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Abstract—In recent years, the significance of test logs in
ensuring system reliability and diagnosing runtime events
has grown significantly, particularly with software expanding
into various domains, necessitating rigorous verification and
validation processes. However, the complexity and cost of
testing have prompted a shift towards automation. This paper
addresses the challenges of automated software testing through
root-cause event detection. The proposed approach initially in-
volves parsing and partitioning logs, followed by representing
test events as dense vectors in a continuous space, enabling the
capture of semantic similarities and relationships among events
based on their sequence positions. Subsequently, test events
are clustered in this embedded space, and each log partition is
represented as a vector, with its characteristics reflecting the
number of events in the log partition present in the clusters.
Through two distinct case studies, we demonstrate that the
final clustering of log partitions in this new space efficiently
identifies root cause events. We evaluate our approach on two
applications and anticipate its contribution as a cornerstone for
future research and deployment of automated log mining.

Keywords–Automated software testing; Log analysis; Machine
learning; Log mining task; Root-cause events detection

1. INTRODUCTION

Software testing is one of the most important phases of the
software development lifecycle. It is used to detect software
flaws and ensure that software is delivered in a high-quality
condition. Any changes to a software component may affect
one or more other components, requiring the re-execution
of previously generated test cases in addition to the newly
generated ones [1].
Regression testing is a software testing technique that verifies
that an application continues to perform as expected after any
code modifications, updates, or improvements. It should be
performed after each iteration of software development, which
can be expensive in terms of time and resources.
Testing information systems has become a serious bottleneck
for many large corporations and small and medium-sized
enterprises. Aside from the ever-increasing complexity of
such systems, their unavoidable quality assurance requirements
have resulted in drastically increased verification and valida-
tion expenses. It is thus critical to provide more intelligent
and automatic automated test processes in order to regulate
the complexity and growth of software verification activities
and help to break the testing bottleneck. This will allow test

Figure 1: Illustration of the three phases of the proposed
approach.

engineers to concentrate on developing higher-value tests for
specific scenarios.
The traditional method of log mining, which focused in error
keywords, has evolved over the last two decades into a rule-
based comparison approach [2]. However, this method is prone
to errors, and may not capture the full range of anomalies or
issues present in complex systems [3]. Furthermore, as systems
grow larger and more complex, the scalability of traditional
methods becomes a significant concern [4]. Rule-based ap-
proaches may struggle to handle the increasing volume and
diversity of log data efficiently [5]. These approaches are also
often based on human-defined rules, which can be subjec-
tive and may not generalize well across different systems
or environments. This subjectivity can lead to inaccuracies
and inconsistencies in the identification of root causes. With
advancements in machine learning, log mining has explored
new dimensions in log analysis [6].
This paper introduces TRAIL, a novel and efficienT Root
cAuse Identification through Log partition clustering approach
from raw log files. Our methodology relies on unsupervised
learning applied to raw log files, and it comprises three
main phases: log analysis, representation of test events and
log-partitions, and root-cause detection. Each phase requires
customization to adapt to different software systems and
logging scenarios. A key aspect of our methodology involves
clustering at two stages. Initially, we partition test events in
an embedded space that captures semantic similarities and
relationships among events based on their contextual cues in
the logs. Subsequently, each log partition is represented as a
vector, where its attributes are proportional to the number of
events within the log partition present in the clusters of test
events. We validate our approach through an examination of
two distinct case studies. Figure 1 provides an overview of
these three phases.
We first apply our approach to a large record of incoming
events from an internet access device over six months, where



several system failure occurrences were attributed to specific
tests during the testing phase. Furthermore, we extend our
method to the Scanner case study - a device used in super-
markets to read product barcodes and create shopping lists
for self-service purchases. We demonstrate how the clustering
of log partitions effectively identifies root cause events on
these two case studies. We also utilized our method to reduce
extensive user trace logs into smaller ones with similar bug-
triggering effects, effectively selecting a subset of text events
from the log.
Ultimately, for research purposes and reproducibility, we have
made our codes publicly available as two open-source tools1.
Therefore, the main contribution of this paper is twofold:
• It introduces a new unsupervised methodology for detecting

root cause events from raw log files. The methodology is
adaptable to different software systems and logging scenar-
ios and does not require human annotation by employing
clustering techniques. By partitioning system events into
clusters, it provides deeper insights into log files, includ-
ing causal relationships. Furthermore, it realizes that the
proposed methodology is adopted to reduce enormous user
trace logs to smaller ones.

• The approach is tested across two different case studies
featuring unconventional logging styles aimed at monitoring
purposes, demonstrating its efficacy in detecting root cause
events. Furthermore, the codes are made publicly available
as two open-source tools, thereby improving accessibility
and facilitating reproducibility.

In the rest of the paper, we explore related approaches to this
work in Section 2. Section 3 details our approach, followed by
the experimental results in Section 5. we outline in Section 4
the two case studies considered in this research. And, finally
present our conclusion and perspectives in Section 6.

2. RELATED WORK

The classical viewpoint on software testing assumes that for
each given input entry, the software returns an output (or a log
event) record which are distinct from the other input-output
(or input-log-event) pairs. Accordingly, assigning “Pass” or
“Fail” labels to the output logs is mostly feasible based
on the input and the expected software functionality. These
separated “input-output” or “input-log” pairs form a basis to
test a software artifact or perform some post-processing steps
on test-suites, like “regression testing”, “test-suite reduction
(TSR)” [7] or bug prediction [8] . From this perspective, the
effect of a single or a set of inputs is mapped to a limited set
of outputs or log events. A shopping software is an example
of these types of software, in which, every action (adding
items to the basket, check-out, payment) is associated with
its own outputs or log events. The meaning of the error, as an
undesired output or log observation, is clearly determined by
the input under this assumption [7]. When an erroneous output
is detected, software developers investigate the corresponding
input to find out where, in the code, it triggers the error. We

1https://github.com/PHILAE-PROJECT/

called this situation Software-Level Activity (SLA) logging due
to the fact that the output log is a trace of software activities
and outputs.
In contrast to the SLA logging, for certain types of software,
associating a fault situation to a specific input-output is not
explicit. Instead, the internal faults drive the computer system
into a period of anomalous behavior, which may end up in a
system failure. Many of complex software systems experience
similar situation [9] [10]. For instance, a network appliance,
a cellphone, micro-service systems , cloud infrastructures or
a multi-user operating system may experience a period of
anomaly that ends up in a system reboot. In such systems,
there is a time epoch between a failure and the input that
caused the failure. In this condition, when gathering SLA logs
and outputs is not feasible, a practical way to find anomalous
behavior and their root cause input is system-Level Monitoring
logging. In Monitoring logging, we can record some different
metrics that include the host or container CPU usage, memory
utilization, and storage capacity. These metrics give a broad
understanding of the infrastructure’s status and how well it
suits the application’s requirements. However, other types
of metrics, such as the slowest and most time-consuming
requests, provide a deeper understanding. The Monitoring
logging has an intuitive property: The rates of input arrivals
and status sampling can be different, and generally, the status
information is sampled in relatively slower pace than the input
arrivals. Therefore, this approach has two serious challenges:
the meaning of error is not directly linked to a specific input.
Thus, we search for anomalous behavior instead of errors. But
the second challenge is to relate inputs to the anomalies. In
other words, a detected period of anomaly in the system spans
over numerous inputs. Hence, finding an input or inputs that
caused the anomalous behavior is challenging due to the slow
pace of status sampling.
There are two different categories of techniques, one based on
machine learning and the other based on graph analysis for
Root cause detection. [11] constructs an event causality graph,
whose basic nodes are monitoring events such as performance-
metric deviation events, status change events, and developer
activity events. These events carry detailed information to
enable accurate RCA. The events and the causalities between
them are constructed using specified rules and heuristics.
GROOT constructs a real-time causality graph based on events.
Since it construct the causality graph, it is difficult to create
graphs. Still, updating the system for changing needs becomes
a challenge.
In the ML based categories, several related supervised learn-
ing approaches for root cause detection in software systems
have been explored in academic research and industry. One
approach for root cause analysis with convolutional neural
networks and recurrent neural networks in cloud infrastruc-
ture, has been proposed in [12]. Furthermore, [13] discuss
the importance of feature engineering and model selection
in building accurate classifiers, such as k-nearest neighbors,
for anomaly detection and root cause analysis in large-scale
distributed systems. [14] explores the application ensemble
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methods, for predicting root causes of software failures based
on log data and error reports. The study examines the impact of
different feature representations and classification algorithms
on the performance of root cause prediction models. Although
effective in different scenarios, these papers highlight the
importance of labeled data for identifying root causes of
performance issues and failures which is in general time
consuming to gather or even impossible in some cases.
Unsupervised approaches for root cause detection have also
been proposed in the past years [15], [16], [17], [18]. These
approaches are mostly employed for TSR; Greedy, Clustering,
and Search approaches [15], [19]. The existing clustering-
based approaches employ supervised clustering algorithms to
group test cases. Applying clustering-based approaches has
received a deal of attention [19], [20], [17]. Some similarity-
based approaches have been proposed for clustering, which
generally tries to find similar test cases and remove redundancy
[16]. These approaches mainly differ from each other in terms
of the type of algorithms used.
However, our proposed approach differs from other unsuper-
vised learning approaches on three main points:
• Root-Cause event detection. In this study, our primary focus

lies in detecting root causes within incoming events by
examining the correlation between these events (such as
inputs, network requests, new connections, user logins, etc.)
and any unusual software behavior. For example, we aim
to identify patterns where a failure occurs consistently
after specific remote user login attempts or combinations
of events. This initial stage of software testing aims to
isolate actions or sequences of actions that collectively
lead to abnormal behavior or software failure. While a
subsequent phase of source code analysis, conducted by
software developers, may follow, this paper concentrates on
the initial stage. We refer to this task as root-cause event
detection to underscore this primary focus, which, to the
best of our knowledge, represents the first study on this
topic.

• Application-specific vs generic solutions: software artifacts
differ in many aspects, from their architecture, the nature
of the data that they process, their response time, and
network activities to their log output information, as well
as in the nature of their faults, the complexities of their
causality, and how their effects are projected on the log
files. And this is only if we want to name a few. There-
fore, available approaches are either limited to a specific
software environment or they make some basic and general
assumptions about how software behaves. This fact limits
the generalization of the existing methods in some particular
cases. For instance, existing solutions cannot address status
monitoring log files.
Our approach is generic and is applied to two different case
studies with specific log mining task.

• Discovering mutual and multi-causation effects: To the best
of our knowledge, none of the existing approaches are meant
to find mutual effects of different events to trigger a bug.
For instance, in the scanner case study, some anomalies

were caused by a group of events in some specific order of
appearance. Hence, one gap to fill was to learn about these
complex causalities between events and failure or anomaly
that our approach can tackle.

3. TRAIL
In this section, we outline the overall workflow of our pro-
posed approach. First, we explore log analysis, then proceed
to cluster test events within a learned embedded space. Finally,
we cluster log partitions within the space induced by the
clusters of test events.

1. Log Analysis
The first step involves log file preparation, where we distin-
guish between two types of log files pertinent to our case
studies: Monitoring logs, which record computer status infor-
mation at regular time intervals, as was the case for the internet
access device case study; and Software-Level Activity (SLA)
logs, predominantly capturing software activities and outputs,
relevant for the scanner case study. Detailed presentations of
both case studies will follow in Section 4.

1) Log Parsing
Different offline and online log parsing techniques have been
proposed recently [21], [22], [23]. The task is challenging due
to the diverse event templates arising from software complex-
ity. Moreover, the frequent updating of logging statements is a
consequence of the regular changes in program functionality.
While logs can vary in structure, especially when produced by
specialized logging packages, they typically record events in
a fixed format (e.g., timestamp, index, pointer to a context).
The initial step in this endeavor is extracting log messages
into structured data for analysis
In the scanner case study, we employed test suites consisting
of sequences of test cases designed to evaluate software
programs. Each test case within these suites explores dis-
tinct action-input-output combinations, which in turn reveal
unique system behaviors. We opted to differentiate between
comparable events with varying inputs and outcomes. Thus,
we represented each action-input-output as a triplet, denoted
by [a, p, o], where a signifies the action, p denotes the input
parameter, and o represents the output parameter. This triplet
scheme allows for the comprehensive encoding of all opera-
tions, inputs, and outputs and is applicable to various software
types with differing input and output parameters [7].
In the internet access device case study, log files contained
extensive records of inbound events spanning six months,
along with details regarding device status or monitoring [9].
Each test log comprised a lengthy list of input events with
timestamps, generating a complete day of monitoring for each
monitoring record sampled every 5 minutes.

2) Log partitioning
Log partitioning aims to split logs into independent sequences
of events, reducing noise in the learning process and enhancing
machine learning’s ability to discern various event source
behaviors.



Figure 2: Example of log partitioning in the internet access device case study. It consists of three main calculations: outlier
detection, outlier counter sliding window, and outlier density curve with standardization. More details can be found in [6].

In the scanner case study, we partition the logs upon users by
segmenting input events into sequences based on the specific
“customer ID” attribute.

In the internet access device case study, software-level activity
logging such as timestamps and log identifiers often divide
logs. Timestamps record event occurrence times, while log
identifiers indicate related system actions or message transfers.
However, in monitoring logging there is no direct link between
input events and logs, with numerous events collectively
influencing status information. Thus, correlating individual
events to status changes is complex. Status records are not
exclusive to specific users or sources, making partitioning
challenging. To partition monitoring log files, we utilized
the concept of Bug-Zones proposed in [24]. A Bug-Zone
signifies a period when a software system exhibits abnormal
behavior, disrupting its normal operation and affecting status
information. This concept served as an initial exploration into
defining faults in monitoring logs, where abnormal internal
conditions disrupt system continuity for a duration. For this
purpose, we developed a log-partitioning tool, called the Bug-
Zone Finder, comprising several steps: anomaly detection, slid-
ing window outlier counting, standardization, outlier density
curve generation, and Bug-Zone extraction. Initially, outlier
detection functions preprocess monitoring data, employing
various techniques that can be compared for consensus. The
sliding window counts outliers within specific time frames,
with higher values indicating increased outlier occurrences.
Standardization adjusts the sliding window output’s mean to
zero and standard deviation to one, resulting in the Outlier
Density Curve (ODC), as defined in [24]. Bug-Zones are
identified when the ODC surpasses a predefined threshold.
The general workflow of log partitioning is illustrated in
Figure 2. The Bug-Zones, derived from the monitoring log,
help identify potential causes among input events. We assume
the cause(s) of Bug-Zones precede their onset, within a defined
timeframe before their impact on status information. Thus, the
next step involves extracting input events occurring before the
Bug-Zone (Pre-Bug-Zone), based on observations from system
developers about outlier density and the duration of root causes
preceding Bug-Zones.

2. Event embedding and clustering

Following the log analysis phase, log partitions are initially
represented as sequences of events. From these sequences,
contextual information is leveraged to derive event embed-
dings. Recently, various Neural Network-based methodolo-
gies, including recurrent neural networks [25], long short-
term memory networks [26], and transformer architectures
[27], have emerged to learn embedded spaces for sequences.
These techniques effectively capture semantic similarities and
relationships among sequence elements. However, a significant
limitation of these approaches is their high data requirements
for effective learning.
To address this challenge, we adopted the word2vec technique
[28] a widely-used method in natural language processing.
This technique allows for the acquisition of distributed rep-
resentations of words within continuous vector spaces from
textual corpora in an unsupervised manner, rendering it suit-
able even for smaller datasets. Studies have demonstrated that
these learned word embeddings effectively capture semantic
relationships and syntactic patterns within documents, render-
ing them highly relevant to our specific case as well.
In the subsequent step of this phase, events are clustered within
the identified embedded space; using X-means, a variant of K-
means clustering, which enhances cluster assignments through
iterative subdivision, while keeping the most optimal splits
until reaching the Bayesian information criterion threshold
[29]. Clustering serves to group events exhibiting similar
semantic characteristics or relationships, thereby facilitating
the identification of patterns and connections within the logs.
This process aids in revealing the underlying structure and
relationships within the log data.

3. Log partitions representation and clustering

The final phase of our approach involves representing se-
quences of events as vectors. A common approach for con-
structing distributed embedding of sequences, irrespective of
the sequential order of events, involves averaging the vector
representations of each element within the sequence [30].
In our case, we propose generating a vector representation
for each log-partition based on identified event clusters found
in the previous phase. Suppose that the input events are



partitioned into K clusters; C = {C1, . . . , CK}. Then, each
log-partition ℓp, is represented in a vector space of dimension
K induced by C,

ℓ⃗p =

(
nC1∑K
k=1 n

2
Ck

, . . . ,
nCK∑K
k=1 n

2
Ck

)⊤

,

where nCk
, indicates the number of events from cluster Ck

contained in ℓp. Hereafter, we refer to the space formed by
the clusters of events used to represent the log-partitions as
the “concept space”. A similar idea has been proposed for
text segmentation [31].
Under this representation, clustering of log-partitions is per-
formed using the X-means clustering algorithm. Log-partitions
containing test events of similar frequency will have compara-
ble representations and are assigned to the same cluster. This
algorithm explores the space of centroid locations to identify
the optimal partition of the log-partitions. This grouping
assists in identifying patterns and connections within the data,
thereby facilitating the interpretation and comprehension of
the underlying structure.
In the case studies, we will elucidate how the proposed method
can be applied to find the underlying causal relationship
between input events and failures in log files.

4. THE CASE STUDIES

In the following sections, we will provide succinct overviews
of the two case studies under consideration.

1. Internet Access Device case study

The internet access device (IAD) case study consists of a large
record of incoming events, from Orange Livebox2 over six
months [6]. Concurrently, the device’s status and monitoring
information were logged during this period. A short descrip-
tion of the two log sets is as follows:
• Monitoring Logs: include a sequence of multivariate

samples of the appliance’s resource usages like proces-
sor, memory, processes, and network. Here is a sample
of the monitoring event: ”value”: 17384.0, ”node”: ”mon-
itoring”, ”timestamp”: ”2019-01-14T23:00:18+00:00”,”domain”:
”Multi-services”, ”target”: ”X1”,”metric”: ”stats->mem cached”.

• Test (event) logs: Several clients (PCs) use the internet
access appliance to access different services on the Internet,
including network activities such as Web surfing, Digital
TV, VoIP, Wi-Fi, P2P, Etc. All the clients’ requests are
recorded on their storage and accumulated later into a large
log file on a daily basis (24H). Each log file is a long
sequence of input events with their timestamps. Here is an
example of a Test log file entry:
”timestamp”: ”2018-10-08T08:01:27+00:00”, ”metric”: ”loading
time”, ”node”: ”client03”, ”target”: ”http://fr.wikipedia.org”,
”status”: ”PASS”, ”value”: 1121.0, .

The challenge of analyzing this case study is more linked
to the large difference between the sampling intervals of the
monitoring information and the arrival time of the client’s

2https://en.wikipedia.org/wiki/Orange Livebox

requests. While the client requests come in order of a few
seconds, the monitoring information is sampled in order of
minutes (e.g: 10 min). In other words, in the period between
two consecutive monitoring samples, hundreds of test events
are recorded in the test logs. Therefore, it is not feasible
to directly correlate single input events to changes in the
status information, which in turn makes the anomaly’s cause
detection more complicated.
During the six month of the internet access device case study,
certain system failures ensued due to tests introduced into the
system during testing. Our objective is to discern sequences
of events that are prone to triggering anomalies, while also
aiming to condense the size of test records to aid testers in
pinpointing critical time periods for anomaly identification.
Additionally, we seek to offer intelligent analytics of test
execution outcomes, empowering test engineers to prioritize
attention on the most error-prone segments of the system under
test (SUT).

2. Scanner case study

A barcode scanner is a device used for self-service checkout in
supermarkets. The customers (shoppers) scan the barcodes of
the items which they aim to buy while putting them in their
shopping baskets. The shopping process starts when a cus-
tomer (client) “unlocks” the scanner device. Then the customer
starts to “scan” the items and adds them to his/her basket.
Later, customers may decide to “delete” the items. Among the
scanned items, there may be barcodes with unknown prices.
In this case, the scanner adds them to the basket, and they
will be processed later by the cashier, before the payment at
checkout. The customer finally refers to the checkout machine
for payment. From time to time, the cashier may perform a
“control check” by re-scanning the items in the basket. The
checkout system then transmits the items list for payment. In
case unknown barcodes exist in the list, the cashier controls
and resolves them. At the final step, the customer “abandons”
the scanner by placing it on the scanner board and finalizes
his purchase by paying the bill.
The scanner system has a Java implementation for develop-
ment and testing and a Web-based graphical simulator for
illustration purposes3. The web-based version emulates cus-
tomers’ shopping and self-service check-out in a supermarket
by a randomized trace generator derived from a Finite-State
Machine.
The trace logs of the scanner system contain interleaved ac-
tions from different customers who are shopping concurrently.
Each customer has a unique session ID that distinguishes
his/her traces from another customer.
To artificially inject faults, the source code of the scanner soft-
ware is mutated with 49 mutants all made by a modification
on the source code by hand, as described in [6]. We needed a
few logs to be used as the test bench for the proposed method.
Hence, we are given three log files with different numbers of

3The simulator can be run at https://fdadeau.github.io/scanette/?simu, traces
can be seen in the browser console.
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traces: 1K, 100K, and 200K. They include shopping steps for
different numbers of clients (sessions): 61, 7078 and 14442
clients, respectively. They were created as random usage logs
by a generator of events that simulates the behavior of cus-
tomers and cashiers. We used mutation testing for evaluation
purposes. In the rest of this paper, “session” and client are
equivalent.
Mutation testing, a widely adopted technique in academic
research, involves modifying the System Under Test (SUT)
to simulate potential faults introduced by component pro-
grammers, creating what are termed as mutants. Testers then
develop test cases to reveal these seeded faults. When a
test case exposes a discrepancy between a mutant and the
original SUT, it is deemed to kill or neutralize the mutant.
The underlying premise of mutation testing asserts that a well-
designed test suite can detect all mutants. Testers refine the
test suite until it can effectively identify mutants that deviate
from the original SUT, as an inadequate test suite may fail to
uncover certain mutants. The purpose in scanner case study
is to determine the causal relationship between user actions
and fault triggering in software. In other words, we want
to know which sequence of input events from the user kills
individual mutants placed into the source code. In this case
study, we are not permitted to re-run the entire trace set in
order to determine their influence on software. Instead, we
infer the causal relationship between an input event and a
software problem solely by observation and learning of their
meanings. This condition mimics real-world software testing
circumstances in which the number of events in test suites or
log files is massive, and running the entire set is prohibitively
expensive and time-consuming. Thus, learning the causality
effect of event sequences without running them will save time
and money. Finally, by running a small set of events and user
action sequences, software developers will be able to trigger,
chase down, and localize errors in their software.

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we outline how our proposed method con-
tributes to root-cause event detection from the test event
selection and reduction perspective, and present results on the
two case studies presented in Section 4.
Test suite reduction plays a central role in enhancing the
efficiency of root-cause event detection by streamlining the
testing process and focusing on critical areas of the system.
By reducing the test suite, the execution of tests related to po-
tential root causes will be prioritized, thereby accelerating the
identification and resolution of underlying issues. Moreover, in
this context, log files serve as records of past software events,
and their minimization proves advantageous for diagnosis and
root cause discovery.
This process involves a compromise between the level of test
reduction and the coverage of the entire log partition’s effect.
Put differently, as the number of input events decreases, the
likelihood of the minimized set having a lesser fault-triggering
effect from the log-partition increases. To maintain equilibrium
between the level of minimization and the fault-triggering

effect, one can adjust the number of log partition clusters
identified in the third stage of our approach, as detailed in
Section 3. A higher number of clusters implies a more nuanced
distinction between the semantics of the test sequences and a
greater representation of test sequences, thereby increasing the
likelihood of triggering more failures.

1. Quality Assessment of the Clusters

We utilize the clusters of log-partitions identified in the third
stage of our method (Section 3) to discern the correlation
between incoming events (such as inputs, network requests,
new connections, new user logins, etc.) and any anomalous
software behavior or software failure. The initial evaluation
focuses on the quality of log-partition clusters induced by
the clusters of events (phase 2, Section 3). Since our method
operates in an unsupervised manner, we indirectly measure the
quality of clusters containing log-partitions in and out of the
Bug-zones for the internet access device case study. Similarly,
for the scanner case study, we measure the quality of clusters
containing log-partitions capable of neutralizing less or more
than the average number of mutants neutralized by clients,
denoted as Mavg .
To this end, we employ the purity measure, Π, defined as [32]:

Π(C,S) =
1

N

∑
k

max
l

|Ck ∩ Sl|, (1)

where, N is the total number of log-partitions,
C = {C1, . . . , CK} is the set of K clusters of log-
partitions (phase 3, Section 3). For the internet access device
case study, S = {S1, S2} is the set of log-partitions in (S1)
and out (S2) of the Bug-zones; and for the scanner case
study, S = {S1, S2} is the set of log-partitions capable of
neutralizing mutants more (S1) or less (S2) than Mavg .
Hence, the purity is the sum of the numbers of data points
from the most predominant set Sl ∈ S in each cluster Ck ∈ C
divided by the total number of log-partitions. A higher purity
indicates that the clusters are composed predominantly of log-
partitions from a single set, which suggests strong separation
and distinction between different groups within the dataset.
We begin our evaluation by comparing in Table I, the purity
measures of TRAIL where log-partitions are found in the
concept space and where log-partitions are vectorized by
averaging the vectors of the events they encompass before
clustering for IAD and scanner case studies. Based on these

TABLE I: Purity measures in percentage (equation 1) of log-
partition clusters found in the concept space (Section 3, phase
3) and by averaging the vectors of events for IAD and scanner
case studies.

Concept space Averaging
Scanner (1K traces) 80% 75%

Scanner (100K traces) 73% 68%
Scanner (200K traces) 72% 71%
Internet Access Device 70% 64%



(a)
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Figure 3: Heatmaps illustrating how TRAIL separates clients with comparable impact on mutant neutralization in two (a),
three (b), four (c) and five (d) clusters by clustering log-partitions within the concept space in the scanner case study (100K
traces).

findings, it is evident that clusters found in the concept space
tend to aggregate more similar log-partitions, in the sense that
they contain Bug-Zones for IAD case study or they are capable
to kill more than Mavg mutants for the scanner case study.
This superiority over averaging event vectors arises primarily
from the independent nature of feature characteristics in the
concept space, which correspond to the presence of events in
logs that belong to disjoint clusters of test-events (Section 3,
phase 3). Conversely, Word2Vec event embeddings are dense
embeddings as they map each event to a high dimensional
vector space where each dimension represents some latent

feature or context of the event [28]. The individual dimensions
of these dense embeddings typically are not independent, and
when averaging vector characteristics in the embedding space,
independence of feature vectors is not generally guaranteed.
The results of Table I is in line with previous observations
which showed that the performance of K-means, and ulti-
mately the X-means algorithm, can be affected by the scale
and correlation of features in the dataset [33, ch. 14], as
these algorithms treat each dimension of vectors equally and
independently during the clustering process.

Figure 3 shows four heatmaps for three different clusterings



found by TRAIL using the K-means algorithm instead of X-
means at phase 3 (Section 3) for varying numbers of clusters
K ∈ {2, 3, 4, 5} on the Scanner 100K traces. In this analysis,
a total of 13 mutants are neutralized. The horizontal axis
represents the mutant numbers, while the vertical axis indicates
the cluster numbers. Within each cell, the numerical value
signifies the percentage of mutants neutralized by the clients
within the corresponding cluster. Consequently, darker shades
indicate higher percentages, reflecting a greater efficacy in
mutant neutralization by the cluster’s clients. The first column,
denoted by the label P, indicates the cluster size, expressed as
a percentage of the total number of clients it encompasses.
In Figure 3a, we note that cluster number 0 identified by
TRAIL encompasses 68% of the entire dataset’s clients, capa-
ble of neutralizing all mutants except three. Conversely, cluster
number 1 comprises clients that do not neutralize any mutants
except for mutants #1, #42, and #48.
With an increase in the number of clusters, as shown in Figures
3b, 3c and 3d, we continue to observe the partition of clients
who do not neutralize any mutants into the same clusters. For
example, these clients are predominantly grouped in clusters
1, 3 and 4, constituting 71% of the entire dataset for K = 5.
While mutant #14 is with the other mutants in Figures 3a and
3b, when we increase K in Figures 3c and 3d, all the clients
who neutralize mutant #14 are clustered in a separate cluster
(cluster number 2 in both cases).
In summary, the heatmaps in Figure 3 demonstrate that TRAIL
effectively separates ”fault-maker” clients (those neutralizing
mutants) from others, and as the number of clusters rises, it can
further distinguish between various fault-maker clients based
on the mutants they neutralize. It is worth noting that TRAIL
operates in an unsupervised manner and does not require any
supervision rendering the proposed method rapid and efficient.
While executing the entire dataset took over two days on
a high-end PC (Intel vPro i7 with 64GB RAM), the entire
TRAIL implementation in Python code runs in less than a
minute.

2. Extracting Causality Relations

Using TRAIL, it is also possible to perform test suite reduction
in the scanner study case, by identifying a single representative
client from each cluster that can effectively neutralize as
many mutants as the entire cluster. To accomplish this goal,
we propose to select clients that are the closest, based on
Euclidean distance, to the centroids of the clusters.
Similarly to before, we compare the clustering of log-partitions
obtained in the concept space and when the vectors of log-
partitions are obtained by averaging the vectors of events they
contain.
The outcomes for 1K Traces are illustrated in Table II, employ-
ing the Kmeans algorithm in phase 3 with different number
of clusters. From these results, it is evident that for different
number of clusters K ∈ {7, 8, 9, 10, 11}, with our proposed
method clients that are closest to the centroids capable of
neutralizing more mutants, compared to the Averaging method
used for representing log-partitions before clustering. For

TABLE II: Number of mutants killed and number of events
found with our approach and when log-partitions are clustered
by averaging the vectors of events.

TRAIL Concept Space Averaging
K # of mutants killed # of events # of mutants killed # of events
7 12 112 5 106
8 15 144 8 137
9 16 163 8 148
10 16 182 8 158
11 15 196 13 174

example, when K = 8, clients that are closest to the centroids
contain 144 events and have the capability to neutralize 15
mutants. In contrast, employing the averaging method, clients
nearest to the centroids contain 137 events but are only capable
of neutralizing 8 mutants.
Following this, the next step involves assigning the selected
clients to software developers, enabling them to examine the
content and identify any potential flaws in the software code.
We will now present a final analysis focused on root-cause
detection that is uniquely achievable by the proposed method.
This analysis aims to identify which topic(s) and subsequent
actions are responsible for neutralizing mutants, without the
necessity of selecting clients and executing them. This is
achieved through the representation of log-partitions in the
concept space (as described in phase 3, Section 3). Specifically,
we accomplish this objective by subtracting the nearest log-
partitions from the centroids of two clusters. One cluster
encompasses log-partitions capable of neutralizing the highest
number of mutants, while the other contains log-partitions that
predominantly fail to neutralize any mutants.
For instance, in the case of the 100K traces dataset, by
subtracting the nearest log-partitions from the centroids of
clusters 0 and 4 (as illustrated in Figure 3d), we derive a vector
in the concept space. The most prominent characteristic of this
vector corresponds to the dimension that exhibits the greatest
differentiation between the two initial vectors, which in this
case corresponds to:
Prominent events: [’ajouter’, ’Barcode’, ’0’], [’fermerSession’, ’Noth-
ing’, ’0’], [’payer’, ’Price-integer’, ’Float Number’], [’payer’, ’Price-
float’, ’0’]
The actions are shown in triplet format. This analysis tells
that adding bar-codes (ajouter), payment (payer) and closing
sessions (fermerSession) are the three actions that triggers the
most faults in the software. In the context of the Internet
Access Device case study, we identified certain network ac-
tions, all falling under a fault-maker topic, which were directly
associated with the device’s problematic areas. A report on the
fault-maker actions were submitted to the owner company. For
the sake of confidentiality, details on the root-cause analysis
of this case-study is protected by the owner company.

6. CONCLUSION AND PERSPECTIVES

This paper presents a novel approach for automatically iden-
tifying root causes of events across two case studies. Our
approach, an unsupervised technique, discerns patterns in-
dicative of potential root causes by clustering log-partitions



within the space induced by event clusters. Consequently, log-
partitions containing the same events with similar frequencies
tend to be grouped together in the same cluster. This inherent
property enables the extraction of meaningful insights from
unstructured log messages, facilitating the grouping of log-
partitions with common root causes into cohesive clusters.
The results obtained from our case studies validate the prac-
tical applicability and effectiveness of our proposed method.
Through empirical evaluations conducted on both the Internet
Access Device and scanner case studies, we illustrate how
our approach significantly enhances root-cause event detection
performance. Additionally, our method streamlines the testing
process by reducing the test suite. These findings underscore
the potential of our approach not only in identifying root
causes events but also in understanding the underlying causes
of these root causes.
Further studies are needed to compare our purity measures.
We want to compute the purity measure in the second way,
wherein we obtain the vector of log-partitions by the concept
space method. The purity measure in equation 1 only evaluates
how well clusters differentiate clients who neutralize more
mutants from those who neutralize fewer mutants. However, it
does not differentiate clients based on the type of mutants they
neutralize. In the future, we will consider the type of mutants
when we calculate the equation 1.
There are many studies that apply various techniques and
algorithms for new test generation such as [34]. We plan to
extend our study to have a wider log mining functionality, for
instance, apply the proposed method to generate new test cases
to automate regression testing. To this aim we need to identify
sparse areas in log-partitions and try to generate sequence of
test events in this space. In addition, we need to work and get
more results in the test selection part. For instance, we have
to study the criteria for the selection of representatives from
each log partition, instead of selecting the nearest client to the
center, we can select the longest session or the most diverse
one.
It would also be interesting to extend our approach using
learning to rank techniques with partially labeled multi-modal
data [35], particularly in the context of test case prioritization
and automated test suite optimization; as it is often challenging
to determine the order in which test cases should be executed
to maximize the likelihood of detecting bugs early. Learning
to rank algorithms can learn from historical data, including
information about test case outcomes and code changes, to
rank the test cases based on their potential to reveal defects.
This prioritization can lead to more efficient testing by identi-
fying critical test cases that are likely to uncover issues early
in the testing process. Also, as software systems evolve in
time, the test suite can become large and redundant, leading
to increased testing time and maintenance efforts. Learning to
rank methods can be employed to automatically identify and
eliminate redundant or ineffective test cases from the test suite.
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