1). This set is initialized with a node that represents the embedding
layer. Finally, when the node j has an operation and an input, it is added to the
set of the previous nodes. To have a trade-off between performance and search
efficiency, we have set a limit to the maximum number of previous nodes that
a layer can take as input. We empirically determined this limit to 5 to achieve
reasonable search time on our hardware. Figure 2 illustrates a simple architecture
with N = 6 nodes (i.e layers).

Candidate Operations. To build our set of candidate operations, we have
selected the most common operations in NLP field, which consist of a mixture
of convolutional, pooling and recurrent layers. We have defined four variants of
1D convolutional layers, with a kernel of different size: 1, 3, 5 and 7 respectively.
All convolution layers use a stride of 1 and use padding if necessary to keep a
consistent shape. We used the two types of pooling layers that calculate either
the average or the maximum on the filter size, this size is set to 3 for both.
Similarly to the convolution layers, the pooling layers use a stride of 1 and use
padding if necessary. Finally, we used the two popular types of recurrent layers,
namely the Gated Recurrent Unit (GRU)[3] and the Long-Short Term Memory
(LSTM)[4], which are able to capture long-term dependencies. Specifically, we
use bi-directional LSTM and GRU.

Search Algorithm. As NAS algorithm we use the regularized evolution as
described in [20]. We chose this approach because it allows us to have a fine
vision of the impact of each operation on the final result. Regarding the mutation
aspect, we use the same configuration as described in [20]:

— Randomly select an input from a node on the network and modify it with a
new input.

— Randomly select an operation from the network and change it with a new
sample.



Neural Architecture Search for Extreme Multi-Label Text Classification 5

D
% &@ Q‘; | Seate T e

Fig. 2: Nllustration of a simple architecture, with 6 layers. The numbers represent
the sampling order of the layers. The limit of maximum number of previous layers
that can be used as input is set to 5 (e.g. the layer 6 could hence take as input
only nodes from 1 to 5). Here, different operations are illustrated with different
colors.

Figure 1 illustrates the search algorithm of the regularized evolution. In order
to see the impact of the number of layers on the final results, a third mutation,
corresponding to the addition of a new layer, has been introduced. The choice
among these mutations is random. We also seek to better understand how opera-
tions perform together, i.e. to evaluate the importance of the various operations
with respect to the final results. To do this, we use a linear combination of
outputs from each layer where weights are learned during the training process.

3.2 Text Embedding, Attention and Classification Modules

Our network has certain parts fixed, namely the embedding, attention and clas-
sification modules. This section will introduce them.

Text Embedding. The embedding layer produces a fixed length representation.
This layer is an embedding map, which means each word is mapped to a vector.
As initialization, we used the GloVe[17| embedding 840B-300d! version, which
allows us to skip the step of learning a new embedding from scratch.

Attention Module. We use a self-attention mechanism based on the one demon-
strated in [10], similarly to [24]. The attention process helps to grasp the im-
portant parts of the text. This mechanism uses a vector ¢ that represents the
relevant context for the label ¢, where ¢t is in 1,...,T. For an input sequence of
size N, the context vector is given in equation 1.

W7 hy

N
e
Ct = E at,ihi7 (1) Qg (2)
i=1

“ 3N _W.h
Dopg Ve P

Where, h; denotes the hidden representation,i.e. the output of RNN encoder
states or of the convolution. In the case of BIRNN, layer h; is the concatenation
of vectors from the forward hf and backward 71—1 passes. The term «y ; is called
attention factor (Eq. (2)). The set of attention factors {cy;} represents how
much of each inputs should be considered for each output. In Eq. (2), Wy is the
attention weight (i.e a learnable weight matrix) for the ¢-th label.

! nttp://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip



6 Pauletto et al.

Classification Module. The final part of the network is composed of 2 or 3 fully
connected layers, which reduces the output of the attention module. The result
is then fed into an output layer that classifies it into different labels.

3.3 Analysis of Operations Importance

This section presents an analysis of the weights of the linear combination, par-
ticularly the impact of each operation on the final results, and whether different
operations combine efficiently. We address this analysis in two steps. In the first
step, we focus on how operations combine with each other. In a second step, we
analyze the results and the impact of operations as the networks deepen.

First Step: In this step, the base population is randomly initialized, meaning
that the input and operation of each node is chosen at random. We try to
determine which operation is the most important in the first layers by scaling
their outputs with trainable weights of the linear combination. The Fig.3 shows
three examples of the first layers for different combinations of operations as well
as the corresponding learned weights assigned to each operations. The block
"Rest of the network" represents the attention and classification modules. The
blocks in the hatched areas of the Fig.3 were not part of the mutation process and
were "constrained". For each architecture example, the displayed weights are the
averages obtained over several runs of the NAS. The different grey scales indicate
different experiments. We observe in Fig.3 that pairs of operations of same type,
i.e. BILSTM, tend to have almost equal weights. However, some trends could be
observed in the case of the combination of two convolutions; those with a larger
kernel size have higher weights. This effect is particularly pronounced in the case
of the kernel size of 1, reflecting the need for sequence modeling blocks at this
level. In the case of mixed operations, it turned out that BiLSTM operations
systematically have higher weights. An example of a run with mixed operation
is presented in the right-hand side of Fig.3. More generally, our results show
that architectures which contain BiLSTM at the first layer, perform better. This
first step shows that the result is based mainly on the long-term dependencies
captured by BiLSTM rather than on the combinations of local features generated
by the convolution.

Second Step: This second stage of analysis aims to quantify the impact of
the number of layers on the final results as well as the weights assigned to each
operation. According to the results obtained in the first step, which show that
the network with BiLSTM layers works better, in this second step, a part of the
population has the constraint to start with at least one BiLSTM layer, which
takes as input the embedding. For the analysis of the impact of the number of
operations, we calculated the average P@Q5 based on the number of operations.
The number of operations ranged from 2 to 6. We observed that the average
precision is almost constant, regardless of the number of operations in the net-
work, with a range of results close to what we have previously obtained. This
result is corroborated by the analysis of the combination of operation weights.
The Fig.4 shows examples of architecture for different combinations of opera-
tions with associated weights. This time the operations are assigned sequentially



Embedding

NNNNN

Neural Architecture Search for Extreme Multi-Label Text Classification 7
E]Embeddingi

] Embedding
¥ ¥
BiLSTM BiLSTM Conv Conv BiLSTM Conv
| | | | BiLSTM || Conv |

\ /
0.51 0.49 0.4 0.6

Al Tl
Rest of the : Rest of the 7/ Rest of the
network ! network ! network

Y Y

P@5 = [0.618; 0.622] P@5 = [0.56; 0.58]

RNSSS~
AENNNNN

N
~
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N

NNNNNNNNNN

SISSSSNIS N

N
NNNNN

Fig. 3: Visualization of the network architecture with the applied weight on each
operation. The weights have been averaged over multiple runs, the range of PQ5
are obtained on the proxy dataset. For the central case, we also averaged over
the kernel size.

(i.e. one after the other) forming a deeper network. The blocks in hatched areas
in Fig.4 are partially or totally part of a constraint as in the previous subsec-
tion. Here, the blocks "Rest of the network" represent the following layers in the
network, not shown for the sake of clarity, and still followed by the attention
and classification modules. As previously, the weights displayed for each type of
architecture are the averages obtained from multiple runs of the NAS. We note
on the Fig.4 that the weights on additional layers are small compared to those
that bypass it. This trend has been observed in all experiments and suggests
that, given our operations pool, additional layers do not provide much more in-
formation. Thus, the information important for the result is extracted by layers
that take the embedding as input.

iEmbedding} {Embedding} j Embedding E Embedding

22Z2Z2222&2%222?]25 TR, S S

7| BILSTM |7 7 BiLSTM 7 Conv Conv
TGom 1ys | BLSTM g | BLSTM g

020 0.33 0.35
/Rest of the] Rest of the] Rest of the E Rest of the
network network network network

Fig.4: Visualization of the network architecture, when the network is deeper.
The dotted line represents the linear combination of all the layers outputs, with
the weight applied on each outputs. The weight indicates that layers which take
the embedding layer as input, have a predominant importance on the final result.




8 Pauletto et al.

4 Experimental Results

We have conducted a number of experiments to evaluate how the proposed
XMC-NAS method can help design an efficient neural network model for multi-
label text classification.

4.1 Datasets and Evaluation Metrics

We conducted our study on three of the most popular XMC benchmark datasets
downloaded from the XMC repository?. These datasets are considered large
scale, with the number of class labels ranging from 4,000 to 30,000, which are
listed from smallest to largest (in term of number of labels) by EURLex-4K,
AmazonCat-13K, and Wikil0-31K summarized in Table 1. We followed the same
pre-processing pipeline as the one used in [24]. To create the validation set we
perform a split with the same initialization seed for all experiments. As evalu-

Table 1: Statistics of XMC datasets used in our experiments. L: # of classes.

Dataset # of Training # of Test L Avg. of class labels Avg. size of
examples examples per example classes
EURLex-4K 15,539 3,809 3,993 25.73 5.31
Wikil0-31k 14,146 6,616 30,938 8.52 18.64
AmazonCat-13K 1,186,239 306,782 13,330 448.57 5.04

ation metrics we used the Precision at k& denoted by PQFk, and the normalized
discounted cumulative gain at k denoted by nDCGQFk [5]. Both metrics are
standard and widely used in the state of the art references.

4.2 Architecture Search Evaluation

This section presents the data and the hyperparameters that we have used dur-
ing the search phase of our method. Finally, we present the most performing
architecture that has been discovered on the proxy dataset.

Parameters and Data. We performed the search phase on the relatively small
EURLex-4K dataset for scalability considerations, we call it the proxy dataset.
In each experiment we create a base population of 20 networks. We then apply 50
rounds of mutations. For our experiments we have used the same hyperparame-
ters as in [24], for the training of each sampled network. Namely, the optimizer
was Adam [8] with a learning rate set to 0.001, and the maximum number of
epochs were set to 30 epochs with early stopping. To be consistent with [24] we
have used the same number of hidden states for the LSTM, which are specified
in Table 2. The training stops if the performance of the network does not in-
crease during 50 consecutive steps. We have used the cross-entropy loss function
as proposed in [13] for training the models.

2 http://manikvarma.org/downloads/XC/XMLRepository.html



Neural Architecture Search for Extreme Multi-Label Text Classification 9

Table 2: Hyperparameters used for the training of the discovered model.

Dataset Valid size BiLSTM Hidden size Fully connected
EURLex-4K 200 256 [512,256]
Wikil0-31k 200 256 [512,256]
AmazonCat-13K 4000 512 [1024,512,256]

The Discovered Architecture. The architecture found by XMC-NAS, consists
of two BiLSTMs that take the same input and holds their own representation.
The outputs of the two BiLSTMs is then concatenated along the hidden dimen-
sion, and given as the input of the self-attention block. Finally, we use a chain
of fully connected networks to classify the sequence. For the training detail we
use the same as presented in the previous paragraph (see also Table 2).

The architecture of the network discovered by XMC-NAS is presented in Fig.5.

(mst]
’ Concat }—>’ Attention module H Classification module ‘

Fig.5: The discovered network by XMC-NAS, is composed of two BiLSTM whose
outputs are concatenated, and then passed in an attention module followed by
fully connected layers.

4.3 Performance Evaluation

In this section we will present the results obtained by the XMC-NAS discovered
architecture (Figure 5) on various XMC datasets (Table 1). First we present the
results obtained on the proxy dataset (EURLex-4K) used for the search phase.
Finally, we evaluate the performance of this discovered architecture, transferred
on the other datasets. To train our network, we use 2 Nvidia GV100, with data
parallelism training. The search time on the proxy dataset, depending on the
configuration, ranges from 6 hours to 5 days. We compare the results of our
method to the most representative methods on XMC (with the results provided
by the authors in corresponding papers). Some of these techniques are deep
learning based like MLC2Seq[16], XML-CNNJ13], Attention-XML[24]. The oth-
ers techniques are, AnnexML|[21], DiISMECJ1], PfastreXML[5] and Parabel|[19].

EURLex-4K Results. As presented in the left-hand side of the Table 3 we
have obtained an improvement on PQ1, P@Q3 and P@5 with respect to the state
of the art. The shown precisions are the average over 3 different initializations. A
significant improvement is obtained on the precision at 3 and 5, where we obtain
0.738 and 0.620 respectively compared to 0.730 and 0.611 before. The Fig.6a
presents the evolution of P@5 and the nDCG®@5 over the validation set with



10 Pauletto et al.

Table 3: Comparison performance table on three datasets. Our methods surpass
the state of the art in 4 cases and get competitive results that really close to the
state of the art otherwise.

EURLex-4K Wikil0-31K AmazonCat-13K
Methods pPa@l1 P@3 P@5 | P@l P@3 Pa@5 | PQl P@3 P@s
AnnexML 0.796 0.649 0.535 | 0.864 0.742 0.642 | 0.935 0.783 0.633
DiSMEC 0.832 0.703 0.587 | 0.841 0.747 0.659 | 0.938 0.791 0.640

PfastreXML 0.731 0.601 0.505 | 0.835 0.686 0.591 [ 0.917 0.779 0.636
Parabel 0.821 0.689 0.579 | 0.841 0.724 0.633 | 0.930 0.791 0.645
XML-CNN 0.753 0.601 0.492 | 0.814 0.662 0.561 | 0.932 0.770 0.614

AttentionXML-1| 0.854 0.730 0.611 | 0.870 0.777 0.678 | 0.956 0.819 0.669

XMC-NAS 0.858 0.738 0.620| 0.849 0.772 0.681| 0.951 0.813 0.664

respect to the number of epochs. We can observe that our network has a faster
convergence. The results is obtained around 15 epochs and after this point, the
improvement is relatively small, which indicates that the network might overfit.
It is not impossible that the improvement obtained is due to a larger network.
However, we have systematically observed faster convergence in all the cases we
have experienced. Furthermore, the contribution of the embedding or attention
module on the results is not yet clear, as we have not yet studied the impact of
these modules.

Architecture Transfer Results. We train and evaluate the discovered ar-
chitecture following the same training procedure as defined in section 4.2 and
using the hyperparameters presented in Table 2 on the two other datasets. The
middle and right side of Table 3 show the comparison of the architecture dis-

Metrics
Metrics

x5 *:+ AttentionXML-1 P@5

0 5 10 20 25 30 0 5 10

15 15
Epochs Epochs

(a) EURLex-4K (b) Wiki10-31K

Fig.6: Plot of the nDCG@5 and P@5 on the validation set, on two different
datasets. We notice, the discovered architecture have a faster convergence com-
pared to the current state of the art. In the 6a our method get better final results,
in 6b our final results (around epoch 15) are close.



Neural Architecture Search for Extreme Multi-Label Text Classification 11

covered by XMC-NAS on EURLex-4K with others methods. We notice that the
best discovered architecture transferred to larger datasets obtains results close
to the current state of the art. In some cases we slightly exceed the results as
in the case of PQ5 on the Wikil0-31K. Moreover we notice in Fig.6b that our
methods still have a faster convergence, the same trend as observed on proxy
dataset (cf. Fig.6a). Moreover, our results on Wiki10-31K and AmazonCat-13K
are obtained in half of the epochs required by AttentionXML-1.

5 Summary & Outlook

We have presented in this work an automated method to discover architecture
for the specific task of extreme multi-label classification, based on the regularized
evolution [20] and with a domain oriented pool of operations. This method has
found architectures that have provided competitive results with the existing
state of the art methods [24], and in some cases overpassed them. Moreover, our
method showed faster convergence rates on all datasets, which are more likely
due to a higher complexity of the model. In addition, trainable weights were
introduced on each operation of the pool in order to provide more understanding
on the impact of each architecture blocks. Many directions are possible as future
steps. This includes the tuning of the various hyperparameters, the study of the
impact of attention and embedding modules, the development of a method that
can handle the scale of datasets, and speed up the search process (e.g. using
transfer learning).

References

1. Babbar, R., Schélkopf, B.: Dismec: Distributed sparse machines for extreme multi-
label classification. In: Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining. pp. 721-729 (2017)

2. Babbar, R., Scholkopf, B.: Data scarcity, robustness and extreme multi-label clas-
sification. Machine Learning 108(8-9), 1329-1351 (2019)

3. Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),
1735-1780 (1997)

5. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommen-
dation, tagging, ranking & other missing label applications. In: Proceedings of the
22nd ACM SIGKDD ICKDD. pp. 935-944 (2016)

6. Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search system.
In: Proceedings of the 25th ACM SIGKDD ICKDD. pp. 1946-1956 (2019)

7. Khandagale, S., Xiao, H., Babbar, R.: Bonsai: diverse and shallow trees for extreme
multi-label classification. Machine Learning pp. 1-21 (2020)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Kitano, H.: Designing neural networks using genetic algorithms with graph genera-
tion system. Complex Systems 4 (1990)



12 Pauletto et al.

10. Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A struc-
tured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)
11. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings

of the European Conference on Computer Vision (ECCV). pp. 19-34 (2018)

12. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

13. Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the 40th International ACM SIGIR. pp. 115124
(2017)

14. Liu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.Y.: Representation learning
using multi-task deep neural networks for semantic classification and information
retrieval (2015)

15. Maziarz, K., Tan, M., Khorlin, A., Chang, K.Y.S., Jastrzebski, S., de Laroussilhe,
Q., Gesmundo, A.: Evolutionary-neural hybrid agents for architecture search. arXiv
preprint arXiv:1811.09828 (2018)

16. Nam, J., Mencia, E.L., Kim, H.J., Firnkranz, J.: Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In: Advances in neural
information processing systems. pp. 5413-5423 (2017)

17. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532-1543 (2014)

18. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

19. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: Partitioned
label trees for extreme classification with application to dynamic search advertising.
In: Proceedings of the 2018 World Wide Web Conference. pp. 993-1002 (2018)

20. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the aaai conference on artificial intelli-
gence. vol. 33, pp. 4780-4789 (2019)

21. Tagami, Y.: Annexml: Approximate nearest neighbor search for extreme multi-
label classification. In: Proceedings of the 23rd ACM SIGKDD international con-
ference on knowledge discovery and data mining. pp. 455-464 (2017)

22. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer
learning. In: International conference on artificial neural networks. pp. 270-279.
Springer (2018)

23. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H.: Sgm: sequence generation
model for multi-label classification. arXiv preprint arXiv:1806.04822 (2018)

24. You, R., Dai, S., Zhang, Z., Mamitsuka, H., Zhu, S.: Attentionxml: Extreme multi-
label text classification with multi-label attention based recurrent neural networks.
arXiv preprint arXiv:1811.01727 (2018)

25. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in neural information processing systems. pp. 649-657
(2015)

26. Zhou, C., Sun, C., Liu, Z., Lau, F.: A c-Istm neural network for text classification.
arXiv preprint arXiv:1511.08630 (2015)

27. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697-8710 (2018)



