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Abstract

We investigate the generalization properties of a
self-training algorithm with halfspaces. The ap-
proach learns a list of halfspaces iteratively from
labeled and unlabeled training data, in which each
iteration consists of two steps: exploration and
pruning. In the exploration phase, the halfspace
is found sequentially by maximizing the unsigned-
margin among unlabeled examples and then as-
signing pseudo-labels to those that have a dis-
tance higher than the current threshold. These
pseudo-labels are allegedly corrupted by noise. The
training set is then augmented with noisy pseudo-
labeled examples, and a new classifier is trained.
This process is repeated until no more unlabeled ex-
amples remain for pseudo-labeling. In the pruning
phase, pseudo-labeled samples that have a distance
to the last halfspace greater than the associated
unsigned-margin are then discarded. We prove that
the misclassification error of the resulting sequence
of classifiers is bounded and show that the result-
ing semi-supervised approach never degrades per-
formance compared to the classifier learned using
only the initial labeled training set. Experiments
carried out on a variety of benchmarks demonstrate
the efficiency of the proposed approach compared
to state-of-the-art methods.

1 Introduction
In recent years, several attempts have been made to estab-
lish a theoretical foundation for semi-supervised learning.
These studies are mainly interested in the generalization abil-
ity of semi-supervised learning techniques [Rigollet, 2007;
Maximov et al., 2018] and the utility of unlabeled data in the
training process [Castelli and Cover, 1995; Singh et al., 2009;
Li and Zhou, 2011; Wei et al., 2021]. The majority of these
works are based on the concept called compatibility in [Bal-
can and Blum, 2006], and try to exploit the connection be-
tween the marginal data distribution and the target function
to be learned. The common conclusion of these studies is
that unlabeled data will only be useful for training if such a
relationship exists.

The three key types of relations considered in the litera-
ture are cluster assumption, manifold assumption, and low-
density separation [Zhu, 2005; Chapelle et al., 2006]. The
cluster assumption states that data contains homogeneous la-
beled clusters, and unlabeled training examples allow to rec-
ognize these clusters. In this case, the marginal distribu-
tion is viewed as a mixture of class conditional distributions,
and semi-supervised learning has been shown to be superior
to supervised learning in terms of achieving smaller finite-
sample error bounds in some general cases, and in some oth-
ers, it provides a faster rate of error convergence [Castelli
and Cover, 1995; Rigollet, 2007; Maximov et al., 2018;
Singh et al., 2009].

In this line, [Ben-David et al., 2008] showed that the ac-
cess to the marginal distribution over unlabeled training data
would not provide sample size guarantees better than those
obtained by supervised learning unless one assumes very
strong assumptions about the conditional distribution over the
class labels. Manifold assumption stipulates that the target
function is in a low-dimensional manifold. [Niyogi, 2013] es-
tablishes a context through which such algorithms can be ana-
lyzed and potentially justified; the main result of this study is
that unlabeled data may help the learning task in certain cases
by defining the manifold. Finally, low-density separation
states that the decision boundary lies in low-density regions.
A principal way, in this case, is to employ a margin max-
imization strategy which results in pushing away the deci-
sion boundary from the unlabeled data [Chapelle et al., 2006].
Semi-supervised approaches based on this paradigm mainly
assign pseudo-labels to high-confident unlabeled training ex-
amples with respect to the predictions and include these
pseudo-labeled samples in the learning process. [Wei et al.,
2020] demonstrated that, under the expansion assumption
stipulating that a low-probability subset of data must grow
to a neighborhood mostly surely regaring the subset, self-
training will reach high accuracy with regard to ground-truth
labels.

In this line, [Frei et al., 2021] showed that a strong clas-
sifier may be learned from a weaker one in the context of
general mixture models with benign concentration and anti-
concentration properties. However, [Chawla and Karakoulas,
2011] investigated empirically the problem of label noise bias
introduced during the pseudo labeling process in this case
and showed that the use of unlabeled examples could have



a minimal gain or even degrade performance, depending on
the generalization ability of the initial classifier trained over
the labeled training data.

In this paper, we study the generalization ability of a self-
training algorithm with halfspaces that operates in two steps.
In the first step, halfspaces are found iteratively over the set
of labeled and unlabeled training data by maximizing the
unsigned-margin of unlabeled examples and then assigning
pseudo-labels to those with a distance greater than a found
threshold. These pseudo-labels are supposed to be corrupted
by label noise and pseudo-labeled examples are added to the
training set, and a new classifier is then learned. This pro-
cess is repeated until there are no more unlabeled examples
to pseudo-label. In the second step, pseudo-labeled examples
with an unsigned-margin greater than the last found threshold
are removed from the training set.

Our contribution is twofold: (a) we present a first gener-
alization bound for self-training with halfspaces in the case
where class labels of examples are supposed to be corrupted
by a Massart noise model; (b) we show that the use of un-
labeled data in the proposed self-training algorithm does not
degrade the performance of the first halfspace trained over the
labeled training data.

In the remainder of the paper, Section 2 presents the def-
initions and the learning objective. In Section 3, we present
in detail the adaptation of the self-training algorithm for half-
spaces with a preliminary analysis in Section 4. Section 5
presents a bound over the misclassification error of the clas-
sifier outputted by the proposed algorithm and demonstrates
that this misclassification error is upper-bounded by the mis-
classification error of the fully supervised halfspace. In Sec-
tion 6, we present experimental results, and we conclude this
work in Section 7.

2 Framework and Notations
We consider binary classification problems where the input
space X is a subset of Rd, and the output space is Y =
{−1,+1}. We study learning algorithms that operate in hy-
pothesis space Hd = {hw : X → Y} of centered halfs-
paces, where each hw ∈ Hd is a Boolean function of the form
hw(x) = sign(⟨w,x⟩), with w ∈ Rd such that ∥w∥2 ≤ 1.

Our analysis succeeds the recent theoretical advances in ro-
bust supervised learning of polynomial algorithms for train-
ing halfspaces under large margin assumption [Diakonikolas
et al., 2019; Montasser et al., 2020; Diakonikolas and Kane,
2020; Johnson et al., 2020; Diakonikolas et al., 2021], where
the label distribution has been corrupted with the Massart
noise model [Massart and Nédélec, 2006]. These studies de-
rive a PAC bound for generalization error for supervised clas-
sifiers that depends on the corruption rate of the labeled train-
ing set and shed light on a new perspective for analyzing the
self-training algorithm. Similarly, in our analysis, we suppose
that self-training can be seen as learning with an imperfect ex-
pert. Whereat at each iteration, labels of the pseudo-labeled
set have been corrupted with a Massart noise [Massart and
Nédélec, 2006] oracle defined as:

Definition 2.1 ([Massart and Nédélec, 2006] noise oracle).
Let C = {f : X → Y} be a class of Boolean functions

over X ⊆ Rd, with f an unknown target function in C, and
0 ≤ η < 1/2. Let η(x) : X → [0,η] be an unknown pa-
rameter function, and Dx any marginal distribution over X .
The corruption oracleO(f,Dx, η) works as follow: each time
O(f,Dx, η) is invoked, it returns a pair (x, y) where x is gen-
erated i.i.d. from Dx; y = −f(x) with probability η(x) and
y = f(x) with probability 1− η(x).

Let D denote the joint distribution over X × Y gener-
ated by the above oracle with an unknown parameter func-
tion η(0) defined as η(0)(x) : X → [0,η]. We sup-
pose that the training set is composed of l labeled samples
Sℓ = (xi, yi)1≤i≤l ∈ (X × Y)l and u unlabeled samples
Xu = (xi)l+1≤i≤l+u ∈ X u, where l << u. Furthermore,
we suppose that each pair (x, y) ∈ X × Y is i.i.d. with re-
spect to the probability distribution D, we denote by Dx the
marginal of D on x, and Dy(x) the distribution of y condi-
tional on x. Finally, for any integer d, let [d] = {0, ..., d}.

3 Self-Training with Halfspaces
Given Sℓ and Xu drawn i.i.d. from a distributionD corrupted
with O(f,Dx, η

(0)). Algorithm 1 learns iteratively a list of
halfspaces Lm = [(w(1), γ(1)), ..., (w(m), γ(m))] with each
round consisting of exploration and pruning steps.

The goal of the exploration phase is to discover the halfs-
pace with the highest margin on the set of unlabeled samples
that are not still pseudo-labeled. This is done by first, learn-
ing a halfspace that minimizes the empirical surrogate loss of
RD(w) = E(x,y)∼D[ℓ(y, hw(x))] over a set of labeled and
already pseudo-labeled examples S(k) from Sℓ and Xu:

min
w
R̂S(k)(w) =

1

|S(k)|
∑

(x,y)∈S(k)

ℓ(y, hw(x)) (1)

s.t. ||w||2 ≤ 1

At round k = 0, we have S(0) = Sℓ. Once the halfspace
with parameters w(k) is found, a threshold γ(k), defined as
the highest unsigned-margin in S(k), is set such that the em-
pirical loss over the set of examples in S(k) with unsigned-
margin above γ(k), is the lowest. In the pseudo-code of the
algorithm, S(k)

≥i refers to the subset of examples in S(k) hav-
ing an unsigned margin greater or equal to ω × i. Unlabeled
examples x ∈ Xu that are not pseudo-labeled are assigned
labels, i.e., y = sign(⟨w(k),x⟩) iff |⟨w(k),x⟩| ≥ γ(k). These
pseudo-labeled examples are added to S(k) and removed from
Xu, and a new halfspace minimizing Eq. (1) is found. Exam-
ples in S(k) are supposed to be misclassified by the oracle
O(f,Dx, η

(k)) following Definition 2.1 with the parameter
function η(k) that refers to the conditional probability of cor-
ruption in S(k) defined as η(k)(x) = P

y∼S
(k)
y (x)

[f(x) ̸= y] ≤
η(k).

Once the halfspace with parameters w(k) and threshold
γ(k) are found such that there are no more unlabeled sam-
ples having an unsigned-margin larger than γ(k), the pair
(w(k), γ(k)) is added to the list Lm, and samples from S(k)

having an unsigned-margin above γ(k) are removed (pruning



Algorithm 1 Self-Training with Halfspaces

Input : Sℓ = (xi, yi)1≤i≤l, Xu = (xi)l+1≤i≤n, p: num-
ber of threshold tests set to 5.

Set k ← 0, S(k) = Sℓ, U(k) = Xu, w = |S(k)|
p , L = [].

while |S(k)| ≥ ℓ do
Let w a random vector in Rd such that

∥w∥2 ≤ 1, and let the cost function defined
R̂S(k)(w) = 1

|S(k)|
∑

(x,y)∈S(k) [ℓp(y, hw(x))];

Run projected SGD on R̂S(k)(w) to obtain w(k) such
that ∥w(k)∥2 ≤ 1;

Order S(k) by decreasing order of margin from w(k);
Set a window of indices I = [w, 2w, ..., pw];
find t = argmin

i∈I

1

|S(k)
≥i

|

∑
(x,y)∈S

(k)
≥i

1h
w(k) (x)̸=y;

Set γ(k) to the margin of the sample at position I[t];
Let U(k) = {x ∈ Xu

∣∣|⟨w(k),x⟩| ≥ γ(k)};
if |U(k)| > 0 then

S
(k)
u = {(x, y)

∣∣x ∈ U(k) ∧ y = sign(⟨w(k),x⟩)};
S(k+1) ← S(k) ∪ S

(k)
u ;

Xu ← Xu \U(k);
else

L = L ∪ [(w(k), γ(k))];
S(k+1) = {(x, y) ∈ S(k)

∣∣|⟨w(k),x⟩| < γ(k)};
end if
Set k ← k + 1, w = |S(k)|

p ;
end while
Output : Lm = [(w(1), γ(1)), ..., (w(m), γ(m))].

phase). Remind that γ(k) is the largest threshold above which
the misclassification error over S(k) increases.

The self-training algorithm 1, takes as input the labeled set
Sℓ, the unlabeled set Xu and p, which refers to the num-
ber of tests for threshold estimation, set to 5. After finding
the weight vector w(k) at round k, with projected SGD (step
4 − 5), we order the labeled set S(k) (with S(0) = Sℓ) by
decreasing order of unsigned-margin to w(k). The threshold
γ(k) is defined as the largest margin such that the error of
examples in S(k) with an unsigned-margin higher than γ(k)

increases (step 8 − 9). At this stage, observations x ∈ Xu

with an unsigned-margin greater than γ(k) (step 10 − 14),
are pseudo-labeled and added to the labeled set S(k) and they
are removed from the unlabeled set. This exploration phase
of finding a halfspace with the largest threshold γ(k) is re-
peated until there are no more unlabeled samples with an
unsigned-margin larger than this threshold. After this phase,
the pruning phase begins by removing examples in S(k) with
an unsigned-margin strictly less than γ(k) (step 15−18). The
parameters of the halfspace and the corresponding threshold
are added to the list of selected classifiers Lm and the pro-
cedure is repeated until that the size of the labeled set be-
comes less than l. To classify an unknown example x, the

prediction of the first halfspace with normal vector w(i) in
the list Lm, such that the unsigned-margin |⟨w(i),x⟩| of x
is higher or equal to the corresponding threshold γ(i), is re-
turned. By abuse of notation, we note that the prediction for x
is Lm(x) = hw(i)(x). If no such halfspace exists, the obser-
vation is classified using the prediction of the first classifier
hw(1) that was trained over all the labeled and the pseudo-
labeled samples without pruning.

4 Theoretical Analyses
Our goal is to find a hypothesis hw ∈ Hd such that with high
probability, the misclassification error P(x,y)∼D[hw(x) ̸= y]
is minimized, and, that with high probability the performance
of the found solution is better or equal to any hypothesis in
Hd obtained only from the labeled training set, Sℓ.

4.1 Learning Objective
We denote by ηw(x) = Py∼Dy(x)[hw(x) ̸= y] the condi-
tional misclassification error of a hypothesis hw ∈ Hd

with respect to D, and w∗ the normal vector of
hw∗ ∈ Hd that achieves the optimal misclassification error;
ηηη∗ = min

w,∥w∥2≤1
P(x,y)∼D[hw(x) ̸= y].

By considering the indicator function 1π defined as 1π = 1
if the predicate π is true and 0 otherwise; we prove in the fol-
lowing lemma that the probability of misclassification of half-
spaces over examples with an unsigned-margin greater than a
threshold γ > 0 is bounded by the same quantity 0 < ηηη < 1
that upper-bounds the misclassification error of these exam-
ples.
Lemma 4.1. For all hw ∈ Hd , if there exist ηηη ∈]0, 1[
and γ > 0 such that Px∼Dx [|⟨w,x⟩| ≥ γ] > 0
and that Ex∼Dx [(ηw(x)− ηηη)1|⟨w,x⟩|≥γ ] ≤ 0, then
P(x,y)∼D[hw(x) ̸= y

∣∣|⟨w,x⟩| ≥ γ] ≤ ηηη.

Proof. For all hypotheses hw in Hd, we know that
the error achieved by hw in the region of margin
γ from w satisfies Ex∼Dx [(ηw(x)− ηηη)1|⟨w,x⟩|≥γ ] ≤ 0;
by rewriting the expectation, we obtain the following
Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]− ηηηPx∼Dx [|⟨w,x⟩| ≥ γ] ≤ 0. We

have then Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]

Px∼Dx [|⟨w,x⟩|≥γ] ≤ ηηη and the result follows
from the equality:

P(x,y)∼D[hw(x) ̸= y
∣∣|⟨w,x⟩| ≥ γ] =

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]

Px∼Dx [|⟨w,x⟩|≥γ] .

Suppose that there exists a pair (w̃, γ̃) minimizing:

(w̃, γ̃) ∈ argmin
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]

Px∼Dx [|⟨w,x⟩| ≥ γ]
. (2)

By defining η̃ as:

η̃ = inf
w∈Rd,γ≥0

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥γ ]

Px∼Dx [|⟨w,x⟩| ≥ γ]
.

The following inequality holds:

η̃ ≤ inf
w∈Rd

Ex∼Dx [ηw(x)1|⟨w,x⟩|≥0]

Px∼Dx [|⟨w,x⟩| ≥ 0]
= ηηη∗.



This inequality paves the way for the following claim, which
is central to our self-training strategy.

Claim 4.2. Suppose that there exists a pair (w̃, γ̃) satisfying
the minimization problem (2) with Px∼Dx [|⟨w̃,x⟩| ≥ γ̃] >
0 , then P(x,y)∼D[hw̃(x) ̸= y

∣∣|⟨w̃,x⟩| ≥ γ̃] ≤ ηηη∗.

Proof. The requirements of Lemma 4.1 are satisfied with
(w, γ) = (w̃, γ̃) and η = η̃. This claim is then proved us-
ing the conclusion of Lemma 4.1 together with the fact that
η̃ ≤ η∗.

The claim above demonstrates that for examples gener-
ated by the probability distribution D, there exists a region
in X on either side of a margin γ̃ to the decision bound-
ary defined by w̃ solution of (Eq. 2); where the probabil-
ity of misclassification error of the corresponding halfspace
in this region is upper-bounded by the optimal misclassifica-
tion error η∗. This result is consistent with semi-supervised
learning studies that consider the margin as an indicator of
confidence and search the decision boundary on low-density
regions [Joachims, 1999; Amini et al., 2009].

4.2 Problem Resolution
We use a block coordinate minimization method for solv-
ing the optimization problem (2). This strategy consists in
first finding a halfspace with parameters w̃ that minimizes
Eq. (2) with a threshold γ = 0, and then by fixing w̃, finds
the threshold γ̃ for which Eq. (2) is minimum. We resolve
this problem using the following claim, which links the mis-
classification error ηw and the perceptron loss ℓp(y, hw(x)) :
Y × Y → R+; ℓp(y, hw(x)) = −y⟨w,x⟩1y⟨w,x⟩≤0.

Claim 4.3. For a given weight vector w, we have:

Ex∼Dx [|⟨w,x⟩|ηw(x)] = E(x,y)∼D[ℓp(y, hw(x))] (3)

Proof. For a fixed weight vector w, we have that:
E(x,y)∼D[ℓp(y, hw(x))] = E(x,y)∼D[−y⟨w,x⟩1y⟨w,x⟩≤0].
As we are considering misclassification errors,
i.e., −y⟨w,x⟩1y⟨w,x⟩≤0 = 1y⟨w,x⟩≤0|⟨w,x⟩|,
it comes that E(x,y)∼D[ℓp(y, hw(x))] =
E(x,y)∼D[|⟨w,x⟩|Py∼Dy(x)

[−y⟨w,x⟩ > 0]]. The result
then follows from the definition of the misclassification error,
i.e., ηw(x) = Py∼Dy(x)

[−y⟨w,x⟩ > 0].

This claim shows that the minimization of the gen-
eralization error with ℓp is equivalent to minimizing
Ex∼Dx [|⟨w,x⟩|ηw(x)]. Hence, the minimization of
Ex∼Dx [ℓp(y, hw(x))] cannot result in bounded misclassifica-
tion error, as the distribution of margins |⟨w,x⟩| might vary
widely between samples in X . In the following lemma, we
show that it is possible to achieve bounded misclassification
error under margin condition and L2-norm constraint.

Lemma 4.4. For a fixed distribution D, let R = max
x∼Dx

∥x∥2
and γ > 0, let w̃ and w̄ be defined as follows:

w̃ = argmin
w,||w||2≤1

Ex∼Dx [|⟨w,x⟩|ηw(x)
∣∣|⟨w,x⟩| ≥ γ]

w = argmin
w,||w||2≤1

Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ].

We then have:
γ

R
Ex∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ] ≤

Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ]

≤ Ex∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ].

Proof. From the condition |⟨w̃,x⟩| ≥ γ, we have:
γEx∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ] ≤
Ex∼Dx [|⟨w̃,x⟩|ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ]

Applying the definition of w̃ to the right-hand side of the
above inequality gives:

γEx∼Dx [ηw̃(x)
∣∣|⟨w̃,x⟩| ≥ γ] ≤

Ex∼Dx [|⟨w,x⟩|ηw(x)
∣∣|⟨w,x⟩| ≥ γ]

Using the Cauchy–Schwarz inequality and the definition of
R, we get:
γEx∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ] ≤
R Ex∼Dx [ηw(x)

∣∣|⟨w,x⟩| ≥ γ]

Then from the definition of w, we know:
R Ex∼Dx [ηw(x)

∣∣|⟨w,x⟩| ≥ γ] ≤
R Ex∼Dx [ηw̃(x)

∣∣|⟨w̃,x⟩| ≥ γ]

Dividing the two inequalities above by R gives the result.

Lemma 4.4 guarantees that the approximation of the per-
ceptron loss to the misclassification error is more accurate for
examples that have a comparable distance to the halfspace.
This result paves the way to our implementation of the self-
learning algorithm.

The proposed self-training algorithm operates iteratively,
where at each round k only points with a large margin found
at the previous iteration are considered for the minimization
ofRD(w) = E(x,y)∼D[Relu(−y⟨w,x⟩)] using the structural
Risk Minimization (SRM) principle.

5 Corruption Noise Modeling and
Generalization Guarantees

In the following, we relate the process of pseudo-labeling
to the corruption noise model O(f,Dx, η

(k)) for all pseudo-
labeling iterations k in Algorithm 1, then we present a bound
over the misclassification error of the classifier Lm outputted
by the algorithm and demonstrate that this misclassification
error is upper-bounded by the misclassification error of the
fully supervised halfspace.

Claim 5.1. Let S(0) = Sℓ be a labeled set drawn i.i.d. from
D = O(f,Dx, η

(0)) and U(0) = Xu an initial unlabeled
set drawn i.i.d. from Dx. For all iterations k ∈ [K] of Al-
gorithm 1; the active labeled set S(k) is drawn i.i.d. from
D = O(f,Dx, η

(k)) where the corruption noise distribution
η(k) is bounded by:

∀k ∈ [K], Ex∼Dx [η
(k)(x)

∣∣x ∈ S(k)] ≤ max
j∈[K]

η(j)



The proof is provided in the supplementary material. We
can now bound the generalization error of the classifier Lm

outputted by Algorithm 1 with respect to the optimal misclas-
sification error η∗ in the case where projected SGD is used
for the minimization of Eq. (1). Note that in this case the
time complexity of the algorithm is polynomial with respect
to the dimension d, the upper bound on the bit complexity of
examples, the total number of iterations, and the upper bound
on SGD steps.
Theorem 5.2. Let Sℓ be a set of i.i.d. samples of size ℓ drawn
from a distribution D = O(f,Dx, η

(0)) on Rd × {−1,+1},
where f is an unknown concept function and η(0) an unknown
parameter function bounded by 1/2, let Xu be an unlabeled
set of size u drawn i.i.d. from Dx. Algorithm 1 terminates
after K iterations, and outputs a non-proper classifier Lm of
m halfspaces such that with high probability:

P(x,y)∼D[Lm(x) ̸= y] ≤ η∗ +max
k∈I

ϵ(k) + πK+1,

where I is the set of rounds k ∈ [K] at which the halfspaces
were added to Lm, ϵ(k) is the projected SGD convergence
error rate at round k, and πK+1 a negligible not-accounted
mass of Dx.

The proof of Theorem 5.2 is based on the following prop-
erty of projected SGD.

Lemma 5.3 (From [Duchi, 2016]). Let R̂ be a convex
function of any type. Consider the projected SGD itera-
tion, which starts with w(0) and computes for each step.
w(t+ 1

2 ) = w(t) − α(t)g(t);w(t+1) = argmin
w:||w||2≤1

||w −w(t+ 1
2 )||2.

Where g(t) is a stochastic subgradient such that
Ex∼Dx [g(w,x)] ∈ ∂R̂(w) = {g : R̂(w′) ≥ R̂(w) +
⟨E[g],w′ − w⟩ for all w′} and Ex∼Dx [||g(w,x)||22] ≤M2.
For any ϵ, δ > 0; if the projected SGD is executed
T = Ω(log(1/δ)/ϵ2) times with a step size α(t) = 1

M
√
t
,

then for w̄ = 1
T

∑T
t=1 w

(t), we have with probability at least
1− δ that Ex∼Dx [R̂(w̄)] ≤ min

w,∥w∥2≤1
Ex∼Dx [R̂(w)] + ϵ.

Proof of Theorem 5.2. We consider the steps of Algo-
rithm 1. At iteration k of the while loop, we consider the
active training set S(k) consisting of examples not handled in
previous iterations.

We first note that the algorithm terminates after at most K
iterations. From the fact that at every iteration k, we dis-
card a non-empty set from S(k) when we do not pseudo-
label or from U(k) when we pseudo-label, and that the em-
pirical distributions Sℓ and Xu are finite sets. By the guar-
antees of Lemma 5.3, running SGD (step 4) on R̂S(k) for
T = Ω(log(1/δ)/ϵ2) steps, we obtain a weight vector w(k)

such that with probability at least 1− δ:

Ex∼Dx [R̂S(k)(w(k))] ≤ min
w,∥w∥2≤1

Ex∼Dx [R̂S(k)(w)] + ϵ(k),

From Claim 4.3, we derive with high probability:

Ex∼Dx [|⟨w(k),x⟩|ηw(k)(x)] ≤
min

w,∥w∥2≤1
Ex∼Dx [|⟨w,x⟩|ηw(x)] + ϵ(k).

Then the margin γ(k) is estimated minimizing Eq. (2) given
w(k), following Lemma 4.4 with R(k) = max

x∼Dx

∥x∥2 the ra-

dius of the truncated support of the marginal distribution Dx

at iteration k, we can assume that γ(k)

R(k) ≈ 1, ∀k ∈ [K], one
may argue that the assumption is unrealistic knowing that the
sequence of (γ(k))mk=1 decreases overall, but as we show in
the supplementary, we prove in Theorem A.1 that under some
convergence guarantees of the pairs {(w(k),w(k+1))}m−1

k=1 ,
one can show that the sequence {R(k)}mk=1 decreases as a
function of γ(k) respectively to k. As a result, we can derive
with high probability:

Ex∼Dx [ηw(k)(x)
∣∣|⟨w(k),x⟩| ≥ γ(k)] ≤

min
w,∥w∥2≤1

Ex∼Dx [ηw(x)
∣∣|⟨w,x⟩| ≥ γ(k)] + ϵ(k).

From Claim 4.2 and giving the pair (w(k), γ(k)), we obtain
with high probability that at round k:

P(x,y)∼D[hw(k)(x) ̸= y
∣∣|⟨w(k),x⟩| ≥ γ(k)] ≤ ηηη∗ + ϵ(k). (4)

When the while loop terminates, we have accounted
m ≤ K halfspaces in the list Lm satisfying Eq. (4).
For all k ∈ I , every classifier hw(k) in Lm has
guarantees on an empirical distribution mass of at least
κ̃ = min

k∈I
Px∼S(k) [|⟨w(k),x⟩| ≥ γ(k)]; the DKW

(Dvoretzky-Kiefer-Wolfowitz) inequality [Dvoretzky et al.,
1956] implies that the true probability mass κ =
min
k∈I

Px∼Dx [|⟨w(k),x⟩| ≥ γ(k)] of this region is at least

κ̃ −
√

log 2
δ

2|S(n)| with probability 1 − δ, where n =

argmin
k∈I

Px∼S(k) [|⟨w(k),x⟩| ≥ γ(k)].

The pruning phase in the algorithm ensures that these regions
are disjoint for all halfspaces in Lm, it follows that using the
Boole–Fréchet inequality [Boole, 2015] on the conjunctions
of Eq. (4) overall rounds k ∈ [I], implies that Lm classi-
fies at least a (1−mκ)-fraction of the total probability mass
of D with guarantees of Eq. (4) with high probability, let
πK+1 = Px∼Dx [x ∈ S(K+1)] be the probability mass of
the region not accounted by Lm. We argue that this region is
negligible from the fact that |S(K+1)| < ℓ and ℓ ≪ u, such
that setting ϵ = max

k∈I
ϵ(k) + πK+1 provides the result. □

In the following, we show that the misclassification error
of the classifier Lm output of Algorithm 1 is at most equal to
the error of the supervised classifier obtained over the labeled
training set Sℓ, when using the same learning procedure. This
result suggests that the use of unlabeled data in Algorithm 1
does not degrade the performance of the initial supervised
classifier.

Theorem 5.4. Let Sℓ be a set of i.i.d. samples of size ℓ drawn
from a distribution D = O(f,Dx, η

(0)) on Rd × {−1,+1},
where f is an unknown concept function and η(0) an unknown
parameter function bounded by 1/2, let Xu be an unlabeled
set of size u drawn i.i.d. fromDx. Let Lm be the output of Al-
gorithm 1 on input Sℓ and Xu, and let hw(0) be the halfspace



of the first iteration obtained from the empirical distribution
S(0) = Sℓ, there is a high probability that:

P(x,y)∼D[Lm(x) ̸= y] ≤ P(x,y)∼D[hw(0)(x) ̸= y]

Proof. By the guarantees of Lemma 5.3, the classifier hw(0)

obtained on running SGD on R̂S(0) with projection to the unit
l2-ball for P (0) steps satisfies :

E(x,y)∼D[Relu(−y⟨w(0),x⟩)]−

E(x,y)∼D[Relu(−y⟨w∗,x⟩)] ≤ 3maxx∈Sℓ
∥x∥

2
√
P (0)

Let k be the iteration at which the first pair (w(1), γ(1)) is
added to Lm. The first pruning phase in Algorithm 1 results
in a set S(k) ⊆ Sℓ ∪

⋃k−1
i=1 S

(i)
u . Claim 5.1 ensures that the

probability of corruption in the pseudo-labeled set
⋃k−1

i=1 S
(i)
u

is bounded by max
j∈[k]

η(j) ≤ η∗ + ϵ.

In other words, the weight vector w(1) is obtained from
an empirical distribution that includes both the initial la-
beled set Sℓ and a pseudo-labeled set from Xu. Par-
ticularly, if this pseudo-labeled set is not empty, then its
pseudo-labeling error is nearly optimal, which implies that
P(x,y)∼D[hw(1)(x) ̸= y] ≤ P(x,y)∼D[hw(0)(x) ̸= y].

Ultimately, Lm classifies a large fraction of the probability
mass of D with nearly optimal guarantees (e.i., Eq. (4) in
proof of Theorem 5.2) and the rest using hw(1) with an error
of misclassification at most equal to P(x,y)∼D[hw(0)(x) ̸= y].

6 Empirical Results
Datasets. We mainly consider data sets from [Chapelle et
al., 2006]. Some of these collections such as baseball-hockey,
pc-mac and religion-atheism are binary classification tasks
extracted from the 20-newsgroups data set.

We used tf-idf representation for all textual data sets above.
spambase is a collection of spam e-mails from the UCI repos-
itory [Dua and Graff, 2019]. one-two, odd-even are handwrit-
ten digits recognition tasks originally from optical recogni-
tion of handwritten digits database also from UCI repository,
one-two is digits ”1” versus ”2”; odd-even is the artificial task
of classifying odd ”1, 3, 5, 7, 9” versus even ”0, 2, 4, 6, 8” dig-
its. weather is a data set from Kaggle which contains about
ten years of daily weather observations from many locations
across Australia, and the objective is to classify next-day rain
target variable.

We have also included data sets from extreme classification
repository [Bhatia et al., 2015] mediamill2 and delicious2 by
selecting the label which gives the best ratio in class distribu-
tion. The statistics of these data sets are given in Table 1.

Baseline methods. We implemented the halfspace or Lin-
ear Threshold Function (LTF) using TensorFlow 2.0 in

data set d −1 +1 ℓ+ u test
one-two 64 177 182 251 108
banknote 4 762 610 919 453
odd-even 64 906 891 1257 540
pc-mac 3868 982 963 1361 584

baseball-hockey 5724 994 999 1395 598
religion-atheism 7829 1796 628 1696 728

spambase 57 2788 1813 3082 1519
weather 17 43993 12427 37801 18619

delicious2 500 9610 6495 12920 3185
mediamill2 120 15969 27938 30993 12914

Table 1: data set statistics, −1 and +1 refer to the size of negative
and positive class respectively, and test is the size of test set.

python aside with Algorithm 11 (Lm), we ran a Support Vec-
tor Machine (SVM) [Cortes and Vapnik, 1995] with a linear
kernel from the LIBLINEAR library [Fan et al., 2008] as an-
other supervised classifier. We compared results with a semi-
supervised Gaussian naive Bayes model (GM) [Chapelle et
al., 2006] from the scikit-learn library. The working hypoth-
esis behind (GM) is the cluster assumption stipulating that
data contains homogeneous labeled clusters, which can be de-
tected using unlabeled training samples. We also compared
results with label propagation (LP) [Zhu and Ghahramani,
2002] which is a semi-supervised graph-based technique. We
used the implementation of LP from the scikit-learn library.

This approach follows the manifold assumption that the
decision boundary is located on a low-dimensional manifold
and that unlabeled data may be utilized to identify it. We
also included entropy regularized logistic regression (ERLR)
proposed by [Grandvalet and Bengio, 2005] from [Krijthe,
2017]. This approach is based on low-density separation
that stipulates that the decision boundary lies on low-density
regions. In the implementation of [Krijthe, 2017], the ini-
tial supervised classifier is a logistic regression that has a
similar performance to the SVM classifier. We evaluated
these methods using relatively small labeled training sets
ℓ ∈ {10, 50, 100}, and for all methods, we used the default
hyper-parameters as cross-validation methods would not be
effective in this case.
Experimental Setup. In our experiments, we have ran-
domly chosen 70% of each data collection for training and
the remaining 30% for testing. We randomly selected sets of
different sizes (i.e., ℓ ∈ {10, 50, 100}) from the training set as
labeled examples; the remaining was considered as unlabeled
training samples. Results are evaluated over the test set using
the accuracy measure. Each reported performance value is
the average over the 20 random (labeled/unlabeled/test) sets
of the initial collection. All experiments are carried out on a
machine with an Intel Core i7 processor, 2.2GhZ quad-core,
and 16Go 1600 MHz of RAM memory.
Analysis of Results. Table 2 summarizes the results. We
used boldface (resp. underline) to indicate the highest (resp.
the second-highest) performance rate, and the symbol ↓ in-
dicates that performance is significantly worse than the best

1Implementation available for research purpose at this address:
https://github.com/Lies0zeta/Self-Training-of-Halfspaces.

https://github.com/Lies0zeta/Self-Training-of-Halfspaces


Dataset ℓ SVM LTF LP GM ERLR Lm

one-two
10 61.38± 13.71↓ 70.87± 13.24↓ 48.61± 3.98↓ 75.09± 1.30 53.65± 10.65↓ 77.77± 1.75
50 92.77± 3.05 88.00± 3.24↓ 49.35± 4.20↓ 84.67± 4.98↓ 75.78± 8.74↓ 91.34± 3.21
100 96.15± 1.38 92.50± 1.43↓ 67.82± 12.99↓ 86.52± 3.26↓ 79.25± 6.87↓ 94.62± 2.46

banknote
10 57.50± 7.21↓ 69.40± 5.53↓ 55.98± 2.00↓ 69.04± 4.60↓ 56.71± 4.53↓ 77.24± 3.81
50 61.67± 4.86↓ 82.31± 2.13↓ 56.28± 1.89↓ 75.48± 5.30↓ 65.95± 2.01↓ 85.64± 5.36
100 71.65± 6.24↓ 89.38± 3.24 57.20± 2.19↓ 77.56± 4.34↓ 70.95± 3.24↓ 90.82± 3.31

odd-even
10 53.45± 4.80↓ 58.20± 4.71↓ 50.37± 1.95↓ 60.69± 7.48 50.40± 2.21↓ 63.21± 7.51
50 64.75± 5.65↓ 76.84± 2.99↓ 50.37± 1.95↓ 62.67± 5.82↓ 53.17± 4.80↓ 80.61± 3.10
100 75.89± 6.25↓ 77.68± 4.56↓ 53.37± 1.95↓ 64.25± 8.18↓ 59.23± 6.28↓ 84.58± 2.12

pc-mac
10 51.00± 3.22↓ 54.92± 2.00↓ 50.93± 1.59↓ 54.76± 3.42↓ 50.14± 2.06↓ 57.75± 3.19
50 58.85± 5.09↓ 61.78± 2.86↓ 50.83± 2.08↓ 58.78± 4.31↓ 49.71± 1.99↓ 64.31± 3.55
100 64.57± 4.42↓ 67.98± 2.37 50.76± 2.26↓ 62.49± 1.88↓ 50.36± 2.19↓ 68.15± 5.66

baseball-hockey
10 51.57± 2.98↓ 55.41± 3.16↓ 56.53± 5.18 49.86± 1.77↓ 49.88± 1.89↓ 56.47± 5.50
50 58.66± 6.90↓ 69.29± 4.32 50.11± 1.84↓ 66.76± 5.40↓ 50.16± 1.90↓ 72.85± 6.52
100 68.40± 4.65↓ 76.25± 2.41↓ 49.97± 1.82↓ 71.12± 5.06↓ 50.35± 1.89↓ 79.48± 4.36

religion-atheism
10 67.30± 6.95 57.30± 4.89↓ 67.59± 6.36 60.67± 16.37↓ 71.95± 5.03 64.25± 7.24↓

50 74.61± 1.62 71.79± 1.98↓ 67.43± 6.05↓ 69.16± 7.88 74.16± 1.88 72.47± 2.00
100 74.66± 1.59 73.67± 1.76 62.84± 19.33↓ 70.45± 4.39↓ 73.21± 1.75 73.77± 1.82

spambase
10 61.20± 5.15↓ 57.80± 5.29↓ 60.82± 0.84↓ 74.41± 6.64 53.38± 11.23↓ 68.92± 5.83↓

50 62.59± 9.42↓ 74.99± 6.04 61.15± 0.86↓ 78.25± 2.62 53.63± 9.86↓ 76.13± 3.08
100 69.43± 10.19↓ 80.07± 4.08 61.24± 10.26↓ 79.08± 2.83↓ 58.21± 6.34↓ 81.93± 2.46

weather
10 74.85± 0.51 68.09± 1.73↓ 75.49± 0.34 75.02± 2.79 40.35± 17.29↓ 75.08± 4.18
50 75.79± 0.28 75.30± 3.85 77.99± 0.31 75.68± 2.78 41.55± 27.39↓ 75.34± 3.80
100 77.99± 0.25 76.27± 3.64 77.99± 0.25 74.92± 1.92 46.00± 24.87↓ 77.28± 2.99

delicious2
10 51.83± 9.88 50.59± 2.65↓ 60.02± 0.61 49.41± 3.83↓ 51.83± 10.42↓ 51.08± 1.80↓

50 60.04± 0.62 54.78± 2.57↓ 60.00± 0.59 48.35± 1.31↓ 53.48± 8.66↓ 55.37± 3.33↓

100 58.88± 3.70 56.04± 1.83↓ 59.87± 0.67 48.92± 0.94↓ 54.43± 7.27↓ 56.54± 1.87↓

mediamill2
10 62.54± 2.62↓ 60.98± 6.85↓ 36.35± 0.15↓ 63.92± 1.71 47.24± 14.08↓ 64.31± 3.14
50 63.64± 0.15↓ 60.88± 7.45↓ 36.36± 0.15↓ 65.98± 3.32 58.58± 11.88↓ 65.41± 4.83
100 63.64± 0.15↓ 64.26± 4.79 36.37± 0.15↓ 67.34± 0.73 63.64± 0.16↓ 67.80± 2.21

Table 2: Mean and standard deviations of accuracy on test sets over the 20 trials for each data set. The best and the second-best performance
are respectively in bold and underlined. ↓ indicates statistically significantly worse performance than the best result, according to a Wilcoxon
rank-sum test [Wolfe, 2012] with (p < 0.01).

result, according to a Wilcoxon rank-sum test with a p-value
threshold of 0.01 [Wolfe, 2012]. From these results, it comes
out that the proposed approach (Lm) consistently outper-
forms the supervised halfspace (LTF).

Furthermore, compared to other techniques, Lm generally
performs the best or the second-best. We also notice that
in some cases, LP, GM, and ERLR outperform the super-
vised approaches, SVM and LTF (i.e., GM on spambase for
ℓ ∈ {10, 50}), but in other cases, they are outperformed by
both SVM and LTF (i.e., GM on religion-atheism). These
results suggest that unlabeled data contain useful informa-
tion for classification and that existing semi-supervised tech-
niques may use it to some extent. They also highlight that
the development of semi-supervised algorithms following the
given assumptions is necessary for learning with labeled and
unlabeled training data but not sufficient.

These results underline the need of developing theo-
retically sound semi-supervised algorithms that show the
method’s ability to generalize and to better understand the
value of unlabeled training data in the learning process.

7 Conclusion
We presented a first bound over the misclassification error of
a self-training algorithm that iteratively finds a list of halfs-
paces from partially labeled training data. Each round con-
sists of two steps. The exploration phase’s purpose is to
determine the halfspace with the largest margin and assign
pseudo-labels to unlabeled observations with an unsigned-
margin larger than the discovered threshold. The pseudo-
labeled instances are then added to the training set, and the
procedure is repeated until there are no more unlabeled in-
stances to pseudo-label. In the pruning phase, the last half-
space with the largest threshold is preserved, ensuring that
there are no more unlabeled samples with an unsigned-margin
greater than this threshold and pseudo-labeled samples with
an unsigned-margin greater than the specified threshold are
removed. We ultimately show that the use of unlabeled data
in the proposed self-training algorithm does not degrade the
performance of the initially supervised classifier. An inter-
esting future direction would be to quantify the real gain of
learning with unlabeled and labeled training data compared
to a fully supervised scheme.
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