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A Semi-Supervised Multi-Task Learning Approach
for Predicting Short-Term Kidney Disease Evolution

Michele Bernardini, Luca Romeo, Emanuele Frontoni, Senior Member, IEEE, and Massih-Reza Amini

Abstract—Kidney Disease (KD) may hide complex causes and
is associated with a tremendous socio-economic impact. Timely
identification and management from the first level of medical
care represent the most effective strategy to address the growing
global burden sustainably. Clinical practice guidelines suggest
utilizing estimated Glomerular Filtration Rate (eGFR) for routine
evaluation within a screening purpose. Accordingly, the analysis
of Electronic Health Records (EHRs) using Machine Learning
techniques offers great opportunities to monitor and predict the
eGFR trend over time. This paper aims to propose a novel
Semi-Supervised Multi-Task Learning (SS-MTL) approach for
predicting short-term KD evolution on multiple General Practi-
tioners EHR data. We demonstrated that the SS-MTL approach
can (i) capture the eGFR temporal evolution by imposing a
temporal relatedness between consecutive time windows and (ii)
exploit useful information from unlabeled patients when labeled
patients are less numerous with a gain of up to 4.1 % in terms
of Recall. This situation reflects the real-case scenario, where
available labeled samples are limited, but those unlabeled much
more abundant. The SS-MTL approach, also given the high
level of interpretability, might be the ideal candidate in general
practice to get integrated within a decision support system for
KD screening purposes.

Index Terms—Machine Learning, Semi-Supervised Learning,
Multi-Task Learning, Electronic Health Record, General Prac-
tice, Kidney Disease.

I. INTRODUCTION

K idney Disease (KD), often incautiously underestimated
as a comorbidity of diabetes or hypertension, may hide

complex causes and is associated with a tremendous socio-
economic impact [1], [2]. Worldwide, 19 million disability-
adjusted life-years were directly attributable to a reduced
Glomerular Filtration Rate (GFR), which measures the health-
state of kidney functionality [3]. According to World Health
Organization (WHO) recommendations, if KD is early-
diagnosed and an effective screening strategy is adopted, the
worsening of kidney function can be slowed or averted by
inexpensive interventions [4]. Thus, the timely identification
and management of chronic KD (CKD) from the first level of
medical care (e.g., General Practitioners (GPs)) represent the
most effective strategy to address the growing global burden
sustainably. Most recent clinical practice guidelines suggest
utilizing estimated GFR (eGFR) for routine evaluation within
a screening purpose, rather than a GFR measure, needed when
an accurate assessment is required [5]. The 6 CKD stages
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strictly based on eGFR values serve to assess the kidney func-
tionalities [6]. Accordingly, the analysis of Electronic Health
Records (EHRs) using Machine Learning (ML) techniques
offers a great opportunity to monitor the eGFR trend over time
and predict its value in the short-term period. Unfortunately,
in a real-case scenario, EHRs collected by GPs include several
challenges such as multi-source and non-standardized data,
incomplete or missing values, registration errors, data sparsity,
privacy-preserving, etc [7].

Patients are followed over some time by GPs, which, at
each visit, store a large variety of clinical events (i.e., exam
prescriptions, medications, pathologies, lab tests, etc). Thus,
eGFR evolution can be modeled using Multi-Task Learning
(MTL) approach [8], [9], where the prediction of the eGFR
status at a single time point is considered as a task and
the predictive models at different time points may be similar
because temporally related. Differently from the intensive care
unit EHR datasets [10], in GPs scenario the limited availability
of i) patients (i.e., spatial-transversal data) and/or ii) patients’
medical history (i.e., time-longitudinal data) precludes an
adequate labeled sample size (i.e., annotation of eGFR status
over time) for exploiting a robust and representative supervised
learning strategy. Usually, labeled data are expensive to collect
and unlabeled data are abundant. Accordingly, also in the
best-case scenario where a large amount of transversal and
longitudinal data is available, the label might be sparsely
distributed over time. This point is a crucial issue in the
clinical-use case, where data labeling is prohibitive (especially
for the healthy subjects) and possibly captures only the most
important events of pathological subjects, and besides, unla-
beled data are abundant.

Starting from these motivations, the work aims to propose
a novel Semi-Supervised Multi-task Learning (SS-MTL) ap-
proach for predicting short-term KD evolution on multiple
GPs EHR data. The SS-MTL approach combines a Semi-
Supervised Learning (SSL) strategy with an MTL procedure
to i) impose a temporal relatedness between consecutive
time windows to predict the eGFR status over time and ii)
exploit both labeled and unlabeled samples in the learning
procedure for capturing high-discriminative temporal patterns.
Thus, two research questions (RQs) are formulated to measure
the effectiveness of the proposed approach for state-of-the-art
approaches:

• RQ1: Is the MTL approach capable to capture the eGFR
temporal evolution?

• RQ2: Is the SS-MTL approach capable to capture useful
information from unlabeled patients?

The paper is organized as follows: Section II gives an
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overview of the state-of-the-art on the MTL and SSL ap-
proaches in predictive medicine using EHR data; Section III 
describes the mFIMMG dataset and the preprocessing proce-
dure; Section IV describes the proposed SS-MTL approach 
and the experimental comparisons; Section V shows the pre-
dictive performance and pattern localization results; Section VI 
answers the two proposed RQs and discusses the clinical 
significance, limitations and future work; Section VII presents 
the conclusions of the work.

II. RELATED WORK

Machine Learning techniques have been already adequately 
proven to be effective in dealing with sequential temporal 
data in many applicative research areas, including especially 
healthcare scenarios. In particular, EHR data have been largely 
exploited to accomplish predictive tasks such as stages of 
chronic diseases, disease complications, intensive care unit 
clinical events, etc. These approaches spread from standard 
ML models such as Logistic Regression (LR) [11], [12], [13], 
Decision Tree (DT) [14], Random Forest (RF) [11], [13], 
Gradient Boosting Tree (Boosting) [11], Support Vector Ma-
chine (SVM) [14], [15] to more appealing and complex Deep 
Learning (DL) frameworks, mostly based on feedforward [16], 
Long-Short Term Memory (LSTM) [11], and Convolutional 
Neural Network [11] architectures.

The MTL approach is a well-known and consolidated 
learning paradigm to address health informatics and clinician 
prediction tasks, capable of extracting useful information from 
multiple related tasks and improve the overall generalization 
performance [17]. In [16], [18] authors tried to answer when 
MTL improved prediction performance for different clinical 
tasks using EHR data. Multi-task feedforward [16] and multi-
task LSTM networks [18] were compared with baseline single 
task networks and LR models. Most related to our work 
is the paper [9], where a temporal MTL was adopted to 
stratify the risk of renal function deterioration. In fact, the 
different clinical tasks do not differ by their intrinsic nature 
(i.e., eGFR prediction), but from their temporal evolution (i.e., 
time windows). Differently from [9], in our work, this problem 
is modeled as an SSL scenario, where the label is sparse 
over time. Additionally, the whole raw EHR data is used 
rather than performing a feature selection for each task, so 
as to potentially avoid a lack of relevant information to detect 
hidden patterns.

As mentioned before, in GPs EHR data, labeled data are 
expensive to collect and unlabeled data are abundant. More-
over, even if originally a huge amount of labeled data is 
available, during a real-case scenario usually happens that after 
the preprocessing stage (e.g., inclusion/exclusion criteria) a 
considerable amount of labeled data is going to be reduced 
[9], [19]. Thus, the precondition of collecting a huge labeled 
sample size is necessary, but not easily satisfied especially in 
the GP scenario where large and publicly available datasets 
are limited. In [20], [21] the training labeled sample size 
was augmented using GANs and conditional GANs, respec-
tively, without considering unlabeled data. Given this opera-
tional necessity to retrieve labeled information, MTL could

be combined with SSL, leading to Semi-Supervised Multi-
Task Learning (SS-MTL) paradigm, where a training set of
each task consists of both labeled and unlabeled data to
exploit useful information contained in the unlabeled data in
order to further improve the MTL performance. A similar
rationale was proposed in [22], where a multi-task setting
based on an SSL technique, named Positive and Unlabeled
learning (PU), was implemented for addressing a disease gene
prioritization problem. A different SSL technique (i.e., Label
Propagation [LP]), which constructs a similarity graph over
all input data, was proposed in [23] to generate personalized
drug recommendations by leveraging patient similarity and
drug similarity analytics. In our proposed approach, the Self-
Learning Algorithm (SLA) inspired from [24] is utilized as
SSL paradigm, which during the training stage (i.e., negative
and positive samples), iteratively assigns pseudo-labels to the
set of unlabeled training samples that have their margin above
a threshold automatically achieved from this bound.

After evaluating the state-of-the-art, our proposed SS-MTL
approach represents the first attempt to combine the SSL
paradigm in an MTL scenario where the main goal is to predict
the eGFR evolution based on EHR data.

Therefore, the applicative theoretical novelty of this work
actively contributes to the biomedical informatics when a
large number of unlabeled samples and a temporal relatedness
between consecutive tasks are involved. In this work, the SS-
MTL approach, capable to predict and explain the short-term
KD evolution, contributes to improve the KD management
especially at an early stage. Thus, in general practice, the SS-
MTL approach may be integrated in a decision support system
for screening purposes.

III. DATA

The publicly available mFIMMG dataset1, which is ex-
tracted from the standardized FIMMG Netmedica Cloud com-
puting infrastructure [25], [26], stores a 10-year (2010−2019)
activity collected by 6 GPs and consists of 14175 patients and
6 main fields. The demographic field is composed of age and
gender. The monitoring field (i.e., diastolic and systolic blood
pressure, height, weight, and waist) contains only continuous
predictors, as well as the lab tests field where all the labora-
tory outcomes (e.g., eGFR) are stored. The remaining fields
(i.e., pathologies, drugs, exam prescriptions [exams]) are all
categorical.

A. Preprocessing

Figure 1 shows all the preprocessing procedure: i) eGFR,
ii) Labeled samples, and iii) Temporal data.

eGFR: The eGFR index was calculated by the authors
using a unique CKD-EPI formula [27], [28], as a combination
of 4 factors:

eGFR = f (creatinin,age,gender,race) (1)

This rationale, that is adopted also in [9], mitigated the
inter-laboratory variability. Among all patients, let call labeled

1https://vrai.dii.univpm.it/content/mfimmg-dataset
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samples (#5812) the subset of patients whose at least a 
single eGFR index is known, unlabeled samples (#8363) the 
remaining.

Labeled samples: Let tg the time-stamp of the last eGFR 
observation, the previous 1-year time-stamp is defined as:

tt = tg−12 months (2)

Among all labeled samples only those which satisfy the
following criteria were selected:
• At least a single observation of all fields (#5494);
• At least 2-year eGFR medical history before tt , that must

include 2 or more eGFR observations (#2176).
Table I shows the eGFR distribution at tg time-stamp of the
selected samples (i.e., from now on mentioned as labeled
samples) in according with the CKD stages [6]. The remaining
samples named discarded samples (#3636) from now on were
merged with unlabeled samples and named as such (#11999).

Additionally, for each field, only features whose appear-
ances are less than 5% of the total of labeled samples were
excluded. Regarding the monitoring field, only the blood
pressure feature is over cut, but it was then grouped with the
lab tests field because of the same continuous nature. From
now on, all the included features were named predictors.

TABLE I: Distribution of eGFR for the labeled samples (#2176) in
according with the CKD stages.

CKD stage eGFR [ml/min/1.73m2] %

I ≥ 90: normal 19.35
II 6089: mild reduction 53.31
IIIa 4559: mild-moderate reduction 16.59
IIIb 3044: moderate-severe 7.49
IV 1529: sever reduction 2.85
V < 15: kidney failure 0.41

Temporal data: Following [9], 6-month granularity was
chosen to define a time window. For each labeled sample, only
the first five consecutive non-overlapping time windows (i.e.,
2.5-year medical history) before tt were chosen. If few time
windows were chosen the eGFR temporal evolution could not
be caught by the predictive model; on the other hand, the
model would risk overfitting because the more observations
the patient would have, the more the patient would tend to
have chronic kidney complications (i.e., low eGFR values)
[29]. Thus, for each field, all the patients that did not contain
observations in any of the selected five-time windows were
deleted (#2136). The information about eGFR before tt was
deleted only from the lab test field (i.e., eGFR continuous
values) because already indirectly present through the predic-
tors used in CKD-EPI formula (see Eq. 1), while from exams
field was left (i.e., times of eGFR examination prescription).
Finally, a supplementary field named ’Overall’- which consists
of the aggregation of drugs, exams, lab test predictors only if
they were fully shared by the same patient - was provided
(#1833 samples and 494 predictors). Additionally, Overall*
field included also demographic predictors (i.e., gender and
age).

On the contrary, for each field of unlabeled samples, five
random consecutive time windows were chosen if patients

shared at least a single observation of the same predictors
extracted from the labeled samples, by obtaining the final
Overall and Overall* fields (#4996 samples).

Both categorical and continuous features were appropriately
standardized during the preprocessing stage. The one-hot
encoding was used on categorical features (i.e., pathologies,
exams, drugs), while the z-score was used on continuous fea-
tures (i.e., lab tests) by removing the mean and scaling to unit
variance. Thus, categorical fields reflect the presence or the
absence of a given pathology, drug, or exam without displaying
any missing values. On the other hand, the continuous field
(lab tests) may present missing values or outliers. For that
reason, an outlier detection strategy based on scaled median
absolute deviation and an extra-values imputation of missing
values was performed for both labeled and unlabeled samples
of the lab tests field. Table II shows the final configuration of
the mFIMMG dataset after the preprocessing stage.

TABLE II: Final configuration of the mFIMMG dataset after the
preprocessing stage.

Pathologies Drugs Exams Lab tests Overall Overall*

Predictors 38 309 135 50 494 496

Total samples 5660 9533 9530 7479 6829 6829
Labeled samples 707 1853 1887 1877 1833 1833
Unlabeled samples 4953 7680 7643 5602 4996 4996

IV. METHOD

The binary classification task consists of predicting the
short-term (1-year) eGFR evolution. Given the longitudinal
information of each patient, according to Table I we suppose
to predict CKD stage I (e.g., negative or normal samples, y−)
from the others (e.g., positive or risky samples, y+).

Firstly, in Sec. IV-A a summary of the mathematical no-
tations used from now on is provided. Then, in Sec. IV-B
starting from baseline approaches such as no-temporal and
stacked-temporal (see Figure 2a and Figure 2b), the proposed
SS-MTL approach is thoroughly described in Sec. IV-C.

A. Notations

The main mathematical notations used in the following Sec.
IV were summarized in Table III.

B. Baseline approaches

No-temporal: In this approach, the continuous predictors
were averaged across all time windows, while the categorical
ones were aggregated. Even if the temporal information has
vanished, this approach handles the challenge of irregular
sampling and missing values.

Stacked-temporal: In this approach temporal information
was preserved by concatenating longitudinally all the time
windows. This approach can capture temporal information
across time windows, but it may suffer from overfitting,
considering the increasing number of predictors which is
directly proportional to the number of time windows.
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mFIMMG
#14175

Unlabeled
#8363

Labeled
#5812

Discarded
#318

Selected
#5494

Discarded
#3636
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eGFR Labeled samples Temporal data
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Labeled
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Labeled
#1833

Fig. 1: mFIMMG dataset preprocessing: labeled and unlabeled samples.

no-timea)

b)

c)

Fig. 2: Three different approaches. a) No-temporal: the temporal in-
formation is averaged across all time-windows; b) Stacked-temporal:
the temporal information is preserved by concatenating longitudinally
all the time windows; and c) Multitask-temporal: each time-window
is treated as a separate task.

TABLE III: Notations.

Symbol Description

n # of samples
d # of predictors
t # of tasks (time-windows)
X ∈ Rn×d Observations

- x ∈ Zl - labeled
- x
′ ∈Vu - unlabeled

- x̃
′ ∈ Z̃u - pseudolabeled

- x̃ ∈ Z̃ - labeled and pseudolabeled
W ∈ Rd×t Weights
Y ∈ Rn×t Targets

- y ∈ Zl - labeled
- y
′ ∈Vu - unlabeled

- ỹ
′ ∈ Z̃u - pseudolabeled

- ỹ ∈ Z̃ - labeled and pseudolabeled
ŷ ∈ Rn×1 Target predictions

C. Semi-Supervised Multi-Task Learning (SS-MTL)

In the following subsection the SS-MTL approach is intro-
duced by providing: i) multi-task temporal Lasso formulation
(see Sec. IV-C1), ii) Self-Learning Algorithm formulation (see
Sec. IV-C2), and iii) SS-MTL approach implementation (see
Sec. IV-C3).

1) Multi-Task Learning (MTL): multi-task temporal Lasso:

Multitask-temporal: In this approach (see Figure 2c) the
temporal information was handled as a MTL problem. Each
time-window was treated as a separate task and then, the
resulting intermediate outputs (y1,y2, ...,yt ) were combined to
obtain the final prediction ŷ.

Considering the following MTL problem with t tasks
(time windows), n samples, and d predictors, the model
encodes the temporal information using regularization terms.
Let {x1, ...,xn} be the input data and {y1, ...,yn} be the targets,
where each xi ∈ Rd represents a sample, and yi ∈ Rt is the
corresponding target at different time-windows. We denote
X = [x1, ...,xn]

T ∈ Rn×d as the data matrix, Y = [y1, ...,yn]
T ∈

Rn×t as the target matrix, and W = [w1, ...,wt ] ∈ Rd×t as the
weight matrix. The whole formulation of multitask temporal
Lasso is given by [8], [30]:

min
W

L(W )+ρ1∥W∥2
F +ρ2

t−1

∑
i=1
∥Wi−W1+1∥2

F +ρ3∥W∥2,1

(3)
where L(W ) is the loss function and ρ1,ρ2,ρ3, represent

the regularization penalties: the first penalty controls the
complexity of the model; the second penalty couples the
neighbor tasks, encouraging every two neighbor tasks to be
similar (temporal smoothness); and the third penalty induces
the grouped sparsity, which performs the joint feature selection
on the tasks at different time windows (longitudinal feature
selection). The temporal information is modeled as a type
of graph regularization A, where neighbor tasks are coupled
via edges. A is the structure matrix which encodes the task
relatedness. In the temporal group Lasso formulation, A is
defined as an (t−1)× t sparse matrix, in which Ai,i = 1 and
Ai,i+1 = −1; and thus, the formulation can be written in a
simpler form:

min
W

L(W )+ρ1∥W∥2
F +ρ2∥WA∥2

F +ρ3∥W∥2,1 (4)

However, this formulation assumes that for each sample a
predictor is simultaneously selected or not at all time windows.
The convex fused sparse group Lasso (CFG) formulation
overcomes this issue [30]:

min
W

L(W )+ρ1∥W∥1 +ρ2∥AW T∥1 +ρ3∥W∥2,1 (5)

Accordingly, the CFG with Logistic loss model solves the
CFG regularized multi-task Logistic regression problem:
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min
W,c

t

∑
i=1

ni

∑
j=1

log
{

1+ exp
[
−Yi, j

(
W T

j Xi, j + ci

)]}
+

+ρ1∥W∥1 +ρ2∥AW T∥1 +ρ3∥W∥2,1

(6)

where ρ3 controls group sparsity for joint feature selection,
while ρ1, which controls element-wise sparsity and ρ2 which
controls the fused regularization represent the parameters for
the fused Lasso.

2) Semi-Supervised Learning (SSL): Self-Learning Algo-
rithm (SLA): SSL, also referred as learning with partially
labeled data, concerns the case where a prediction function
is learned on both labeled and unlabeled training samples.
Unlabeled training samples may contain valuable information
on the prediction problem at hand which exploitation may lead
to a performant prediction function. For a binary classification
scenario, we define a set of labeled training samples Zl =
{(xi,yi) | i = 1, ..., l} and a set of unlabeled training samples
Vu = {x

′
i | i = l +1, ..., l +u}.

Considering learning algorithms that work in a fixed hypoth-
esis space H of binary classifiers and given the whole training
set S = Zl ∪Vu, the task of the learner h ∈ H is to choose
a posterior distribution Q over H such that the Q-weighted
majority vote classifier BQ (i.e., Bayes classifier) will have the
smallest possible risk on samples of Vu. Defining the Bayes
classifier:

BQ(x) = sign[Eh∼Qh(x)] (7)

We can define its empirical error over the unlabeled set Vu,
called the transductive risk, as:

Ru(BQ) =
1
u ∑

x′∈Vu

[BQ(x
′
) ̸= y

′
] (8)

The corresponding Gibbs classifier, GQ, is randomly chosen
from the hypothesis space H according to the posterior distri-
bution Q and its transductive risk over the unlabeled training
set is defined by:

Ru(GQ) =
1
u ∑

x′∈Vu

Eh∼Q[h(x
′
) ̸= y

′
] (9)

Note that these risks cannot be estimated as the labels of
unlabeled examples are unknown.

In [31, Ch. 3] the margin of a Bayes classifier was shown to
be an indicator of confidence respecting the cluster assumption
in SSL which stipulates that the decision boundary passes
through low-density regions. Supposing that we have a tight
upper bound Rδ

u (GQ) over the risk of the Gibbs classifier GQ
which holds with probability 1− δ , [24] showed that it is
possible to bound the transductive risk of the Bayes classifier
with high probability.

This result follows from a bound on the joint Bayes risk

depending on a threshold θ :

Ru∧θ (BQ) =
1
u ∑

x′∈Vu

[BQ(x
′
) ̸= y

′ ∧mQ(x
′
)> θ ] (10)

where mQ(·) = |Eh∼Qh(·)| is the absolute value output of
the Bayes classifier, denoted as the unsigned margin function.

This bound over the joint Bayes risk can be estimated by
considering the distribution of unsigned margins regarding the
threshold θ and it constitutes the working hypothesis of the
margin-based Self-Learning Algorithms (SLA). This algorithm
first trains a classifier on the labeled training set. The output
of the learner can then be used to assign pseudolabels to
unlabeled examples (denoted by the set Z̃u in what follows)
having a margin above a certain threshold θ and the supervised
method is repeatedly retrained upon the set of the initial
labeled and unlabeled examples that have been classified in
the previous steps. The threshold θ is iteratively estimated at
each step of the algorithm as the one which minimizes the
conditional Bayes error defined as:

Ru|θ (BQ) = Pu(BQ(x
′
) ̸= y

′ | mQ(x
′
> θ) =

Ru∧θ (BQ)

Pu(mQ(x
′
> θ)

(11)
In practice, the upper bound Rδ

Q(G) of the risk of the Gibbs
classifier which is involved in the computation of θ in equation
(see Eq. 8) is fixed to its worst value 0.5.

Algorithm SLA
Input: Labeled and Unlabeled training sets: Zl ,Vu
Initialize
Train a classifier H on Zl
Set Z̃u ← ∅
repeat

Compute the margin threshold θ from (see Eq. 8)
S ←

{
(x
′
, y
′
) | x

′ ∈ Vu; mQ(x
′ ≥ θ ∧ y

′
= sign(H(x

′
))

}
Z̃u← Z̃u ∪S, Vu =Vu\S
Learn a classifier H by optimizing a global loss function on Zl and Z̃u

until Vu is empty or no adds to Z̃u ;
Output: The final Z̃ = Zl ∪ Z̃u

3) Implementation of Semi-Supervised Multi-Task Learning
(SS-MTL): The training experimental procedure adopted by
our proposed method is shown in Figure 3.

At the beginning of the outer 10-fold cross-validation (10-
CV) procedure, negative labeled samples y− were around four
times more numerous than those positive y+, thus SMOTE
[32] was utilized to balance the labeled samples (y− = y+).
In our experiments, within the SLA algorithm, we considered
two different Bayes classifiers, such as Decision Tree (DT)
and SVM for Overall and Overall* fields, respectively. On the
contrary for the other single fields, only the DT model was
used. This rationale is justified by the fact that after having
tested all the possible combinations of classifiers (i.e., LR, DT,
RF, Boosting, SVM) within the SLA algorithm, in terms of
predictive performance, the SVM resulted the best classifier
for Overall* field, while the DT classifier for all the others.

During each SLA iteration, every candidate pseudo-label is
chosen only if selected (i.e., above threshold θ ) for all time
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outer
10 fold CV >

SMOTE

SLA

downsampling

nested
5 fold CV =

=

?

Fig. 3: SS-MTL: training experimental procedure.

windows. After that, the final prediction associated with the
pseudo-label was selected by testing 3 different strategies (i.e.,
majority voting (majvot), unanimous, and Gibbs).

From the final SLA output ∈ Z̃, the imbalance ratio between
ỹ− and ỹ+ is unknown (ỹ− ? ỹ+), thus random downsampling
over the pseudolabel majority class was performed in order
to achieve again a balanced condition. The hyperparameters
tuning was performed by implementing a grid-search and
maximizing the Macro-Recall within a nested 5-fold cross-
validation (5-CV) procedure. The rationale behind the opti-
mization of the Macro-recall in the validation set is justified by
the fact of achieving an objective that is more clinical relevant
for a screening purpose. Thus, the authors, following this
rationale, preferred to minimize the false negatives and achieve
a trade-off between sensitivity and specificity. This choice has
been also performed according to the most recent state-of-
the-art approaches in predictive medicine scenario [15], [19],
[33]. The optimal hyperparameters (hyp opt), x̃, and ỹ were
fed to the MTL model (i.e., CFG) for the training stage. The
final prediction of the SS-MTL was computed by averaging
the margin outputs of each single t task and then taking the
decision based on the sign function:

ŷi = sign
(∑t

i=1 x̃T wi + ci

t

)
(12)

The code2 to replicate the SS-MTL approach is publicly
released by the authors.

D. Experimental Comparisons

Our proposed SS-MTL approach was compared with base-
line approaches (i.e., no-temporal, stacked-temporal) and with
the MTL approach. Moreover, to better contextualize the
proposed SS-MTL in the Semi-Supervised Learning (SSL)
literature, the Self-Learning Algorithm (SLA) procedure was
also compared with other existing SSL techniques, such as
Positive and Unlabeled learning and Label Propagation. These
baseline approaches adopted as ML models those employed
in the state-of-the-art closer to our setting (see Sec. II), such
as LR [11], [12], [13] with Lasso regularizer; DT [14]; RF
[11], [13]; Boosting [11]; and SVM [14], [15] with Lasso

2https://github.com/michelebernardini/SS-MTL

regularizer. Experimental results were provided both for single
(i.e., pathologies, drugs, exams, lab tests) and Overall/Overall*
fields, by utilizing or not (i.e., noSLA) the SLA procedure. The
same ML model adopted externally for the 10-CV was utilised
also within the SLA procedure.

TABLE IV: Range of hyperparameters (hyp) for each model: Logistic
Regression (LR) with Lasso regularizer, Decision Tree (DT), Random
Forest (RF), Gradient Boosting Trees (Boosting), Support Vector
Machine (SVM) with Lasso regularizer, and Convex Fused Group
Lasso (CFG) with LR model.

Model Hyp Range

LR [11], [12], [13] Lambda {10−5,10−410−3,10−2,0.1,1}

DT [14] max # of splits {100,200,300,400,500}

RF [11], [13] # of DT
# of predictors

{25,50,75,100,125,150}
{ all

4 , all
3 , all

2 ,all}

Boosting [11] max # of splits
learning rate

{50,100,150,200}
{10−2,0.1,1}

SVM [14], [15] Lambda {10−5,10−410−3,10−2,0.1,1}

CFG [8], [30]
ρ1
ρ2
ρ3

{10−6,10−5,10−4,10−3,10−2,0.1}
{10−5,10−4,10−3,10−2,0.1,1}
{10−3,10−2,0.1}

1) Measures: The predictive performance was evaluated
according to the following standard metrics for classification
task: Accuracy, Macro-precision, Macro-recall, Macro-F1 and
Area Under Receiver Operating Characteristic curve (AUC).
From now on we refer to the Macro-precision, Macro-recall
and Macro-F1 as Precision, Recall and F1 respectively. Table
IV summarizes the range of the hyperparameters optimized in
all the experiments.

V. EXPERIMENTAL RESULTS

The experimental results of the SS-MTL approach are
shown as predictive performance comparison with baseline
approaches (i.e., no-temporal [Sec. V-B], stacked-temporal
[Sec. V-C]) and with the MTL approach (Sec. V-D). For
the baseline approach (i.e., no-temporal), the SLA procedure
(i.e., the SSL technique from which our proposed approach
is originated) is firstly compared with other SSL techniques,
such as PU and LP (Sec. V-A).

In particular, Section V-D shows the trend of the predictive
performance in relation to different portions of labeled training
samples. This rationale is due to the intention of measuring
the reliability of SS-MTL on dealing with a higher portion of
unlabeled samples as excepted in a real-case scenario. Finally,
the experimental results of the SS-MTL approach are shown
in terms of pattern localization (Sec. V-E) to measure the
importance of the predictors.

A. State-of-the-art comparison: Semi-Supervised Learning
(SSL)

Table V shows the comparison of the experimental of the
SLA procedure with other SSL techniques (i.e., PU, LP).
The comparison was performed only for the Overall* field
of the baseline (i.e., no-temporal) approach. The predictive
performance of all ML models that used the SLA procedure
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is clearly superior to the other SSL techniques (i.e., PU, LP),
thus the SLA procedure was selected as the SSL paradigm for
the proposed SS-MTL approach.

TABLE V: Experimental results comparison of the Self-Learning 
Algorithm (SLA) procedure with other Semi-Supervised Learning 
(SSL) techniques (i.e., Positive and Unlabeled learning [PU], Label 
Propagation [LP]). The comparison was performed only for the 
Overall* field of the baseline (i.e., no-temporal) approach. The best 
result in terms of Recall was highlighted in bold.

SLA Accuracy F1 Precision Recall AUC

LR 0.744 0.629 0.620 0.660 0.741
DT 0.792 0.677 0.670 0.697 0.693
RF 0.838 0.730 0.731 0.734 0.827
Boosting 0.849 0.687 0.760 0.660 0.847
SVM 0.716 0.627 0.623 0.685 0.749

LP Accuracy F1 Precision Recall AUC

LR 0.651 0.575 0.582 0.632 0.724
DT 0.698 0.583 0.592 0.618 0.616
RF 0.788 0.687 0.644 0.692 0.811
Boosting 0.813 0.646 0.707 0.640 0.829
SVM 0.598 0.559 0.576 0.655 0.710

PU Accuracy F1 Precision Recall AUC

LR 0.759 0.610 0.611 0.607 0.680
DT 0.795 0.553 0.594 0.538 0.532
RF 0.816 0.598 0.638 0.646 0.721
Boosting 0.811 0.516 0.662 0.508 0.692
SVM 0.705 0.601 0.609 0.640 0.729

B. State-of-the-art comparison: No-temporal

Table VI shows the comparison results for the no-
temporal approach. Considering the SS-MTL an evolution
of standard LR model, the comparison of the SS-MTL
approach with the LR model would represent the most
fair and straight comparison. The SS-MTL approach perfor-
mance (Recall = 0.737±0.054) for Overall* field was greater
than no-temporal (LR: Recall = 0.660±0.048) and stacked-
temporal (LR: Recall = 0.657±0.042) in SLA configuration.
Again for Overall field, the SS-MTL approach performance
(Recall = 0.668±0.053) was greater than no-temporal (LR:
Recall = 0.616±0.062) and stacked-temporal (LR: Recall =
0.588±0.034) in SLA configuration.

Nevertheless, if a global overview is considered, the best
performance (Recall = 0.734±0.051) for no-temporal ap-
proach was obtained by the RF model for Overall* field
in SLA configuration, but still lower than the best ones
obtained by MTL (Recall = 0.742±0.060) approach and SS-
MTL (Recall = 0.737±0.054) approach. Instead for Overall
field, the best performance (Recall = 0.665±0.062) was ob-
tained by the SVM in noSLA configuration. This result is
comparable with the one extracted for the SS-MTL approach
(Recall = 0.668±0.053).

C. State-of-the-art comparison: Stacked-temporal

Table VII shows the comparison results for the stacked-
temporal approach. Focusing on the comparison of the
LR model, the SS-MTL approach performance (Recall =
0.737±0.054) for Overall* field was greater than stacked-
temporal (LR: Recall = 0.657±0.042) in SLA configuration.

Again for Overall field, the SS-MTL approach performance
(Recall = 0.668±0.053) was greater than stacked-temporal
(LR: Recall = 0.588±0.034) in SLA configuration.

Nevertheless, if a global overview is considered, the best
performance (Recall = 0.709±0.057) was obtained by the
SVM model for Overall* field in SLA configuration. Ac-
cordingly for Overall field, the best performance (Recall =
0.659±0.047) was still obtained by the SVM model in SLA
configuration. These results were lower than those extracted by
the SS-MTL approach for Overall* (Recall = 0.737±0.054)
and Overall field (Recall = 0.668±0.053).

D. Multitask-temporal comparison

Figure 4 compares the performance trend (i.e., Recall)
over the fraction of labeled training samples x,y ∈ Zl for
MTL and SS-MTL approaches considering both Overall and
Overall* fields. Starting from a total of 4996 unlabeled sam-
ples x′ ∈ Vu, figure 5 shows the trend of the pseudolabels
samples x̃

′
, ỹ
′ ∈ Z̃u selected by the SS-MTL approach (after

random downsampling) over the fraction of labeled training
samples. Table VIII shows more in detail the predictive per-
formance for MTL and SS-MTL approaches. In particular, two
configurations were highlighted, where both the full amount
(f=100%) and a specific portion (f=30%) of labeled samples
was utilised in the training stage. Comparable performance
were obtained by the MTL (Recall = 0.742±0.060) approach
and SS-MTL (Recall = 0.737±0.054) for Overall* field with
f=100%. On the contrary, if f=30% the best performance
(Recall = 0.731±0.049) was obtained by the SS-MTL ap-
proach with an important gain of 4.1% with respect to MTL
(Recall = 0.692±0.035). The rationale to emphasize this result
was due to the fact that the performance of SS-MTL remained
stable from f=100% to f=30% while the performance of MTL
decreased (see Figure 4).

Fraction of labeled training samples

 R
e

c
a

ll

Fig. 4: MTL and SS-MTL approaches: Recall trend over the fraction
of labeled training samples x,y ∈ Zl . In the legend, stars indicate that
gender and age were included as predictors (Overall*), filled circles
were not (Overall).
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TABLE VI: No-temporal: Logistic Regression (LR) with Lasso regularizer, Decision Tree (DT), Random Forest (RF), Gradient Boosting
Trees (Boosting), and Support Vector Machine (SVM) with Lasso regularizer. In the SLA procedure the same classifier adopted externally
in 10-CV was used. Overall* indicates that also gender and age were included as predictors. Best result in terms of Recall was highlighted
in bold for each field.

noSLA SLA

Pathologies Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.519 0.456 0.529 0.556 0.557 0.528 0.452 0.516 0.530 0.568
DT 0.614 0.499 0.531 0.553 0.576 0.652 0.511 0.531 0.556 0.549
RF 0.628 0.506 0.530 0.554 0.608 0.642 0.517 0.537 0.562 0.579
Boosting 0.652 0.523 0.544 0.572 0.585 0.651 0.518 0.539 0.563 0.580
SVM 0.488 0.437 0.524 0.546 0.563 0.501 0.445 0.532 0.559 0.568
Drugs Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.638 0.557 0.573 0.618 0.643 0.631 0.552 0.570 0.612 0.650
DT 0.694 0.540 0.540 0.549 0.559 0.628 0.543 0.561 0.598 0.602
RF 0.759 0.561 0.568 0.559 0.618 0.724 0.542 0.542 0.543 0.538
Boosting 0.781 0.557 0.580 0.554 0.608 0.767 0.538 0.552 0.537 0.596
SVM 0.594 0.536 0.574 0.625 0.645 0.597 0.541 0.579 0.633 0.659
Exams Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.607 0.534 0.559 0.594 0.647 0.610 0.537 0.562 0.600 0.643
DT 0.707 0.552 0.551 0.559 0.557 0.670 0.550 0.553 0.574 0.604
RF 0.778 0.548 0.576 0.546 0.663 0.774 0.543 0.569 0.541 0.602
Boosting 0.798 0.526 0.600 0.531 0.662 0.797 0.528 0.593 0.533 0.639
SVM 0.593 0.536 0.571 0.617 0.667 0.606 0.547 0.579 0.629 0.670
Lab tests Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.645 0.559 0.572 0.611 0.661 0.656 0.559 0.566 0.599 0.656
DT 0.743 0.574 0.574 0.576 0.576 0.710 0.574 0.572 0.588 0.588
RF 0.806 0.630 0.661 0.619 0.761 0.789 0.605 0.622 0.598 0.731
Boosting 0.815 0.498 0.565 0.522 0.759 0.815 0.514 0.649 0.529 0.743
SVM 0.633 0.550 0.565 0.602 0.657 0.668 0.567 0.571 0.603 0.653
Overall Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.703 0.582 0.579 0.607 0.676 0.706 0.587 0.584 0.616 0.683
DT 0.741 0.576 0.574 0.581 0.569 0.711 0.597 0.593 0.629 0.598
RF 0.803 0.640 0.654 0.632 0.762 0.777 0.615 0.620 0.612 0.695
Boosting 0.821 0.532 0.673 0.541 0.770 0.816 0.542 0.635 0.546 0.783
SVM 0.651 0.583 0.601 0.665 0.709 0.677 0.592 0.599 0.654 0.706
Overall* Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.739 0.622 0.615 0.650 0.727 0.744 0.629 0.620 0.660 0.741
DT 0.796 0.658 0.660 0.662 0.666 0.792 0.677 0.670 0.697 0.693
RF 0.830 0.717 0.716 0.722 0.854 0.838 0.730 0.731 0.734 0.827
Boosting 0.847 0.678 0.761 0.650 0.875 0.849 0.687 0.760 0.660 0.847
SVM 0.693 0.613 0.617 0.683 0.747 0.716 0.627 0.623 0.685 0.749

Fraction of labeled training samples
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Fig. 5: Pseudolabel samples x̃
′
, ỹ
′ ∈ Z̃u selected from SLA procedure

(after random downsampling) over fraction of labeled training sam-
ples x ∈ Zl . In the legend, stars indicate that gender and age were
included as predictors (Overall*), filled circles were not (Overall).

E. Pattern localization
Table IX explains which predictors in SS-MTL majvot

(f=30%) configuration were more decisive to predict the

next 1-year eGFR state. The final percentage weight of each
predictor showed in Table IX was calculated by averaging the
weights of the model over 10 folds, and then, over the t tasks.

VI. DISCUSSIONS

This work has mainly contributed to the biomedical infor-
matics field for the following points:
• Introduction of the SS-MTL paradigm for predicting

short-term KD evolution. The proposed high-interpretable
approach seeks to learn from labeled and unlabeled
samples while imposing a temporal relatedness between
consecutive tasks (i.e., time windows).

• Measurement and demonstration of the effectiveness of
the SS-MTL approach with respect to the state-of-the-art
in real-use case scenario (i.e., GP EHR dataset). The ben-
efits in terms of predictive performance are particularly
pronounced the more numerous the unlabeled samples
are than those labeled. This condition reflects the real
clinical use case where the observations of each patient
lack annotation or are only partially labeled.

The impact of the predictive performance and pattern local-
ization experimental results will be thoroughly discussed in
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TABLE VII: Stacked-temporal: Logistic Regression (LR) with Lasso regularizer, Decision Tree (DT), Random Forest (RF), Gradient
Boosting Trees (Boosting), and Support Vector Machine (SVM) with Lasso regularizer. In the SLA procedure the same classifier adopted
externally in 10-CV was used. Overall* indicates that also gender and age were included as predictors. Best result in terms of Recall was
highlighted in bold for each field.

noSLA SLA

Pathologies Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.658 0.506 0.521 0.537 0.561 0.682 0.534 0.543 0.566 0.562
DT 0.607 0.500 0.533 0.563 0.578 0.703 0.539 0.546 0.568 0.563
RF 0.550 0.468 0.524 0.549 0.571 0.545 0.467 0.529 0.558 0.554
Boosting 0.680 0.526 0.536 0.557 0.561 0.685 0.512 0.522 0.533 0.541
SVM 0.646 0.511 0.529 0.550 0.570 0.726 0.539 0.544 0.555 0.557
Drugs Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.679 0.533 0.534 0.544 0.623 0.653 0.553 0.561 0.591 0.641
DT 0.693 0.540 0.540 0.550 0.548 0.613 0.532 0.554 0.588 0.567
RF 0.750 0.549 0.554 0.547 0.610 0.743 0.561 0.562 0.562 0.529
Boosting 0.758 0.555 0.565 0.554 0.620 0.701 0.538 0.537 0.545 0.617
SVM 0.587 0.535 0.579 0.633 0.665 0.582 0.530 0.574 0.624 0.666
Exams Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.665 0.540 0.543 0.560 0.603 0.648 0.539 0.546 0.567 0.616
DT 0.686 0.528 0.528 0.535 0.530 0.648 0.530 0.537 0.554 0.544
RF 0.764 0.551 0.565 0.548 0.611 0.748 0.531 0.540 0.531 0.561
Boosting 0.791 0.480 0.515 0.504 0.629 0.787 0.487 0.512 0.507 0.611
SVM 0.624 0.547 0.566 0.605 0.648 0.615 0.540 0.562 0.599 0.646
Lab tests Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.651 0.552 0.560 0.590 0.645 0.657 0.555 0.562 0.591 0.642
DT 0.723 0.554 0.553 0.556 0.554 0.675 0.541 0.542 0.557 0.537
RF 0.785 0.573 0.602 0.566 0.711 0.777 0.578 0.593 0.573 0.670
Boosting 0.818 0.496 0.699 0.521 0.731 0.811 0.490 0.585 0.516 0.713
SVM 0.611 0.545 0.572 0.617 0.663 0.638 0.563 0.580 0.628 0.671
Overall Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.727 0.571 0.567 0.579 0.660 0.721 0.576 0.572 0.588 0.669
DT 0.727 0.570 0.567 0.577 0.567 0.690 0.573 0.573 0.601 0.586
RF 0.795 0.625 0.638 0.617 0.745 0.775 0.602 0.611 0.598 0.660
Boosting 0.817 0.509 0.646 0.526 0.751 0.816 0.503 0.633 0.522 0.738
SVM 0.661 0.583 0.595 0.652 0.713 0.668 0.590 0.600 0.659 0.713
Overall* Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.755 0.611 0.606 0.621 0.706 0.762 0.638 0.630 0.657 0.742
DT 0.772 0.638 0.633 0.648 0.622 0.769 0.648 0.639 0.668 0.619
RF 0.816 0.696 0.691 0.704 0.834 0.805 0.678 0.675 0.684 0.777
Boosting 0.840 0.632 0.745 0.610 0.857 0.835 0.622 0.733 0.602 0.835
SVM 0.745 0.651 0.641 0.700 0.782 0.751 0.659 0.647 0.709 0.787

TABLE VIII: Multitask-temporal: Decision Tree (DT) classifier was used to select pseudo-labels in SLA procedure, except for Overall*
where Support Vector Machine (SVM) with Lasso regularizer was used. Overall* indicates that also gender and age were included as
predictors. Fraction (f) represents the number of labeled samples used in the training stage. The table depicts the SS-MTL majvot configuration.
Best result in terms of Recall was highlighted in bold for each field.

f = 100% MTL SS-MTL

Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC

Pathologies 0.766 0.510 0.542 0.510 0.517 0.782 0.523 0.541 0.522 0.511
Drugs 0.568 0.526 0.584 0.640 0.680 0.581 0.533 0.582 0.638 0.690
Exams 0.580 0.532 0.579 0.631 0.677 0.573 0.522 0.568 0.611 0.673
Lab tests 0.622 0.561 0.587 0.643 0.687 0.621 0.560 0.587 0.642 0.687

Overall 0.625 0.568 0.598 0.664 0.720 0.636 0.575 0.601 0.668 0.713
Overall* 0.765 0.681 0.668 0.742 0.816 0.750 0.670 0.661 0.737 0.820

f = 30% MTL SS-MTL

Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC

Pathologies 0.730 0.512 0.516 0.515 0.542 0.600 0.457 0.542 0.549 0.564
Drugs 0.584 0.531 0.575 0.626 0.671 0.640 0.566 0.584 0.635 0.680
Exams 0.625 0.550 0.569 0.610 0.651 0.626 0.539 0.556 0.587 0.630
Lab tests 0.662 0.570 0.576 0.616 0.656 0.660 0.575 0.584 0.629 0.658

Overall 0.682 0.590 0.593 0.642 0.686 0.707 0.612 0.610 0.662 0.700
Overall* 0.758 0.655 0.644 0.692 0.784 0.746 0.665 0.657 0.731 0.811

Section VI-A and Section VI-B. Then, limitations and future
work will be argued in Section VI-C and Section VI-D.

A. Predictive performance

In the following section the two RQs formulated in Sec.I
will be discussed.
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TABLE IX: Top-10 predictors for SS-MTL majvot approach with f 
=30 %. Overall* indicates that also gender and age were included as 
predictors. D=Drugs; E=Exam; M=Monitoring.

Overall Overall*

Rank Field Predictors W [%] Field Predictors W [%]

1) D Valsartan and diuretics 3.78 M Age 44.85
2) D Colecalciferol (vitamin D3) 3.59 D Furosemide 3.26
3) D Levothyroxine 3.17 D Metformin 2.42
4) D Alfuzosin 3.16 D Amlodipine 1.40
5) D Lansoprazole 3.08 D Ramipril and amlodipine 1.38
6) D Furosemide 2.89 D Valsartan and diuretics 1.32
7) D Acetylsalicylic acid 2.78 D Pravastatin 1.28
8) D Pantoprazole 2.67 D Atorvastatin 1.27
9) E Interview and evaluation 2.51 D Bisoprolol 1.19

10) D Nebivolol 2.28 D Omeprazole 1.16
Others 70.09 Others 40.47

1) RQ1: Is the MTL approach capable to capture the
eGFR temporal evolution?: The MTL approach as showed
in Table VIII was capable to capture the eGFR temporal
evolution, because for Overall* configuration in terms of
Recall = 0.742±0.060 was superior than the best competi-
tors for no-temporal (Table VI) and stacked-temporal (Table
VII) approaches (RF: Recall = 0.722±0.036; RF: Recall =
0.704±0.067, respectively). Instead, if age and gender were
not considered (i.e., Overall), the MTL performance (Recall
= 0.664±0.048) was close to SVM (Recall = 0.665±0.062)
for no-temporal approach but superior than SVM (Recall =
0.652±0.053) for stacked-temporal approach. However, the
performance of the MTL approach remained greater than the
baseline LR model for both Overall* and Overall configura-
tions. These outcomes highlighted the importance to include
the temporal evolution of the predictors in the ML model.
Moreover, experimental results suggested how demographic
information was highly discriminative in terms of predictive
performance.

The single fields of the MTL approach that mostly affected
the predictive performance were drugs and lab tests, while
exams seemed to impact less. For instance, the single lab
tests field in MTL reached a Recall until 0.643±0.039, much
more superior than the other competitors. On the contrary,
the pathologies field obtained very poor results and for this
reason, was excluded from the Overall and Overall* fields.
Results evidenced how the predictive performance of MTL
and no-temporal approaches were globally superior to one
of the stacked-temporal approaches, which encapsulated the
temporal information by aggregating longitudinally the time
windows, and this aspect may suffer much the high temporal
data sparsity. However, the MTL approach was capable of
modeling and interpreting through the regularization strategy
the progression of the temporal information, otherwise lost in
the no-temporal approach.

2) RQ2: Is the SS-MTL approach capable to capture useful
information from unlabeled patients?: The SS-MTL approach
was mostly capable to gain useful information from unlabeled
patients, in terms of predictive performance concerning to
MTL, when labeled patients were less numerous than those
unlabeled. This situation commonly reflects the real-case gen-
eral practice scenario, where available labeled samples size is
limited, while unlabeled samples are much more abundant.

Specifically (see Figure 4), the SS-MTL approach did
not add an important gain compared to MTL in predictive

performance both for Overall and Overall* fields when the
full fraction (f=100%) of labeled training sample size was
considered. But, if f was progressively decreased (i.e., both
for MTL and SS-MTL), the predictive performance kept on
being still similar until f=70% for Overall* and until f=60%
for Overall. After these cut points, the more f decreases, the
more the spread between SS-MTL and MTL increased due
to an MTL predictive performance worsening. This finding
suggested that our proposed SS-MTL approach was convenient
since at least unlabeled samples (# 4996) were almost 2.5
times more numerous than labeled samples (# 1894 at f=70%).
Additionally, the SS-MTL predictive performance until f=30%
remained almost constant if compared to f=100%, while the
MTL performance decreased much earlier as seen before. This
further finding proved how the SS-MTL approach was reliable
in dealing with unlabeled information.

Basically, for the Overall* field, the Recall trend across
SLA majvot, unanimous, and Gibbs seemed to be more stable.
On the contrary, for the Overall field, the Recall trend was
more fluctuating and it appeared that SLA unanimous was
less performing than the others. These considerations may
be fully explained in Figure 5, from which it has emerged
that the number of pseudo-labels selected by SLA directly
interfered with the SS-MTL working stability. Indeed, the most
stable performance of the SS-MTL for the Overall* field was
influenced by almost constant pseudo-labels selected by SLA.
However, even if for the Overall field at f=30% more pseudo-
labels were selected by SS-MTL Gibbs and SS-MTL majvot
than Overall*, the gap between the predictive performance
remained fairly constant across different f thresholds (see
figure 4). These findings suggested how an increase of almost
2K pseudo-labels between Overall and Overall* fields was not
related to an increase in predictive performance. Indeed, the
pseudo-labels may not be necessarily informative enough to
improve the generalization performance of the ML model.

We demonstrated that all the models used for SSL tech-
niques obtained the best predictive performance with the SLA
procedure. A central hypothesis in SSL, based on which
discriminant models are developed, is the low density sepa-
ration assumption (H) [34] which stipulates that the decision
boundary should pass through low-density regions. In this
sense, contrary to PU [22], the negative class has a central role
in finding the decision boundary. In this sense, SLA follows
assumption H which is also shown to be effective in our
experiments. Instead, graphical models, as LP [23], are based
on manifold assumption and construct a graph where the nodes
represent training examples and the edges reflect similarities
between them. The class label of each labeled node is then
propagated to its neighbors using label spreading techniques.
The similarity between the two observations is based on their
Euclidean distance in the feature space, and due to the curse
of dimensionality when the dimension of the space is high -
as in our case - the Euclidean distance does not reflect well
the proximity between examples.

B. Clinical significance
The proposed SS-MTL approach was high-interpretable and

this aspect assumes an important relevance in the general
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practice scenario. In fact, obtaining only satisfactory predictive 
results might be useless if then the results cannot be interpreted 
by GPs, which need to understand and explain which factors 
have mostly determined a prediction. From experimental re-
sults, it has turned out how gender and age may play a key role 
compared to other predictors for forecasting the next 1-year 
eGFR state. In fact, the predictive performance of the SS-MTL 
approach for the Overall* field (f=30%) was much greater than 
the one for the Overall field (see Table VIII). This finding was 
fully clarified in Table IX, from which it emerged that age was 
the leading predictor with importance of 44.85%, while gender 
did not appear as a discriminant factor. Although age has 
already been adequately demonstrated to be one of the major 
factors in kidney functionality, a prediction merely based on 
age provided inferior predictive performance, as proven also 
in [13]. The remaining predictors belonged to the drugs field 
and this aspect suggested how highly discriminative the past 
patient’s pharmacological treatment might be. In particular, the 
best contenders such as furosemide and metformin are strictly 
correlated to variations of eGFR value. Furosemide treatment 
reduces kidney functionalities for patients with cardiovascular 
pathologies [35], [36], while metformin administration in 
patients suffering from moderate CKD is associated with 
clinical outcome improvements [37]. The creatinin, even if 
it has been used in Eq. 1 for the calculation of the CKD-EPI 
formula, did not appear as one of the best top-10 predictors. 
Since the demographic predictors (i.e., gender and age) are 
included in the eGFR formula (see Eq. 1) the performance of 
the predictive model improved in the Overall* experiment. On 
the other hand, if demographic information (i.e., gender and 
age) were not considered (i.e., Overall and single modality ex-
periments) to discover further discriminative predictors besides 
demographic information, there was no predominant predictor 
over others, but the pharmacological pathway remained still 
decisive with respect to the other fields.

C. Limitations

In this work, the Overall/Overall* fields did not account
for the pathologies’ information, which caused a predictive
performance worsening. In fact, the pathologies field contains
much more static information than the others, and it may have
found difficult to offer discriminative temporal information to
the predictive model. Perhaps, the exclusion of pathologies
among the predictors may limit the global contextualization of
the clinical problem. To better combine and make coexist het-
erogeneous feature sets consisting of various EHR fields (e.g.,
pathologies, exams, drugs, lab tests) of different data types
(e.g., categorical, continuous), multi-view learning approaches
[38] may be explored as an intriguing future direction.

We used linear models, which assume linear relationships
between the variables, and the outcome and we did not take
into account the non-linear combination of different predictors
that could potentially affect the outcome. In this context, we
may explore non-linear models with different features map
in order to discover new hidden high-discriminative temporal
patterns.

D. Future work

Future work may be addressed to explore interesting di-
rections by including different experimental procedures, task
definitions, and data processing.

It would be interesting to apply the SS-MTL approach
considering only patients enclosed within a specific range of
CKD stages and/or, unlike our strategy, predict CKD stages
I and II from the others. Alternatively, binary classification
could be applied to the prediction of the variation in time of the
eGFR value above a certain experimental threshold [9]. Other
very promising and attractive solutions could be to extend the
current SS-MTL binary classification problem to a multiclass
classification problem [39] or to learning to rank approach
(i.e., learning the risk prediction using an ordinal structure of
all CKD stages).

For what concernc the data processing, the strong class
imbalance may be addressed using more advanced data impu-
tation strategies rather than SMOTE, median/mean imputation
[40] and KNN [41]. For instance, the missing values of the
EHR field may be imputed by using conditional GAN [42]
across different temporal windows and different spatial views
(i.e., EHR fields).

VII. CONCLUSIONS

We proposed the SS-MTL approach for predicting short-
term KD evolution on multiple GPs’ EHR data. We demon-
strated that the SS-MTL approach was capable to predict
and discriminate the CKD stage I (normal samples) from the
other more severe CKD stages (risky samples), by modeling
the temporal evolution of EHR data (e.g., imposing temporal
relatedness between consecutive time windows). The SS-MTL
approach was mostly capable to gain useful information from
unlabeled patients when labeled patients are less numerous
than those unlabeled. This situation reflects commonly the
real-case general practice scenario, where available labeled
samples are limited, but those unlabeled are much more
abundant. The SS-MTL approach, exhibiting also a high level
of interpretability (i.e., age and pharmacological pathway were
the most important predictors), might be the ideal candidate
in general practice to get integrated within a decision support
system for CKD screening purposes.
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