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Abstract. Machine learning techniques often require large labeled
training sets to attain optimal performance. However, acquiring la-
beled data can pose challenges in practical scenarios. Pool-based ac-
tive learning methods aim to select the most relevant data points for
training from a pool of unlabeled data. Nonetheless, these methods
heavily rely on the initial labeled dataset, often chosen randomly.
In our study, we introduce a novel approach specifically tailored for
multi-class classification tasks, utilizing Proper Topological Regions
(PTR) derived from topological data analysis (TDA) to efficiently
identify the initial set of points for labeling. Through experiments
on various benchmark datasets, we demonstrate the efficacy of our
method and its competitive performance compared to traditional ap-
proaches, as measured by average balanced classification accuracy.

1 Introduction
Machine learning has seen widespread applications across various
domains in recent years, yet its dependence on labeled data remains
a significant challenge. Despite the availability of large amounts of
unlabeled data due to advances in computing and storage, labeling is
often labor-intensive and costly. Semi-supervised learning methods
aim to address this challenge by leveraging both labeled and unla-
beled data, with active learning emerging as a promising approach
to efficiently select data points for labeling. The fundamental as-
sumption behind active learning is that machine learning algorithms
can achieve higher performance levels by using fewer training la-
bels, provided they have the ability to strategically select the training
dataset [42]. Constructing the first training set is of particular interest
in many applications, such as recommendation systems.

Pool-based methods [32], play a crucial role in selecting the most
informative data points for labeling from a pool of unlabeled obser-
vations. Usually, a classifier is learnt on a first labelled set, to find the
next points to be labeled. However, these methods face limitations,
especially in low-budget scenarios, where the acquisition of labeled
data is constrained and where a sufficient budget is needed to learn
a weak model [38]. Addressing these limitations requires innovative
approaches that can integrate regularization techniques [25, 35] usu-
ally found in other sub-domains, such as semi-supervised learning or
self-learning [14], and tackle the cold-start problem associated with
selecting initial seed points.

In this paper, we propose a novel meta-approach for pool-based
active learning, grounded in concepts from topological data analysis
(TDA), to mitigate the cold-start problem and enhance performance

∗ Corresponding Author. Email: Emilie.Devijver@univ-grenoble-alpes.fr.

in low-budget regimes. TDA offers insights into the underlying struc-
ture of data [12] by examining its topological properties [21], with
persistent homology being a key technique for extracting topological
features. It has already shown impressive results in machine learn-
ing [30], especially for clustering. Many recent papers have bene-
fited from these topological insights to understand the structure of the
data: Singh et al. [43] use persistence homology to extract molecular
topological fingerprints (MTFs) based on the persistence of molecu-
lar topological invariants, Lum et al. [34] use topological persistence
to efficiently encode fMRI datasets, Carlsson and Gabrielsson [13]
use persistence homology to automatically extract interpretable fea-
tures from meta-organic datasets in order to predict methane and car-
bon dioxide adsorption levels for different materials, among others,
and Li et al. [33] also make use of topological persistence in order
to actively estimate the homology of the Bayes decision boundary,
the resulted module is then used to do model selection from sev-
eral families of classifiers. However, the use of TDA in NLP is very
recent [39]. Leveraging TDA, we extend ToMATo [16], a persistent-
based clustering method, to identify proper topological regions suit-
able for propagating labeling. Specifically, our approach introduces
proper topological regions using the σ-Rips graph based on an adap-
tive threshold function, while extending the theoretical guarantees of
Chazal et al. [16] to the σ-Rips graph. We then explore the use of
proper topological regions in a zero-shot1 learning framework, fur-
ther enhancing the effectiveness of pool-based active learning.

To validate our approach, we conduct empirical studies comparing
it with classical methods across various datasets. Our results demon-
strate the efficacy of our approach in improving zero-shot learning
when there is a topological structure in the dataset.

The remainder of this paper is structured as follows: Section 2
provides an overview of related work, while Section 3 introduces the
theoretical framework. In Section 4, we detail our proposed method,
followed by experimental validation in Section 5. Finally, Section 6
concludes with a summary and avenues for future research.

2 Related literature
Various efforts have been made to reduce the annotation burden of
machine learning algorithms. Significant progress has been achieved
in semi-supervised learning [3, 9], which utilizes a small set of la-
beled data along with many unlabeled examples. These methods
typically incorporate consistency regularization into the supervised

1 The term zero-shot is used to emphasize that active learning is applied to an
unlabeled set.



loss function through data augmentation using unlabeled observa-
tions [14].

Among the most well-known pool-based strategies are uncer-
tainty sampling [32], margin sampling, and entropy sampling strate-
gies [42]. Some approaches adopt the query-by-committee approach
[23, 31], which entails learning an ensemble of models at each itera-
tion. Practical implementations include query by bagging and query
by boosting, which employ bagging and boosting to construct the
committees [1]. Extensive research has focused on deriving efficient
disagreement measures and query strategies from a committee, in-
cluding vote entropy, consensus entropy, and maximum disagree-
ment [42], while Ali et al. [2] introduces model selection for a com-
mittee. Additionally, some strategies solve an optimization problem
to select the most relevant queries, as seen in Roy and McCallum
[41], where Monte Carlo estimation is used to estimate the expected
error reduction on test examples. In contrast, others utilize Bayesian
optimization on acquisition functions such as the probability of im-
provement or the expected improvement [24], while Auer et al. [5]
cast the problem of selecting the most relevant active learning crite-
rion as an instance of the multi-armed bandit problem. A recent sur-
vey introduce a benchmark for many active learning methods [47].

Recent advancements in active learning suggest enhancing pool-
based methods by leveraging knowledge from the distribution of un-
labeled examples [10]. For instance, Perez et al. [37] propose us-
ing clustering of unlabeled examples to enhance the performance of
pool-based active learners, where experts annotate entire clusters at
each iteration rather than individual examples. Such a strategy effec-
tively reduces annotation effort, assuming that the cost of cluster an-
notation is comparable to single example labeling, as demonstrated in
Citovsky et al. [19] for large-scale data. Recently, numerous studies
have explored the use of clustering/segmentation for active sample
selection in real applications [4].

This paper addresses the cold-start problem in pool-based active
learning, focusing on selecting the first point to be labeled based
on covariate knowledge. To optimize the initial active learning (AL)
training set, clustering techniques are used to select the most rep-
resentative examples, typically found at cluster centers. Some AL
studies use k-Means or k-Medoids clustering methods. In text clas-
sification, where datasets are high-dimensional, these methods can
introduce randomness that deteriorates results, so deterministic clus-
terings like FFT, AHC, and APC have been proposed to stabi-
lize outcomes. In medical imaging, [18] used contrastive learning
and pseudo-labeling. [46] introduced the Nearest Neighbor Crite-
rion (NNC), which sequentially queries the most representative in-
stance from unlabeled data to minimize the overall distance between
queried and unlabeled data and ensure each class is observed.

3 σ-Rips graph and its use in ToMATo
In this section, we introduce the theoretical framework and how we
extend ToMATo guarantees in our setting, where ToMATo operates
as a clustering method that employs the hill climbing algorithm on
a Rips graph Rδ(Sx) (see Definition 1 below) and incorporates a
merging rule based on the persistence of the Rips graph.

3.1 Framework and notations

We consider a multi-class classification problem with input space
X ⊂ Rm, and with output space Y = {1, . . . , c} a set of unknown
classes of size c ∈ N, c ≥ 2. Let d be a fixed distance on Rm. In
pool-based active learning, we observe a sample set Sx = {xi}ni=1

drawn from an unknown marginal distribution P, and we have access
to an oracle O : X → Y that can provide the true label yi for each
observation xi, for 1 ≤ i ≤ n at some (expensive) cost. We denote
S = {(xi, yi)}ni=1 as the labeled data sample of size n, which we
do not have access to, generated by some unknown joint distribution
over X × Y . The goal of zero-shot learning is to construct the set
I ⊂ {1, . . . , n} of points to be labeled, to be considered as the first
labeled set.

In our method, as is generally the case in classification algorithms,
we assume that close points (with respect to d) are associated with
similar labels, also known as the smoothness assumption. In this set-
ting, neighborhood graphs on the unlabeled sample Sx can be con-
sidered. A graph is denoted as a couple (V,E) with V representing
the set of vertices, and E the set of edges. For our purpose, we use a
neighborhood graph induced by the metric d on X .

Definition 1 (Rips graph). Given a finite point cloud Sx = {xi}ni=1

from a metric space (X , d) and δ ≥ 0, the Rips graph Rδ(Sx) is
the graph with set of vertices Sx and whose edges correspond to the
pairs of points (xi,xj) ∈ S2

x such that d(xi,xj) ≤ δ.

Rips graphs, and more generally Rips complexes [17], are fun-
damental in topology and are commonly used in TDA, particularly
with persistent homology. However, class similarity may vary across
the metric space. For instance, the lower the density, the weaker the
chance to detect a structure within points. Consequently, it becomes
necessary to extend the definition of the Rips graph to accommodate
such scenarios. This leads to the introduction of the σ-Rips graph
Rσ(·)(Sx), which utilizes an adaptive threshold function σ.

Definition 2 (σ-Rips graph). Given a finite point cloud Sx =
{xi}ni=1 from a metric space (X , d) and a real-valued function
σ : X 2 → R∗

+, the σ-Rips graph Rσ(·)(Sx) is the graph with set
of vertices Sx and whose edges correspond to the pairs of points
(xi,xj) ∈ S2

x such that d(xi,xj) ≤ σ(xi,xj).

These two notions of neighborhood graphs are illustrated in Figure
1 to elucidate their disparities. In situations of lower density, where
there are fewer points, the σ-Rips graph tends to be more connected.
This enhanced connectivity serves to emphasize the underlying struc-
ture and aids in its detection.

The σ-Rips graph serves as a generalization of the Rips graph con-
sidering a constant threshold function or as a usual Rips graph with
parameter δ on the non-metric space (X , d̂), with

d̂ : X × X −→ R+

(x,x′) −→ δd(x,x′)

σ(x,x′)
. (1)

Most topological properties of Rips graphs on metric spaces hold true
for Rips graphs on non-metric spaces, as discussed in Chazal et al.
[17, Section 4.2.5].

(a) (b) (c)

Figure 1: (a) A sample of 240 points from a mixture of two bivariate
Gaussian distributions, with colors denoting true classes. (b) Asso-
ciated Rips graph (Definition 1) with δ = 0.5, using the Euclidean
distance metric d. (c) Associated σ-Rips graph (Definition 2), using
the parametric form from Equation (2), with the Euclidean distance
metric d, δ = 0.5, r = 1.08, and t = 1/5.



Here we adopt the following parametric threshold function:

σ(·; δ, r, t) : X × X −→ R∗
+

(x,x′) −→ δ(r −max (P(x),P(x′)))
1
t ,

(2)

with t ∈ (0, 1] and (δ, r) ∈ (R∗
+)

2, ensuring that r > maxx P(x).
The temperature parameter t controls the curvature, while the max
term ensures the symmetry of the function. δ and r represent the
dilatation and translation parameters, respectively. This parametric
form is illustrated in Figure 2. We demonstrate in Section 5.1 that the
resulting curve from the optimal parameters of our function aligns
with our intuition regarding class similarity as a density-aware mea-
sure.
ToMATo can be easily adapted to operate with a σ-Rips graph

Rσ(·)(Sx) by considering the non-metric space (Sx, d̂) described
above. In the next two sections, we explain that switching from Rips
graph to σ-Rips graph in ToMATo yields about the same guarantees.

3.2 Persistence and upper-star filtrations

ToMATo relies on the notion of persistence, particularly persistent
homology, which is a classical tool in Topological Data Analysis
(TDA). We refrain from formally introducing these concepts and re-
fer interested readers to [21, 12] for a more general and comprehen-
sive treatment. Here we will only deal with nested families of graphs
and their associated topological persistence diagrams.

Let G be a finite graph and G = (Gα)α∈R be a nested family of
subgraphs of G (here, if α1 ≤ α2, then Gα2 is a subgraph of Gα1 ).
The idea of persistent homology is to keep track of the changes in the
topology of Gα as α decreases (here we can think of α as the time
but going backward). We are just interested in the connectedness of
our graphs and we set, for G a graph, H0(G) to be the vector space
generated by the connected components of G. Then, an inclusion
Gi ⊇ Gj of two graphs induces a linear map H0(Gj) → H0(Gi)
which send a connected component C of Gj to the connected com-
ponent of Gi which contains C. The collection G = (H0(Gα))α∈R
together with all these linear maps H0(Gα1) → H0(Gα2) for all
α1 ≥ α2 is the persistent module of the nested family of graphs
(Gα)t∈R. Then, one can keep track of the persistence of a connected
component along the nested family G through this persistence mod-
ule by looking at what time t it arises, its birth time, and at what time
it dies (because glued to another one), its death time2. The persis-
tence diagram DG of the nested family G is then the multi-subset3

2 When several components gets attached at a given time, we can see that as
the "death" of all of them except one. The one who survives is the "oldest"
one (with an arbitrary choice if there are more than one). It is a bit more
complicated than that in general but this suffices if for example the edges
are added one at a time.

3 Several connected components can have the same birth and death times
which leads to points with multiplicity in the persistence diagram.
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Figure 2: Representation of s : u 7→ δ(r − u)1/t as a proxy of the
parametric form of σ given in (2), with varying parameters. By de-
fault, all parameters are fixed to 1. We vary in (a) δ ∈ {1, 0.5, 1/3},
in (b) r ∈ {0.9, 1, 1.1}, in (c) t ∈ {1, 0.7, 1/3}. The dashed line
represents a constant threshold function σ = 0.5.

of R2
of all given pair (death, birth) for each connected compo-

nents (if two or more components have the same death and birth we
get a point with multiplicity 2 or more) together with the diagonal
∆ = {(x, x) | x ∈ R}. When interpreting a persistence diagram,
the distance of points from the diagonal, called their prominence,
should be considered. Points with low prominence are considered as
topological noise (they do not persist long), while points with high
prominence signify relevant topological information.

We introduce now the families of graphs that we will consider: the
upper-star filtration of P : X → R restricted to a Rips graph.

Definition 3 (Upper-star Rips filtration). Given a finite point cloud
Sx from a metric space (X , d) with a probability function P and
a real value δ ∈ R+, the upper-star Rips filtration of P, denoted
Rδ(Sx,P), is the nested family of subgraphs of the Rips graph
Rδ(Sx) defined as Rδ(Sx,P) =

(
Rδ(Sx ∩ P−1([α,+∞])

)
α∈R.

Such a nested family of graphs gives rise to a persistence module

Rδ(Sx,P) =
(
H0

(
Rδ(Sx ∩ P−1 ([α,+∞]))

))
α∈R ,

and to its associated persistence diagram DRδ(Sx,P).

This notion is illustrated in Figure 3.
Similarly, we define the upper-star σ-Rips filtration of P, denoted
Rσ(·)(Sx,P), and the associated persistence module Rσ(·)(Sx,P)
and persistence diagram DRσ(·)(Sx,P).

3.3 Comparison of persistence diagrams for Rips
graph and σ-Rips graph

In this section, we provide tools to control the difference between
DRδ(Sx,P) and DRσ(·)(Sx,P).

The bottleneck distance serves as an effective and natural proxim-
ity measure to compare two persistence diagrams.

Definition 4 (Bottleneck distance). Given two multi-subsets A1, A2

of R2
, the bottleneck distance d∞B (A1, A2) between A1 and A2 is

d∞B (A1, A2) = min
ζ:A1→A2

max
p∈A1

∥p− ζ(p)∥∞

where ζ runs over all possible multi-bijections between A1 and A2.

The bottleneck distance between two persistence diagrams in-
duced by upper-star Rips (or σ-Rips) filtrations can be controlled
by comparing the evolution of connected components along the fil-
tration, which can be tracked with the appearance level.
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Definition 5 (Appearance level). Given a finite point cloud Sx =
{xi}ni=1 from a metric space (X , d) with a probability function
P and δ such that Rδ(Sx) is connected. For two distinct points
(xi,xj) ∈ S2

x, we define the appearance level αδ(xi,xj) as the
highest level of the upper-star Rips filtrationRδ(Sx,P) at which xi

and xj are in the same connected component:

αδ(xi,xj) = max
γ∈P(xi,xj)

min
x∈γ

P(x)

where P(xi,xj) is the set of all paths in Rδ(Sx) from the vertex
xi to the vertex xj , where a path γ in a graph R is a sequence of
vertices of R where two consecutive vertices are adjacent in R.

For example, in Figure 3, between α = 0.05 and α = 0, we
observe two connected components that are eventually connected,
on the cluster on the left. The appearance level of the corresponding
points lies between 0.05 and 0.

Similarly, we define ασ(·) the appearance level for an upper-star
σ-Rips filtrationRσ(·)(Sx,P).

This enables us to bound the bottleneck distance between the Rips
graph and the σ-Rips graph.

Theorem 1. Given a finite point cloud Sx = {xi}ni=1 from a met-
ric space (X , d) with probability function P. Let Rδ(Sx) be the Rips
graph with parameter δ, Rσ(·)(Sx) the σ-Rips graph with threshold
function σ and assume that they share the same connected compo-
nents. Then,

d∞B
(
DRδ(Sx,P), DRσ(·)(Sx,P)

)
≤ max

(xi,xj)∈S2
x

|αδ(xi,xj)− ασ(·)(xi,xj)|,

setting αδ(xi,xj) = ασ(·)(xi,xj) = 0 if xi and xj are not in the
same connected component.

The proof is provided in the extended version (Appendix A)4,
leveraging the notion of ε-interleaving from [15]. The core concept
is to regulate the birth and death of connected components along the
filtration by controlling the changes in appearance levels.

This theorem implies that when shifting from the metric distance
d to the neighboring (possibly) non-metric distance d̂ defined in (1)
(and subsequently from the Rips graph to the σ-Rips graph) results
in a dendrogram induced by the upper-star Rips graph that remains
largely consistent throughout the persistence process. Since all theo-
retical guarantees of ToMATo [16] are derived from the persistence
diagram of the Rips graph, Theorem 1 also implies that, when shift-
ing to σ-Rips graphs in ToMATo, we obtain similar guarantees. With
reasonable assumptions on the point cloud, we can recover the num-
ber of clusters induced by the density P and the basins of attraction
of the prominent peaks of P (see [16] for more details).

4 Proper topological regions and zero-shot learning
In this section, we first introduce the proper topological regions and
then explain how to use them in zero-shot learning.

4.1 Proper topological regions

In our method, we leverage the concept of topological regions, which
is based on the algorithm ToMATo where the granularity of the clus-
tering is controlled by a merging hyperparameter τ ≥ 0, which re-
tains only clusters with a prominence higher than τ . These regions
are defined as the clusters obtained by ToMATo with a σ-Rips graph.
4 The extended version of the paper can be dowlonaded from https://github.

com/Lies0zeta/PALPTR-/blob/main/TDA_ECAI24.pdf

Definition 6 (Topological regions). The topological regions of a
sample set Sx coming from an unknown marginal distribution P and
with parameters (δ, r, t, τ) are the clusters given by the clustering
algorithm ToMATo on the σ-Rips graph Rσ(·;δ,r,t)(Sx):

TRP
δ,r,t,τ (Sx) = ToMAToτ

(
Rσ(·;δ,r,t)(Sx),P

)
.

When the underlying density P, and the parameters are understood,
we will simply denote TR(Sx) the clustering, seeing the mapping
function as TR: Sx → {1, . . . , k} for a clustering into k topologi-
cal regions.

For a clustering TR(Sx) of the sample Sx, we define LP
TR as the

labeling function that assigns, within a given topological region, the
label of the sample with the highest density according to P:

LP
TR : Sx → Y

xi 7→ O

(
argmax

xj :TR(xj)=TR(xi)

P(xj)

)
. (3)

If access to the labeled data S = {(xi, yi)}ni=1 is available, we
define the Purity Size function PS as the objective function that con-
siders the labeling error when applying LP

TR within the topological
regions, penalized by the number of topological regions k in TR:

PS (S,P,TR) =

[
k

n
+

1

n

n∑
i=1

1LP
TR(xi )̸=yi

]
∈ [0, 1].

Then, we introduce the concept of proper topological regions,
which will be a fundamental element in our method.

Definition 7. The proper topological regions of a sample set Sx com-
ing from an unknown marginal distribution P are the topological re-
gions of TRSx,P

δ∗,r∗,t∗,τ∗ where

(δ∗, r∗, t∗, τ∗) =argmin
(δ,r,t,τ)

{
PS
(
S,P,TRSx,P

δ,r,t,τ

)}
. (4)

The main problem in this notion is the use of labels in the purity
size function, which are not available in our active learning context,
where labeled data is scarce. We then need to use an unsupervised
objective function. We consider a trade-off between the Silhouette
score (other potential unsupervised criteria typically used to assess
the clustering quality are discussed in Appendix B4) and the coverage
compactness of a clustering TR of Sx into k topological regions
{R1, . . . Rk}.

Definition 8. For 1 ≤ q ≤ k, let πq be the size of the topological
region Rq = {x ∈ Sx : TR(x) = q}. For λ ∈ R+, we define the
penalized silhouette score by:

SilSizeλ(Sx,TR) =

 1

k

k∑
q=1

1

πq

∑
x∈Rq

sil(x)

− λ
k

n

∈
[
−1− λ, 1− λ

n

]
, (5)

with sil(x) =
νc(x)− ν(x)

max(ν(x), νc(x))

where, for all q and all x ∈ Rq , ν(x) represents the average distance
of sample x within its cluster Rq and νc(x) stands for the average
distance of sample x to his nearest neighbor cluster:

ν(x) =
1

πq − 1

∑
x′∈Rq

d(x,x′), νc(x) = min
q′ ̸=q

1

|Cq′ |
∑

x′∈Cq′

d(x,x′).

https://github.com/Lies0zeta/PALPTR-/blob/main/TDA_ECAI24.pdf
https://github.com/Lies0zeta/PALPTR-/blob/main/TDA_ECAI24.pdf


Figure 4: Flowchart of the method. We observe the data, and we run Algorithm 1 to construct the proper topological regions, seen as clusters
through colors. Then, an expert labels one point in each of the B largest clusters, for budget B (here, B = 3), and we consider the pseudo-labels
by diffusing the labeling to the proper topological regions.

The trade-off parameter λ in (5) plays a crucial role in identifying
the proper topological regions within the sample set Sx. Higher val-
ues of λ penalize coverage compactness, leading to partitions with a
higher degree of agglomeration, meaning fewer topological regions
with larger sizes. However, an additional way to control the labeling
propagation error term of the Purity Size objective in an unsupervised
setting is to control the size distribution of groups in the resulting
partition. Conversely, lower λ values tend to produce highly frag-
mented partitions with numerous small-sized groups. In such scenar-
ios, the Silhouette score tends to converge to graphs with a single
non-singleton connected component and many singletons.

Thus, we approximate the optimization problem (4) by

argmax
(δ,r,t,τ)

{
SilSizeλ

(
Sx,TRSx,P

δ,r,t,τ

)}
. (6)

Unfortunately, optimizing this objective function directly is com-
putationally expensive because it requires running ToMATo multiple
times for different parameter settings. Instead, we propose a proxy
optimization problem that involves running ToMATo only once:

(δ♯, r♯, t♯) =argmax
(δ,r,t)

{
SilSizeλ(Sx, Rσ(·;δ,r,t)(Sx))

}
(7)

τ ♯ =argmax
τ

{
SilSizeλ

(
Sx,TRSx,P

δ♯,r♯,t♯,τ

)}
(8)

with a slight abuse of notations in (7) between the Rips graph
Rσ(·;δ,r,t)(Sx) and its connected components seen as a clustering.
The best hyperparameters a♯, r♯, t♯ for the silhouette of the σ-Rips
graph are then used to find the best hyperparameter τ ♯ for ToMATo.

5 A graph is degenerate if the sizes of the connected components are imbal-
anced (we do not allow very small connected components).

Algorithm 1 Optimization procedure for PTR
Require: Sx := {xi}ni=1, d : X × X → [0,∞), s the step size for

the linear search, and l the number of trials for the optimization
strategy.

1: Initialize λ = s.
2: Compute the density estimator P̂ with (9) based on d and Sx.
3: Optimize the problem (7) for l trials, and return (δ̂, r̂, t̂).
4: Build the σ-Rips graph Rσ(·;δ̂,r̂,t̂)(Sx).
5: while Rσ(·;δ̂,r̂,t̂)(Sx) is not a degenerate graph5 do
6: Update λ←− λ+ s.
7: Optimize the problem (7) for l trials, updating δ̂, r̂, t̂.
8: Build the σ-Rips graph Rσ(·;δ̂,r̂,t̂)(Sx).
9: end while

10: Update λ←− λ− s.
11: Optimize problem (8) for l trials
12: Output: parameters δ̂, r̂, t̂, τ̂ and the corresponding P̂TR.

Since the underlying density is usually unknown, we need to es-
timate it from the data. For that purpose, we use the distance to
a measure [16], which computes the root-mean-squared distance
to the ℓ nearest neighbors of the considered query point: for all
i ∈ {1, . . . , n},

P̂(xi) =

(
1

ℓ

n∑
j=1

d(xi,xj)
21xj is a ℓ-nearest neighbors of xi

)−1/2

(9)

The entire procedure used to approximate the proper topologi-
cal regions is data-driven using the unlabeled set Sx. We denote
the corresponding estimated proper topological regions with param-
eters (δ̂, r̂, t̂, τ̂) as P̂TR. Algorithm 1 describes a two-stage black-
box optimization scheme to estimate the σ-Rips graph parameters
(δ∗, r∗, t∗) by (δ̂, r̂, t̂), and the merging parameter τ∗ by τ̂ , which
solves our optimization problem given in (4) for the proper topolog-
ical regions of S.

4.2 Cold-start learning

In this section, we present the application of proper topological re-
gions to the zero-shot learning problem.

Given the unlabeled set Sx, along with the estimated proper topo-
logical regions P̂TR obtained from Algorithm 1, and access to an
oracle for providing a limited number of labels (denoted as a budget
B), as well as the density estimation P̂, our strategy is as follows:

1. Selection of Largest Regions: We focus on the B largest proper
topological regions R1, R2, . . . , RB.

2. Querying the Oracle: For each Rq , where q ∈ {1, . . . ,B}, we
query the oracle for the B points with highest density within Rq .

3. Label Propagation: We propagate the labels using the labelling
function LP̂

P̂TR
introduced in (3), resulting in labeling

∑B
q=1|Rq|

points by propagating the true labels in each topological region.
4. Initial Labeled Set: We denote by Ŝ0 this first set of labeled and

pseudo-labeled points, which includes true labels obtained di-
rectly from the oracle, and estimated labels while diffusing the
true labels to the topological regions.

The label propagation scheme is employed on proper topological re-
gions to augment the sample size for training in a small budget sce-
nario with a fixed number of calls to the oracle, as proposed in [19].
This procedure is summarized in Figure 4.

The use of proper topological regions confers distinct advantages
over conventional clustering methodologies, manifesting in several
key facets. Unlike generic clustering methods such as k-means,
which impose assumptions of specific structural configurations such
as spherical clusters, our approach prioritizes the inherent topology
of the data. This inherent flexibility enables our algorithm to dis-
cern and delineate connected components even amidst ambiguity in



Table 1: Dataset statistics: ntrain is the size of the training set, ntest is
the size of the test set, m is the number of features, c is the number
of classes, and imbalance corresponds to the class imbalance ratio.

Dataset ntrain ntest m c imbalance
protein [26] 756 324 77 8 0.70

banknote [40] 943 405 4 2 0.83

coil-20 [45] 1008 432 1024 20 1.00

isolet [22] 4366 1872 617 26 0.99

pendigits [40] 7694 3298 16 10 0.92

nursery [40] 9070 3888 8 4 0.09

shape, thus circumventing the limitations imposed by rigid structural
assumptions. Furthermore, the efficacy of our pseudo-labeling strat-
egy hinges upon the purity of clusters, a criterion facilitated by the
judicious selection of clustering methods and a sufficiently rich as-
sortment of clusters. When these conditions are met, pseudo-labeling
emerges as a potent tool, yielding commendable results that under-
score its utility as a pivotal component within our methodology. This
nuanced interplay between proper topological regions and pseudo-
labeling not only enhances the discriminative power of our approach
but also imbues it with resilience against the intricacies and uncer-
tainties inherent in real-world datasets. In essence, our methodolog-
ical framework represents a paradigm shift in the realm of multi-
class classification, offering a versatile and robust alternative to tradi-
tional clustering methodologies by prioritizing topological integrity
and harnessing the power of pseudo-labeling.

5 Empirical results
We conduct experiments to evaluate how the proposed approach
identifies valuable examples for the initial training set6. We use six
datasets commonly employed in active learning, known for their
topological structure, with statistics presented in Table 1.

We use Euclidean distance d, but note that the parametrization
in (2) allows for more general geometries. For optimizing Algo-
rithm 1, we use the Tree-structured Parzen Estimator (TPE) [8] with
l = 500 trials and a step size s of 0.01 for the line search procedure.
To estimate P, we use (9) with the distance to measure based on
the ℓ nearest neighbors with ℓ being the sample size, if smaller than
2000, and 2000 otherwise. In all experiments, we use the random for-
est classifier [27] as the base estimator with default parameters. We
consider several budgets B ∈ {3, 10, 20}, and conduct 20 stratified
random splits, allocating 70% of the data to training and 30% to test-
ing. We evaluate performance using balanced classification accuracy
[11]. For data preprocessing, we remove duplicate samples and those
with null values, then apply standard min-max normalization.

5.1 Rips graph vs σ-Rips graph

To validate our hypothesis regarding the density-aware threshold de-
fined by Equation (2) for class similarity and to justify our extension
of the Rips graph to accommodate this concept, we conduct a com-
parative study shown in Figure 5. This comparison is carried out be-
tween the Rips graph and the σ-Rips graph using the protein dataset.
The results for the remaining datasets are provided in Figure 6 in
Appendix C4. The plot illustrates the threshold optimization process
for both the Rips graph and the σ-Rips graph, with the aim of mini-
mizing the Purity Size cost function. In the plot, the threshold for the

6 The codes for the proposed approach are available for research purposes
https://github.com/Lies0zeta/PALPTR-.

Rips graph (depicted in blue) remains constant and is represented as a
horizontal line, whereas the threshold for the σ-Rips graph (depicted
in orange) varies as a non-constant function. The respective param-
eters are optimized to minimize the purity size function, resulting in
a noticeable reduction in the objective function from 0.2111 in the
constant case to 0.1722 in the non-constant case.

In Figure 5, we also include two additional side plots: the distri-
bution of the dataset’s density estimation P̂ along the x-axis and the
distribution of Euclidean distances in the distance matrix D along the
y-axis. It is important to note that according to the definitions of the
Rips graph (Def. 1) and the σ-Rips graph (Def. 2), threshold values
larger than the maximum distance result in a fully connected graph.
From this figure, it is evident that the values of the optimal thresh-
old rule found in the hypothesis class of the σ-Rips graph, using our
proposed threshold function σ(·; (δ, r, t, τ)) given in (2), are nega-
tively correlated with the density estimation P̂. These observations
hold for other datasets reported in the appendix4, except for coil-20
and nursery collections, where both achieve the same performance.
These findings provide empirical evidence supporting our hypothe-
sis that class similarity is a density-aware measure. They also validate
our choice of σ(·; (δ, r, t, τ)) given in (2) as an appropriate threshold
function to generalize the Rips graph.

5.2 Cold-start results

For the cold-start experiments, we compare our approach with the
following unsupervised methods:

• K-Means clustering (KM) has been used for active learning in
Zhu et al. [48], to generate the initial training set by labeling the
closest sample to each centroid.

• K-Means clustering with model examples (KM+ME). A vari-
ant of KM proposed in Kang et al. [29], Hu et al. [28] adds arti-
ficial samples from the centroids, named model examples, to the
initial training set. This approach leads to an initial training set
twice as large as the one created using K-Means.

• K-Medoids clustering (Km) is very similar to K-Means except
that it uses the actual samples for centers, namely the medoids, as
the center of each cluster. These medoids are then used to form
the initial training set in active learning [36].

• Agglomerative Hierarchical Clustering (AHC) is a bottom-up
clustering approach that builds a hierarchy of clusters. Initially,
each sample is a singleton cluster. Then, the algorithm recursively
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Figure 5: Comparison study between the Rips graph and the σ-Rips
graph on the protein dataset: the Purity Size score is reported for each
minimizer on top right.
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Table 2: Average balanced classification accuracy (in %) and standard deviation of random forest classifier with the initial training set obtained
from different methods over 20 stratified random splits for different budgets B. ↑/↓ indicate statistically significantly better/worse performance
than Random Selection RS, according to a Wilcoxon rank sum test (p < 0.05) [44].

Dataset B RS KM KM+ME Km AHC FFT APC PTR

3 16.9(4.0) 21.2↑(1.8) 23.9↑(2.2) 21.2↑(4.4) 22.7↑(2.5) 17.4(3.3) 16.7(3.3) 22.1↑(6.2)
protein [26] 10 28.2(3.2) 30.6↑(4.6) 31.4↑(4.5) 29.3↑(4.4) 31.6↑(3.7) 21.8(3.8) 28.8(3.4) 40.5↑(3.9)

20 36.4(3.8) 42.1↑(3.9) 45.5↑(2.5) 39.2(4.4) 43.4↑(3.4) 26.1↓(3.4) 39.2(3.7) 54.0↑(3.4)

3 55.5(7.2) 74.0↑(4.6) 84.3↑(5.6) 62.5↑(3.3) 63.7↑(4.5) 58.2↑(7.3) 58.7(8.0) 70.2↑(14.7)
banknote [40] 10 79.9(9.9) 85.2↑(5.7) 86.8↑(4.8) 87.6↑(3.3) 85.6↑(5.0) 70.6↓(5.3) 82.4(6.9) 88.7↑(4.4)

20 87.6(2.9) 90.7↑(2.4) 92.4↑(2.0) 92.3↑(2.4) 92.6↑(2.9) 71.9↓(7.2) 90.9↑(3.2) 93.9↑(3.4)

3 12.6(2.6) 15.0↑(0.0) 15.0↑(0.0) 15.0↑(0.0) 15.0↑(0.0) 10.8↓(2.0) 11.7(2.3) 13.6(1.7)
coil-20 [45] 10 29.0(5.7) 36.7↑(4.2) 38.2↑(2.7) 32.9↑(5.1) 36.0↑(3.7) 18.6↓(3.4) 27.2(4.8) 44.2↑(2.4)

20 42.0(5.8) 56.7↑(3.7) 63.0↑(2.8) 42.3(3.5) 58.1↑(4.1) 25.6↓(2.5) 41.4(4.7) 71.1↑(3.8)

3 07.6(1.5) 08.7↑(0.9) 09.7↑(0.6) 07.8(1.6) 09.1↑(1.9) 09.2↑(1.0) 07.5(1.8) 10.8↑(1.1)
isolet [22] 10 13.8(2.3) 22.3↑(1.6) 27.6↑(1.6) 07.1↓(1.9) 23.3↑(1.8) 16.5↑(1.7) 15.4(3.2) 27.5↑(2.8)

20 19.2(2.7) 27.9↑(2.5) 40.4↑(3.2) 10.7↓(2.0) 28.2↑(2.1) 18.8(2.4) 21.1↑(3.1) 38.6↑(3.2)

3 21.5(3.5) 21.3(1.9) 22.5(2.1) 26.6↑(2.6) 19.4↓(1.8) 17.3↓(3.7) 17.8↓(4.9) 29.9↑(0.0)
pendigits [40] 10 37.4(7.2) 62.5↑(3.5) 65.6↑(2.3) 53.9↑(5.2) 61.4↑(1.9) 27.2↓(4.9) 38.3(8.2) 80.1↑(2.6)

20 54.3(5.9) 72.3↑(2.7) 75.8↑(2.3) 64.0↑(3.6) 72.3↑(2.5) 34.8↓(4.5) 52.2(5.9) 87.7↑(4.1)

3 30.7(4.0) 29.2(5.2) 30.2(6.5) 25.0↓(0.2) 28.3↓(3.9) 30.0(3.2) 30.0(3.7) 35.1↑(5.6)
nursery [40] 10 42.7(7.2) 44.5(5.7) 49.3↑(4.0) 28.4↓(1.3) 44.9(7.2) 39.1(3.5) 45.1(6.7) 46.5(6.0)

20 55.3(2.8) 52.8↓(3.3) 54.4(3.0) 32.9↓(1.1) 53.8(2.7) 39.8↓(1.1) 52.5↓(4.9) 54.1(4.5)

merges the closest clusters using a linkage function (Ward linkage
here) until one cluster is left. This process is depicted in a dendo-
gram, with each level representing a merge. AHC has been used
for active learning by pruning the dendogram at a certain level to
form clusters and then selecting the samples closest to the cluster
centroids for the initial training set [20].

• Furthest-First-Traversal (FFT) selects a sequence of examples
where the first example is chosen arbitrarily, and each subsequent
example in the chain is placed as far away from the set of previ-
ously chosen examples as possible. The resulting sequence is then
used as the initial training set for active learning [6].

• Affinity Propagation Clustering (APC) find exemplars of the
sample set which are representative of clusters. It simultaneously
considers all the sample set as possible exemplars and uses the
message-passing procedure to converge to a relevant set of exem-
plars that are used as an initial training set for active learning [28].

Our meta-approach for zero-shot learning, PTR, uses the σ-Rips
graph from Algorithm 1. Table 2 presents the average balanced clas-
sification accuracy for the random forest classifier on Random Se-
lection (RS), competitors, and PTR across all datasets. Propagation
within clusters detected by ToMATo is applied only to PTR, while
competitors use B clusters. Our findings show PTR’s efficacy and su-
periority over random selection and other methods. PTR consistently
outperforms random selection, highlighting its effectiveness for ini-
tiating pool-based active learning. The success of PTR underscores
the importance of Algorithm 1 in identifying the largest proper topo-
logical regions for the initial training set, providing accurate pseudo-
labels that enhance model performance. For instance, in the protein
dataset, labeling 3 points allowed for 94 pseudo labels with an accu-
racy mean (and variance) of 0.9 (0.1) over 20 splits.

PTR competes strongly against baseline strategies for the cold-
start problem in active learning, outperforming others on 4 out of 6
datasets. While methods like APC align with RS, and FFT and Km
sometimes lag behind RS, KM, KM+ME, and AHL show improve-
ments, but PTR remains superior. The Nursery dataset’s class im-
balance and our label propagation step degrade training data quality.
The estimator training lacks mechanisms to handle this imbalance,

leading to suboptimal performance. On the COIL-20 dataset, PTR
excels with budgets of 10 and 20 but performs unusually at a budget
of 3, where all top approaches show zero variance, indicating poten-
tial issues with the balanced accuracy metric in low-class scenarios.

KM+ME improves classification accuracy by creating artificial ex-
amples from K-means centroids, mitigating class imbalance, reduc-
ing overfitting, and ensuring better data distribution coverage. This
enhances classifier robustness, making KM+ME a strong benchmark
despite differing assumptions from our routine. Overall, PTR demon-
strates robustness and versatility in active learning, especially for
topologically structured data, offering enhanced model performance
and accelerated learning in multi-class classification.

6 Conclusion
In this study, we introduce a data-driven meta-approach for pool-
based active learning strategies, specifically addressing multi-class
classification problems. Central to our methodology is the concept of
proper topological regions within a sample set. We explain the theo-
retical basis of this concept and formulate a black-box optimization
problem to identify these regions. We also demonstrate the appli-
cation of proper topological regions in zero-shot learning, showing
their effectiveness in guiding the selection of initial data points for
labeling. Our extensive empirical evaluation across diverse bench-
mark datasets under resource-constrained conditions highlights the
robustness and efficacy of our approach. However, further research
is needed. We aim to conduct a rigorous theoretical analysis, includ-
ing the derivation of generalization bounds to ensure optimal per-
formance. We also advocate exploring semi-supervised methodolo-
gies that integrate a regularization term from the proper topological
regions. Additionally, the issue of class imbalance, crucial in real-
world scenarios, requires careful investigation. Inspired by works
like [7], we plan to explore imbalanced learning settings and develop
tailored solutions for asymmetrical class distributions. Finally, while
this method focuses on H0 features, similar to ToMATo, it would be
interesting to include all TDA features (Betti numbers from zero to
infinity) and select the relevant ones. This is beyond the scope of this
study but represents an intriguing area for future research.
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