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Explicit Runge-Kutta schemes with hybrid high-order methods for

the wave equation in first-order form*

Alexandre Ern� Rekha Khot�

November 2, 2024

Abstract

We analyze the approximation of the acoustic wave equation in its first-order Friedrichs formu-
lation by explicit Runge-Kutta (ERK) schemes in time combined with hybrid high-order (HHO)
methods in space. We propose two general assumptions (I1)-(I2) for an interpolation operator to
evaluate the consistency error, and establish energy-error estimates in the time-continuous setting.
We give several examples of interpolation operators: the classical one in the HHO literature based
on L2-orthogonal projections and others from, or inspired from, the hybridizable discontinuous
Galerkin (HDG) literature giving improved convergence rates on simplices. In the fully discrete
analysis, the key observation is that it becomes crucial to bound the consistency error in space by
means of the stabilization seminorm only. We formulate three abstract properties (A1)-(A3) to
lead the analysis and prove that, under suitable CFL conditions for second- and third-order ERK
schemes, the energy error converges optimally in time and quasi-optimally in space, with optimal
rates recovered on simplicial meshes. The abstract foundations of our analysis should facilitate
its application to other nonconforming hybrid methods such as HDG and weak Galerkin (WG)
methods.

Mathematics Subject Classification: 35L05, 65M15, 65M60.

Keywords: Acoustic wave equation, hybrid high-order, hybridizable discontinuous-Galerkin, Friedrichs
formulation, explicit Runge-Kutta, energy-error estimates, CFL conditions, interpolation operators.

1 Introduction

Wave propagation is encountered in a variety of physical phenomena, e.g., earthquakes and other
seismic activities, ultrasound wave imaging, etc. In this work, we focus on the acoustic wave equa-
tion. Many numerical methods exist to approximate this equation, either in its original second-order
formulation in time or as a first-order system in time. Here, we are concerned with the (well-known)
first-order setting in time based on a Friedrichs-type formulation involving a skew-symmetric differen-
tial operator in space (namely, gradient and divergence operators). The resulting formulation involves
two unknowns: a vector-valued dual variable and a scalar-valued primal variable.

There are many available schemes in the literature to discretize in space the acoustic wave equation
in its Friedrichs formulation. The first possibility is to use conforming finite element methods (FEM)
with fluctuation-based stabilization, e.g., subgrid viscosity, local projection stabilization or gradient-
jump penalty (also called continuous interior penalty). Implicit Euler schemes combined with stabilized
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conforming FEM are reviewed in [18, Chapter 77], following ideas originally introduced in [22] for
subgrid stabilization and linear monotone operators. Moreover, explicit Runge-Kutta (ERK) schemes
combined with stabilized conforming FEM for time-dependent Friedrichs systems are analyzed in [5]
(see also [18, Chapter 78]). The second possibility for space discretization is to use virtual element
methods (VEM), which can be viewed as a generalization of conforming FEM to polyhedral grids. A
VEM discretization for the first-order form of the acoustic wave equation, based on a dG approximation
for the primal variable and a VEM approximation for the dual variable along with a θ-scheme in time,
is studied in [12]. The third possibility for space discretization is to use discontinuous Galerkin (dG)
methods. ERK schemes combined with dG methods for system of conservation laws were developed
in [10]. Moreover, space-time dG methods for time-dependent Friedrichs systems are investigated in
[20, 11], and more specifically in [2] for the acoustic wave equation with point singularities. Notice
also that stabilized conforming FEM and dG are amenable to a unified analysis in the context of ERK
schemes, as already shown in [5].

The fourth possibility for space discretization is to use nonconforming hybrid methods, such as
hybridizable discontinuous Galerkin (HDG), weak Galerkin (WG), or hybrid high-order (HHO) meth-
ods. These methods are closely interlinked, as highlighted in [7] (see also [6, Chapters 1&3]). Let us
briefly comment on these methods in the context of elliptic problems. Both WG and HHO methods
are formulated in terms of cell- and face-based polynomials which approximate the primal variable in
the mesh cells and on its faces, respectively. The equal-order setting considers cell- and face-based
polynomials having the same degree, whereas the cell-based polynomials are one order higher than the
face-based polynomials in the mixed-order setting. Both HHO and WG methods reconstruct locally a
discrete gradient from the local unknowns (called weak gradient in WG). The devising viewpoint for
HDG methods is somewhat different, as additional cell unknowns are introduced to approximate the
dual variable, and the stabilization is introduced via the numerical flux trace. However, as shown in [7],
the HDG dual variable is nothing but the discrete gradient reconstructed from the local cell and face
variables. Moreover, the numerical flux trace in HHO and WG methods can be explicitly identified in
terms of the reconstructed gradient and the stabilization. Furthermore, we notice that nonconforming
VEM is also closely related to HDG, WG, and HHO. For instance, the computable projection of the
gradient of virtual functions can be expressed using the gradient reconstruction operator.

Nonconforming hybrid methods have already been used to approximate the acoustic wave equation
in its Friedrichs formulation. For both HDG and HHO methods, previous work approximated the dual
variable in a dG fashion (by using piecewise vector-valued polynomials) and the primal variable using
cell and face unknowns. Implicit and explicit RK schemes for HDG methods are proposed in [24]
and [25], respectively, whereas the convergence analysis is performed in [9] in the time-continuous
case and in [21] for implicit schemes using continuous finite elements in time. Implicit and explicit
RK schemes for HHO methods are proposed in [3], and the convergence analysis is performed in [4]
in the time-continuous case. In the WG setting, we mention [28], where a dG method is used for
the primal variable and a WG method for the dual variable, together with an implicit Euler scheme
in time. Furthermore, the space semi-discrete analysis of the WG approximation of time-dependent
abstract Friedrichs systems is discussed in [27]. Nonconforming hybrid methods offer some advantages
with respect to dG methods. For implicit time-schemes, one can use static condensation to reduce
substantially the number of unknowns. Moreover, interior penalty dG methods come with a lower
bound on the stabilization weight, which is not the case for nonconforming hybrid methods. A third
advantage in the context of nonlinear problems is that the integration of nonlinear behavior laws is
only required at the quadrature nodes in the cells, but not on the faces [1].

The goal of the present work is to derive error estimates for the acoustic wave equation in a
fully discrete setting, using second- and third-order ERK schemes (referred as ERK2 and ERK3,
respectively) in time and HHO methods in space (ERK-HHO schemes in short). Owing to the above
discussion, our results also apply when other nonconforming hybrid methods, such as HDG and WG,
are employed for space discretization. To our knowledge, this is the first fully discrete analysis for
nonconforming hybrid methods with explicit time-stepping schemes applied to the wave equation in
its Friedrichs formulation. One of the main challenges in the analysis is to deal with the static coupling
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between face and cell unknowns. This has already been done in [19], but only for the second-order
formulation in time.

Following the ideas in [5], our fully discrete analysis hinges on energy estimates. ERK schemes
are antidissipative in nature, that is, they produce energy at each time step, as originally emphasized
in [23], and this energy production needs to be compensated by the dissipation of the stabilization in
space. The main flavour of our results on ERK-HHO schemes is similar to those achieved for ERK-
dG methods in [26, 5], namely energy-error estimates invoke a 4

3 -CFL condition for ERK2 and the
usual CFL condition for ERK3. There is, however, an important difference between ERK-HHO and
ERK-dG schemes, since we stabilize only the primal variable whereas both primal and dual variables
are stabilized in ERK-dG. This in itself makes the present method more appealing as it reduces the
amount of energy dissipation. In addition, we achieve higher convergence rates in space, O(hk+1), on

simplices and the same convergence rates as ERK-dG, O(hk+
1
2 ), on polyhedra.

Concerning the analysis, we mention three main contributions.

� To address the static coupling between face and cell unknowns, we formulate three abstract
properties (A1)-(A3) (see Section 5.1) to lead the analysis, thereby facilitating the application
of our results to other nonconforming hybrid methods.

� We highlight a nontrivial novelty in the analysis when treating the fully discrete case instead
of the time-continuous setting (as in previous works). Indeed, in the fully discrete setting, it
becomes crucial to bound the consistency error in space produced at each time step by means of
the stabilization seminorm only, and not the full HHO norm. This subtle aspect of the analysis
is perhaps not that well-known since previous works essentially focused on the time-continuous
setting.

� As usual, the consistency error is defined through an interpolation operator. Here, we formulate
two abstract assumptions (I1)-(I2) (see Section 4.1) on the interpolation operator to lead the
analysis, again with the aim to facilitate the application to other nonconforming hybrid methods.
Interestingly, we consider altogether five interpolation operators depending on the discrete setting
(equal- vs. mixed-order, simplicial vs. polyhedral meshes), and some of these operators come
from the HDG literature (see Table 1.1 below and Table 7.1 for more details; these operators
are commonly known as HDG projections, but we call them HDG interpolation operators for
uniformity). This illustrates the mutual benefits promoted by building bridges among methods.

HDG HDG interpolation on simplices [8]

HHO HHO interpolation on polyhedra [14]

HDG-HHO
HDG interpolation modified with HHO stabilization

Present
on simplices

HDG+ HDG interpolation modified for mixed-order on simplices [16]

H+ H+ interpolation for dual variable combined with
[17]

HHO interpolation for primal variable on polyhedra

Table 1.1: Names of the interpolation operators (left), their main usage (middle), and references
(right)

The paper is organized as follows. Section 2 introduces the acoustic wave equation as a first-order
PDE system. Section 3 provides basic tools such as mesh assumptions, discrete spaces, and discrete
operators required to formulate the HHO method. Section 4 is devoted to the time-continuous error
analysis and introduces the main tools to estimate the consistency error in space. Section 5 states
our main assumptions and results on the time-discrete error analysis. Section 6 contains the proofs
of the results from Section 5. In Sections 4 through 6, we focus on the equal-order setting with plain
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least-squares (LS) stabilization. Finally, the mixed-order setting with other choices of stabilization is
discussed in Section 7.

We use standard notation for the Lebesgue and Sobolev spaces, as well as for the Bochner–Sobolev
spaces in the space-time setting. Boldface notation is used for vectors and vector-valued fields. For a
weight function ϕ ∈ L∞(Ω) taking positive values uniformly bounded from below away from zero, we

introduce the shorthand notation ∥w∥L2(ϕ;Ω) := ∥ϕ
1
2w∥L2(Ω) for all w ∈ L2(Ω), together with a similar

notation for vector-valued fields in L2(Ω).

2 Model problem

Let Ω be an open bounded polyhedral domain in Rd for d ∈ {2, 3} with Lipschitz boundary Γ. The
first-order Friedrichs-type formulation of the acoustic wave equation defined on the space domain Ω
and the time domain J := (0, Tf ) with a final time Tf > 0 consists of the coupled PDEs in J × Ω,

ρ∂tσ −∇v = 0, (2.1a)

1

κ
∂tv −∇·σ = f, (2.1b)

involving as unknowns the dual variable (or flux) σ : J×Ω → Rd and the primal variable (or velocity)
v : J × Ω → R. The parameters are the source term, f : J × Ω → R, the bulk modulus, κ > 0, and
the density, ρ > 0, both assumed (for simplicity) to be piecewise constant on a polyhedral partition

of Ω. The wave speed is defined as c :=
√

κ
ρ . The initial conditions are

σ(0) = σ0, v(0) = v0 in Ω, (2.2)

with given data σ0 : Ω → Rd and v0 : Ω → R, and the boundary condition is (for simplicity)

v = 0 on J × Γ. (2.3)

We set Σ := H(div,Ω), V0 := H1
0 (Ω), and V 0 := Σ× V0 ⊂ L := L2(Ω)× L2(Ω). Our convention

is to underline pairs of functions composed of one dual variable and one primal variable. We assume
that f ∈ L2(J ;L2(Ω)), v := (σ, v) ∈ H1(J ;L) ∩ L2(J ;V 0), and v0 := (σ0, v0) ∈ L. The space L
is equipped with the usual L2-inner product. We introduce the linear operators M : L → L and
B : V 0 → L defined by

M(w) := (ρτ , 1κw) ∀w ∈ L and B(w) := −(∇w,∇·τ ) ∀w := (τ , w) ∈ V 0. (2.4)

The norms ∥·∥L, ∥·∥ρ, 1
κ
and ∥·∥ 1

ρ
,κ in L are induced by the inner products ⟨·, ·⟩L, ⟨·, ·⟩ρ, 1

κ
:= ⟨M(·), ·⟩L,

and ⟨·, ·⟩ 1
ρ
,κ := ⟨M−1(·), ·⟩L. With the above notation, the model problem (2.1) can be rewritten as

to seek, for all t ∈ J , v(t) := (σ(t), v(t)) ∈ V 0 satisfying in L2(J),

M(∂tv(t)) + B(v(t)) = f(t), (2.5)

with f(t) := (0, f(t)), and the initial condition v(0) = v0. It is well-known that the energy E(t) :=
1
2∥v(t)∥

2
ρ, 1

κ

satisfies the following balance law a.e. in J :

E(t) = E(0) +

∫ t

0
⟨f(s), v(s)⟩L ds. (2.6)

If the source term vanishes, (2.6) implies energy conservation, i.e., E(t) = E(0) a.e. in J .
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3 Space discretization

This section presents the mesh assumptions, the local and global discrete spaces, and the discrete
operators in the HHO setting. The HHO method was originally introduced in [13] for linear elasticity
problems and in [14] for diffusion problems.

3.1 Mesh

Let {Th}h>0 be a sequence of shape-regular polyhedral meshes of Ω [6, 15]. The set Fh contains the
mesh faces, which is divided into the set of mesh interfaces F i

h and the set of boundary faces F∂
h . A

generic cell is denoted by T ∈ Th with diameter hT , unit outward normal nT , and the set F∂T collects
the mesh faces located at the boundary of T . We assume that each mesh Th fits the partition of Ω into
polyhedral subdomains associated with the coefficients ρ and κ. Thus, both coefficients are piecewise

constant on Th. Their restriction to every T ∈ Th is denoted by ρT and κT , and we set cT :=
√

κT
ρT

.

In what follows, the inequality a ≤ Cb for positive numbers a and b is often abbreviated as
a ≲ b. The value of C can be different at each occurence provided it is independent of the parameters
ρ, κ, ℓΩ := diam(Ω), Tf , the mesh-size h, and (from Section 5 onwards) the time step τ ; the value can
depend on the mesh shape-regularity, the polynomial degree, and the space dimension.

3.2 Discrete spaces

To approximate σ locally, we consider the vector-valued d-variate polynomial space Σk
T := Pk(T ;Rd)

of degree k ≥ 0 for all T ∈ Th, and define the dG space on the mesh Th as

Σk
T := ×

T∈Th
Σk

T . (3.1)

To approximate v locally, we consider discrete unknowns attached to the mesh cells and to the mesh
faces. Let k ≥ 0 (resp. k′ ∈ {k, k + 1}) be the polynomial degree associated with the face (resp. cell)
unknowns. The HHO space V̂ k

h is defined as

V̂ k
h := V k′

T × V k
F , V k′

T := ×
T∈Th

V k′
T , V k

F := ×
F∈Fh

V k
F , (3.2)

where V k′
T := Pk′(T ;R) (resp. V k

F := Pk(F ;R)) is composed of the scalar-valued d-variate (resp.
(d − 1)-variate) polynomials of degree at most k′ (resp. k) restricted to the cell T (resp. face F ).
Combining everything together, we define the triple

V̂ k
h :=

V k
T :=︷ ︸︸ ︷

Σk
T × V k′

T × V k
F︸ ︷︷ ︸

=:V̂ k
h

. (3.3)

To impose the zero Dirichlet boundary condition, we define V k
F0 := {vF ∈ V k

F : vF = 0 ∀F ∈ F∂
h}

and set V̂ k
h0 := V k

T × V k
F0 = Σk

T × V̂ k
h0 with the HHO subspace V̂ k

h0 := V k′
T × V k

F0.

Consistently with the above notation, we underline pairs of discrete functions defined cellwise (com-
posed of one dual variable and one primal variable), and we use a hat for HHO pairs of primal functions
composed of one function defined cellwise and one function defined facewise. A generic element in V̂ k

h

is denoted by

ŵh := (

wT :=︷ ︸︸ ︷
τ T , wT , wF︸ ︷︷ ︸

=:ŵh

). (3.4)
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The local components of ŵh ∈ V̂ k
h attached to the cell T ∈ Th and its faces F ∈ F∂T are denoted by

ŵT := (

wT :=︷ ︸︸ ︷
τT , wT , w∂T︸ ︷︷ ︸

=:ŵT

) ∈ V̂ k
T :=

V k
T :=︷ ︸︸ ︷

Σk
T × V k′

T × V k
∂T︸ ︷︷ ︸

=:V̂ k
T

, (3.5)

where w∂T := (wF )F∈F∂T
and V k

∂T :=×F∈F∂T
V k
F . We fix k′ = k until the end of Section 6, and

discuss the mixed-order case k′ = k + 1 in Section 7.

Let Πk
T (resp. Πk

∂T ) be the L2(T )-orthogonal (resp. L2(∂T )-orthogonal) projection onto V k
T (resp.

V k
∂T ). Let Πk

T (resp. Πk
F ) be the piecewise L2-orthogonal projection onto V k

T (resp. V k
F ) and let

Πk
T := (Πk

T ,Π
k
T ). For later use, we recall that, for all T ∈ Th and all (τ , w) ∈ Hℓτ (Ω)×Hℓw(Ω) with

ℓτ ∈ [0, k + 1] and ℓw ∈ [0, k + 1], the following holds:

∥Πk
T (τ )− τ∥L2(T ) ≲ hℓτT |τ |Hℓτ (T ), ∥Πk

T (w)− w∥L2(T ) ≲ hℓwT |w|Hℓw (T ). (3.6)

3.3 Discrete operators

The HHO formulation is defined locally through a gradient reconstruction operator and a stabilization
operator. The local gradient reconstruction operator GT : V̂ k

T → Σk
T is defined such that, for all

ŵT ∈ V̂ k
T and all T ∈ Th,

(GT (ŵT ), q)L2(T ) = (∇wT , q)L2(T ) + (w∂T − wT |∂T , q·nT )L2(∂T ) ∀q ∈ Σk
T . (3.7)

The global gradient reconstruction operator GT : V̂ k
h → Σk

T is defined as (GT (ŵh))|T := GT (ŵT ) for

all T ∈ Th and all ŵh ∈ V̂ k
h .

The difference operator δ∂T is such that, for all ŵT ∈ V̂ k
T and all T ∈ Th,

δ∂T (ŵT ) := wT |∂T − w∂T . (3.8)

With this notation, we define the stabilization bilinear form sh : V̂ k
h × V̂ k

h → R as

sh(ŵh, ẑh) :=
∑
T∈Th

sT (ŵT , ẑT ), sT (ŵT , ẑT ) := λ−1
T (δ∂T (ŵT ), δ∂T (ẑT ))L2(∂T ), (3.9)

with the stabilization parameter

λT := cTρT = c−1
T κT . (3.10)

Notice that the weight λT is h-independent; we speak of O(1)-stabilization, as opposed to O( 1h)-
stabilization when λT scales as hT . Moreover, sT bounds a LS penalty directly on δ∂T ; we speak of
LS stabilization, as opposite to other stabilizations which penalize a higher-order operator acting on
δ∂T . The bilinear form sh is symmetric positive-semidefinite on V̂ k

h × V̂ k
h . We define the following

seminorm on V̂ k
h : For all ŵh ∈ V̂ k

h0,

|ŵh|2s :=
∑
T∈Th

|ŵT |2s,T , |ŵT |2s,T := sT (ŵT , ŵT ).

The standard HHO norm is defined as

∥ŵh∥hho :=

{ ∑
T∈Th

λ−1
T

(
∥∇wT ∥2L2(T )

+ h−1
T ∥δ∂T (ŵT )∥2L2(∂T )

)} 1
2

. (3.11)

Proceeding as in [14] proves that, for all ŵT ∈ V̂ k
T and all T ∈ Th,

∥∇wT ∥2L2(T )
+ h−1

T ∥δ∂T (ŵT )∥2L2(∂T ) ≈ ∥GT (ŵT )∥2L2(T )
+ h−1

T ∥δ∂T (ŵT )∥2L2(∂T ). (3.12)
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Moreover, invoking the Cauchy-Schwarz inequality, a discrete trace inequality and an inverse inequality
shows that, for all ŵh ∈ V̂ k

h ,

∥GT (ŵh)∥2L2(Ω)
≲

∑
T∈Th

{
h−2
T ∥wT ∥2L2(T ) + λTh

−1
T |ŵT |2s,T

}
. (3.13)

3.4 Space semi-discrete problem

We define the bilinear form ah : V̂ k
h × V̂ k

h → R as

ah(ŵh, ẑh) := −(GT (ŵh), ξT )L2(Ω) + (τ T ,GT (ẑh))L2(Ω) + sh(ŵh, ẑh), (3.14)

for all ŵh := (τ T , wT , wF ), ẑh := (ξT , zT , zF ) ∈ V̂ k
h. The key dissipativity property of the HHO

discretization in the present Friedrichs-like formulation is

ah(ŵh, ŵh) = |ŵh|2s ∀ŵh ∈ V̂ k
h0. (3.15)

The space semi-discrete problem consists of finding v̂h ∈ C1(J ; V̂ k
h0) such that, for all t ∈ J ,

⟨∂tvT (t), zT ⟩ρ, 1
κ
+ ah(v̂h(t), ẑh) = ⟨f(t), zT ⟩L ∀ẑh ∈ V̂ k

h0, (3.16)

with an initial condition specified in the next section.

4 Time-continuous error analysis

This section is devoted to the time-continuous error analysis. In particular, we introduce the no-
tion of consistency error in space, which hinges on an interpolation operator satisfying the abstract
assumptions (I1)-(I2) stated below.

4.1 Interpolation and consistency

To proceed generally, we introduce two functional spaces to define and estimate the consistency error.
The space Y := Hνσ(Ω)×Hνv(Ω) for some νσ ∈ [0, 1] and νv ∈ (12 , 1] is the domain of the interpolation
operator, whereas the space Z := Hµσ(Ω) × H1

0 (Ω) for some µσ ∈ [νσ, 1] is a subspace of Y to be
used to estimate the consistency error.

We consider an interpolation operator of the form

Îh : Y → V̂ k
h, Îh := (

IT :=︷ ︸︸ ︷
IT , IT ,Π

k
F︸ ︷︷ ︸

=:Îh

). (4.1)

Notice that we allow for some generality in the first two components of Îh, whereas the third component
is always the L2-orthogonal projection Πk

F . Then, assuming that the exact solution v(t) ∈ Y ∩ V 0 for

all t ∈ J , the consistency error is the linear form ψh(v(t); ·) on V̂ k
h0 defined as

ψh(v(t); ẑh) := ah(Îh(v(t)), ẑh)− ⟨B(v(t)), zT ⟩L ∀ẑh ∈ V̂ k
h0. (4.2)

We also introduce the notation

ψ̂h(v(t); ẑh) := ψh(v(t); (0, ẑh)) ∀ẑh ∈ V̂ k
h0. (4.3)

For a linear form ϕh ∈ (V̂ k
h0)

′, we define the following quantities:

∥ϕh∥(hho)′ := sup
ẑh∈V̂ k

h0

|ϕh(ẑh)|
∥ẑh∥hho

and ∥ϕh∥s′ := sup
ẑh∈V̂ k

h0

|ϕh(ẑh)|
|ẑh|s

. (4.4)

7



Note that ∥·∥(hho)′ is always bounded, whereas ∥·∥s′ may be unbounded.

Our analysis is based on the following key assumptions on the interpolation operator Îh:

(I1) IT is bounded, i.e., for all w ∈ Y ,

∥IT (w)∥ρ, 1
κ
≲ ∥w∥Hν(ρ, 1

κ
;Th) :=

{ ∑
T∈Th

(
ρT ∥τ∥2Hνσ (T ) +

1

κT
∥w∥2Hνv (T )

)} 1
2
, (4.5)

with ∥w∥2Hνv (T ) := ∥w∥2L2(T ) + h2νvT |w|2Hνv (T ), and a similar notation for ∥τ∥Hνσ (T ).

(I2) The consistency error ψh(v(t); ·) satisfies the following two properties: For all t ∈ J ,

(I2a) ψh(v(t); (ξT , 0, 0)) = 0 for all ξT ∈ Σk
T . This means that ψh(v(t); ẑh) = ψ̂h(v(t); ẑh) for all

ẑh := (ξT , ẑh) ∈ V̂ k
h0,

(I2b) Assuming that v(t) ∈ Z, ∥ψ̂h(v(t); ·)∥s′ is bounded in terms of a suitable norm ∥v(t)∥Z .

We give two examples of interpolation operator Îh satisfying (I1)-(I2) in Sections 4.3 and 4.4, but
before that, we show how the assumptions (I1)-(I2) can be used to derive an error estimate in the
time-continuous case.

4.2 Error analysis

We use the following shorthand notation:

∥w∥pLp(Jt;∗∗) :=

∫
Jt

∥w(s)∥p∗∗ ds for p ∈ [1,∞), ∥w∥C0(Jt;∗∗) := sup
s∈Jt

∥w(s)∥∗∗, (4.6)

where Jt := (0, t) for all t ∈ J , and the (seminorm) ∥·∥∗∗ depends on the context. We define the space
semi-discrete error as

êh(t) := Îh(v(t))− v̂h(t) := (

eT (t):=︷ ︸︸ ︷
ET (t), eT (t), eF (t)︸ ︷︷ ︸

=:êh(t)

). (4.7)

Lemma 4.1 (Energy identity). Assume that the exact solution satisfies v ∈ C0(J ;V 0) ∩ C1(J ;Y ),
and let v̂h ∈ C1(J ; V̂ k

h0) solve (3.16) with the initial condition vT (0) := IT (v0). The following energy
identity holds for all t ∈ J :

1

2

d

dt
∥eT (t)∥2ρ, 1

κ

+ |êh(t)|2s = ⟨IT (∂tv(t))− ∂tv(t), eT (t)⟩ρ, 1
κ
+ ψ̂h(v(t); êh(t)). (4.8)

Proof. The semi-discrete problem (3.16) and the model problem (2.5) show that, for all ẑh := (ξT , zT , zF )
∈ V̂ k

h0 and all t ∈ J ,

⟨∂teT (t), zT ⟩ρ, 1
κ
+ ah(êh(t), ẑh) = ⟨∂tIT (v(t)), zT ⟩ρ, 1

κ
+ ah(Îh(v(t)), ẑh)− ⟨f(t), zT ⟩L

= ⟨∂tIT (v(t)), zT ⟩ρ, 1
κ
+ ah(Îh(v(t)), ẑh)− ⟨∂tv(t), zT ⟩L − ⟨B(v(t)), zT ⟩L

= ⟨IT (∂tv(t))− ∂tv(t), zT ⟩ρ, 1
κ
+ ψ̂h(v(t); ẑh),

where we used ∂tIT = IT ∂t, the definition (4.2) of ψh, and (I2a). Choosing ẑh := êh(t) and using the
dissipativity property (3.15) concludes the proof.

Theorem 4.2 (Energy-error estimate). In addition to the assumptions of Lemma 4.1, we suppose
that v ∈ L2(J ;Z). The following holds:

max
{1

4
∥eT ∥2C0(J ;ρ, 1

κ
)
,
3

8
∥êh∥2L2(J ;s)

}
≤ ∥IT (∂tv)− ∂tv∥2L1(J ;ρ, 1

κ
)
+ ∥ψ̂h(v; ·)∥2L2(J ;s′). (4.9)
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Proof. Let t ∈ J . The integration from 0 to t in (4.8) and the observation that eT (0) = 0 owing to
the choice of initial condition lead to

1

2
∥eT (t)∥2ρ, 1

κ

+ ∥êh∥2L2(0,t;s) =

∫
Jt

(
⟨IT (∂tv(s))− ∂tv(s), eT (s)⟩ρ, 1

κ
+ ψ̂h(v(s); êh(s))

)
ds. (4.10)

Applying Hölder’s inequality in time to the first term on the right hand-side, the Cauchy-Schwarz
inequality in time to the second term, and Young’s inequality shows that

1

2
∥eT (t)∥2ρ, 1

κ

+
3

4
∥êh∥2L2(Jt;s)

≤ ∥IT (∂tv)− ∂tv∥2L1(Jt;ρ,
1
κ
)
+

1

4
∥eT ∥2C0(Jt;ρ,

1
κ
)
+ ∥ψ̂h(v; ·)∥2L2(Jt;s′)

.

Since the left hand-side is bounded by the right hand-side for any t′ ∈ Jt, we have

1

4
∥eT ∥2C0(Jt;ρ,

1
κ
)
≤ ∥IT (∂tv)− ∂tv∥2L1(Jt;ρ,

1
κ
)
+ ∥ψ̂h(v; ·)∥2L2(Jt;s′)

,

and, consequently,

3

4
∥êh∥2L2(Jt;s)

≤ ∥IT (∂tv)− ∂tv∥2L1(Jt;ρ,
1
κ
)
+

1

4
∥eT ∥2C0(Jt;ρ,

1
κ
)
+ ∥ψ̂h(v; ·)∥2L2(Jt;s′)

≤ 2
(
∥IT (∂tv)− ∂tv∥2L1(Jt;ρ,

1
κ
)
+ ∥ψ̂h(v; ·)∥2L2(Jt;s′)

)
.

This concludes the proof.

4.3 Example 1: Classical HHO analysis

The standard choice of interpolation operator in the HHO error analysis is to set Y HHO := Hνσ(Ω)×
Hνv(Ω), with νσ = 0, νv ∈ (12 , 1], and

ÎHHO

h (w) := (

I
HHO

T (w):=︷ ︸︸ ︷
Πk

T (τ ),Π
k
T (w),Π

k
F (w|F )︸ ︷︷ ︸

=:Î
HHO

h (w)

) ∈ V̂ k
h. (4.11)

An optimal energy error estimate for the semi-discrete problem (3.16) is proven in [4] for O( 1h)-
stabilization leading to O(hk+1) convergence rates. Here, we consider instead O(1)-stabilization, see
(3.9). The consistency error defined using ÎHHO

h is denoted as

ψHHO

h (v(t); ẑh) := ah(Î
HHO

h (v(t)), ẑh)− ⟨B(v(t)), zT ⟩L ∀ẑh ∈ V̂ k
h0. (4.12)

Since Y HHO ∩ V 0 = V 0, no extra regularity is needed on the exact solution to define the consistency
error. Let ZHHO := Hµσ(Ω)×H1

0 (Ω), with µσ ∈ (12 , 1]. For a pair w := (τ , w) ∈ ZHHO, we consider the
seminorm

|w|HHO

Z :=

{ ∑
T∈Th

(
∥γHHO

T (τ )·nT ∥2L2(λT ;∂T ) + hT ∥∇γHHO

T (w)∥2
L2(λ−1

T ;T )

)} 1
2

, (4.13)

with γHHO

T (τ ) := τ −Πk
T (τ ) and γ

HHO

T (w) := w −Πk
T (w).

Lemma 4.3 (Properties (I1)-(I2)). The interpolation operator IHHO

T satisfies (I1)-(I2) with ZHHO as
defined above.

Proof. (1) The stability of L2-projections implies that ∥IHHO

T (w)∥ρ, 1
κ
≤ ∥w∥ρ, 1

κ
≤ ∥w∥Hν(ρ, 1

κ
;Th). This

proves (I1).
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(2a) The definition (4.12) of ψHHO

h and the definition (3.7) of GT for all T ∈ Th lead, for all ξT ∈ Σk
T ,

to

ψHHO

h (v(t); (ξT , 0, 0)) = −(GT (Î
HHO

h (v(t))), ξT )L2(Ω) + (∇v(t), ξT )L2(Ω)

=
∑
T∈Th

{
(Πk

T (v(t)),∇·ξT )L2(T ) − (Πk
∂T (v(t)), ξT ·nT )L2(∂T ) + (∇v(t), ξT )L2(T )

}
=

∑
T∈Th

{
(Πk

T (v(t))− v(t),∇·ξT )L2(T ) + (v(t)−Πk
∂T (v(t)), ξT ·nT )L2(∂T )

}
= 0,

with an integration by parts and the L2-orthogonalities of Πk
T and Πk

∂T in the last two steps. This
proves (I2a).
(2b) A direct calculation shows that, for all ẑh := (zT , zF ) ∈ V̂ k

h0,

ψ̂HHO

h (v(t); ẑh) =
∑
T∈Th

(
(σ(t)−Πk

T (σ(t)))·nT , zT − z∂T
)
L2(∂T )

+ sh(Î
HHO

h (v(t)), ẑh). (4.14)

Using the definition of δ∂T (see (3.8)), we rewrite the above identity as

ψ̂HHO

h (v(t); ẑh) =
∑
T∈Th

{
(λ

1
2
T (σ(t)·nT −Πk

T (σ(t))·nT ), λ
− 1

2
T δ∂T (ẑT ))L2(∂T )

}
+ sh(Î

HHO

h (v(t)), ẑh).

This with the Cauchy-Schwarz inequality implies that

|ψ̂HHO

h (v(t); ẑh)| ≲
{ ∑

T∈Th

(
∥γHHO

T (σ(t))·nT ∥2L2(λT ;∂T ) + |ÎHHO

h (v(t))|2s,T
)} 1

2

|ẑh|s.

Finally, invoking the L2-stability of Πk
∂T , a multiplicative trace inequality and a Poincaré inequality

on T , we infer that

|ÎHHO

h (v(t))|2s,T ≤ λ−1
T ∥v(t)−Πk

T (v(t))∥2L2(∂T )

≲ λ−1
T hT ∥∇(v(t)−Πk

T (v(t)))∥2L2(T )
≤ hT ∥∇γHHO

T (v(t)))∥2
L2(λ−1

T ;T )
.

Hence, we obtain |ψ̂HHO

h (v(t); ẑh)| ≲ |v(t)|HHO

Z |ẑh|s, and thus ∥ψ̂HHO

h (v(t); ·)∥s′ ≲ |v(t)|HHO

Z . This concludes
the proof of (I2b).

Following (4.7), we define the space semi-discrete error as

êHHO

h (t) := ÎHHO

h (v(t))− v̂h(t) := (

e
HHO

T (t):=︷ ︸︸ ︷
EHHO

T (t), eHHO

T (t), eHHO

F (t)︸ ︷︷ ︸
=:ê

HHO

h (t)

). (4.15)

Corollary 4.4 (Energy identity and error estimate). Assume that the exact solution satisfies v
C0(J ;V 0) ∩ C1(J ;Y HHO), and let v̂h ∈ C1(J ; V̂ k

h0) solve (3.16) with the initial condition vT (0) :=
IHHO

T (v0). The following identity holds for all t ∈ J :

1

2

d

dt
∥eHHO

T (t)∥2
ρ, 1

κ

+ |êHHO

h (t)|2s = ψ̂HHO

h (v(t); êHHO

h (t)). (4.16)

In addition assuming that v ∈ L2(J ;ZHHO), we have

max
{1

2
∥eHHO

T ∥2
C0(J ;ρ, 1

κ
)
,
3

4
∥êHHO

h ∥2L2(J ;s)

}
≤ ∥ψ̂HHO

h (v; ·)∥2L2(J ;s′). (4.17)
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Remark 4.5 (Convergence rates). In addition to the assumptions of Corollary 4.4, if there is ℓ ∈
{1, . . ., k + 1} so that v ∈ C0(J ;Hℓ(Ω)×Hℓ(Ω)), we obtain

∥v − vT ∥C0(J ;ρ, 1
κ
) ≲ O(hℓ−

1
2 ). (4.18)

In the case where ℓ = k + 1, this gives O(hk+
1
2 ) convergence rate.

4.4 Example 2: HDG interpolation on simplices

In this section, we evaluate the consistency error using the HDG interpolation operator from [8]. This

improves the O(hk+
1
2 ) convergence rate from Remark 4.5 to O(hk+1) on simplices.

For all w := (τ , w) ∈ Hνσ(T ) × Hνv(T ), with νσ ∈ (12 , 1], νv ∈ (12 , 1], one defines Πh
T (w) :=

(ΠΣ
T (w),Π

V
T (w)) ∈ Pk(T ;Rd)× Pk(T ;R) on any simplex T ∈ Th by solving

(ΠV
T (w)− w, z)L2(T ) = 0 ∀z ∈ Pk−1(T ;R), (4.19a)

(ΠΣ
T (w)− τ , ξ)L2(T ) = 0 ∀ξ ∈ Pk−1(T ;Rd), (4.19b)

((τ −ΠΣ
T (w))·nT , µ)L2(∂T ) = λ−1

T (δ∂T (Π
V
T (w),Π

k
∂T (w|∂T )), δ∂T (0, µ))L2(∂T ) ∀µ ∈ V k

∂T . (4.19c)

As shown in [8], the interpolation operator Πh
T is well-defined. Moreover, if w := (τ , w) ∈ Hℓτ (T ) ×

Hℓw(T ), with ℓτ ∈ [νσ, k + 1], ℓw ∈ [νv, k + 1], the following approximation properties hold:

∥ΠV
T (w)− w∥L2(T ) ≲ hℓwT |w|Hℓw (T ) + λTh

ℓτ
T |τ |Hℓτ (T ), (4.20a)

∥ΠΣ
T (w)− τ∥L2(T ) ≲ hℓτT |τ |Hℓτ (T ) + λ−1

T hℓwT |w|Hℓw (T ). (4.20b)

We define the global HDG interpolation operator Πh
T on Y h := Hνσ(Ω)×Hνv(Ω) by setting (Πh

T (w))|T :=
Πh

T (w|T ) for all T ∈ Th, and we denote its two components by ΠΣ
T and ΠV

T . Then we define the global
interpolation operator such that, for all w := (τ , w) ∈ Y h,

ÎH

h(w) := (

Πh
T (w):=︷ ︸︸ ︷

ΠΣ
T (w),Π

V
T (w),Π

k
F (w|F )︸ ︷︷ ︸

=:Îhh(w)

) ∈ V̂ k
h.

Assuming v(t) ∈ Y h for all t ∈ J , we define the consistency error as

ψh
h(v(t); ẑh) := ah(Î

H

h(v(t)), ẑh)− ⟨B(v(t)), zT ⟩L ∀ẑh ∈ V̂ k
h0. (4.21)

Lemma 4.6 (Properties (I1)-(I2)). The interpolation operator Πh
T satisfies (I1)-(I2) with Zh := Y h.

Proof. (1) The triangle inequality and the approximation estimate (4.20) show that

∥Πh
T (w)∥ρ, 1

κ
≤ ∥Πh

T (w)− w∥ρ, 1
κ
+ ∥w∥ρ, 1

κ

≲

{ ∑
T∈Th

(
ρT

(
h2νσT |τ |2Hνσ (T ) + λ−2

T h2νvT |w|2Hνv (T )

)
+

1

κT

(
h2νvT |w|2Hνv (Ω) + λ2Th

2νσ
T |τ |2Hνσ (T )

))} 1
2

+ ∥w∥ρ, 1
κ

≤ 2∥w∥Hν(ρ, 1
κ
;Th),

using that ρTλ
−2
T = 1

κT
for all T ∈ Th in the last step. This proves (I1).

(2a) The definition (4.21) of ψh
h and the definition (3.7) of GT for all T ∈ Th lead, for all ξT ∈ Σk

T , to

ψh
h(v(t); (ξT , 0, 0)) = −(GT (Î

h
h (v(t))), ξT )L2(Ω) + (∇v(t), ξT )L2(Ω)
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=
∑
T∈Th

{
(ΠV

T (v(t))− v(t),∇·ξT )L2(T ) + (v(t)−Πk
∂T (v(t)), ξT ·nT )L2(∂T )

}
= 0,

with an integration by parts, the definition (4.19a) of ΠV
T , and the L2-orthogonality of Πk

∂T in the last
two steps. This proves (I2a).
(2b) Similar arguments lead, for all ẑh := (zT , zF ) ∈ V̂ k

h0, to

ψ̂h
h(v(t); ẑh) = (ΠΣ

T (v(t)),GT (ẑh))L2(Ω) + sh(Î
h
h (v(t)), ẑh) + (∇·σ(t), zT )L2(Ω)

=
∑
T∈Th

{
(ΠΣ

T (v(t))− σ(t),∇zT )L2(T ) + ((ΠΣ
T (v(t))− σ(t))·nT , z∂T − zT )L2(∂T )

+ sT (Î
h
T (v(t)), ẑT )

}
= −

∑
T∈Th

{
((ΠΣ

T (v(t))− σ(t))·nT , δ∂T (ẑT ))L2(∂T ) + λ−1
T (δ∂T (Î

h
T (v(t))), δ∂T (ẑT ))L2(∂T )

}
= 0,

where we used (4.19b) and the definition (3.8) of δ∂T in the third step, and (4.19c) with µ := δ∂T (ẑT )
in the last step. This proves that |ψ̂HHO

h (v(t); ·)| = 0 and hence (I2b).

Following (4.7), we define the space semi-discrete error as

êH

h(t) := ÎH

h(v(t))− v̂h(t) := (

ehT (t):=︷ ︸︸ ︷
Eh
T (t), e

h
T (t), e

HHO

F (t)︸ ︷︷ ︸
=:êhh(t)

). (4.22)

Corollary 4.7 (Energy identity and error estimate). Assume that the exact solution satisfies v ∈
C0(J ;V 0)∩C1(J ;Y h), and let v̂h ∈ C1(J ; V̂ k

h0) solve (3.16) with the initial condition vT (0) := IhT (v0).
The following identity holds for all t ∈ J :

1

2

d

dt
∥ehT (t)∥2ρ, 1

κ

+ |êhh(t)|2s = ⟨Πh
T (∂tv(t))− ∂tv(t), e

h
T ⟩ρ, 1

κ
. (4.23)

In addition, we have

max
{1

4
∥ehT ∥2C0(J ;ρ, 1

κ
)
,
1

2
∥êhh∥2L2(J ;s)

}
≤ ∥Πh

T (∂tv)− ∂tv∥2ρ, 1
κ

. (4.24)

Remark 4.8 (Improved convergence rates on simplices). In addition to the assumptions of Corol-
lary 4.7, if there is ℓ ∈ {1, . . ., k + 1} so that v ∈ C1(J ;Hℓ(Ω)×Hℓ(Ω)), we obtain

∥v − vT ∥C0(J ;ρ, 1
κ
) ≲ O(hℓ). (4.25)

In the case where ℓ = k + 1, this gives O(hk+1) convergence rate.

5 Main results on time-discrete error analysis

Here onwards, we assume that the mesh family {Th}h>0 is quasi-uniform since we are going to invoke
CFL conditions in the context of explicit time-stepping schemes. We could also formulate the CFL
conditions using the minimum mesh-size. In this section, we state our main assumptions to lead
the analysis, we present the ERK2 and ERK3 schemes, and state our main results. The proofs are
postponed to Section 6.
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5.1 CFL conditions

The time interval J = [0, Tf ] is divided into N (open) sub-intervals Jn of equal size τ =
Tf

N having
time nodes (tn)n∈{0,N} with t0 = 0 and tN = Tf . Let c∞ := ∥c∥L∞(Ω). In what follows, the superscript
(•)n refers to a value computed at the discrete time tn; for instance fnT := fT (t

n), ∂tf
n
T := ∂tfT (t

n),
and so on.

We always assume that the following usual CFL condition holds:

τ ≤ ρ1
h

c∞
, (5.1)

for some positive real number ρ1. In the case of ERK2, we need the so-called 4
3 -CFL condition

τ ≤ ρ 4
3
T
− 1

3
f

( h

c∞

) 4
3
, (5.2)

for some positive real number ρ 4
3
. Notice that ρ1 and ρ 4

3
are nondimensional numbers and that (5.2)

implies (5.1) with ρ1 = ρ 4
3

(
ℓΩ

Tf c∞

) 1
3
(recall that h ≤ ℓΩ).

5.2 Main assumptions

We define the linear operators AT : V̂ k
h0 → V k

T and AF : V̂ k
h0 → V k

F0 as follows:

⟨AT (ŵh), zT ⟩L := ah(ŵh, (zT , 0)) and (AF (ŵh), zF )L2(F) := ah(ŵh, (0, zF )), (5.3)

for all ŵh := (τ T , wT , wF ), ẑh := (ξT , zT , zF ) ∈ V̂ k
h0. For all wT ∈ V k

T and for all wF ∈ V k
F0, it is

convenient to define

∥wT ∥s′ := sup
zT ∈V k

T

|(wT , zT )L2(Ω)|
|(zT , 0)|s

, ∥wF∥s′ := sup
zF∈V k

F0

|(wF , zF )L2(F)|
|(0, zF )|s

. (5.4)

We can now state our main abstract assumptions to lead the analysis.

(A1) For all wT ∈ V k
T ,

|(wT , 0)|s ≲ c
1
2∞h

− 1
2 ∥wT ∥L2( 1

κ
;Ω). (5.5)

(A2) There exists a constant CS such that, for all ŵh ∈ V̂ k
h0 with ∥AF (ŵh)∥s′ finite,

|ŵh|s ≤ CS(c
1
2∞h

− 1
2 ∥wT ∥ρ, 1

κ
+ ∥AF (ŵh)∥s′). (5.6)

(A3) There exists a constant CA such that, for all ŵh ∈ V̂ k
h0 with ∥AF (ŵh)∥s′ finite,

∥AT (ŵh)∥ 1
ρ
,κ ≤ CA(c∞h

−1∥wT ∥ρ, 1
κ
+ c

1
2∞h

− 1
2 ∥AF (ŵh)∥s′). (5.7)

The proof of the above properties for the HHO discretization is postponed to Section 6.1. We use a
specific symbol CS and CA (instead of ≲) in (A2) and (A3), respectively, because both constants are
explicitly invoked in the CFL conditions for ERK3.

Remark 5.1 (Comparison with [5]). The property (A1) evaluates HHO functions with zero face
values in the stabilization seminorm, and is essentially the same as the property (2.21) in [5] in the
dG setting. The second property (A2) is the novel property which bounds general HHO functions in
the stabilization seminorm. We notice that the term ∥AF (·)∥s′ accounts for the static coupling between
face and cell unknowns. Finally, the property (A3) is similar to (2.29) in [5] with the additional face
contribution coming from (A2).
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5.3 ERK2 and ERK3 schemes

In the paper, we analyze ERK2 and ERK3 schemes of a particular form, but we show in Section 5.4
that they are equivalent, up to quadrature on f , to any ERK scheme specified using the more classical
Butcher arrays.

ERK2 scheme. Given vn,1T := vnT ∈ V k
T from the previous time step or the initial condition, the ERK2

scheme consists of finding vn+1
T ∈ V k

T in two stages as follows:

⟨vn,2T , zT ⟩ρ, 1
κ
= ⟨vn,1T , zT ⟩ρ, 1

κ
− τah(v̂

n,1
h , ẑh) + τ⟨fn,1T , zT ⟩L, (5.8a)

⟨vn+1
T , zT ⟩ρ, 1

κ
=

1

2
⟨vn,1T + vn,2T , zT ⟩ρ, 1

κ
− 1

2
τah(v̂

n,2
h , ẑh) +

1

2
τ⟨gn,2T , zT ⟩L, (5.8b)

for all ẑh ∈ V̂ k
h0, with f

n,1
T := fnT , and, assuming f ∈ C2(J ;L2(Ω)), gn,2T satisfies

∥gn,2T − fn,2T ∥ 1
ρ
,κ ≲ Cn

2 (f)τ
2, (5.9)

with fn,2T := fnT + τ∂tf
n
T and Cn

2 (f) := ∥∂ttf∥C0(Jn;
1
ρ
,κ).

ERK3 scheme. Given vn,1T := vnT ∈ V k
T from the previous time step or the initial condition, the ERK3

scheme consists of finding vn+1
T ∈ V k

T in three stages as follows:

⟨vn,2T , zT ⟩ρ, 1
κ
= ⟨vn,1T , zT ⟩ρ, 1

κ
− τah(v̂

n,1
h , ẑh) + τ⟨fn,1T , zT ⟩L, (5.10a)

⟨vn,3T , zT ⟩ρ, 1
κ
=

1

2
⟨vn,1T + vn,2T , zT ⟩ρ, 1

κ
− 1

2
τah(v̂

n,2
h , ẑh) +

1

2
τ⟨fn,2T , zT ⟩L, (5.10b)

⟨vn+1
T , zT ⟩ρ, 1

κ
=

1

3
⟨vn,1T + vn,2T + vn,3T , zT ⟩ρ, 1

κ
− 1

3
τah(v̂

n,3
h , ẑh) +

1

3
τ⟨gn,3T , zT ⟩L, (5.10c)

for all ẑh ∈ V̂ k
h0, with fn,1T , fn,2T defined as above, and, assuming f ∈ C3(J ;L2(Ω)) ∩ C2(J ;H1(Ω)),

gn,3T satisfies

∥gn,3T − fn,3T ∥ 1
ρ
,κ ≲ Cn

3 (f)τ
3, (5.11)

with fn,3T := fnT + τ∂tf
n
T + 1

2τ
2∂ttf

n
T and Cn

3 (f) := ∥∂tttf∥C0(Jn;
1
ρ
,κ) + c∞∥∇∂ttf∥C0(Jn;

1
ρ
,κ).

5.4 Statements of main results and comments

Let IT : Y → V k
T be an interpolation operator satisfying the assumptions (I1) and (I2) stated in

Section 4.1. Recall that Îh = (IT ,Π
k
F ). We define the following quantities:

vn,1 := vn, vn,2 := vn + τ∂tv
n, vn,3 := vn + τ∂tv

n +
1

2
τ2∂ttv

n, (5.12a)

ψ̂n,1
h (·) := ψ̂h(v

n,1; ·), ψ̂n,2
h (·) := ψ̂h(v

n,2; ·), ψ̂n,3
h (·) := ψ̂h(v

n,3; ·), (5.12b)

where we recall that the consistency error ψ̂h is defined as a linear form acting on V̂ k
h0 (see (I2)). We

also recall that the space Y is the domain of the interpolation operator, whereas the space Z is used to
estimate the consistency error. Let D : Y → V k

T be the linear operator such that D(·) := IT (·)−Πk
T (·)

(recall that Πk
T = (Πk

T ,Π
k
T )). We set

∂tv
n,1 := ∂tv

n, ∂tv
n,2 := ∂tv

n + τ∂ttv
n, ∂tv

n,3 := ∂tv
n + τ∂ttv

n +
1

2
τ2∂tttv

n, (5.13a)

Dn,1 := D(∂tv
n,1), Dn,2 := D(∂tv

n,2), Dn,3 := D(∂tv
n,3). (5.13b)

The quantities Dn,1,Dn,2, and Dn,3 should be understood as space approximation errors on the time
derivatives of the exact solution. We define the following discrete errors:

ζ̂n,1h := v̂n,1h − Îh(v
n,1), ζ̂n,2h := v̂n,2h − Îh(v

n,2), ζ̂n,3h := v̂n,3h − Îh(v
n,3). (5.14)
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Theorem 5.2 (Error estimate for ERK2). Assume f ∈ C2(J ;L2(Ω)) and v ∈ C1(J ;Z∩V 0)∩C3(J ;Y )
and that the initial condition is v0 := IT (v0). Then, under the strengthened 4

3 -CFL condition (5.2),
the following holds:

∥ζNT ∥2
ρ, 1

κ

+
N−1∑
n=0

τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)
≲ C2(f, v)

2T 2
f τ

4 +
N−1∑
n=0

τ

{
∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′

+ Tf

{
∥Dn,1∥2

ρ, 1
κ

+ τ2∥Dn,2∥2
ρ, 1

κ

}}
, (5.15)

where C2(f, v) := ∥∂ttf∥C0(J ; 1
ρ
,κ) + ∥∂tttv∥C0(J ;Hν(ρ, 1

κ
;Th)).

Theorem 5.3 (Error estimate for ERK3). Assume f ∈ C3(J ;L2(Ω)) ∩ C2(J ;H1(Ω)) and v ∈
C2(J ;Z ∩ V 0) ∩ C4(J ;Y ) and that the initial condition is v0 := IT (v0). Then, under the usual
CFL condition (5.1) with

ρ1 ≤ min
{ 5

308
C−1
S ,

(
3

2

) 1
2

C−1
A

}
, (5.16)

the following holds:

∥ζNT ∥2
ρ, 1

κ

+
N−1∑
n=0

τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s + |ζ̂n,3h |2s

)
≲ C3(f, v)

2T 2
f τ

6 +

N−1∑
n=0

τ

{
∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′ + ∥ψ̂n,3

h ∥2s′

+ Tf

{
∥Dn,1∥2

ρ, 1
κ

+ τ2∥Dn,2∥2
ρ, 1

κ

+ τ4∥Dn,3∥2
ρ, 1

κ

}}
, (5.17)

where C3(f, v) := ∥∂tttf∥C0(J ; 1
ρ
,κ) + c∞∥∇∂ttf∥C0(J ; 1

ρ
,κ) + ∥∂ttttv∥C0(J ;Hν(ρ, 1

κ
;Th)).

The proof of Theorems 5.2 and 5.3 is postponed to Sections 6.2 and 6.3, respectively.

Remark 5.4 (Convergence rates). In addition to the assumptions of Theorem 5.2 for ERK2 (The-
orem 5.3 for ERK3), assume that v ∈ Cℓ(J ;Hk+2−ℓ(Ω) × Hk+2−ℓ(Ω)) with ℓ ∈ {1, 2} for ERK2
(ℓ ∈ {1, 2, 3} for ERK3). The operator D = IT − Πk

T with the choice Îh := ÎHHO

h gives Dn,1 = Dn,2 =
Dn,3 = 0. This and Remark 4.5 lead for ERK2 to

∥ζNT ∥ρ, 1
κ
+

(N−1∑
n=0

τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)) 1
2

≲ O(τ2 + hk+
1
2 ), (5.18)

and for ERK3 to

∥ζNT ∥ρ, 1
κ
+

(N−1∑
n=0

τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s + |ζ̂n,3h |2s

)) 1
2

≲ O(τ3 + hk+
1
2 ). (5.19)

Instead, the definition (5.13b) of Dn,1 with the choice Îh := ÎH

h followed by a triangle inequality implies
that

∥Dn,1∥ρ, 1
κ
≤ ∥∂tvn −Πh

T (∂tv
n)∥ρ, 1

κ
+ ∥∂tvn −Πk

T (∂tv
n)∥ρ, 1

κ
,

and similarly for Dn,2 and Dn,3. This followed by the approximation estimates (4.20) and (3.6) for
Πh

T and Πk
T , and Remark 4.8 improves the convergence rate on simplices to O(τ2 + hk+1) for ERK2

and to O(τ3 + hk+1) for ERK3.

Remark 5.5 (Improved CFL for k = 0 in ERK2). For the lowest-order polynomial degree k = 0, we
can utilize the estimate

∥AT (ŵh)∥ 1
ρ
,κ ≲ c∞∥∇T wT ∥L2( 1

κ
;Ω) + c

1
2∞h

− 1
2 |ŵh|s ∀ŵh ∈ V̂ k

h0.

Then we can prove Theorem 5.2 under the usual CFL condition using techniques similar to [5, Theo-
rem 3.2]. Details are skipped for brevity.
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5.5 Rewriting using operators

Recall the operators AT and AF introduced in (5.3). Let us also define an operator ϕF : V k
T → V k

F0

through the following identity: Given wT ∈ V k
T , find ϕF (wT ) ∈ V k

F0 such that

AF (0, ϕF (wT )) = −AF (wT , 0). (5.20)

(Finding ϕF (wT ) amounts to solving the well-posed problem ah((0, ϕF (wT )), (0, zF )) = −ah((wT , 0),
(0, zF )) for all zF ∈ V k

F0. This is computationally inexpensive since the matrix associated with
ah(0, ·, (0, ·)) is block-diagonal.) Using ϕF , we define the operator ÃT : V k

T → V k
T such that

ÃT (wT ) := AT (wT , ϕF (wT )) ∀wT ∈ V k
T . (5.21)

The operator ÃT can be understood as a Schur complement on the cell unknowns after eliminating
the face unknowns. This operator is useful to gain a more algebraic view on ERK schemes. Indeed,
we can rewrite the semi-discrete scheme defined in (3.16) as follows for all t ∈ J :

M(∂tvT (t)) = −ÃT (vT (t)) + fT (t), fT (t) := Πk
T (f(t)). (5.22a)

This provides a general template to rewrite the time-discrete schemes. Indeed, given vn,1T := vnT ∈ V k
T ,

the ERK2 scheme (5.8a)-(5.8b) is equivalent to finding (vn,2T , vn+1
T ) ∈ V k

T × V k
T in the following two

steps:

M(vn,2T ) = M(vn,1T )− τÃT (v
n,1
T ) + τfn,1T , (5.23a)

M(vn+1
T ) =

1

2
M(vn,1T + vn,2T )− 1

2
τÃT (v

n,2
T ) +

1

2
τgn,2T . (5.23b)

Similarly, given vn,1T := vnT ∈ V k
T , the ERK3 scheme (5.10a)-(5.10c) is equivalent to finding (vn,2T , vn,3T ,

vn+1
T ) ∈ V k

T × V k
T × V k

T in the following three steps:

M(vn,2T ) = M(vn,1T )− τÃT (v
n,1
T ) + τfn,1T , (5.24a)

M(vn,3T ) =
1

2
M(vn,1T + vn,2T )− 1

2
τÃT (v

n,2
T ) +

1

2
τfn,2T , (5.24b)

M(vn+1
T ) =

1

3
M(vn,1T + vn,2T + vn,3T )− 1

3
τÃT (v

n,3
T ) +

1

3
τgn,3T . (5.24c)

Remark 5.6 (Implementation). In (5.23), one needs to compute vn,1F := ϕF (v
n,1
T ) and vn,2F :=

ϕF (v
n,2
T ). In other words, (5.23) can be decomposed into four substeps: compute vn,1F , compute vn,2T

using (5.23a), compute vn,2F , compute vn+1
T using (5.23b). A similar comment can be made for ERK3,

which can be decomposed into six substeps.

5.6 Equivalent ERK schemes using Butcher arrays

In general, s-stage ERK schemes for s ≥ 2 are represented by their Butcher arrays {aij}i,j∈{1:s},{bi}i∈{1:s},
and {ci}i∈{1:s}. We define the intermediate time steps tn,i := tn + ciτ and set f̃n,i := f(tn,i) for all
i ∈ {1:s}. For explicit schemes, the Butcher matrix a is always strictly lower triangular, i.e., aij = 0
for all i ≤ j. Also we have c1 = 0 under Butcher’s simplifying assumptions (see, e.g., [18, Chapter 78]),
and consequently, tn,1 = tn.

Given vn,1T := vnT ∈ V k
T from the previous time step or the initial condition, a general ERK scheme

consists of finding vn+1
T := vn,s+1

T ∈ V k
T in the following s stages:

M(vn,iT ) = M(vn,1T )− τ
∑

j∈{1:i−1}

aij
(
ÃT (v

n,j
T )− f̃n,jT

)
∀i ∈ {2:s}, (5.25a)
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M(vn+1
T ) = M(vn,1T )− τ

∑
j∈{1:s}

bj
(
ÃT (v

n,j
T )− f̃n,jT

)
. (5.25b)

For s = 2, this gives

M(vn,2T ) = M(vn,1T )− τa21
(
ÃT (v

n,1
T )− f̃n,1T

)
, (5.26a)

M(vn+1
T ) = M(vn,2T )− τ

(
b1
(
ÃT (v

n,1
T )− f̃n,1T

)
+ b2

(
ÃT (v

n,2
T )− f̃n,2T

))
. (5.26b)

The second-order conditions are c1 = 0, c2 = a21 from Butcher’s simplifying assumptions, together
with

b1 + b2 = 1, b2c2 =
1

2
. (5.27)

For s = 3, (5.25) gives

M(vn,2T ) = M(vn,1T )− τa21
(
ÃT (v

n,1
T )− f̃n,1T

)
, (5.28a)

M(vn,3T ) = M(vn,1T )− τ
(
a31

(
ÃT (v

n,1
T )− f̃n,1T

)
+ a32

(
ÃT (v

n,2
T )− f̃n,2T

))
, (5.28b)

M(vn+1
T ) = M(vn,1T )− τ

(
b1
(
ÃT (v

n,1
T )− f̃n,1T

)
+ b2

(
ÃT (v

n,2
T )− f̃n,2T

)
+ b3

(
ÃT (v

n,3
T )− 1

3
τ f̃n,3T

))
. (5.28c)

The third-order conditions are c1 = 0, c2 = a21, c3 = a31+a32 from Butcher’s simplifying assumptions,
together with

b1 + b2 + b3 = 1, b2c2 + b3c3 =
1

2
, b2c

2
2 + b3c

2
3 =

1

3
, b3a32c2 =

1

6
. (5.29)

Lemma 5.7 (Comparison with ERK2 scheme). The sequence (vnT )n≥0 generated by (5.26) with
Butcher arrays satisfying the second-order condtions (5.27) is the same as the sequence (vnT )n≥0 gen-
erated by the scheme (5.8) with

1

2
gn,2T := b1f̃

n,1
T + b2f̃

n,2
T − 1

2
fnT , (5.30)

Consequently, we have

∥gn,2T − fn,2T ∥ 1
ρ
,κ ≤ τ2∥∂ttf∥C0(Jn;

1
ρ
,κ). (5.31)

Lemma 5.8 (Comparison with ERK3 scheme). The sequence (vnT }n≥0 generated by (5.28) with
Butcher arrays satisfying the third-order conditions (5.29) is the same as the sequence (vnT }n≥0 gen-
erated by the scheme (5.10) with

1

3
gn,3T := b1f̃

n,1
T + b2f̃

n,2
T + b3f̃

n,3
T − 2

3
fnT − 1

6
τ∂tf

n
T

− τÃT M−1
(
(b2a21 + b3a31)f̃

n,1
T + b3a32f̃

n,2
T − 1

2f
n
T − 1

6τ∂tf
n
T

)
. (5.32)

Consequently, we have

∥gn,3T − fn,3T ∥ 1
ρ
,κ ≤ τ3

(
χ1∥∂tttf∥C0(Jn;

1
ρ
,κ) + χ2c∞∥∇∂ttf∥C0(Jn;

1
ρ
,κ)

)
, (5.33)

where the constant χ1 can depend on {bj}j∈{2:3} if at least one bj is negative and otherwise χ1 = 1,
whereas the constant χ2 is independent of the Butcher arrays.

The proof of Lemmas 5.7 and 5.8 is postponed to Section 6.4.
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6 Proofs

In this section, we collect the proofs of the results stated in Section 5.

6.1 Verification of (A1)-(A3) for HHO methods

Proof of (A1). For all wT ∈ V k
T , the definition of sh using δ∂T (wT , 0) = wT |∂T for all T ∈ Th shows

that

|(wT , 0)|2s = sh((wT , 0), (wT , 0)) =
∑
T∈Th

λ−1
T ∥wT ∥2L2(∂T )

≲
∑
T∈Th

λ−1
T h−1

T ∥wT ∥2L2(T ) ≲ c∞h
−1∥wT ∥2L2( 1

κ
;Ω)
,

with a discrete trace inequality, λT = c−1
T κT from (3.10), and the quasi-uniformity assumption on the

mesh in the last estimate. This concludes the proof of (A1).

Proof of (A2). For all ŵh := (τ T , wT , wF ) ∈ V̂ k
h0 and all zF ∈ V k

F0, the definition (5.3) of AF gives

(AF (ŵh), zF )L2(F) = (τ T ,GT (0, zF ))L2(Ω) + sh((wT , 0), (0, zF )) + sh((0, wF ), (0, zF )).

Choosing zF := wF , we obtain

|(0, wF )|2s = −(τ T ,GT (0, wF ))L2(Ω) − sh((wT , 0), (0, wF )) + (AF (ŵh), wF )L2(F)

≤ ∥τ T ∥L2(Ω)∥GT (0, wF )∥L2(Ω) +
(
|(wT , 0)|s + ∥AF (ŵh)∥s′

)
|(0, wF )|s. (6.1)

Owing to the bound (3.13) on GT , we infer that

∥GT (0, wF )∥2L2(Ω)
≲

∑
T∈Th

λTh
−1
T |(0, wF )|2s,T .

This estimate in (6.1) with λT = cTρT from (3.10) proves that

|(0, wF )|s ≲ c
1
2∞h

− 1
2 ∥τ T ∥L2(ρ;Ω) + |(wT , 0)|s + ∥AF (ŵh)∥s′ . (6.2)

The triangle inequality gives |ŵh|s ≤ |(wT , 0)|s + |(0, wF )|s. This, followed by (6.2), (A1), and the
definition of ∥wT ∥ρ, 1

κ
, concludes the proof of (A2).

Proof of (A3). For all ŵh := (τ T , wT , wF ) ∈ V̂ k
h0 and all zT := (ξT , zT ) ∈ V k

T , the definition of
AT (ŵh) leads to

⟨AT (ŵh), zT ⟩L = (τ T ,GT (zT , 0))L2(Ω) − (GT (ŵh), ξT )L2(Ω) + sh(ŵh, (zT , 0))

≲ ∥τ T ∥L2(Ω)∥GT (zT , 0)∥L2(Ω) + ∥GT (ŵh)∥L2(Ω)∥ξT ∥L2(Ω) + c
1
2∞h

− 1
2 |ŵh|s∥zT ∥L2( 1

κ
;Ω),

with the Cauchy-Schwarz inequality and (A1) in the second step. Owing to the bound (3.13) on GT ,
and the quasi-uniformity assumption on the mesh, we infer that

⟨AT (ŵh), zT ⟩L

≲ h−1∥τ T ∥L2(Ω)∥zT ∥L2(Ω) + h−1∥wT ∥L2(Ω)∥ξT ∥L2(Ω) + c
1
2∞h

− 1
2 |ŵh|s

(
∥ξT ∥L2(ρ;Ω) + ∥zT ∥L2( 1

κ
;Ω)

)
≲

(
c∞h

−1∥wT ∥ρ, 1
κ
+ c

1
2∞h

− 1
2 |ŵh|s

)
∥zT ∥ρ, 1

κ
, (6.3)

where we used λT = cTρT = c−1
T κT from (3.10). Finally, invoking (A2) and the observation that

∥AT (ŵh)∥ 1
ρ
,κ = supzT ∈V k

T

⟨AT (ŵh),zT ⟩L
∥zT ∥

ρ, 1κ

concludes the proof of (A3).
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6.2 Proof of Theorem 5.2

Lemma 6.1 (Error equation). Assume that v ∈ C1(J ;Z ∩ V 0) ∩ C3(J ;Y ). The following holds: For
all ẑh ∈ V̂ k

h0,

⟨ζn,2T , zT ⟩ρ, 1
κ
= ⟨ζn,1T , zT ⟩ρ, 1

κ
− τah(ζ̂

n,1
h , ẑh)− τψ̂n,1

h (ẑh)− τ⟨Dn,1, zT ⟩ρ, 1
κ
, (6.4a)

⟨ζn+1
T , zT ⟩ρ, 1

κ
=

1

2
⟨ζn,1T + ζn,2T , zT ⟩ρ, 1

κ
− 1

2
τah(ζ̂

n,2
h , ẑh)−

1

2
τψ̂n,2

h (ẑh)−
1

2
τ⟨Dn,2, zT ⟩ρ, 1

κ
+

1

2
τ⟨βnT , zT ⟩L,

(6.4b)

where βnT := gn,2T − fn,2T −M IT (R
n,2) with Rn,2 := τ−1

∫
Jn
(tn+1 − t)2∂tttv(t) dt.

Proof. (1) For all ẑh ∈ V̂ k
h0, the L

2-orthogonality of Πk
T and the model problem (2.5) lead to

⟨Πk
T (∂tv(t)), zT ⟩ρ, 1

κ
= ⟨∂tv(t), zT ⟩ρ, 1

κ
= ⟨−B(v(t)) + f(t), zT ⟩L

= −ah(Îh(v(t)), ẑh) + ψ̂h(v(t); ẑh) + ⟨fT (t), zT ⟩L, (6.5)

with the definition (4.2) of ψh, (I2a), and since fT (t) = Πk
T (f(t)) in the last step. The definition of

vn,1 and (6.5) evaluated at tn yield, for all ẑh ∈ V̂ k
h0,

⟨IT (vn,2), zT ⟩ρ, 1
κ
= ⟨IT (vn,1), zT ⟩ρ, 1

κ
+ τ⟨IT (∂tvn), zT ⟩ρ, 1

κ

= ⟨IT (vn,1), zT ⟩ρ, 1
κ
+ τ⟨Dn,1, zT ⟩ρ, 1

κ
− τah(Îh(v

n,1), ẑh) + τψ̂n,1
h (ẑh) + τ⟨fn,1T , zT ⟩L.

(6.6)

Subtracting the above equation from (5.8a) proves (6.4a).
(2) We start with the second-order Taylor expansion in time with exact remainder,

vn+1 = vn + τ∂tv
n +

1

2
τ2∂ttv

n +
1

2
τRn,2 = vn,2 +

1

2
τ2∂ttv

n +
1

2
τRn,2.

An application of IT and (6.6) lead to

⟨IT (vn+1), zT ⟩ρ, 1
κ
= ⟨IT (vn,2), zT ⟩ρ, 1

κ
+

1

2
τ2⟨IT (∂ttvn), zT ⟩ρ, 1

κ
+

1

2
τ⟨IT (Rn,2), zT ⟩ρ, 1

κ

=
1

2
⟨IT (vn,2 + vn,1), zT ⟩ρ, 1

κ
− 1

2
τah(Îh(v

n,1), ẑh) +
1

2
τψ̂n,1

h (ẑh) +
1

2
τ⟨fn,1T , zT ⟩L

+
1

2
τ2⟨Πk

T (∂ttv
n), zT ⟩ρ, 1

κ
+

1

2
τ⟨Dn,2, znT ⟩ρ, 1

κ
+

1

2
τ⟨IT (Rn,2), zT ⟩ρ, 1

κ
, (6.7)

where we used that Dn,1 + τ(IT (∂ttv
n) − Πk

T (∂ttv
n)) = Dn,2. Differentiating (6.5) with respect to t,

evaluating the result at tn, and multiplying by τ gives

τ⟨Πk
T (∂ttv

n), zT ⟩ρ, 1
κ
= −τah(Îh(∂tvn), ẑh) + τψ̂h(∂tv

n; ẑh) + τ⟨∂tfnT , zT ⟩L

= −ah(Îh(vn,2 − vn,1), ẑh) + ψ̂h(v
n,2 − vn,1; ẑh) + τ⟨∂tfnT , zT ⟩L.

This simplifies (6.7) to

⟨IT (vn+1), zT ⟩ρ, 1
κ
=

1

2
⟨IT (vn,2 + vn,1), zT ⟩ρ, 1

κ
− 1

2
τah(Îh(v

n,2), ẑh) +
1

2
τψ̂n,2

h (ẑh)

+
1

2
τ⟨fn,2T , zT ⟩L +

1

2
τ⟨Dn,2, zT ⟩ρ, 1

κ
+

1

2
τ⟨IT (Rn,2), zT ⟩ρ, 1

κ
.

Subtracting this from (5.8b) gives (6.4b).
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Lemma 6.2 (Energy identity). Under the assumptions of Lemma 6.1, the following identity holds:

∥ζn+1
T ∥2

ρ, 1
κ

− ∥ζn,1T ∥2
ρ, 1

κ

+τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)
= ∥ζn+1

T − ζn,2T ∥2
ρ, 1

κ

− τψ̂n,1
h (ζ̂n,1h )− τψ̂n,2

h (ζ̂n,2h )

−τ⟨Dn,1, ζn,1T ⟩ρ, 1
κ
− τ⟨Dn,2, ζn,2T ⟩ρ, 1

κ
+ τ⟨βnT , ζ

n,2
T ⟩L. (6.8)

Proof. Choosing ẑh := ζ̂n,1h in (6.4a) and ẑh := 2ζ̂n,2h in (6.4b), elementary algebraic manipulations
lead to

∥ζn+1
T ∥2

ρ, 1
κ

− ∥ζn,1T ∥2
ρ, 1

κ

= ∥ζn+1
T − ζn,2T ∥2

ρ, 1
κ

− τah(ζ̂
n,1
h , ζ̂n,1h )− τah(ζ̂

n,2
h , ζ̂n,2h )− τψ̂n,1

h (ζ̂n,1h )− τψ̂n,2
h (ζ̂n,2h )

− τ⟨Dn,1, ζn,1T ⟩ρ, 1
κ
− τ⟨Dn,2, ζn,2T ⟩ρ, 1

κ
+ τ⟨βnT , ζ

n,2
T ⟩L.

Since ah(ζ̂
n,1
h , ζ̂n,1h ) = |ζ̂n,1h |2s and ah(ζ̂

n,2
h , ζ̂n,2h ) = |ζ̂n,2h |2s owing to (3.15), this concludes the proof.

Lemma 6.3 (Preliminary stability estimate). Under the assumptions of Lemma 6.1, we have

∥ζn+1
T ∥2

ρ, 1
κ

− ∥ζn,1T ∥2
ρ, 1

κ

+
1

2
τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)
≤ ∥ζn+1

T − ζn,2T ∥2
ρ, 1

κ

+ Cτ
{
T−1
f ∥ζn,1T ∥2

ρ, 1
κ

+ ∥ψ̂n,1
h ∥2s′ + ∥ψ̂n,2

h ∥2s′ + Tf
(
Cn
2 (f, v)

2τ4 + ∥Dn,1∥2
ρ, 1

κ

+ ∥Dn,2∥2
ρ, 1

κ

)}
, (6.9)

with Cn
2 (f, v) := ∥∂ttf∥C0(Jn;

1
ρ
,κ) + ∥∂tttv∥C0(Jn;Hν(ρ, 1

κ
;Th)).

Proof. The proof follows by estimating the last four terms on the right hand-side of the energy identity
(6.8). The Cauchy-Schwarz inequality and Young’s inequality lead to

τ |ψ̂n,1
h (ζ̂n,1h ) + ψ̂n,2

h (ζ̂n,2h ) + ⟨Dn,1, ζn,1T ⟩ρ, 1
κ
+ ⟨Dn,2, ζn,2T ⟩ρ, 1

κ
+ ⟨βnT , ζ

n,2
T ⟩L|

≤ 1

2
τ
{
∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′ + |ζ̂n,1h |2s + |ζ̂n,2h |2s + Tf∥Dn,1∥2

ρ, 1
κ

+ Tf∥Dn,2∥2
ρ, 1

κ

+ T−1
f ∥ζn,1T ∥2

ρ, 1
κ

+ 2T−1
f ∥ζn,2T ∥2

ρ, 1
κ

+ Tf∥βnT ∥
2
1
ρ
,κ

}
. (6.10)

Notice that this is the critical step where we bound the consistency errors in the ∥·∥s′-norm. It remains
to bound ∥βnT ∥ 1

ρ
,κ and ∥ζn,2T ∥ρ, 1

κ
. The definition of βnT , the triangle inequality, the assumption (5.9)

on gn,2T − fn,2T , and (I1) imply that

∥βnT ∥ 1
ρ
,κ ≤ ∥gn,2T − fn,2T ∥ 1

ρ
,κ + ∥IT (Rn,2)∥ρ, 1

κ

≲ Cn
2 (f)τ

2 + ∥Rn,2∥Hν(ρ, 1
κ
;Th) ≲ Cn

2 (f, v)τ
2. (6.11)

The definition of the ∥·∥s′-norm and the property (A1) imply that, for all zT ∈ V k
T ,

|ψ̂n,1
h (zT , 0)| ≤ ∥ψ̂n,1

h ∥s′∥(zT , 0)∥s ≲ c
1
2∞h

− 1
2 ∥ψ̂n,1

h ∥s′∥zT ∥L2( 1
κ
;Ω). (6.12)

Using the error equation (6.4a) with ẑh = (ζn,2T , 0), and (6.12) leads to

∥ζn,2T ∥ρ, 1
κ
≲ ∥ζn,1T ∥ρ, 1

κ
+ τ∥AT (ζ̂

n,1
h )∥ 1

ρ
,κ + τc

1
2∞h

− 1
2 ∥ψ̂n,1

h ∥s′ + τ∥Dn,1∥ρ, 1
κ
.

Since (AF (ζ̂
n,1
h ), zF )L2(F) = ψ̂n,1

h (0, zF ) for all zF ∈ V k
F0 owing to (6.4a), we have ∥AF (ζ̂

n,1
h )∥s′ =

∥ψ̂n,1
h (0, ·)∥s′ ≤ ∥ψ̂n,1

h ∥s′ . Invoking (A3) then shows that

∥ζn,2T ∥ρ, 1
κ
≲ ∥ζn,1T ∥ρ, 1

κ
+ τc∞h

−1∥ζn,1T ∥ρ, 1
κ
+ τc

1
2∞h

− 1
2 ∥ψ̂n,1

h ∥s′ + τ∥Dn,1∥ρ, 1
κ
. (6.13)

Recalling the CFL condition (5.1) and since τ ≤ Tf , we infer that

∥ζn,2T ∥ρ, 1
κ
≲ ∥ζn,1T ∥ρ, 1

κ
+ T

1
2
f ∥ψ̂n,1

h ∥s′ + Tf∥Dn,1∥ρ, 1
κ
. (6.14)

This and (6.11) in (6.10) conclude the proof.
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Proof of Theorem 5.2. The first step is to control the anti-dissipative term ∥ζn+1
T − ζn,2T ∥2

ρ, 1
κ

in the

stability estimate from Lemma 6.3. The combination (6.4b)− 1
2 × (6.4a) gives, for all ẑh ∈ V̂ k

h0,

⟨ζn+1
T − ζn,2T , zT ⟩ρ, 1

κ
=

1

2
τah(ζ̂

n,1
h − ζ̂n,2h , ẑh) +

1

2
τψ̂n,1

h (ẑh)−
1

2
τψ̂n,2

h (ẑh) +
1

2
τ⟨Dn,1, zT ⟩ρ, 1

κ

− 1

2
τ⟨Dn,2, zT ⟩ρ, 1

κ
+

1

2
τ⟨βnT , zT ⟩L. (6.15)

Analogously to Lemma 6.3, the identity (6.15) with ẑh := (ζn+1
T − ζn,2T , 0) followed by (6.12), the

property (A3) for ŵh = ζ̂n,1h − ζ̂n,2h , and AF (ζ̂
n,1
h − ζ̂n,2h ) = ψ̂n,1

h (0, ·)− ψ̂n,2
h (0, ·) show that

∥ζn+1
T − ζn,2T ∥ρ, 1

κ
≲ τ

(
c∞h

−1∥ζn,1T − ζn,2T ∥ρ, 1
κ
+ c

1
2∞h

− 1
2 ∥ψ̂n,1

h − ψ̂n,2
h ∥s′ + ∥Dn,1 −Dn,2∥ρ, 1

κ
+ ∥βnT ∥ 1

ρ
,κ

)
.

(6.16)

From (6.4a), we have, for all ẑh := (zT , zF ) ∈ V̂ k
h0,

⟨ζn,1T − ζn,2T , zT ⟩ρ, 1
κ
= τah(ζ̂

n,1
h , ẑh) + τψ̂n,1

h (ẑh) + τ⟨Dn,1, zT ⟩ρ, 1
κ
, (AF (ζ̂

n,1
h ), zF )L2(F) = ψ̂n,1

h (0, zF ).

Similar arguments to (6.16) show that

∥ζn,1T − ζn,2T ∥ρ, 1
κ
≲ τ

(
c∞h

−1∥ζn,1T ∥ρ, 1
κ
+ c

1
2∞h

− 1
2 ∥ψ̂n,1

h ∥s′ + ∥Dn,1∥ρ, 1
κ

)
.

Using this in (6.16), we arrive at

∥ζn+1
T − ζn,2T ∥ρ, 1

κ
≲ τ2c2∞h

−2∥ζn,1T ∥ρ, 1
κ
+ τ

1
2 (τc∞h

−1)
3
2 ∥ψ̂n,1

h ∥s′ + τ
1
2 (τc∞h

−1)
1
2 ∥ψ̂n,1

h − ψ̂n,2
h ∥s′

+ τ(τc∞h
−1 + 1)∥Dn,1∥ρ, 1

κ
+ τ∥Dn,2∥ρ, 1

κ
+ τ∥βnT ∥ 1

ρ
,κ

≲ τ2c2∞h
−2∥ζn,1T ∥ρ, 1

κ
+ τ

1
2 ∥ψ̂n,1

h ∥s′ + τ
1
2 ∥ψ̂n,2

h ∥s′ + τ∥Dn,1∥ρ, 1
κ
+ τ∥Dn,2∥ρ, 1

κ

+ τ∥βnT ∥ 1
ρ
,κ, (6.17)

where we used the usual CFL condition (5.1) and the triangle inequality in the last step. Squaring
both sides of (6.17), observing that τ3c4∞h

−4 ≤ ρ34
3

T−1
f owing to the strengthened 4

3 -CFL condition

(5.2), and τ ≤ Tf , we obtain

∥ζn+1
T − ζn,2T ∥2

ρ, 1
κ

≲ τ
(
T−1
f ∥ζn,1T ∥2

ρ, 1
κ

+ ∥ψ̂n,1
h ∥2s′ + ∥ψ̂n,2

h ∥2s′ + Tf
(
∥Dn,1∥2

ρ, 1
κ

+ ∥Dn,2∥2
ρ, 1

κ

+ ∥βnT ∥
2
1
ρ
,κ

))
≲ τ

(
T−1
f ∥ζn,1T ∥2

ρ, 1
κ

+ ∥ψ̂n,1
h ∥2s′ + ∥ψ̂n,2

h ∥2s′ + Tf
(
∥Dn,1∥2

ρ, 1
κ

+ ∥Dn,2∥2
ρ, 1

κ

+ Cn,2(f, v)2τ4
))
,

where we used (6.11) in the last step. This in (6.9) leads to

∥ζn+1
T ∥2

ρ, 1
κ

− ∥ζn,1T ∥2
ρ, 1

κ

+
1

2
τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)
≲ τT−1

f ∥ζn,1T ∥2
ρ, 1

κ

+ τ
(
Tf (C

n,2(f, v)2τ4 + ∥Dn,1∥2
ρ, 1

κ

+ ∥Dn,2∥2
ρ, 1

κ

) + ∥ψ̂n,1
h ∥2s′ + ∥ψ̂n,2

h ∥2s′
)
.

Using a discrete Gronwall’s lemma (observing that τN = Tf ) and invoking the initial condition ζ0T = 0,
we infer that

∥ζNT ∥2
ρ, 1

κ

+
N−1∑
n=0

1

2
τ
(
|ζ̂n,1h |2s + |ζ̂n,2h |2s

)
≲ C2(f, v)

2T 2
f τ

4 +
N−1∑
n=0

τ
{
∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′ + Tf

(
∥Dn,1∥2

ρ, 1
κ

+ ∥Dn,2∥2
ρ, 1

κ

)}
.

This completes the proof.
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6.3 Proof of Theorem 5.3

Lemma 6.4 (Error equation). Assume that v ∈ C2(J ;Z ∩ V 0) ∩ C4(J ;Y ). The following holds: For
all ẑh ∈ V̂ k

h0,

⟨ζn,2T , zT ⟩ρ, 1
κ
= ⟨ζn,1T , zT ⟩ρ, 1

κ
− τah(ζ̂

n,1
h , ẑh)− τψ̂n,1

h (ẑh)− τ⟨Dn,1, zT ⟩ρ, 1
κ
, (6.18a)

⟨ζn,3T , zT ⟩ρ, 1
κ
=

1

2
⟨ζn,1T + ζn,2T , zT ⟩ρ, 1

κ
− 1

2
τah(ζ̂

n,2
h , ẑh)−

1

2
τψ̂n,2

h (ẑh)−
1

2
τ⟨Dn,2, zT ⟩ρ, 1

κ
, (6.18b)

⟨ζn+1
T , zT ⟩ρ, 1

κ
=

1

3
⟨ζn,1T + ζn,2T + ζn,3T , zT ⟩ρ, 1

κ
− 1

3
ah(ζ̂

n,3
h , ẑh)−

1

3
τψ̂n,3

h (ẑh)−
1

3
τ⟨Dn,3, zT ⟩ρ, 1

κ

+
1

3
τ⟨γnT , zT ⟩L, (6.18c)

with γnT := gn,3T − fn,3T −M IT (R
n,3) and Rn,3 := τ−1

∫
Jn

1
2(tn+1 − t)3∂ttttv(t) dt.

Proof. The error equations (6.18a)-(6.18b) can be obtained similarly to (6.4a)-(6.4b). For the third
error equation, we start with the third-order Taylor expansion in time with exact remainder,

vn+1 = vn + τ∂tv
n +

1

2
τ2∂ttv

n +
1

6
τ3∂tttv

n +
1

3
τRn,3 = vn,3 +

1

6
τ3∂tttv

n +
1

3
τRn,3.

An application of IT to the above identity, (6.7), an application of ∂tt to (6.5), and elementary algebra
lead to

⟨IT (vn+1), zT ⟩ρ, 1
κ

= ⟨IT (vn,3), zT ⟩ρ, 1
κ
+

1

6
τ3⟨Dn,3, zT ⟩ρ, 1

κ
+

1

6
τ3⟨Πk

T (∂tttv
n, zT ⟩ρ, 1

κ
+

1

3
τ⟨IT (Rn,3), zT ⟩ρ, 1

κ

=
1

3
⟨IT (vn,1 + vn,2 + vn,3), zT ⟩ρ, 1

κ
− 1

3
τah(Îh(v

n,3), ẑh) +
1

3
τψ̂n,3

h (ẑh) +
1

3
τ⟨Dn,3, zT ⟩ρ, 1

κ

+
1

3
τ⟨fn,3T , zT ⟩L +

1

3
τ⟨IT (Rn,3), zT ⟩ρ, 1

κ
.

Subtracting this from (5.10c) proves (6.18c).

Lemma 6.5 (Energy identity). Under the assumptions of Lemma 6.4, the following identity holds:

1

2
∥ζn+1

T ∥2
ρ, 1

κ

− 1

2
∥ζn,1T ∥2

ρ, 1
κ

+
1

2
τ |ζ̂n,1h |2s +

1

6
τ |ζ̂n,2h |2s +

1

3
τ |ζ̂n,3h |2s +

1

6
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

=
1

6
τ |ζ̂n,1h − ζ̂n,2h |2s +

1

2
∥ζn+1

T − ζn,3T ∥2
ρ, 1

κ

− 1

6
τψ̂n,1

h (2ζ̂n,1h + ζ̂n,2h )− 1

6
τψ̂n,2

h (ζ̂n,1h )− 1

3
τψ̂n,3

h (ζ̂n,3h )

− 1

6
τ⟨Dn,1, 2ζn,1T + ζn,2T ⟩ρ, 1

κ
− 1

6
τ⟨Dn,2, ζn,1T ⟩ρ, 1

κ
− 1

3
τ⟨Dn,3, ζn,3T ⟩ρ, 1

κ
+

1

3
τ⟨γnT , ζ

n,3
T ⟩L. (6.19)

Proof. The algebraic manipulations (6.18b)− 1
2 × (6.18a) and (6.18c)− 2

3 × (6.18b) show that

⟨ζn,3T − ζn,2T , zT ⟩ρ, 1
κ
= −1

2
τah(ζ̂

n,2
h − ζ̂n,1h , ẑh)−

1

2
τ(ψ̂n,2

h (ẑh)− ψ̂n,1
h (ẑh))−

1

2
τ⟨Dn,2 −Dn,1, zT ⟩ρ, 1

κ
,

(6.20a)

⟨ζn+1
T − ζn,3T , zT ⟩ρ, 1

κ
= −1

3
τah(ζ̂

n,3
h − ζ̂n,2h , ẑh)−

1

3
τ(ψ̂n,3

h (ẑh)− ψ̂n,2
h (ẑh))−

1

3
τ⟨Dn,3 −Dn,2, zT ⟩ρ, 1

κ

+
1

3
τ⟨γnT , zT ⟩L. (6.20b)

Set A := 1
2∥ζ

n+1
T ∥2

ρ, 1
κ

− 1
2∥ζ

n+1
T − ζn,3T ∥2

ρ, 1
κ

− 1
2∥ζ

n,1
T ∥2

ρ, 1
κ

. Since 1
2a

2 − 1
2(a− b)2 = (a− b)b+ b2

2 for any

real numbers a and b, we obtain

A = ⟨ζn+1
T − ζn,3T , ζn,3T ⟩ρ, 1

κ
+

1

2
∥ζn,3T ∥2

ρ, 1
κ

− 1

2
∥ζn,1T ∥2

ρ, 1
κ

.
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Testing (6.20b) with ẑh := ζ̂n,3h gives

A = −1

3
τah(ζ̂

n,3
h − ζ̂n,2h , ζ̂n,3h ) +D1 +

1

2
∥ζn,3T ∥2

ρ, 1
κ

− 1

2
∥ζn,1T ∥2

ρ, 1
κ

,

D1 := −1
3τ(ψ̂

n,3
h (ζ̂n,3h ) − ψ̂n,2

h (ζ̂n,3h )) − 1
3τ⟨D

n,3 − Dn,2, ζn,3T ⟩ρ, 1
κ
+ 1

3τ⟨γ
n
T , ζ

n,3
T ⟩L. Choosing zT := ζn,1T

(resp. zT := 2ζn,2T ) in (6.18a) (resp. (6.18b)), elementary algebraic manipulations lead to

∥ζn,3T ∥2
ρ, 1

κ

− ∥ζn,1T ∥2
ρ, 1

κ

= ∥ζn,3T − ζn,2T ∥2
ρ, 1

κ

− τ |ζ̂n,1h |2s − τ |ζ̂n,2h |2s − τψ̂n,1
h (ζ̂n,1h )− τψ̂n,2

h (ζ̂n,2h )

− τ⟨Dn,1, ζn,1T ⟩ρ, 1
κ
− τ⟨Dn,2, ζn,2T ⟩ρ, 1

κ
.

Defining D2 := −1
2τψ̂

n,1
h (ζ̂n,1h )− 1

2τψ̂
n,2
h (ζ̂n,2h )− 1

2τ⟨D
n,1, ζn,1T ⟩ρ, 1

κ
− 1

2τ⟨D
n,2, ζn,2T ⟩ρ, 1

κ
+D1, we arrive at

A = −1

3
τah(ζ̂

n,3
h − ζ̂n,2h , ζ̂n,3h ) +

1

2
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

− 1

2
τ |ζ̂n,1h |2s −

1

2
τ |ζ̂n,2h |2s +D2

= −1

3
τ |ζ̂n,3h |2s +

1

3
τah(ζ̂

n,2
h , ζ̂n,3h ) +

1

2
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

− 1

2
τ |ζ̂n,1h |2s −

1

2
τ |ζ̂n,2h |2s +D2

= −1

3
τ |ζ̂n,3h |2s +

1

3
τah(ζ̂

n,2
h , ζ̂n,3h − ζ̂n,2h )− 1

6
τ |ζ̂n,2h |2s +

1

2
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

− 1

2
τ |ζ̂n,1h |2s +D2,

since ah(ζ̂
n,3
h , ζ̂n,3h ) = |ζ̂n,3h |2s and ah(ζ̂

n,2
h , ζ̂n,2h ) = |ζ̂n,2h |2s owing to (3.15). Let

B : =
1

3
τah(ζ̂

n,2
h , ζ̂n,3h − ζ̂n,2h ) +

1

2
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

=
1

3
τah(ζ̂

n,2
h , ζ̂n,3h − ζ̂n,2h )− 1

6
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

+
2

3
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

.

Testing (6.20a) with ẑh := ζ̂n,3h − ζ̂n,2h , we see that

2

3
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

= −1

3
τah(ζ̂

n,2
h − ζ̂n,1h , ζ̂n,3h − ζ̂n,2h )− 1

3
τ(ψ̂n,2

h (ζ̂n,3h − ζ̂n,2h )− ψ̂n,1
h (ζ̂n,3h − ζ̂n,2h ))

− 1

3
τ⟨Dn,2 −Dn,1, ζn,3T − ζn,2T ⟩ρ, 1

κ
.

This implies that

B =
1

3
τah(ζ̂

n,1
h , ζ̂n,3h − ζ̂n,2h )− 1

6
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

− 1

3
τ(ψ̂n,2

h (ζ̂n,3h − ζ̂n,2h )− ψ̂n,1
h (ζ̂n,3h − ζ̂n,2h ))

− 1

3
τ⟨Dn,2 −Dn,1, ζn,3T − ζn,2T ⟩ρ, 1

κ

=
1

3
⟨ζn,1T − ζn,2T , ζn,3T − ζn,2T ⟩ρ, 1

κ
− 1

6
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

− 1

3
τψ̂n,2

h (ζ̂n,3h − ζ̂n,2h )− 1

3
τ⟨Dn,2, ζn,3T − ζn,2T ⟩ρ, 1

κ
,

where we used (6.18a) with ẑh := ζ̂n,3h − ζ̂n,2h in the last step. Hence, for G := −1
2τ |ζ̂

n,1
h |2s − 1

6τ |ζ̂
n,2
h |2s −

1
3τ |ζ̂

n,3
h |2s − 1

6∥ζ
n,3
T − ζn,2T ∥2

ρ, 1
κ

and D3 := −1
3τψ̂

n,2
h (ζ̂n,3h − ζ̂n,2h )− 1

3τ⟨D
n,2, ζn,3T − ζn,2T ⟩ρ, 1

κ
+D2, the term

A simplifies to

A = −1

2
τ |ζ̂n,1h |2s −

1

6
τ |ζ̂n,2h |2s −

1

3
τ |ζ̂n,3h |2s +B +D2

= G+
1

3
⟨ζn,1T − ζn,2T , ζn,3T − ζn,2T ⟩ρ, 1

κ
+D3

= G− 1

6
τah(ζ̂

n,2
h − ζ̂n,1h , ζ̂n,1h − ζ̂n,2h )− 1

6
τ(ψ̂n,2

h (ζ̂n,1h − ζ̂n,2h )− ψ̂n,1
h (ζ̂n,1h − ζ̂n,2h ))

− 1

6
τ⟨Dn,2 −Dn,1, ζn,1T − ζn,2T ⟩ρ, 1

κ
+D3,

using (6.20a) with ẑh := ζ̂n,1h − ζ̂n,2h in the third step. Rearranging the above terms concludes the
proof.

23



Lemma 6.6 (Stability). Under the assumption v ∈ C0(J ;V 0)∩C4(J ;Y ) and the CFL condition (5.1)
with the choice (5.16) of ρ1, the following holds

∥ζn+1
T ∥2

ρ, 1
κ

− ∥ζn,1T ∥2
ρ, 1

κ

+
1

24
τ |ζ̂n,1h |2s +

1

6
τ |ζ̂n,2h |2s +

1

24
τ |ζ̂n,3h |2s

≲ τ
{
T−1
f ∥ζn,1T ∥2

ρ, 1
κ

+ ∥ψ̂n,1
h ∥s′ + ∥ψ̂n,2

h ∥s′ + ∥ψ̂n,3
h ∥2s′

+ Tf
(
Cn
3 (f, v)

2τ6 + ∥Dn,1∥2
ρ, 1

κ

+ ∥Dn,2∥2
ρ, 1

κ

+ ∥Dn,3∥2
ρ, 1

κ

)}
, (6.21)

with Cn
3 (f, v) = ∥∂tttf∥C0(Jn;

1
ρ
,κ) + c∞∥∇∂ttf∥C0(Jn;

1
ρ
,κ) + ∥∂ttttv∥C0(Jn;Hν(ρ, 1

κ
;Th)).

Proof. The aim is to bound each term on the right-hand side of the energy identity (6.19).

(1) Bound 1
6τ |ζ̂

n,2
h − ζ̂n,1h |2s . For appropriate choices of ϵ and ϵ̂ (to be chosen later), we observe that

|ζ̂n,2h − ζ̂n,1h |2s ≤ (1 + ϵ)|ζ̂n,3h − ζ̂n,1h |2s + (1 + ϵ−1)|ζ̂n,3h − ζ̂n,2h |2s
≤ (1 + ϵ)(1 + ϵ̂)|ζ̂n,3h |2s + (1 + ϵ)(1 + ϵ̂−1)|ζ̂n,1h |2s + (1 + ϵ−1)|ζ̂n,3h − ζ̂n,2h |2s
≤ (1 + ϵ)(1 + ϵ̂)|ζ̂n,3h |2s + (1 + ϵ)(1 + ϵ̂−1)|ζ̂n,1h |2s + (1 + ϵ−1)2CS

(
c∞h

−1∥ζn,3T − ζn,2T ∥2
ρ, 1

κ

+ ∥ψ̂n,3
h (0, ·)− ψ̂n,2

h (0, ·)∥2s′
)
,

with (A2) and AF (ζ̂
n,3
h − ζ̂n,2h ) = ψ̂n,3

h (0, ·) − ψ̂n,2
h (0, ·) owing to (6.20b). Set ϵ = 5

72 and ϵ̂ = 7
11 , and

notice that

1

6
(1 + ϵ)(1 + ϵ̂) =

7

24
,

1

6
(1 + ϵ)(1 + ϵ̂−1) =

11

24
,

1

3
τ(1 + ϵ−1)CSc∞h

−1 ≤ 1

12
,

owing to the choice (5.16) of ρ1 in the last term. Hence,

1

6
τ |ζ̂n,2h − ζ̂n,1h |2s ≤

7

24
τ |ζ̂n,3h |2s +

11

24
τ |ζ̂n,1h |2s +

1

12
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

+ Cτ∥ψ̂n,3
h − ψ̂n,2

h ∥2s′ , (6.22)

where we also used ∥ψ̂n,3
h (0, ·)− ψ̂n,2

h (0, ·)∥s′ ≤ ∥ψ̂n,3
h − ψ̂n,2

h ∥2s′ for the last term on the right hand-side.

(2) Bound 1
2∥ζ

n+1
T − ζn,3T ∥2

ρ, 1
κ

. The identity (6.20b) with ẑh := (ζn+1
T − ζn,3T , 0) followed by (6.12), the

property (A3) for ŵh = ζ̂n,3h − ζ̂n,2h , and AF (ζ̂
n,3
h − ζ̂n,2h ) = ψ̂n,3

h (0, ·)− ψ̂n,2
h (0, ·) show that

1

2
∥ζn+1

T − ζn,3T ∥2
ρ, 1

κ

≤ 1

18
(τCAc∞h

−1)2∥ζn,3T − ζn,2T ∥2
ρ, 1

κ

+ Cτ2
{
c∞h

−1∥ψ̂n,3
h − ψ̂n,2

h ∥2s′ + ∥Dn,3 −Dn,2∥2
ρ, 1

κ

+ ∥γnT ∥
2
1
ρ
,κ

}
≤ 1

12
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

+ C
{
τ∥ψ̂n,3

h − ψ̂n,2
h ∥2s′ + τ2

(
∥Dn,3 −Dn,2∥2

ρ, 1
κ

+ ∥γnT ∥
2
1
ρ
,κ

)}
, (6.23)

owing to the choice (5.16) of ρ1 in the last step. The definition of γnT , the triangle inequality, the

assumption (5.11) on gn,3T − fn,3T , and (I1) lead to

∥γnT ∥ 1
ρ
,κ ≤ ∥gn,3T − fn,3T ∥ 1

ρ
,κ + ∥IT (Rn,3)∥ρ, 1

κ

≲ Cn
3 (f)τ

3 + ∥Rn,3∥Hν(ρ, 1
κ
;Th) ≲ Cn

3 (f, v)τ
3. (6.24)

The bound (6.24) in (6.23) results in

1

2
∥ζn+1

T − ζn,3T ∥2
ρ, 1

κ

≤ 1

12
∥ζn,3T − ζn,2T ∥2

ρ, 1
κ

+ Cτ
{
∥ψ̂n,3

h − ψ̂n,2
h ∥2s′ + Tf

(
∥Dn,3 −Dn,2∥2

ρ, 1
κ

+ Cn
3 (f, v)

2τ6
)}
. (6.25)
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(3) Bound on consistency errors. The Cauchy-Schwarz inequality and Young’s inequality imply that∣∣∣∣− 1

6
τψ̂n,1

h (2ζ̂n,1h + ζ̂n,2h )− 1

6
τψ̂n,2

h (ζ̂n,1h )− 1

3
τψ̂n,3

h (ζ̂n,3h )

∣∣∣∣
≤ 1

12
τ |ζ̂n,2h |2s + τ

1

48

(
|ζ̂n,1h |2s + |ζ̂n,3h |2s

)
+ Cτ

(
∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′ + ∥ψ̂n,3

h ∥2s′
)
.

(4) Bound on remaining terms. The Cauchy-Schwarz inequality and Young’s inequality show that∣∣∣∣− 1

6
τ⟨Dn,1, 2ζn,1T + ζn,2T ⟩ρ, 1

κ
− 1

6
τ⟨Dn,2, ζn,1T ⟩ρ, 1

κ
− 1

3
τ⟨Dn,3, ζn,3T ⟩ρ, 1

κ
+

1

3
τ⟨γnT , ζ

n,3
T ⟩L

∣∣∣∣
≲ τ

{
Tf

(
∥Dn,1∥2

ρ, 1
κ

+ ∥Dn,2∥2
ρ, 1

κ

+ ∥Dn,3∥2
ρ, 1

κ

+ ∥γnT ∥
2
1
ρ
,κ

)
+ T−1

f

(
∥ζn,1T ∥2

ρ, 1
κ

+ ∥ζn,2T ∥2
ρ, 1

κ

+ ∥ζn,3T ∥2
ρ, 1

κ

)}
.

(6.26)

Recall from (6.14) that ∥ζn,2T ∥ρ, 1
κ
≲ ∥ζn,1T ∥ρ, 1

κ
+ T

1
2
f ∥ψ̂n,1

h ∥s′ + Tf∥Dn,1∥ρ, 1
κ
. The error equation (6.18b)

with (A1)-(A3) results in

∥ζn,3T ∥ρ, 1
κ
≤ 1

2
(∥ζn,1T ∥ρ, 1

κ
+ ∥ζn,2T ∥ρ, 1

κ
) +

1

2
τ(c∞h

−1∥ζn,2T ∥ρ, 1
κ
+ c

1
2∞h

− 1
2 ∥ψ̂n,2

h ∥s′ + ∥Dn,2∥ρ, 1
κ
)

≲ ∥ζn,1T ∥ρ, 1
κ
+ T

1
2
f (∥ψ̂n,1

h ∥s′ + ∥ψ̂n,2
h ∥s′) + Tf (∥Dn,1∥ρ, 1

κ
+ ∥Dn,2∥ρ, 1

κ
),

with the usual CFL condition and the observation that τ ≤ Tf in the last step. Using the above
estimates in (6.26), we obtain∣∣∣∣− 1

6
τ⟨Dn,1, 2ζn,1T + ζn,2T ⟩ρ, 1

κ
− 1

6
τ⟨Dn,2, ζn,1T ⟩ρ, 1

κ
− 1

3
τ⟨Dn,3, ζn,3T ⟩ρ, 1

κ
+

1

3
τ⟨γnT , ζ

n,3
T ⟩L

∣∣∣∣
≲ τ

(
Tf

(
Cn
3 (f, v)τ

6 + ∥Dn,1∥2
ρ, 1

κ

+ ∥Dn,2∥2
ρ, 1

κ

+ ∥Dn,3∥2
ρ, 1

κ

)
+ ∥ψ̂n,1

h ∥2s′ + ∥ψ̂n,2
h ∥2s′ + T−1

f ∥ζn,1T ∥2
ρ, 1

κ

)
.

(6.27)

Combining all the estimates from Steps (1)-(4) in (6.19) concludes the proof.

Proof of Theorem 5.2. This follows immediately from summing (6.21) from n = 0 to N and applying
a discrete Gronwall’s lemma (observing that τN = Tf ).

6.4 Proofs of Lemmas 5.7 and 5.8

Proof of Lemma 5.7. Substituting (5.23a) in (5.23b), we obtain

M(vn+1
T ) = M(vn,1T )− τÃT (v

n,1
T ) +

1

2
τ2ÃT M−1ÃT (v

n,1
T )− 1

2
τ2ÃT M−1(fnT ) +

1

2
τfnT +

1

2
τgn,2T .

(6.28)

Similarly, (5.26a) simplifies (5.26b) to

M(vn+1
T ) = M(vn,1T )− τ(b1 + b2)ÃT (v

n,1
T ) + τ2b2a21

(
ÃT M−1ÃT (v

n,1
T )− ÃT M−1(f̃n,1T )

)
+ τ(b1f̃

n,1
T + b2f̃

n,2
T )

= M(vn,1T )− τÃT (v
n,1
T ) +

1

2
τ2ÃT M−1ÃT (v

n,1
T )− 1

2
τ2ÃT M−1(f̃n,1T ) + τ(b1f̃

n,1
T + b2f̃

n,2
T ),

(6.29)

where we used the order conditions (5.27). Comparing (6.28) and (6.29), we obtain (5.30). Employing
again the order conditions (5.27) (observe that b2 is non-negative since c2 ∈ [0, 1]) leads to

1

2
(gn,2T − fn,2T ) = b1f̃

n,1
T + b2f̃

n,2
T − fnT − 1

2
∂tτf

n
T
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= b1f̃
n,1
T + b2f̃

n,2
T − (b1 + b2)f

n
T − b2c2τ∂tf

n
T

= b2(f̃
n,2
T − f̃n,1T − c2τ∂tf

n
T )

= b2

∫ tn,2

tn,1

(tn,2 − t)∂ttf(t) dt,

with f̃n,1T = fnT and Taylor’s expansion with integral remainder of order 2 and tn,1 = tn in the last

step. Using tn,2 − tn,1 = c2τ and (5.27) concludes the proof of (5.31).

Proof of Lemma 5.8. Substituting (5.24a) and (5.24b) in (5.24c), we obtain

M(vn+1
T ) = M(vn,1T )− τÃT (v

n,1
T ) +

1

2
τ2ÃT M−1ÃT (v

n,1
T )− 1

6
τ3ÃT M−1ÃT M−1ÃT (v

n,1
T )

+
2

3
τfnT +

1

6
τ2∂tf

n
T − 1

2
τ2ÃT M−1(fnT )−

1

6
τ3ÃT M−1(∂tf

n
T )

+
1

6
τ3ÃT M−1ÃT M−1(fnT ) +

1

3
τgn,3T . (6.30)

Similarly, (5.28a) and (5.28b) simplify (5.28c) to

M(vn+1
T ) = M(vn,1T )− τ(b1 + b2 + b3)ÃT (v

n,1
T ) + (b2a21 + b3a31 + b3a32)τ

2ÃT M−1ÃT (v
n,1
T )

− b3a32a21τ
3ÃT M−1ÃT M−1ÃT (v

n,1
T ) + τ

(
b1f̃

n,1
T + b2f̃

n,2
T + b3f̃

n,3
T

)
− τ2

(
(b2a21 + b3a31)ÃT M−1(f̃n,1T ) + b3a32ÃT M−1(f̃n,2T )

)
+ τ3b3a32a21ÃT M−1ÃT M−1(f̃n,1T )

= M(vn,1T )− τÃT (v
n,1
T ) +

1

2
τ2ÃT M−1ÃT (v

n,1
T )− 1

6
τ3ÃT M−1ÃT M−1ÃT (v

n,1
T )

+ τ
(
b1f̃

n,1
T + b2f̃

n,2
T + b3f̃

n,3
T

)
− τ2

(
(b2a21 + b3a31)ÃT M−1(f̃n,1T ) + b3a32ÃT M−1(f̃n,2T )

)
+

1

6
τ3ÃT M−1ÃT M−1(f̃n,1T ), (6.31)

where we used the third-order conditions (5.29) in the last step. Comparing (6.30) and (6.31), we
obtain (5.32). Consequently, we have

1

3
(gn,3T − fn,3T ) = δn,31,T − τÃT M−1(δn,32,T ),

with

δn,31,T := b1f̃
n,1
T + b2f̃

n,2
T + b3f̃

n,3
T − fnT − 1

2
τ∂tf

n
T − 1

6
τ2∂ttf

n
T (6.32a)

δn,32,T := (b2a21 + b3a31)f̃
n,1
T + b3a32f̃

n,2
T − 1

2
fnT − 1

6
τ∂tf

n
T . (6.32b)

The triangle inequality shows that

∥gn,3T − fn,3T ∥ 1
ρ
,κ ≤ 3(∥δn,31,T ∥ 1

ρ
,κ + τ∥ÃT M−1(δn,32,T )∥ 1

ρ
,κ). (6.33)

(1) Bound on δn,31,T . Employing again the order conditions (5.29) and f̃n,1T = fnT leads to

δn,31,T =
∑

j∈{2:3}

bj(f̃
n,j
T − fn,1T − cjτ∂tf

n
T − 1

2
c2jτ

2∂ttf
n
T )

=
∑

j∈{2:3}

1

2
bj

∫ tn,j

tn,1

(tn,j − t)2∂tttfT (t) dt, (6.34)
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where we used Taylor’s expansion with integral remainder of order 3 and tn,1 = tn in the last step.
This proves that

∥δn,31,T ∥ 1
ρ
,κ ≤ χ1τ

3∥∂tttfT ∥C0(Jn;
1
ρ
,κ), (6.35)

where the constant χ1 can depend on {bj}j∈{2:3}. However, for nonnegative bj ’s, we can use
∑

j∈{2:3} bjc
3
j ≤∑

j∈{2:3} bjc
2
j =

1
3 since {cj}j∈{2:3} ∈ [0, 1], showing that χ1 is independent of the bj ’s.

(2) Bound for δn,32,T . Using (5.29) and f̃n,1T = fnT , we arrive at

δn,32,T = (b2a21 + b3a31)f̃
n,1
T + b3a32f̃

n,2
T − (b2a21 + b3a31 + b3a32)f

n
T − b3c2a32τ∂tf

n
T

= b3a32(f̃
n,2
T − fnT − c2τ∂tf

n
T )

= b3a32

∫ tn,2

tn,1

(tn,2 − t)∂ttfT (t) dt, (6.36)

where we used Taylor’s expansion with integral remainder of order 2 and tn,1 = tn in the last step.
Let

wT := M−1(δn,32,T ) = (0, wT ).

The definition of ÃT leads for ŵh := (wT , ϕF (wT )) and for all zT ∈ V k
T , to

⟨ÃT (ŵh), zT ⟩L = −(GT (ŵh), ξT )L2(Ω) + sh(ŵh, (zT , 0)).

The definition (3.7) of GT and a discrete trace inequality show that

∥GT (ŵh)∥2L2(Ω)
≲

∑
T∈Th

{
∥∇wT ∥2L2(T ) + λTh

−1
T |ŵT |2s,T

}
.

This, (A1), and λT = cTρT = c−1
T κT result in

⟨ÃT (ŵh), zT ⟩L ≲ (c∞∥∇T wT ∥L2( 1
κ
;Ω) + c

− 1
2∞ h−

1
2 |ŵh|s)∥zT ∥ρ, 1

κ
.

Consequently, we have

∥ÃT (wT )∥ 1
ρ
,κ ≲ c∞∥∇T wT ∥L2( 1

κ
;Ω) + c

1
2∞h

− 1
2 |ŵh|s. (6.37)

Furthermore, the identity ah(ŵh, (0, 0, zF )) = 0 for all zF ∈ V k
F0 simplifies to

sh((wT , ϕF (wT )), (0, zF )) = 0 ∀zF ∈ V k
F0.

This can be rewritten as
∑

F∈F
∫
F zF

(∑
T∈TF λ

−1
T (wT − ϕF (wT )|F )

)
ds = 0. Hence, we have

ϕF (wT )|F =

∑
T∈TF λ

−1
T wT∑

T∈TF λ
−1
T

,

where TF := {T ∈ T : F ∈ F∂T } denotes the patch of F . Notice also that ϕF (wT )|F = wT |F for all
F ∈ F∂

h . An elementary algebraic manipulation shows that

|ŵh|2s =
∑
T∈Th

∑
F∈F∂T∩Fi

h

λ−1
T ∥wT |F − ϕF (wT )|F ∥2L2(F )

=
∑
T∈Th

∑
F∈F∂T∩Fi

h

λ−1
T

(
∑

T∈TF λ
−1
T )2

∥(
∑
T∈TF

λ−1
T )wT |F −

∑
T∈TF

λ−1
T wT ∥2L2(F )

≤
∑
T∈Th

∑
F∈F∂T∩Fi

h

λ−1
T ∥[wT ]F ∥2L2(F ) =

∑
T∈Th

∑
F∈F∂T∩Fi

h

λ−1
T ∥[wT − w]F ∥2L2(F ),
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with κ−1w := (b2a21 + b3a31)f̃
n,1 + b3a32f̃

n,2 − 1
2f

n − 1
6τ∂tf

n ∈ H1(Ω) since f ∈ C2(J ;H1(Ω)), and

the notation [·]F to denote the jump across the interface F . The approximation properties of IkT give

|ŵh|2s ≲
∑
T∈Th

λ−1
T hT ∥∇w∥2L2(T ).

This with λT = c−1
T κT and the H1-stability of Πk

T in (6.37) prove that

∥ÃT (wT )∥ 1
ρ
,κ ≲ c∞τ

2∥∇δn,32,T ∥ 1
ρ
,κ ≤ 1

6
c∞τ

2∥∇∂ttfT ∥ 1
ρ
,κ, (6.38)

where we used (6.36) with tn,2− tn,1 ≤ c2τ and (5.29). The combination of (6.35) and (6.38) in (6.33)
followed by the L2-stability of Πk

T concludes the proof of (5.33).

7 Variants of HHO

This section discusses variations in the HHO method depending on the equal- and mixed-order setting,
and on the stabilization parameters. We provide examples of suitable interpolation operators for all
these variations.

7.1 Main results

We consider the following variations in the HHO method: (i) Equal- or mixed-order settings, where
the cell unknowns are of order k′ = k or k′ = k + 1, respectively. (ii) Two choices of the stabilization
weight in (3.9), namely λ−1

T h̃−2α
T for α = {0, 12} with h̃T = hT

ℓΩ
. The analysis carried out so far is based

on O(1)-stabilization (i.e., α = 0), which is a natural choice for Friedrichs systems. However, O( 1h)-
stabilization (i.e., α = 1

2) is also of interest since this choice can lead in some situations to O(hk+1)
convergence rate in space (see Table 7.1 below). Since the LS O( 1h)-stabilization can only give O(hk)
convergence rate in space (for both equal- and mixed-order settings), we now consider instead the
higher-order stabilization operators used in HHO methods for elliptic PDEs. Recalling the definition
(3.8) of the difference operator δ∂T for all T ∈ Th, we define, for all ŵT ∈ V̂ k

T ,

SHHO

∂T (ŵT ) :=

{
Πk

∂T

(
δ∂T (ŵT ) + (1−Πk

T )R
k+1
T (0, δ∂T (ŵT ))|∂T

)
for k′ = k,

Πk
∂T

(
δ∂T (ŵT )

)
for k′ = k + 1,

(7.1a)

(7.1b)

with the high-order potential reconstruction operator Rk+1
T : V̂ k

T → Pk+1(T ;R) such that

(∇Rk+1
T (ŵT ),∇q)L2(T ) = (∇wT ,∇q)L2(T ) + (w∂T − wT ,∇q·nT )L2(∂T ) ∀q ∈ Pk+1

*
(T ;R), (7.2)

with Pk+1

*
(T ;R) := {q ∈ Pk+1(T ;R) : (q, 1)L2(T ) = 0}, and (Rk+1

T (ŵT ) − wT , 1)L2(T ) = 0. Thus, we

now consider the stabilization bilinear form sh : V̂ k
h × V̂ k

h → R such that

sh(ŵh, ẑh) :=
∑
T∈Th

sT (ŵT , ẑT ), sT (ŵT , ẑT ) := τ∂T (S
HHO

∂T (ŵT ), S
HHO

∂T (ẑT ))L2(∂T ), (7.3)

with the stabilization parameter

τ∂T := λ−1
T h̃−2α

T with λT = cTρT = c−1
T κT , h̃T := ℓ−1

Ω hT , α ∈
{
0,

1

2

}
. (7.4)

This leads altogether to four variations: equal- vs. mixed-order setting andO(1)- vs.O( 1h)-stabilization
with SHHO

∂T defined in (7.1).
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The first important point is that the stabilization (7.1) generally calls for implicit schemes, for
both equal- and mixed-order settings. Indeed, in the equal-order case, the invertibility of the face-face
stabilization matrix is not guaranteed (this property is required to handle the static coupling between
cell and face unknowns in explicit schemes). Moreover, it is not clear how to prove (A2). In the
mixed-order case, the invertibility of the face-face stabilization matrix is guaranteed, but again (A2)
fails. It is still possible to prove that

|ŵh|s ≲ c
1
2∞h̃

αh−
1
2 ∥τ T ∥L2(ρ;Ω) + c

1
2∞h̃

−αh−
1
2 ∥wT ∥L2( 1

κ
;Ω) + ∥AF (ŵh)∥s′ ∀ŵh ∈ V̂ k

h0. (7.5)

Thus, for α = 1
2 , we loose a factor h−

1
2 and this eventually leads to a 2-CFL condition for explicit

schemes. For α = 0 instead, we can repeat the analysis in Sections 5 and 6, but this leads to the same
convergence rates as in the equal-order case with LS stabilization. In any case, if one is ready to run
an implicit scheme with either equal- and mixed-order or to run an explicit scheme with mixed-order
using a 2-CFL condition, one obtains O(h̃αhk+

1
2 ) convergence rate on polyhedra, which is optimal for

α = 1
2 .

To summarize, Table 7.1 displays the convergence rates and CFL conditions for all the combinations
of HHO discretizations discussed in the paper. The two rows labelled A correspond to the analysis of
Sections 5-6, and the rows labelled B and C to the variations discussed in Section 7.

Stabilization HHO Mesh Convergence
Interpolation operator
Implicit Explicit CFL

A O(1), δ∂T k′ = k
Simplices O(hk+1) HDG HDG 4

3/1

Polyhedra O(hk+
1
2 ) HHO HHO 4

3/1

B O(1), SHHO

∂T

k′ = k
Simplices O(hk+1) HDG-HHO

- -
Polyhedra O(hk+

1
2 ) HHO

k′ = k + 1
Simplices O(hk+1) HDG+ HDG+ 4

3/1

Polyhedra O(hk+
1
2 ) HHO or H+ H+ 4

3/1

C O( 1h), S
HHO

∂T

k′ = k Polyhedra O(hk+1) HHO - -
k′ = k + 1 Polyhedra O(hk+1) HHO or H+ H+ 2/2

Table 7.1: Choices of stabilization parameters and order setting: convergence rates and suitable
interpolation operators defined in Section 7.2

7.2 Interpolation operators

We discuss possible choices of the interpolation operator satisfying (I1) and (I2) to prove the conver-
gence rates stated in Table 7.1. We focus on (I2) which is the more delicate property.

For equal-order on simplices, one can replace the stabilization weight λ−1
T by τ∂T and the difference

operator δ∂T by SHHO

∂T in the third condition (4.19c) defining the HDG interpolation operator Πh
T (we call

this slightly modified HDG interpolation operator with HHO stabilization the HDG-HHO interpolation
operator) and prove that the consistency error is still zero. Namely, (4.19c) is replaced by

((τ −ΠΣ
T (w))·nT , µ)L2(∂T ) = τ∂T (S

HHO

∂T (ΠV
T (w),Π

k
∂T (w|∂T )), S

HHO

∂T (0, µ))L2(∂T ) ∀µ ∈ V k
∂T . (7.6)

However, on general polyhedra, adapting the arguments from [4], an error analysis can be carried out
using the classical HHO interpolation operator for α ∈ {0, 12}.

For mixed-order on polyhedra, the first term on the right hand-side of (4.14) can no longer be
bounded using only the stabilization seminorm from (7.1b). To circumvent this problem, we propose
to use the H+ interpolation operator defined in [17] (where it is called HDG+ interpolation operator).
Specifically, the H+ interpolation operator Πh+

T : Hνσ(T ) → Pk(T ;Rd), νσ ∈ (12 , 1], is defined for
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all T ∈ Th as follows. We consider the L2-orthogonal decomposition Pk(T ;Rd) = ∇Pk+1

*
(T ;R) ⊕

Zk(T ;Rd), where Pk+1

*
(T ;R) := {q ∈ Pk+1(T ;R) : (q, 1)L2(T ) = 0} and Zk(T ;Rd) := ∇Pk+1

*
(T ;R)⊥ ∩

Pk(T ;Rd). Then, for all τ ∈ Hνσ(T ), we define Πh+
T (τ ) ∈ Σk

T from the following conditions:

(Πh+
T (τ )− τ , ξ)L2(T ) = 0 ∀ξ ∈ Zk(T ;Rd),

(Πh+
T (τ )− τ ,∇z)L2(T ) = (Πk

∂T (τ ·nT )− τ ·nT , z)L2(∂T ) ∀z ∈ Pk+1

*
(T ;R).

(7.7a)

(7.7b)

The global interpolation operator Πh+
T : Hνσ(Ω) → Σk

T is defined as (Πh+
T (τ ))|T := Πh+

T (τ |T ) for

all τ ∈ Hνσ(Ω). We then define the H+ interpolation operator ÎH+

h : Y h+ → V̂ k
h0 with Y h+ :=

Hνσ(Ω)×Hνv(Ω), with νσ ∈ (12 , 1], νv ∈ (12 , 1], such that, for all w := (τ , w) ∈ Y h+,

ÎH+

h (w) := (

Ih+T (w):=︷ ︸︸ ︷
Πh+

T (τ ),Πk′
T (w),Π

k
F (w|F )︸ ︷︷ ︸

=:Î
HHO

h (w)

) ∈ V̂ k
h. (7.8)

Thus, ÎH+

h approximates the dual variable τ using the H+ interpolation operator and the primal variable
w using the usual L2-based HHO interpolation operator. One can verify that the H+ interpolation
operator leads to O(h̃αhk+

1
2 ) convergence rates on polyhedra. Finally, using similar arguments to those

in Section 4.4 in the equal-order case, this rate can be improved to O(hk+1) on simplices for α = 0 using
the HDG+ interpolation operator from [16, Section 4.1]. Specifically, for all w := (τ , w) ∈ Hνσ(T )×
Hνv(T ), with νσ ∈ (12 , 1], νv ∈ (12 , 1], one defines Πh

T (w) := (ΠΣ
T (w),Π

V
T (w)) ∈ Pk(T ;Rd) × Pk′(T ;R)

on any simplex T ∈ Th by using (4.19a)-(4.19b), replacing (4.19c) by

((τ −ΠΣ
T (w))·nT , µ)L2(∂T ) = τ∂T (δ∂T (Π

V
T (w),Π

k
∂T (w|∂T )), δ∂T (0, µ))L2(∂T ) ∀µ ∈ V k

∂T , (7.9)

and adding that

(∇·(ΠV
T (w)− w), χ)L2(T ) = τ∂T (S

HHO

∂T (ΠV
T (w),Π

k
∂T (w|∂T )), S

HHO

∂T (χ, 0))L2(∂T ) ∀χ ∈ P̃k′(T ;R),
(4.19d)

with P̃k′(T ;R) is composed of homogeneous polynomials of degree k′ = k + 1. Notice that the two
interpolation operators H+ and HDG+ are considered in the HDG+ literature with O( 1h)-stabilization,
but they are also well-defined for O(1)-stabilization.
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