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Explicit Runge-Kutta schemes with hybrid high-order methods for

the wave equation in first-order form*

ALEXANDRE ERN' REKHA KHOT!

November 2, 2024

Abstract

We analyze the approximation of the acoustic wave equation in its first-order Friedrichs formu-
lation by explicit Runge-Kutta (ERK) schemes in time combined with hybrid high-order (HHO)
methods in space. We propose two general assumptions (I1)-(12) for an interpolation operator to
evaluate the consistency error, and establish energy-error estimates in the time-continuous setting.
We give several examples of interpolation operators: the classical one in the HHO literature based
on LZ?-orthogonal projections and others from, or inspired from, the hybridizable discontinuous
Galerkin (HDG) literature giving improved convergence rates on simplices. In the fully discrete
analysis, the key observation is that it becomes crucial to bound the consistency error in space by
means of the stabilization seminorm only. We formulate three abstract properties (A1)-(A3) to
lead the analysis and prove that, under suitable CFL conditions for second- and third-order ERK
schemes, the energy error converges optimally in time and quasi-optimally in space, with optimal
rates recovered on simplicial meshes. The abstract foundations of our analysis should facilitate
its application to other nonconforming hybrid methods such as HDG and weak Galerkin (WG)
methods.

Mathematics Subject Classification: 35L05, 656M15, 656M60.

Keywords: Acoustic wave equation, hybrid high-order, hybridizable discontinuous-Galerkin, Friedrichs
formulation, explicit Runge-Kutta, energy-error estimates, CFL conditions, interpolation operators.

1 Introduction

Wave propagation is encountered in a variety of physical phenomena, e.g., earthquakes and other
seismic activities, ultrasound wave imaging, etc. In this work, we focus on the acoustic wave equa-
tion. Many numerical methods exist to approximate this equation, either in its original second-order
formulation in time or as a first-order system in time. Here, we are concerned with the (well-known)
first-order setting in time based on a Friedrichs-type formulation involving a skew-symmetric differen-
tial operator in space (namely, gradient and divergence operators). The resulting formulation involves
two unknowns: a vector-valued dual variable and a scalar-valued primal variable.

There are many available schemes in the literature to discretize in space the acoustic wave equation
in its Friedrichs formulation. The first possibility is to use conforming finite element methods (FEM)
with fluctuation-based stabilization, e.g., subgrid viscosity, local projection stabilization or gradient-
jump penalty (also called continuous interior penalty). Implicit Euler schemes combined with stabilized
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conforming FEM are reviewed in [18, Chapter 77|, following ideas originally introduced in [22] for
subgrid stabilization and linear monotone operators. Moreover, explicit Runge-Kutta (ERK) schemes
combined with stabilized conforming FEM for time-dependent Friedrichs systems are analyzed in [5]
(see also [18, Chapter 78]). The second possibility for space discretization is to use virtual element
methods (VEM), which can be viewed as a generalization of conforming FEM to polyhedral grids. A
VEM discretization for the first-order form of the acoustic wave equation, based on a dG approximation
for the primal variable and a VEM approximation for the dual variable along with a 6-scheme in time,
is studied in [12]. The third possibility for space discretization is to use discontinuous Galerkin (dG)
methods. ERK schemes combined with dG methods for system of conservation laws were developed
in [10]. Moreover, space-time dG methods for time-dependent Friedrichs systems are investigated in
[20, 11], and more specifically in [2] for the acoustic wave equation with point singularities. Notice
also that stabilized conforming FEM and dG are amenable to a unified analysis in the context of ERK

schemes, as already shown in [5].

The fourth possibility for space discretization is to use nonconforming hybrid methods, such as
hybridizable discontinuous Galerkin (HDG), weak Galerkin (WG), or hybrid high-order (HHO) meth-
ods. These methods are closely interlinked, as highlighted in [7] (see also [6, Chapters 1&3]). Let us
briefly comment on these methods in the context of elliptic problems. Both WG and HHO methods
are formulated in terms of cell- and face-based polynomials which approximate the primal variable in
the mesh cells and on its faces, respectively. The equal-order setting considers cell- and face-based
polynomials having the same degree, whereas the cell-based polynomials are one order higher than the
face-based polynomials in the mixed-order setting. Both HHO and WG methods reconstruct locally a
discrete gradient from the local unknowns (called weak gradient in WG). The devising viewpoint for
HDG methods is somewhat different, as additional cell unknowns are introduced to approximate the
dual variable, and the stabilization is introduced via the numerical flux trace. However, as shown in [7],
the HDG dual variable is nothing but the discrete gradient reconstructed from the local cell and face
variables. Moreover, the numerical flux trace in HHO and WG methods can be explicitly identified in
terms of the reconstructed gradient and the stabilization. Furthermore, we notice that nonconforming
VEM is also closely related to HDG, WG, and HHO. For instance, the computable projection of the
gradient of virtual functions can be expressed using the gradient reconstruction operator.

Nonconforming hybrid methods have already been used to approximate the acoustic wave equation
in its Friedrichs formulation. For both HDG and HHO methods, previous work approximated the dual
variable in a dG fashion (by using piecewise vector-valued polynomials) and the primal variable using
cell and face unknowns. Implicit and explicit RK schemes for HDG methods are proposed in [24]
and [25], respectively, whereas the convergence analysis is performed in [9] in the time-continuous
case and in [21] for implicit schemes using continuous finite elements in time. Implicit and explicit
RK schemes for HHO methods are proposed in [3], and the convergence analysis is performed in [4]
in the time-continuous case. In the WG setting, we mention [28], where a dG method is used for
the primal variable and a WG method for the dual variable, together with an implicit Euler scheme
in time. Furthermore, the space semi-discrete analysis of the WG approximation of time-dependent
abstract Friedrichs systems is discussed in [27]. Nonconforming hybrid methods offer some advantages
with respect to dG methods. For implicit time-schemes, one can use static condensation to reduce
substantially the number of unknowns. Moreover, interior penalty dG methods come with a lower
bound on the stabilization weight, which is not the case for nonconforming hybrid methods. A third
advantage in the context of nonlinear problems is that the integration of nonlinear behavior laws is
only required at the quadrature nodes in the cells, but not on the faces [1].

The goal of the present work is to derive error estimates for the acoustic wave equation in a
fully discrete setting, using second- and third-order ERK schemes (referred as ERK2 and ERK3,
respectively) in time and HHO methods in space (ERK-HHO schemes in short). Owing to the above
discussion, our results also apply when other nonconforming hybrid methods, such as HDG and WG,
are employed for space discretization. To our knowledge, this is the first fully discrete analysis for
nonconforming hybrid methods with explicit time-stepping schemes applied to the wave equation in
its Friedrichs formulation. One of the main challenges in the analysis is to deal with the static coupling



between face and cell unknowns. This has already been done in [19], but only for the second-order
formulation in time.

Following the ideas in [5], our fully discrete analysis hinges on energy estimates. ERK schemes
are antidissipative in nature, that is, they produce energy at each time step, as originally emphasized
in [23], and this energy production needs to be compensated by the dissipation of the stabilization in
space. The main flavour of our results on ERK-HHO schemes is similar to those achieved for ERK-
dG methods in [26, 5], namely energy-error estimates invoke a %—CFL condition for ERK2 and the
usual CFL condition for ERK3. There is, however, an important difference between ERK-HHO and
ERK-dG schemes, since we stabilize only the primal variable whereas both primal and dual variables
are stabilized in ERK-dG. This in itself makes the present method more appealing as it reduces the
amount of energy dissipation. In addition, we achieve higher convergence rates in space, (’)(hk+1), on

simplices and the same convergence rates as ERK-dG, O(h’”%), on polyhedra.

Concerning the analysis, we mention three main contributions.

e To address the static coupling between face and cell unknowns, we formulate three abstract
properties (A1)-(A3) (see Section 5.1) to lead the analysis, thereby facilitating the application
of our results to other nonconforming hybrid methods.

e We highlight a nontrivial novelty in the analysis when treating the fully discrete case instead
of the time-continuous setting (as in previous works). Indeed, in the fully discrete setting, it
becomes crucial to bound the consistency error in space produced at each time step by means of
the stabilization seminorm only, and not the full HHO norm. This subtle aspect of the analysis
is perhaps not that well-known since previous works essentially focused on the time-continuous
setting.

e As usual, the consistency error is defined through an interpolation operator. Here, we formulate
two abstract assumptions (I1)-(I2) (see Section 4.1) on the interpolation operator to lead the
analysis, again with the aim to facilitate the application to other nonconforming hybrid methods.
Interestingly, we consider altogether five interpolation operators depending on the discrete setting
(equal- vs. mixed-order, simplicial vs. polyhedral meshes), and some of these operators come
from the HDG literature (see Table 1.1 below and Table 7.1 for more details; these operators
are commonly known as HDG projections, but we call them HDG interpolation operators for
uniformity). This illustrates the mutual benefits promoted by building bridges among methods.

HDG HDG interpolation on simplices [8]
HHO HHO interpolation on polyhedra [14]
HDG-HHO HDG int.erpolation modified with HHO stabilization
on simplices

HDG™* HDG interpolation modified for mixed-order on simplices | [16]
H™ interpolation for dual variable combined with
HHO interpolation for primal variable on polyhedra

Present

HT

Table 1.1: Names of the interpolation operators (left), their main usage (middle), and references
(right)

The paper is organized as follows. Section 2 introduces the acoustic wave equation as a first-order
PDE system. Section 3 provides basic tools such as mesh assumptions, discrete spaces, and discrete
operators required to formulate the HHO method. Section 4 is devoted to the time-continuous error
analysis and introduces the main tools to estimate the consistency error in space. Section 5 states
our main assumptions and results on the time-discrete error analysis. Section 6 contains the proofs
of the results from Section 5. In Sections 4 through 6, we focus on the equal-order setting with plain



least-squares (LS) stabilization. Finally, the mixed-order setting with other choices of stabilization is
discussed in Section 7.
We use standard notation for the Lebesgue and Sobolev spaces, as well as for the Bochner—Sobolev

spaces in the space-time setting. Boldface notation is used for vectors and vector-valued fields. For a
weight function ¢ € L>°(Q2) taking positive values uniformly bounded from below away from zero, we

introduce the shorthand notation [[w||p2(40) == HQZ)%MHLQ(Q) for all w € L?(2), together with a similar
notation for vector-valued fields in L?(€2).

2 Model problem

Let Q be an open bounded polyhedral domain in R? for d € {2,3} with Lipschitz boundary I". The
first-order Friedrichs-type formulation of the acoustic wave equation defined on the space domain 2
and the time domain J := (0,7}) with a final time Ty > 0 consists of the coupled PDEs in J x €,

poro — Vv =0, (2.1a)
1
Eﬁtv — Vo=, (2.1b)

involving as unknowns the dual variable (or flux) o : J x Q — R? and the primal variable (or velocity)
v:J x Q2 — R. The parameters are the source term, f : J x @ — R, the bulk modulus, £ > 0, and
the density, p > 0, both assumed (for simplicity) to be piecewise constant on a polyhedral partition

of 2. The wave speed is defined as ¢ := \/% . The initial conditions are

o(0) =09, v(0)=1vy inQ, (2.2)
with given data oo : Q — R% and vg : Q — R, and the boundary condition is (for simplicity)

v=0 onJxTI. (2.3)

We set = := H(div,Q), Vo := H}(Q), and V, := = x Vp C L := L*(Q) x L*(f2). Our convention
is to underline pairs of functions composed of one dual variable and one primal variable. We assume
that f € L?(J;L*(Q)), v := (o,v) € HY(J;L) N L*(J;V,), and vy := (09,v0) € L. The space L
is equipped with the usual L?-inner product. We introduce the linear operators M : L — L and
B:V,— L defined by

M(w) := (pr,2w) YweL and B(w):=—(Vw,V-T) Yw := (T,w) € V. (2.4)

The norms |||z, [|*[|, 1 and ||-[[1 , in L are induced by the inner products (-, )L, (,-), 1 := (M(), )L,
'k o’ - 'k -

K

and (-,-)1 = (M71(-),-)p. With the above notation, the model problem (2.1) can be rewritten as

ot

to seek, for all t € J, v(t) := (a(t),v(t)) € V, satisfying in L?(J),
M(O(t)) + B(u(t)) = f(1), (2.5)

with f(t) := (0, f(¢)), and the initial condition v(0) = v,. It is well-known that the energy E(t) :=
%Hy(t)”i , satisfies the following balance law a.e. in J:

E(t) = E(0) +/0 (f(s),v(s))r ds. (2.6)

If the source term vanishes, (2.6) implies energy conservation, i.e., E(t) = E(0) a.e. in J.



3 Space discretization

This section presents the mesh assumptions, the local and global discrete spaces, and the discrete
operators in the HHO setting. The HHO method was originally introduced in [13] for linear elasticity
problems and in [14] for diffusion problems.

3.1 Mesh

Let {71 }n>0 be a sequence of shape-regular polyhedral meshes of Q [6, 15]. The set F}, contains the
mesh faces, which is divided into the set of mesh interfaces ]-71 and the set of boundary faces .7-",‘? A
generic cell is denoted by 1" € T;, with diameter Ap, unit outward normal np, and the set Fyp collects
the mesh faces located at the boundary of 7. We assume that each mesh 7}, fits the partition of 2 into
polyhedral subdomains associated with the coefficients p and . Thus, both coefficients are piecewise

constant on 7Tp. Their restriction to every T € T, is denoted by pr and k7, and we set ¢p 1= , /’;—;.

In what follows, the inequality a < Cb for positive numbers a and b is often abbreviated as
a < b. The value of C can be different at each occurence provided it is independent of the parameters
p, K, Lo = diam(2), Tr, the mesh-size h, and (from Section 5 onwards) the time step 7; the value can
depend on the mesh shape-regularity, the polynomial degree, and the space dimension.

3.2 Discrete spaces

To approximate o locally, we consider the vector-valued d-variate polynomial space 2% = PR(T;RY)
of degree k > 0 for all T € Ty, and define the dG space on the mesh Tj, as

k= X =k (3.1)
TeTs

To approximate v locally, we consider discrete unknowns attached to the mesh cells and to the mesh
faces. Let k > 0 (resp. k' € {k,k + 1}) be the polynomial degree associated with the face (resp. cell)
unknowns. The HHO space V,f is defined as

VE=VExVvE  vE = XV, VE= X VE (3.2)
TET, FeF,

where V' := P¥(T;R) (resp. VE := PF(F;R)) is composed of the scalar-valued d-variate (resp.
(d — 1)-variate) polynomials of degree at most k' (resp. k) restricted to the cell T' (resp. face F).
Combining everything together, we define the triple

Vi =Sk VE x VE. (3.3)

To impose the zero Dirichlet boundary condition, we define Vﬁo = {vp € V]’_9 cop =0 VF € .7:;? }
and set EIZO = KkT X Vﬁo = 2’“7 X tho with the HHO subspace tho = VT/ X kao-

Consistently with the above notation, we underline pairs of discrete functions defined cellwise (com-
posed of one dual variable and one primal variable), and we use a hat for HHO pairs of primal functions
composed of one function defined cellwise and one function defined facewise. A generic element in KZ
is denoted by

W=
A N
wy, = (T, wr,wr). (3.4)

=:0p,



The local components of w,, € Z’fb attached to the cell T' € Tj, and its faces F' € Fyr are denoted by

k=
Wpi= —
~ — Sk k K’ k
Wy = (T, wr,war) € Vi := X5 X Vi X Vg, (3.5)
N’ N——
=T ::V}?

where wor = (wp)rer,, and VakT = XpeFy, VE. We fix K’ = k until the end of Section 6, and
discuss the mixed-order case ¥/ = k + 1 in Section 7.

Let TI% (vesp. 11%,) be the L?(T)-orthogonal (resp. L?(9T)-orthogonal) projection onto VF (resp.
V). Let II% (vesp. II%) be the piecewise L?-orthogonal projection onto VE (resp. VE) and let
ok .= (1t ,II%). For later use, we recall that, for all T’ € T;, and all (7, w) € H'(Q) x H"(Q) with
lr €0,k + 1] and £, € [0, k + 1], the following holds:

I (7) = Tlp2ery S BFITler oy IR (w) = wll2ery S W || e - (3.6)

3.3 Discrete operators

The HHO formulation is defined locally through a gradient reconstruction operator and a stabilization
operator. The local gradient reconstruction operator Gr : VYIY — 2’% is defined such that, for all
wr € VF and all T € T,

(Gr(ir), Q) 2(r) = (Vwr, @) p2(py + (wor — wrlor, gnr)20r) Vg € S (3.7)

The global gradient reconstruction operator G : V,f — EI’CT is defined as (G (wp))|r := Gr(wr) for
all T € Ty, and all 4y, € ViF.

The difference operator dgr is such that, for all wr € ‘A/rﬁ and all T' € Ty,
dor (W) = wr|or — War. (3.8)
With this notation, we define the stabilization bilinear form sy, : th X V,{“ — R as
su(n, 2p) = Y sr(dr, br),  sr(dr, i) = A (Sor (@), dor(21)) 1207 (3.9)
TeT,

with the stabilization parameter
)\T =Corpr = C;IKT. (3.10)

Notice that the weight Ap is h-independent; we speak of O(1)-stabilization, as opposed to (9(%)-
stabilization when Ap scales as hp. Moreover, sy bounds a LS penalty directly on dgr; we speak of
LS stabilization, as opposite to other stabilizations which penalize a higher-order operator acting on
dor. The bilinear form s, is symmetric positive-semidefinite on th X th. We define the following
seminorm on th: For all wy, € tho,

o3 = |irl2, |y [ 7 := sp(dp, dr).
TeT;

The standard HHO norm is defined as

N|=

nwmmm:={:2}AT%MVmep@,+h;u@Twﬁn%qmw} - (3.11)
TeT

Proceeding as in [14] proves that, for all wp € lef and all T € Tp,

IVwrl2a gy + b Ior (i) Baor) & |G (60) 2ary + hi 100r(0r) [Baory-  (3.12)
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Moreover, invoking the Cauchy-Schwarz inequality, a discrete trace inequality and an inverse inequality
shows that, for all y, € V¥,

G (dn) 1720y S {h?QHwTH%%T) +/\Th51\ﬂ7T|§,T}~ (3.13)
T,

3.4 Space semi-discrete problem
We define the bilinear form ay, : 22 X Ez — R as
an(Wp, 2p) == —(G1(Wn), &7) L2() + (T7, GT(2h)) L2() + Sn(Wn 2n), (3.14)

for all Wy, = (77, wr,wr),2, = (7,27, 2F) € KZ The key dissipativity property of the HHO
discretization in the present Friedrichs-like formulation is

an(ip, ) = [nf3 iy € Vi, (3.15)
The space semi-discrete problem consists of finding @, € C*(J; K’flo) such that, for all t € J,

(Ocor(t), 27) p 1 +an(@4(t), 2) = (F(D), 2000 V2, € Vi, (3.16)

with an initial condition specified in the next section.

4 Time-continuous error analysis

This section is devoted to the time-continuous error analysis. In particular, we introduce the no-
tion of consistency error in space, which hinges on an interpolation operator satisfying the abstract
assumptions (I11)-(I2) stated below.

4.1 Interpolation and consistency

To proceed generally, we introduce two functional spaces to define and estimate the consistency error.
The space Y := H"* (Q) x H" () for some v, € [0,1] and v, € (3,1] is the domain of the interpolation
operator, whereas the space Z := H"(Q) x H}(Q) for some py € [Vo, 1] is a subspace of Y to be
used to estimate the consistency error.

We consider an interpolation operator of the form
17*32
~ ke N —— L
I, Y =V}, 1, = (Z7, I, 1I%). (4.1)
H,A—/
=:Ip
Notice that we allow for some generality in the first two components of 1 s Whereas the third component

is always the L%-orthogonal projection H’}. Then, assuming that the exact solution v(t) € Y NV, for
all t € J, the consistency error is the linear form vy, (v(t);-) on V5, defined as

Un(u(t); ) = an(L,(v(t), &) — (B(®), 210 V2, € Vi, (4.2)
We also introduce the notation
On(u(t); 2n) = n(v(t): (0,2,)) V2, € Vi, (4.3)

For a linear form ¢y, € (Vh’%)’, we define the following quantities:

[9n(2n)|
”d)hH(Hﬂo)’ = sup W and ||(z)h||sl = sup — - (44)
eV II<hIlHHO 2REVE



Note that [|[|uuoy is always bounded, whereas |[|-[|¢ may be unbounded.

Our analysis is based on the following key assumptions on the interpolation operator 1 %

(I1) I is bounded, i.e., forallw €Y,

1 3
ILr @1 S el = { 3 (prlivle i + ol o @5)
K K /{T
T€Th
with HwH?{% T) HwHLQ(T h%”“]wﬁpv (7)» and a similar notation for |7l 7o (7)-

(I2) The consistency error 1, (v(t); ) satisfies the following two properties: For all t € J,
(I2a) Yn(v(t); (57-,0,0)) =0 for all &7 € X% This means that ¢y,(v(t); 2,) = Un(v(t); 2) for all
zh = (£T7 ZAh) S KZ(y
(I2b) Assuming that v(t) € Z, ||zzh(y(t); J)ls is bounded in terms of a suitable norm ||v(t)||z.
We give two examples of interpolation operator I ;, satisfying (I1)-(I2) in Sections 4.3 and 4.4, but

before that, we show how the assumptions (I1)-(I2) can be used to derive an error estimate in the
time-continuous case.

4.2 Error analysis

We use the following shorthand notation:
Pa—— /J lw()E.ds forpelloe),  wleogm = suplw)w,  (46)
t sedy

where J; := (0,t) for all t € J, and the (seminorm) ||-||.« depends on the context. We define the space
semi-discrete error as

) er(t):=
en(t) == L, (v(t)) — 0 (t) := (E7(t),e7(t), £ (1)) (4.7)
=:ép(t)

Lemma 4.1 (Energy identity). Assume that the ezact solution satisfies v € CO(T; V) NCHITY),
and let b, € C1(J;VE,) solve (3.16) with the initial condition v(0) := Ir(vy). The following energy
identity holds for allt € J:

= e (I, + IR = (@) — dat), er(t)), 2 + du(u(t):é4(1)). (48)

Proof The semi-discrete problem (3.16) and the model problem (2.5) show that, for all 2, := ({1, 27, 2F)
GZ and all t € J,

<3t§7—(75)a§7'>p,% +ap(ey(t), 2) = <5tl7'(9(t))»§7'>p,%
= (Ol (v(t)), 27), 1
= (L7 (0w(t)) = O (t), z7) 1 + Y (u(t); 2n),

where we used 0,1 = [0y, the definition (4.2) of ¢, and (I2a). Choosing 2; := &,(t) and using the
dissipativity property (3.15) concludes the proof. O

Theorem 4.2 (Energy-error estimate). In addition to the assumptions of Lemma /.1, we suppose
that v € L?(J; Z). The following holds:

3 ~ -~
max { Fller2ac sy slenlags b < @) = Bl 0 + 100w Magrgy  (49)

8



Proof. Let t € J. The integration from 0 to ¢ in (4.8) and the observation that e+(0) = 0 owing to
the choice of initial condition lead to

Sller®I21 + lenlao e = /J (@ (s)) = B0(s), er()), 1 + Dulu(s)ién(s))) ds. (4.10)

t

Applying Hoélder’s inequality in time to the first term on the right hand-side, the Cauchy-Schwarz
inequality in time to the second term, and Young’s inequality shows that

1 3. 1 ~
iHﬁT(t)Hi% + ZHfthi%Jt;s) < L7 (Ow) — 8tUHL1 (Jeip, 2 Zuﬁﬂ‘éogﬁpé) + [[on (v ’)H%?(Jt;s’)'

Since the left hand-side is bounded by the right hand-side for any ' € J;, we have

1 ~
ler g sy < ILr@w) = 02 )+ 1002,

and, consequently,

ZHéhH%Q(Jt;S) < ”lT(atv 8751)”[/1 (Jt:p, ) HeTHC'()(J p + |Wh( )H%?(Jt;s’)

< 2(|IL7(0rw) — Bell7s (Jiip. 2 +H1/1h( e Jts))

This concludes the proof. O

4.3 Example 1: Classical HHO analysis

The standard choice of interpolation operator in the HHO error analysis is to set Y := H"" () x
H"(Q), with v = 0,1, € (3,1], and

(0]
I (w):=

) ,—/% N
I (w) := (I5(7), I (w), Wy (w] 7)) € V. (4.11)

1O (4

An optimal energy error estimate for the semi-discrete problem (3.16) is proven in [4] for O(+)-

h
stabilization leading to O(h*+1) convergence rates. Here, we consider instead O(1)-stabilization, see
(3.9). The consistency error defined using I, is denoted as

YR (0(1); 24) = an(Ly" (u(8)), 2) — (Bo(), zr)L V2, € Vig. (4.12)

Since Y™ NV, = V5, no extra regularity is needed on the exact solution to define the consistency
error. Let Z™° := HM* (Q) x H}(Q), with s € (%, 1]. For a pair w := (1,w) € Z™°, we consider the
seminorm

N[

g :={ > (IVF () nrlFa,or) + hrl VA (@) 32000 )} , (4.13)
TET,

with v°(7) := 7 — IT%(7) and 77" (w) == w — TT& (w).

Lemma 4.3 (Properties (I1)-(12)). The interpolation operator I+ satisfies (I11)-(12) with Z™° as
defined above.

Proof. (1) The stability of L*-projections implies that || I (w)]|
proves (I1).

ot < lwll, s < llwl g, 2,7 This



(2a) The definition (4.12) of ;" and the definition (3.7) of G for all T € Ty, lead, for all £ € X7,

+ (Vo(t), &7) 2

to
(GT(fHHO(U(t)))aET)LZ )
— (I (v (1)), £T nT)LZ(aT) + (Vo(t), &) g2 T)}

¥ (v(t); (€7,0,0)) = —
= > {5 (), V-ér) 2
TeT),
Z {(I%(v v(t), V-&r) g2y + (v(t) — HgT(U(t))véT'nT)Lz(aT)}

TeTh

=0,
with an integration by parts and the L?-orthogonalities of HZ} and HkT in the last two steps. This

proves (12a).
(2b) A direct calculation shows that, for all 2, := (27, 27) € V),
(4.14)

UpOt); ) = > (o) — (o (t)) nr, 27 — zor) 2o T Sy, (v(1), 2)
TeTh
Using the definition of dgr (see (3.8)), we rewrite the above identity as
_1

M%wm—z{ﬁumw4mmmmm%mmm@}

h
TETh
+sn(1 (0(1)), ).
This with the Cauchy-Schwarz inequality implies that
%
T Tl 2(\p0T e s,T Zhls-
Y- (I e ®)nrlizngor + R @O)E |2l

B wler )l 5 {
T€ETh
Finally, invoking the L2-stability of HaT, a multiplicative trace inequality and a Poincaré inequality

on T, we infer that
- H%(”@))H%aazﬁ)

1" (@) 2z < Aztlo(®)
S AL |V (u(t) = I (0O) 207y < bV (o@D Z2 =1,
Hence, we obtain |1/}HH"(7(75) | S [u)]7”|2n]s, and thus Hwﬁﬂo(i( )i )ls < Ju(t)]'5”. This concludes
the proof of (I2b). N O
Following (4.7), we define the space semi-discrete error as

er (t):=
&, (t) = L (u(t)) — 0y (t) = (EF°(8), €7 (), €5°(2)). (4.15)
=6, (1)

Assume that the exact solution satisfies

Corollary 4.4 (Energy identity and error e§t1mate)
CO(J; Vo) N CHJT; Y™, and let v, € C1(J; K’;LO) solve (3.16) with the initial condition v+(0)

I7°%(vg). The follou;ng identity holds for all t € J
HHO 2 ~AHHO “HHO AHHO
SR OI2 + O = B o). (416)
In addition assuming that v € L*(J; Z™°), we have
max {*H HIIOHCO Jp 7” AHH()”L2 ’ S)} < ”wlm()(i )HLQ ’. S) (417)
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Remark 4.5 (Convergence rates). In addition to the assumptions of Corollary /./, if there is £ €
{1,..,k+1} so that v € CO(J; HY(Q) x HY(Q)), we obtain

_1
o= vrllcop,2) S O(RTE), (4.18)

In the case where ¢ =k + 1, this gives C’)(hk+%) convergence rate.

4.4 Example 2: HDG interpolation on simplices

In this section, we evaluate the consistency error using the HDG interpolation operator from [8]. This
improves the (’)(h’”%) convergence rate from Remark 4.5 to O(h**1) on simplices.

For all w := (‘r w) € H"(T) x H"(T), with vy € (1,1], v, € (3,1], one defines II}.(w) :=
(TTF (w), ITY. (w)) € PF(T;RY) x P¥(T;R) on any simplex T € Ty, by solving

(TIf(w) — w, 2) g2y = 0 vz € P*Y(T;R), (4.19a)
(IF (w) — 7,€) 2y = 0 Ve € PF1(T; RY), (4.19b)
((r = I (W) nr, 1) 2oy = A7 (Sor (Tp (w), T (wlor)), Sor (0, 1)) r2or) Vi € Vap.  (4.19¢)

As shown in [8], the interpolation operator I is well-defined. Moreover, if w := (7,w) € H* (T) x
H%(T), with £, € [Vg,k 4+ 1], Ly € [0, k + 1], the following approximation properties hold:

LY (w) — wll 27y S B [l grew vy + AR 7] pree oy, (4.20a)
ITEF (w) — 7l g2y S BF Tl gpee oy + A hg [l ew (1)- (4.20b)
(T)
We define the global HDG interpolation operator II'- on Y := H"> () x H"*(Q) by setting (Il (w)) |1 :=

I} (w|7) for all T € Ty, and we denote its two components by H?— and H%/-. Then we define the global
interpolation operator such that, for all w := (7,w) € Y",

I (w):=

. ~ v .
Ly (w) = (7 (w), Ly (w), Ik (w|5)) € V.
=:Ifi(w)

Assuming v(t) € Y" for all t € J, we define the consistency error as

Dh(w(t); 21) = an(L, (WD), 2) — (Blu(),zr)L V2, € Vig. (4.21)

Lemma 4.6 (Properties (I1)-(12)). The interpolation operator It satisfies (11)-(12) with Z" :=Y™".
Proof. (1) The triangle inequality and the approximation estimate (4.20) show that
I (w)ll,, 2 < 7 (w) — wll, 1 + [lwl, 1

S { Z (pT(h%VU ‘T’zHuo- (T) + )\EP}L%’/U \wlipv (T))
TET,

N

1 2y 2 2120 2
< 2wl o 2.

using that pT)\;z = é for all T' € Ty, in the last step. This proves (I1).
(2a) The definition (4.21) of ¢} and the definition (3.7) of G for all T € T}, lead, for all £ € =% to

Yh(u(t); (€7,0,0)) = —(GT (I} (v(1))), €7) 20y + (Vo(t),€7) 120y
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= Z {(H¥(2(t)) —v(t), V‘ET)L2(T) + (v(t) — HgT(U(t))afT‘nT)B(aT)}

TeTh

with an integration by parts, the definition (4.19a) of H¥, and the L?-orthogonality of HgT in the last
two steps. This proves (I2a). R
(2b) Similar arguments lead, for all 2;, := (27, 2r) € V}fo, to

Uh(u(); 2) = (IF (1)), GT(2n)) 20y + su(Th (W(1)), 20) + (V-0 (), 27) 12(0)

= {(H%: (0(t)) = (), Var) 2y + (TF (u(t) — o)) nr, 207 — 27) L2(07)
TET,

+ (I (e(t)), zﬂ}

= {(mF o (t))nr, dor (21)) 12om) + A7 Gor (L (1)), dor (2r)) 2o }
T€TH

=0,

where we used (4.19b) and the definition (3.8) of dgr in the third step, and (4.19¢) with u := dor(27)
in the last step. This proves that WHHO (v(t);-)] = 0 and hence (I2b). O

Following (4.7), we define the space semi-discrete error as

) e (t):=
en(t) = L, (u(t) — 0,(t) = (E7(t), €7 (1), €7 (1)) (4.22)
—_———

=:é} (1)

Corollary 4.7 (Energy identity and error estimate). Assume that the exact solution satisfies v €
COUT; Vo)NCH(T; Y™, and let b, € CH(J; VE,) solve (3.16) with the initial condition v-(0) == I'1-(vg).
The following identity holds for all t € J:

S SIHOIZ 1 + (O = (T @w(t)) — rwe), ), 1. (4.23)

In addition, we have
1 2 L2 2
max {ZHQg-chj;p%y §Heh”L2(J;s)} < [IL7(Opw) — 3752”;,,%- (4.24)

Remark 4.8 (Improved convergence rates on simplices). In addition to the assumptions of Corol-
lary 4.7, if there is £ € {1,...,k + 1} so that v € C*(J; HY(Q) x HY(Q)), we obtain

lo = vrllcoy, 1) S O®). (4.25)

In the case where £ =k + 1, this gives O(h¥1) convergence rate.

5 Main results on time-discrete error analysis

Here onwards, we assume that the mesh family {73 }1~0 is quasi-uniform since we are going to invoke
CFL conditions in the context of explicit time-stepping schemes. We could also formulate the CFL
conditions using the minimum mesh-size. In this section, we state our main assumptions to lead
the analysis, we present the ERK2 and ERK3 schemes, and state our main results. The proofs are
postponed to Section 6.
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5.1 CFL conditions

The time interval J = [0,Ty] is divided into N (open) sub-intervals J,, of equal size T = % having
time nodes (t"),eqo,n} with i = 0 and ¢V = T}. Let coo := ||c|| 00 (). In what follows, the superscript
(o)™ refers to a value computed at the discrete time ¢"; for instance f7.:= f_(t"),0uf7 := Opf ("),
and so on.

We always assume that the following usual CFL condition holds:

h

T S P1— (51)
Coo

for some positive real number p;. In the case of ERK2, we need the so-called %—CFL condition
“1/h\3
< 3 — .
TS paly (coo) : (5:2)

for some positive real number ps. Notice that p; and ps+ are nondimensional numbers and that (5.2)
3 3

1
implies (5.1) with p1 = ps (Tf?oo) ® (recall that h < {q).

5.2 Main assumptions
We define the linear operators A+ : beo — K%“- and Ar : Kio — kao as follows:
(Ar(@p), z27)L = an(p, (27,0)) and  (Ar(Wy), 27)r2(F) = an(@y, (0, 27)), (5.3)

for all wy, = (77, wr,wr), 2, = &1, 27,2F) € Elﬁo. For all wy € V7’3 and for all wr € V]’_EO, it is
convenient to define

W, WF, 2
lwrlly == sup 1w, 27)12(0)| lwrlly = sup w (5.4)

9y
zTeV,ﬁ |(ZT7O)|S ZTGV}’EO |(0,Z]:)|s
We can now state our main abstract assumptions to lead the analysis.

(A1) For all wr € VE,
.1
|(’IU7', 0)“; 5 Cgoh 2 HwTHL?(%,Q) (55)
(A2) There exists a constant Cs such that, for all w,, € Z];LO with || Ax(wy,)||s finite,

N o1 R
[@nls < Cs(eSh™2 wr |, 1 + A7 (@) ls)- (5.6)

(A3) There exists a constant C 4 such that, for all @, € V¥, with || Az(i,)|s finite,
. - 5,1 .
A7 (@)1 < Caleooh™ lorll, 1+ cdh™2 [Ar(iy)]ls)- (5.7)

The proof of the above properties for the HHO discretization is postponed to Section 6.1. We use a
specific symbol Cs and C4 (instead of <) in (A2) and (A3), respectively, because both constants are
explicitly invoked in the CFL conditions for ERKS3.

Remark 5.1 (Comparison with [5]). The property (Al) evaluates HHO functions with zero face
values in the stabilization seminorm, and is essentially the same as the property (2.21) in [5] in the
dG setting. The second property (A2) is the novel property which bounds general HHO functions in
the stabilization seminorm. We notice that the term || Ax(-)|ls accounts for the static coupling between
face and cell unknowns. Finally, the property (A3) is similar to (2.29) in [5] with the additional face
contribution coming from (A2).

13



5.3 ERK2 and ERK3 schemes

In the paper, we analyze ERK2 and ERK3 schemes of a particular form, but we show in Section 5.4
that they are equivalent, up to quadrature on f, to any ERK scheme specified using the more classical
Butcher arrays.

ERK2 scheme. Given v?—’l =T € K’;— from the previous time step or the initial condition, the ERK2

scheme consists of finding v”+1 € K’fr in two stages as follows:
2 71
<Q?’ 7§T>p7% = <Q3— 7&'7->p7 Ta’h(vh ’ ) + T<f7’ ZT> (583‘)
1 1 2 . 1
(i, ZT%,% = 5@7’?1 +Q¢$2>§T>p,% - 57%(92’ s 2p) + §T<Q?27§T>La (5.8b)
for all 2, € Kﬁo, with i?l := [, and, assuming f € C%(J; L3(Q)), Q?Q satisfies
lg? - 1321, S CR()T (5.9)

with f”2 = fn +Tatfn and C3(f) = HattfHCO (Tnigok)”

ERK3 scheme. Given UT =€ KT from the previous time step or the initial condition, the ERK3
scheme consists of finding U"H € K'ﬁ— in three stages as follows:

(w?, 2701 = (!, 27) 1 — Tan (P, 2) + (2 271, (5.10a)
1 1 2 s 1

<Q771" >§’T>p,% = 5<QZ’7 +Q$ 7§T>p,% - 5 ah(’UZ )y 2 ) + 2T<f7'2727> (510b)
1 1 . . 1

W' zr),s = 37 077 4 07 2r) 0 - 5Tan (@ 2) + 5 2L (5.10c)

for all z;, € Klfzo’ with i?l,i?Q defined as above, and, assuming f € C3(J; L3(Q)) N C%(J; HY(Q)),
g?z% satisfies

lg7* = 17711 S CE (T, (5.11)

with fn3 _ fn _|_78tfn + 7'28ttf" and 03( ) = HatttfHCO it 7/{/) +cOOHV6ttiHCO(jn;%7N).

5.4 Statements of main results and comments

Let Ir:Y — VT be an interpolation operator satisfying the assumptions (I1) and (I2) stated in
Section 4.1. Recall that I, = (I, TI% %). We define the following quantities:

1
o™=, V=t o, o=t T + ST 0", (5.12a)
D)= (™) ) = (@), R () = n (™), (5.12b)

where we recall that the consistency error Jh is defined as a linear form acting on tho (see (I2)). We
also recall that the space Y is the domain of the interpolation operator, whereas the space Z is used to
estimate the consistency error. Let D : Y — VA be the linear operator such that D(-) := I(-) — II4(-)
(recall that IT% = (T4, IT5)). We set

1
O™ == Op", O™? = 0" + TOuu", O™ = 0" + T + 5728%&”, (5.13a)
D! :=D(d™), D :=D(d™?), D™ := D(d™). (5.13b)

The quantities D™, D™2, and D™ should be understood as space approximation errors on the time
derivatives of the exact solution. We define the following discrete errors:

A~ ~ ~

Gt=apt - I, (™, (p? = oy — I, (0™?), G =0 — I, (™). (5.14)

14



Theorem 5.2 (Error estimate for ERK2). Assume f € C?(J; L?(Q)) andv € C1(J; ZNV)NC3(J;Y)
and that the initial condition is v° := I (vy). Then, under the strengthened 3-CFL condition (5.2),
the following holds:

N-1 N-1
G2 + 3 7 (G5 B +IG2R) $ Catfo Tt + 3 w1012 + 10321
n=0 n=0

+r{IpE, + 1, (5.15)

where C(f,0) = [0uflicoGi1 ) + 10uelicoGiam p.2:73))-

Theorem 5.3 (Error estimate for ERK3). Assume f € C3(J;L%(Q)) N C?(J; HY(Q)) and v €
CYHJ;ZNVy) N CHJ;Y) and that the initial condition is v° = I+(vy). Then, under the usual
CFL condition (5.1) with

1
: 3\2
p1 < mm{SOSC <2> C’Al}, (5.16)

the following holds:

N-1 N-1
> ’1 = 72 > 93 ) 71 o 72 ) 73
IEVI2 2+ ST (62 4 1622 + I G ?)ch(f,v)2T?T6+ZT{II¢Z 12+ 12013 + 19512
" n=0 n=0
+ T {02 s+ 72D 2 s + T4||D”v3||f,,1}}, (5.17)

where C3(f,v) = ||6tttiHco(j;%7n) + cooHvattiHCo(j;%ﬁ) + ”8ttttﬂ||CO(j;Hu(/L%;Th))-

The proof of Theorems 5.2 and 5.3 is postponed to Sections 6.2 and 6.3, respectively.

Remark 5.4 (Convergence rates). In addition to the assumptions of Theorem 5.2 for ERK2 (The-
orem 5.5 for ERK3), assume that v € C*(J; H’“‘Q_K(Q) Hk+2- Z(Q)) with ¢ € {1,2} for ERK2
(¢ € {1,2,3} for ERK3). The operator D = I+ — Ik with the choice I), := IHHO gives D1 = D2 =
D3 =0. This and Remark /.5 lead for ERK2 to

N-1 1
~ 2
1680, + (X 0GB +1G28)) T 5 062+ i) (5.15)
n=0
and for ERKS3 to
N—-1 . . . % )
TN, + (D TG E+IGE+IGPR) ) S OF + 1k 2). (5.19)
Srlipt h h h

n=0

Instead, the definition (5.13b) of D™ with the choice LL = E{l followed by a triangle inequality implies
that

’ ’

and similarly for D™? and D"™3. This followed by the approzimation estimates (4.20) and (3.6) for
I and ﬂ’;—, and Remark /.8 improves the convergence rate on simplices to O(12 4+ h**1) for ERK2
and to O(t3 + hk*1) for ERKS.

Remark 5.5 (Improved CFL for k = 0 in ERK2). For the lowest-order polynomial degree k = 0, we
can utilize the estimate

pt S Nl0w” = @™, 1 + (100" — (3™ 1

K

A o1 . ~
HAT(Mh)H%,K S Coo||VTwTHL2(§;Q) + cdoh ™ 2 ipls Vi, € K’Zo-

Then we can prove Theorem 5.2 under the usual CFL condition using techniques similar to [5, Theo-
rem 3.2]. Details are skipped for brevity.
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5.5 Rewriting using operators

Recall the operators A+ and Az introduced in (5.3). Let us also define an operator ¢r : K’;— — V]’?O
through the following identity: Given wr € VA find ¢r(wy) € VE, such that

Ax(0, ¢or(wr)) = —Ar(wr,0). (5.20)

(Finding ¢r(ws) amounts to solving the well-posed problem a((0, ¢ (wr)), (0, z7)) = —ap((w,0),
(0,2zx)) for all zx € V]’_YO. This is computationally inexpensive since the matrix associated with
ap(0, -, (0,-)) is block-diagonal.) Using ¢r, we define the operator A : K’fr — KkT such that

Ar(wr) == Ar(wr, ¢r(wy))  Vwsr € Vi (5.21)

The operator AT can be understood as a Schur complement on the cell unknowns after eliminating
the face unknowns. This operator is useful to gain a more algebraic view on ERK schemes. Indeed,
we can rewrite the semi-discrete scheme defined in (3.16) as follows for all ¢ € J:

M@y (1) = —Ar(or(®) + £(0),  £(0) = IE(f(1)). (5.222)

This provides a general template to rewrite the time-discrete schemes. Indeed, given y?-’l =ur € vk,
e scheme (5.8a)-(5.8b) is equivalent to finding (v+“, v’ € V5 x V% in the following two
the ERK2 scheme (5.8a)-(5.8b) is equivalent to finding (%, v!) € VA x VA in the following t
steps:
2
M(vy”) =

M) =

<

(") — rdr(wp) + 13, (523)

n n 1 1 n 1 n
M5! +05?) = STAr (W) + Sra (5.23b)

N

Similarly, given y?l := v € VA, the ERK3 scheme (5.10a)-(5.10c) is equivalent to finding (2?2729537

i) € VE x VE < VA in the following three steps:

M5 = M) — A (o) + T fmt (5.24a)
My’ = %M(y?l + %) — %TANT(Q?-’Q) + %T}Q, (5.24b)
M5 = éM(}l + ol ) — %TA}(Q??’) + érgf’. (5.24c)
Remark 5.6 (Implementation). In (5.23), one needs to compute Uff’l = ¢;(yl;1) and v?gQ =
qﬁy:(y?%. In other words, (5.23) can be decomposed into four substeps: compute vg’l, compute Q?—Q

using (5.23a), compute U;?Z, compute y?rl using (5.23b). A similar comment can be made for ERK3,

which can be decomposed into siz substeps.

5.6 Equivalent ERK schemes using Butcher arrays

In general, s-stage ERK schemes for s > 2 are represented by their Butcher arrays {a;;}; je{1:5),1bi ie{i:s}5
and {c¢;};cq1.5}. We define the intermediate time steps ™" := " + ¢;7 and set frt = f(t™) for all

i € {1:s}. For explicit schemes, the Butcher matrix a is always strictly lower triangular, i.e., a;; = 0
for all i < j. Also we have ¢; = 0 under Butcher’s simplifying assumptions (see, e.g., [18, Chapter 78]),
and consequently, t™! = ¢".

Given Q?l S ZkT from the previous time step or the initial condition, a general ERK scheme

consists of finding yl}“ = Q?—’S—i_l € V% in the following s stages:
ME) = M) -7 Y ay(Ary?) — f37) Vie {2}, (5.252)

je{li—1}
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M) =M@y =7 3 b(Arh) - f57). (5.25D)

je{l:s}
For s = 2, this gives
M(wp?) = MY - raz (Ar(0r) — 7). (5.26a)
M) = M) = 7 (b (Ar(ep") = F5) + ba(Ar (@) = 157)) (5.26b)

The second-order conditions are ¢; = 0, cg = a9 from Butcher’s simplifying assumptions, together
with

bi+by=1, bacy= % (5.27)
For s = 3, (5.25) gives
M(h?) = M) = ras (Ar () = F51), (5.28a)
M(5?) = M) = 7 (as (Ar (") = F5') + asa (Ar@h?) = 157)), (5.28D)
M) = M@EY =7 (b1 (Ar@p) = ") + ba(Ar(eh) - F57)
+ by (Ap (v — %{?3)). (5.28¢)

The third-order conditions are ¢; = 0, ca = as1, ¢3 = as1 +ass from Butcher’s simplifying assumptions,
together with

1 1 1
b1 +bs+ b3 =1, baco+ bycg = > bgcg + bgcg = 3 bsagoco = 5 (5.29)
Lemma 5.7 (Comparison with ERK2 scheme). The sequence (v})n>0 generated by (5.26) with

Butcher arrays satisfying the second-order condtions (5.27) is the same as the sequence (V7 )n>0 gen-
erated by the scheme (5.8) with

1 ~ ~ 1
5070 = b b - S (5.30)
Consequently, we have
lgh® = £22 01 < 72 00uf oz (5.31)
97 L7 Lk ST %] llco(T,;1 k) :

Lemma 5.8 (Comparison with ERK3 scheme). The sequence (v4},>0 generated by (5.28) with
Butcher arrays satisfying the third-order conditions (5.29) is the same as the sequence (V3}n>0 gen-
erated by the scheme (5.10) with

1 ~ ~ ~ 2 1
SO = IR byl = g~ oty
— T./ITMfl ((b2a21 + b3a31)i77l-’1 + b3a32f$2 — %i? — %r@tiﬁ) (5.32)
Consequently, we have
”g?_’?’ _ i??’”%v” < T3(X1Hattti”co(jn;%ﬁ) + xzcoo||vattﬂ|co(jm%ﬁ)), (5.33)

where the constant x1 can depend on {bj}je{2:3} if at least one b; is negative and otherwise x1 = 1,
whereas the constant xo is independent of the Butcher arrays.

The proof of Lemmas 5.7 and 5.8 is postponed to Section 6.4.

17



6 Proofs

In this section, we collect the proofs of the results stated in Section 5.

6.1 Verification of (A1)-(A3) for HHO methods

Proof of (A1). For all wy € V7]3, the definition of sp, using dgr(wp,0) = wr|gr for all T € T;, shows
that

(w7, 0)[2 = su((wr, 0), (wr,0)) = 3 At fwr e
TET

S 20 At lerliay S ceoh ™M Tl g
TETs ®

with a discrete trace inequality, Ap = C;I/QT from (3.10), and the quasi-uniformity assumption on the
mesh in the last estimate. This concludes the proof of (A1). O

Proof of (A2). For all W, := (77, wr,wr) € KZO and all zx € VE,, the definition (5.3) of Ax gives
(A.F(@h)v Zf)L2(f) = (TTv GT(Oa Z}—))LQ(Q) + Sh((U)’T, O)a (07 Z]:)) + Sh((07 U}]-‘), (07 Z]'—))
Choosing zr := wr, we obtain

0, wr)[§ = =(T7, GT(0,wF)) p2(0) — su((w7,0), (0, wr)) + (AF(in), wr)ra)
< 77l 2@ 1GT (0, wr)l L2 () + (1w, 0)[s + [ AF (@5) 510, wr)ls. (6.1)

Owing to the bound (3.13) on Gr, we infer that

IGT (0, wr)llf2) S D Arhrt|(0,wr)E .
=0

This estimate in (6.1) with Ay = ¢ppp from (3.10) proves that

11 R
10, wr)ls S eSh™ 2|77 L2y + (w7, 0)[s + [[Ar(@p)ls - (6.2)

The triangle inequality gives |wy|s < |(w7,0)[s + |(0,wF)[s. This, followed by (6.2), (A1), and the
definition of [[wr||, 1, concludes the proof of (A2). O

Proof of (A3). For all W, = (77, wr,wr) € Kﬁo and all zy = (&7,27) € K’fr, the definition of
Ar(wy,) leads to
(Ar(@n), z1)L = (77, G7(27,0)) L2(2) = (GT (1), §7) L2 () + 5K (W, (27, 0))
. 1oL
S 17l 2@ |GT (27, 0)l p2(0) + 1GT(@0)l| £2(0) 171 £2(0) + €50h™ 2 [nls|l 2T L2 (1.0,

with the Cauchy-Schwarz inequality and (A1) in the second step. Owing to the bound (3.13) on G,
and the quasi-uniformity assumption on the mesh, we infer that

(Ar(p), z27)L

_ _ o1
Sh Tl llzrliz g + b lwrl @) lé7ll L2y + &b 2|wh|8(||£7’”L2(p;Q)+HZTHL?(%;Q))

_ LA S
S (esoh M wrll, 1 + cdoh™2 [dnls) |zl 1. (6.3)
where we used Ay = c¢ppr = c;lliT from (3.10). Finally, invoking (A2) and the observation that
~ _ <AT(@}1)’§T>L
||A7—(wh)|]%ﬁ = SUp,_cyk Tl concludes the proof of (A3). O
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6.2 Proof of Theorem 5.2

Lemma 6.1 (Error equation). Assume that v € C1(J; ZNV ) NC3(J;Y). The following holds: For
all 2, € VK,

(7% 271 = (7 2)pr = Tan(Gt 2) = O (20) = 7D 27), 5, (6.42)
L, n1 2 1 in2 . I ~o . 1 1
<§?+1,§T>p,% = 5@? +§7% a§T>p,% - §Tah(§Z s 2p) — 5”/’2 (2n) — 5 (Dn2 ),;,% + §T<§?>§T>La
(6.4b)
where ﬁ’,‘r = QZFQ — i?Q — MLF(E"Q) with R™? .= fJ tni1 — t)20uv(t) dt.

Proof. (1) For all z;, € Eﬁo, the L2-orthogonality of II%- and the model problem (2.5) lead to
(I (9pu(1)), 27) 1 = (Opu(t), 27),,1 = (=B(u(t)) + f(t), 1)L
= —an(L,(u(t)), 2) + Vn(v(t); 2) + (£(8), 27) L, (6.5)

with the definition (4.2) of ¢, (12a), and since f_(t) = I%(f(t)) in the last step. The definition of
v™! and (6.5) evaluated at t" yield, for all 2, € 220,

(L"), z7)p1 = Ly @), 27) 1 + 7L (0"), 27),51
= (L") zp), 1 + 7D 27) , 1 = Tan(L, (™), 2,) + Topt (an) + (2 27 L

(6.6)
Subtracting the above equation from (5.8a) proves (6.4a).
(2) We start with the second-order Taylor expansion in time with exact remainder,
n+1 n n 1 2 n 1 7,2 n,2 1 2 n 1 7,2
" ="+ 10w +37 Ouv +§TE C=uT AT Oy +§TE .
An application of I and (6.6) lead to
1
(L"), 27,1 = Lr ™), 27),1 + §T2<l7’(attﬁn)’§’f> 1+ 2T<IT(R %), 27) p1
1 n,2 n,1 1 7 n,1y\ 2 1o 1 n,1
= Sy + ™) 21,1 — Tan(Ly(©™), 24) + 57% (Zn) + 577 2L
1 1 1
+ 3O, 27), 1 + 57D )+ U (B, 20,0, (6)

where we used that D™! + T(I(Opv™) — Hlfr(é?tty”)) = D"2. Differentiating (6.5) with respect to t,
evaluating the result at t", and multiplying by 7 gives

(5 (0™), 7)1 = —Tan(L,(B™), 23) + 769" 24) + (00 s 2701
= —an(L,@"? = v™"), 23) + a2 — 0™ 5) + (O 27) L

This simplifies (6.7) to

1 1. o1 e
<l7’(£n+1)7§7’>p7% = 5@7’(2”’2 + Qn’1)7§7->p,é — §Tah(lh(yn’2),§h) + 57’1/12’2(%)
1 1 1
+ 27< T 7ZT>L + 7'<Dn2 27’> x + 57@7(3"’2)7&7%,%-
Subtracting this from (5.8b) gives (6.4b). O
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Lemma 6.2 (Energy identity). Under the assumptions of Lemma 6.1, the following identity holds:
7]‘ ~ 71 s 72 72 N 71 ~ ’1 o 72 ; 72
G2, — G2 o+ (G R + 162 R) = gt — G212y = 7B (Eh) - md ()
—r(D" (Y, 1 = (DM ), + (B G (68)
Proof. Choosing 2, := QZ’I in (6.4a) and %, := 2@2’2 in (6.4b), elementary algebraic manipulations
lead to

1
IEhiE , — gy

2 sn,1 2n,l in,2 An,2 ~n.1, An,l ~n,2 20,2
2, =Gt = Ry - ran(G G - @R ) - rOp (G - TG

)1 , ,2 ,2

DG~ DG 0+ B G
Since ah@?}:’l,éZ’l) = |§Zl 2 and ah@Z’Q,g:’z) = |éz2 2 owing to (3.15), this concludes the proof. [
Lemma 6.3 (Preliminary stability estimate). Under the assumptions of Lemma 6.1, we have
1 . .
1 1 2 2
G2 2 = 1712 2 + 57 (G + IR < IS = G771

- 1 “n,l
+or{T G R, o + I,

n,2 n 7, 7,
L IGR20 + Tr(CR(f 0 + 22, + 122 ) ), (69)
wlth C%L(ia Q) = HattiHCO(jn’%’N) + ||atttyHCO(jn’Hu(p’é77-h))

Proof. The proof follows by estimating the last four terms on the right hand-side of the energy identity
(6.8). The Cauchy-Schwarz inequality and Young’s inequality lead to

n,l/ 2 n,2, n,2 2 2
T|¢27 (Cz,l) —{—Qva (Czw )-|_ <2n717§?”1>p,é + <2n,2’£? >p7% + <7?,,§;L—’ >L|

1 (1 S e
< S {0 IZ + NG2I3 + 1 2 + 1G22 + Ty |22, + Tyl

R o [ 9
- 2
2GR + TSR - (6.10)

Notice that this is the critical step where we bound the consistency errors in the [|-||¢-norm. It remains
to bound HQ?H%K and Hg?ﬂ\p% The definition of 87, the triangle inequality, the assumption (5.9)

on Q?Q — 7?2, and (I1) imply that
83113 < 163~ F321s o+ L (R,

1
P
S CNT IR o p 1,7y S O3 (F,0)7°. (6.11)

The definition of the ||-||¢-norm and the property (A1) imply that, for all z; € V¥,

“n,1 “~n,1 3 -1yl
[ G O] < by Nl 127, 0)ls S eSoh™ 2 [0 Mlse 27 [l 12200 (6.12)

Using the error equation (6.4a) with 2, = (Q?Q, 0), and (6.12) leads to

1 an,1 11,1
L SIS + TIAF (G )H%,ﬁrﬂgoh 2|y Hs'+THQ"’1Hp,%-

= ~
pvﬁ

2
I<7

Since (A;@Z’l),z]:)Lg(;) = 12;2’1(0,2]:) for all 2z € VE, owing to (6.4a), we have HA]:@Z’l)HS/ =
||TZZ’1(O, Nl < H{p\zll . Invoking (A3) then shows that

2
167

Recalling the CFL condition (5.1) and since 7 < T, we infer that

_ L TN
o2 SICE 1 + ek G 1 + ek G o 4 7D, (6.13)

=~
P

2 1 37,1 ,
<7 lpt S <7 lp, 2 +T7 [[9y [ls +TfHQ"1H,J,é. (6.14)

This and (6.11) in (6.10) conclude the proof. O
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Cn+1 o n,2

Proof of Theorem 5.2. The first step is to control the anti-dissipative term ||

2 | in the
p:;

stability estimate from Lemma 6.3. The combination (6.4b) — % x (6.4a) gives, for all 2, € EI,’?LO,

(O = %21 = gran(@ = 8% 2) + 5T ) — 3T ) + 57D 2,

1 1
= 5" z7), 1 + 5B 27) L (6.15)

Analogously to Lemma 6}.3, th? identity (6.1A5) witAh Zn = (Q?H - §%2,0) followed by (6.12), the
property (A3) for w;, = QZI - g:g’ and A;(g?l — §Z2) = wﬁl(o, )= wZ’Q(O, -) show that

Igntt — ¢
ST

- 1 2 3o-Lim1  m2 , ,
ot S 7 (eI = G200 AT — B D - D2l s+ 18 )
(6.16)

From (6.4a), we have, for all 2;, :== (27, 2r) € K],f’;o,

(7' = Gz n = Tan(Gyt ) + O )+ TR 2r) 1 (ARG 2R 2 = O (0, 25).

Similar arguments to (6.16) show that

—1y m,1 5 —Lpnl ,
1 S 7(coh T 1 + BATRID s + D™, )

I

Using this in (6.16), we arrive at

Sl

) _ 1 1 —1\27n,1 1 ~1\iyn1 n,2
I = Gl S TR T2 Nlpa + 72 (Teoch™ )2 [0 ls + 72 (Tesch ™) 2 [l — vy
+7(resch™ + )[ID™], 1 + 7D, 1 + TlB7 N

_ 1 1.1 1.2
< PN I e+ I+ D+ IR
+ 711871 (6.17)
P
where we used the usual CFL condition (5.1) and the triangle inequality in the last step. Squaring

both sides of (6.17), observing that 73¢i h=% < p?%Tfl owing to the strengthened %—CFL condition
(5.2), and 7 < T, we obtain

)2 - 1

I+t = G212 1 S 7 (77 gy
_ 1

S 7(17Iy

where we used (6.11) in the last step. This in (6.9) leads to

N 7]' o 72 El k]
20 I8+ IR0 + T (D™ 4 + 1722 s + 18315, ,)

ol >n,2 7 ’ 7
i’% + ||¢Z Hg’ + H¢2 Hg/ + Tf(HQn IHi’% + H2n2Hi’% + Cn 2(LQ)2T4))7

IS5 2 = IS H21+f (G2 + 16218 S 777 Icy H?%

+T<Tf<cn’2(LQ) r 3+ I97%12).

LD L)+ [

Using a discrete Gronwall’s lemma (observing that 7N = Tf) and invoking the initial condition ¢ OT =0,
we infer that

N—l

I3+ 3 or (Gt + 1632

n=0

y

N-1
“n,1 ~n,2
S Colf, 0T+ 3 e {2 + 15212 + Ty (I 12 + D)2 ) §-
n=0
This completes the proof. ]
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6.3 Proof of Theorem 5.3

Lemma 6.4 (Error equation). Assume that v € C?(J; ZNV ) NC4(J;Y). The following holds: For
all 2, € VK,

(2 2, = (7 zr)n = Tan(Gt 2) — TR (Bh) = (DM 27,1 (6.18a)

4 ) 1 ~.9,. 1
ran(Gt 2) — 5O ) = 57D 1), 0, (6.18D)

N | —

1
,3 ,1 ,2
(¢ VET)p L = 5@? +¢7 VZT)p L

1 sn3 . 1 ~3,. 1
= 30n(G720) = 5 () — 5D 27), 0

'K

1, 2 3
(2, = G G+ G ),

==
w

1
+ 3727 (6.18¢)
with y7 := gi® — 2% — MUIp(R™®) and R := 771 [} §(tat1 — 1)*Quuv(t) dt.

Proof. The error equations (6.18a)-(6.18b) can be obtained similarly to (6.4a)-(6.4b). For the third
error equation, we start with the third-order Taylor expansion in time with exact remainder,

1

1 1 1
6738ttt9n + gTEn’?’ = ™3 4 67'301515152” + §TE”’3.

1
VT =" O + 0" +

An application of I+ to the above identity, (6.7), an application of 0y to (6.5), and elementary algebra
lead to

<l7’ (QTL_H ) §T>p,%

1 1 1
= Ly ("), z7), 1 + c7HD™, 27) 1+ G W7 O 27) ) 1 + ST (B™), 27) 1
1

1 A 1 - 1
= g@’r(ﬂn’l +u™? yn’3)7§7—>p7% - gTah(lh(Qn’?))»éh) + §T¢Z’3(2h) + §T<2n73’§7->p7%

1 1
37U 2+ 5T (), 1), 0

Subtracting this from (5.10c¢) proves (6.18c). O
Lemma 6.5 (Energy identity). Under the assumptions of Lemma 6./, the following identity holds:

2
1

T snpo 1 2n3 L3 2
ST+ 3TICR + Gl - I

1 n+1(2 1 n,1,2 1 n,l

ngT ||p7% - §||§fr ||p7% + ?’Kh
1 sn1 2n2 1 3 I ~i,aon1  2n2y 1 om2 on1y 1 ~n3, n3

= 27l =GR+ §H§n7+1 - (7 Hi% - 67'1/127 (26, + ¢ — 67'%? (ke g”ﬁ}? (1)

6
1 1 1 1
= o (@L 2P+ ()0 - (@ (Y 1 = (DG, 0 o P (6.19)

Proof. The algebraic manipulations (6.18b) — % x (6.18a) and (6.18¢) — % X (6.18b) show that
ST P T |
(G = Gz = —5ran(@ = G 20) = mOR (B — U () — 7B - DMz,
(6.20a)
| (PSS |
(G = G zp),n = —57an(G = G 2a) = 5707 (8) — 937 (an)) — 57D =D 2,
1
+370p2rL (6.20D)

. 2
Set A:= 3[I¢7 2 1 — 5l —gf”ni,l - %@Hyi’l. Since 1a? — L(a —b)? = (a — b)b+ Y for any

real numbers a and b, we obtain

1 1
3 n3 3 1
A= (T - Jpt + §||§? ||,2;7% - §||§?—

2
1.
p:;
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Testing (6.20b) with 2, := §Z3 gives

1 23 02 ang3 Liensye  _ Lo
A= —g’]’ah(gz —QZ 7§Z )+D1+§H§;L’ Hmé _§H§§L’ ||p7%’

“n30in3y T2, ing3 . 1
Dy = =37 (" (Gr) — o (7)) — 5T{D™° — Qn’2,§?3>p 1+ %TQ?{?%L' Choosing z7 = (7

'K

(resp. zg := ZQZFQ) in (6.18a) (resp. (6.18b)), elementary algebraic manipulations lead to

3 1 3 2 on,1 on,2 1, 2n,1 .2 2n.2
IS 2 = ISP 2 = 167" = G118 » = 7IGR IS = 7ICR = o () = 7o ()
1 2
— (D™, (7 )pd — (D™, (F Jp,L-
Defining Dy := —%7'12}\2’1(52’1) — %7’@522(622) — %T(Qn’1,£?1>p’% — %7‘<2n’2,£?2>p’% + D1, we arrive at

24Dy

1 sn3  an2 sn3y Ly n3 2 1 ana 1 2n2
A= —oran(G” = G G751 = Gl = 5Tl = 5TIG

1 2n3 1 sn2 an3y . Ly n3 2 T o sna 1 2np2
= -7 5 + 5Tan(Cr, Cr) + SIS — CFRIP L — STIC R = STICHTE + Do

3 3 2 p’n 2 2

1 203 1 in2 an3 an2y 1 an2 1, n3 2 1 ona
:—gT\CZ’ §+§mh(§2’ NS )—ETKZ’ §+§H§? —¢7 Hi,;—iT’CZ’ S+ Do,

since ah@Z’g,;’g’B) = |é’;3|g and ah(§2’2,§2’2) = \622 2 owing to (3.15). Let

1 n2 snd _ sn2y o Lyong3 2
B: = ran(G, G® = ) + 5165 - G2

3
= L@t G - G - I - IR+ I - BRI,
3 >h 3h Sh 6 ST ST Py 3 ST ST p,;'

Testing (6.20a) with 2, := gig - §2’2, we see that

2 n3 2 1 2n2  aml an3 an2y L o m2,m3 w2y nl ind 2
21687~ 12, = —hran G - GG - 6 — S BG - G) - B G - )

1
=50 DML G - ()

This implies that

1 A A A 1 1 A A -~ “ .
B = cran(Gy G = GF) = Sl = IS L — 5 (G = G = 0 (G = G)

1 3 2
- -GG,

1
_ 1 n,1 n,2 ~n,3 n,2 1 n,3 n,212 1 n,2, n,3 n,2 1 Dn’2 n,3 n,2
=367 =67 G ) = IS = G L TG = G = g TR G = G
where we used (6.18a) with 2, := §Z3 —§2’2 in the last step. Hence, for G := —%T|§Zl|§ - %T|§Z’2 2_
571G R = §1ICT = (P12 1 and Dy = —3rdp® (G = ) — 57(D"2, ¢ = (7)1 + Dy, the term

A simplifies to

I 2na 1 2n2 I sng3
A:—§T|CZ7 3—67\42’ g—gTKZ’ S+ B+ D,

1 n n n n
=G+ (7~ - (), + Ds

1 n on,l on on 1 2 n n n,l/ n n
=G — 67'Gh(§h72 - §h117£h71 - Qh’Q) - 67(¢h72(ch71 - Chg) - %’I(Ch’l - Chz))
1

6T<2n,2 o 2n,17£3_,1 _ §?2>p,% + D,

using (6.20a) with 2, = ézl - éZQ in the third step. Rearranging the above terms concludes the
proof. O
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Lemma 6.6 (Stability). Under the assumption v € C°(J; V) )NC*(J;Y) and the CFL condition (5.1)
with the choice (5.16) of p1, the following holds

1 4 N
71 2 ,3
Iy~ IGRI2 2 + 5 rIC R 4 S 4 oI

_ Nl n,l , ,
S o {T G I L + s + uwh IR
+ Ty (CE(f,0)*r° 1t ||17”2||2 +[I2"2)2 4 )} (6.21)
with Cg(i’ Q) = ||attti||00(jn; + cOOHVOIEI‘/JCHCO ; + ||attttUHCO Jn H”(p L))

Proof. The aim is to bound each term on the right-hand side of the energy identity (6.19).

(1) Bound %7\62’2 — 52113 For appropriate choices of € and € (to be chosen later), we observe that
G < (1+0IG” —czls (L EDIGT - G

<+ +AIG R+ 1+ 1+ NIGE + 1+ DIG? - G

< (L 1+ G + (L4 1+ IG R + (14 €205 (eoh™ I — G20

+ 1970, ~ 122’2(0, -)Hi),

_ Fn1y2

with (Ah2) and Ar(C)° — (%) = (0, ) — 92(0, ) owing to (6.20b). Set e = 2 and é = {;, and
notice that

1 7 1 11 1 1
~(1 146 =— ~(1 1+l =— -7(1 < —
6( +e)(1+€) 51" 6( +e)(14+€) 51" 37'( + e HOses 3
owing to the choice (5.16) of p; in the last term. Hence,
1 n,2 n,1,2 7 n,3|2 11 n,l2 2 C n,3 n,212 6.22
ETKh > ﬂTKh s T+ ﬁTKh HCT - CT ||p7% + THwh - ¢h (6.22)

where we also used ||1Z23 0,-)— 1222( 0,)ls < ”12”3 — J22|| for the last term on the right hand-side.
(2) Bound 3¢ — gip?’ui The identity (6.20b) with 2 2= (¢iH = &%, 0) followed by (6.12), the

property (A3) for W) = ;Z’ —gLL’Q, and Af(Jf —QZ’z) =1, 30,-) — 121\2’2(0, -) show that
1 3
Ll - e,
1 C1yom3 n2
18<TcAcoo DRIGE - UL + Ot {esh T — BRI + D0 - D2 4 I, )
7||C7’

| /\

| A

n,3 n,2
P2+ c{rlGp? - a3 + (1D - D 2, + ||1;||2%ﬁ)}, (6.23)

owing to the choice (5.16) of p; in the last step. The definition of p the triangle inequality, the
assumption (5.11) on QZF?) - 7?3, and (I1) lead to

Iyl , < IIQ" f"3H1 + IIIT(R“)H,J,
P
S C:?(JT + ”—IEnBHH”(p,%;E) S Oy (L 2)73- (6.24)

The bound (6.24) in (6.23) results in

e
< G = G2 4 O ITpt - B A T (1D - DR, + G ) (629)
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(3) Bound on consistency errors. The Cauchy-Schwarz inequality and Young’s inequality imply that
1 n,l 9 n,l n,2 1 n,2/rn,l 1 n,3/:n,3
- *T¢h (2¢, +¢7) — gﬂ/)h (Ch) — gﬂbh ()

3 “n,1 n,2 “n,3
T\C 2) + Cr(lldp 113+ Np 113 + onl13)-

1 n,1 2
= 12 48(Kh S

(4) Bound on remaining terms. The Cauchy-Schwarz inequality and Young’s inequality show that

1 1 . 1 5 1 3
‘ s+ (), 1 = oD () - (DY) ST G
— 1 ,2 3
< (T (I 2, + HD”2H2 IR + I3, + T G 12 2 + 1G22 4 + 1G22 1) .
K P K K K

(6.26)

1
Recall from (6.14) that ug?”p% < Hglupé +T7 |ldptls + Ty D™
with (A1)-(A3) results in

,.1- The error equation (6.18D)

2 3,1l n2
121, 1 G 0) + 3 r(ech ™G0 + A E I + 1272, 0)

pl < 2(IIC
n,1 3 , n,2
SIgr lp, 1 +Tf2(H¢h st + 1[72 ls7) +Tf(\|2"’1\|p,% + HQ”’QH,J,%),

with the usual CFL condition and the observation that 7 < T in the last step. Using the above
estimates in (6.26), we obtain

1 1 1 1
‘ 6 <Dn1 QCT + CT > L 67<2n’27§?1>p,% - §T<2n’37£?3>p7% + §T<1?=§?3>L

§T<Tf(C§L(L o)™ + 25 s + 11225 s + 112

o1) g

~n,2 — 1
L+ 19713 + TG 2 1 )
(6.27)

Combining all the estimates from Steps (1)-(4) in (6.19) concludes the proof. O

Proof of Theorem 5.2. This follows immediately from summing (6.21) from n = 0 to N and applying
a discrete Gronwall’s lemma (observing that 7N = TY). O

6.4 Proofs of Lemmas 5.7 and 5.8

Proof of Lemma 5.7. Substituting (5.23a) in (5.23b), we obtain
n n 1 n 1 1 -1 7 n 1 e _ n 1 n 1 n
M) = M@p") = TAr ') + 5P ArM T Ar (') = ST ArMUN () + TS+ e
(6.28)
Similarly, (5.26a) simplifies (5.26b) to
M) = M(vy ) — b+ b2)AT( )+ Thsan (ArM T Az (ur') = A MU ()
n 1 n 1 1 -1 3 n 1 1 —1/7n n n
(vT’ ) — Az (vp') + T A M A (up') = ST AR MNP + T f7 + b 7).
(6.29)

I
\E T

where we used the order conditions (5.27). Comparing (6.28) and (6.29), we obtain (5.30). Employing
again the order conditions (5.27) (observe that by is non-negative since c2 € [0, 1]) leads to
1

n n n i n 1 n
5057 = 1) = b f 7+ baf 7 = £ - SOy
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= byt 4 0o f? — (by + b2) 2 — bacatOr [
=bo(f7* = [7' — cardufy)

tn,2

= bz/t (tn’Q — t)@tti(t) dt

n,1

with f?-l = f” and Taylor’s expansion with integral remainder of order 2 and t™! =
step. Using t™ ke t™! = e and (5.27) concludes the proof of (5.31).

Proof of Lemma 5.8. Substituting (5.24a) and (5.24b) in (5.24c), we obtain

i 15+ ~ 1 4~ - -
M) = M) = rAz(op') + 5T A MU Ar (') = (P Ap MU Ap MU Ar (v

2 n 1 2 n 1 2 1 —1/rn 1 31 -1 n
+§TiT+6TatiT—*TA7—M (iT)—éTATM (&iT)
1o
+ T AT M AT M (fT)+ g,

Similarly, (5.28a) and (5.28b) simplify (5.28¢) to

M@F) = M) = (b + by + b3) A7 (0F") + (baazi + bsasy + byass)T* Ar M Ay (07!

— byagpan T A M T AL M A (0 + 7-((,15?l 4 b2£?2 n bgfﬁ’)
= 72 ((baa21 + bsas) A M (f71) + bsasp Ar M7 (F77)
+ Tgb3a32a21A~TM71A~7—M*1(f;_’l)

P 1 5= ~ 1 o~ - ~
= M) = TAr (') + 5T A M A (o) — ST Ar M AT M A (v

t"™ in the last

O

)

(6.30)

7 (bufoet 4 baf? by f%) — ((bzam + byagy) A M (fE) + 53a32A~7-M_1(j~?r’2)>

b A MO A MO (Y,

(6.31)

where we used the third-order conditions (5.29) in the last step. Comparing (6.30) and (6.31), we

obtain (5.32). Consequently, we have

S 1) = 8 A M5
with
S8 = by [t + o f5” 4 b f — f1 fTat - 772@% i
3% = (baagy + bsaz1) [ + bsasa e’ — 3 ﬁ - gTat 1
The triangle inequality shows that

,3 ,3 3 1 -1 3
Ig5® = L3703 0 < 30083+ TIAr M @G-

(1) Bound on é?;’— Employing again the order conditions (5.29) and f}l = i? leads to

=Y b = et —erof] ——c 3720 f7)
je{2:3}
t’flJ
Z b/ (™ — attth()
je{2:3}
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(6.32a)

(6.32b)

(6.33)

(6.34)



where we used Taylor’s expansion with integral remainder of order 3 and t™! = ¢" in the last step.
This proves that

3
||§T,7—||l e S XIT HatttiTHCO(jn;%ﬁ), (6.35)

where the constant x1 can depend on {b; } jc(2.3}. However, for nonnegative b;’s, we can use 3 _ ;¢ 9.5y b; c <
> jeq2:3y b c = 1 since {c; }jeqa:3) € [0, 1], showing that x; is independent of the b;’s.
(2) Bound for 5;”7 Using (5.29) and f’frl = f1, we arrive at

537 (b2az1 + b3a31)f7- + 53a32f7— (b2az1 + bsas1 + bsasz) [ — b3caaseTO [

= byasy ([ — [ — om0 1)

tn,2

— b / ("2 — )] (1) dt, (6.36)
tn,1

where we used Taylor’s expansion with integral remainder of order 2 and t™! = ¢" in the last step.
Let

wy = M (857) = (0,wr).
The definition of A7 leads for 1y, := (wy, pr(ws)) and for all z7 € VA to
(A (@), zr)L = —(G7 (1), €7) p2(0) + 58 (@, (27,0)).

The definition (3.7) of Gr and a discrete trace inequality show that

IGT(@)a0y S 3 {IVwrlZeqr + Arhz or2r } -
T,

This, (A1), and Ap = ¢cppr = c}lﬁ;T result in

(A (in). 2701 S oIV lgacs g+ et hHlinlo)zr ], 2
Consequently, we have
Iy )l S coclIVrwrl ooy + b inls (6.37)
Furthermore, the identity ap(wy,, (0,0,zx)) =0 for all zr € V]]?O simplifies to
sn((wr, ¢F(wy)), (0,27)) =0 Var € VA,
This can be rewritten as > pe 7[5 27 ( Y TeTe M Ywp — ¢r(wy)|F)) ds = 0. Hence, we have

-1
ZTGTF )\T wr
-1
ZTGTF )\T

where Tp := {T € T : F € Fyr} denotes the patch of F. Notice also that ¢r(ws)|r = wr|r for all
Fe .7-",‘? . An elementary algebraic manipulation shows that

i =Y Y. Atlwrlr — or(wr)lFla e

Te€Th FEForNF}

)\71
-y ¥ Hymmget (S Afhwrle = 7 AFtwr|2e
S

oF(wr)lr =

9

TeTh FEFarnF, TeTr TeTr
—1 —1 2
<> YT AMereliam =D D Atllwr —wlelig
TeTh FEForNF TeTh FEForNF
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with £~ tw = (boagy + bgagl)f"’l + bgaggfn’2 — 1= Lr0,f" € HY(Q) since f € C?*(J; HY(R)), and
the notation [-|r to denote the jump across the interface F. The approximation properties of I kT give

[nl S Y A hrl Vol
TETh

This with Ar = ¢.'kr and the H'-stability of IT% in (6.37) prove that

I A7 @r)ll S oo IV 7l12 1 < coo™ VS £l (6.38)

1
6

1
P

where we used (6.36) with ™2 — ™! < co7 and (5.29). The combination of (6.35) and (6.38) in (6.33)
followed by the L%-stability of I} concludes the proof of (5.33). O

7 Variants of HHO

This section discusses variations in the HHO method depending on the equal- and mixed-order setting,
and on the stabilization parameters. We provide examples of suitable interpolation operators for all
these variations.

7.1 Main results

We consider the following variations in the HHO method: (i) Equal- or mixed-order settings, where
the cell unknowns are of order K=kork =k+1, respectively. (ii) Two choices of the stabilization
weight in (3.9), namely A\ A2 for a = {0, +} with hp = %' The analysis carried out so far is based

on O(1)-stabilization (i.e., & = 0), which is a natural choice for Friedrichs systems. However, O(3)-

stabilization (i.e., @ = 3) is also of interest since this choice can lead in some situations to O(h**1)

convergence rate in space (see Table 7.1 below). Since the LS O(+)-stabilization can only give O(h*)
convergence rate in space (for both equal- and mixed-order settings), we now consider instead the
higher-order stabilization operators used in HHO methods for elliptic PDEs. Recalling the definition
(3.8) of the difference operator dgp for all T € Ty, we define, for all wy € lef )

S () = 115, (o7 () + (1 — TIE)REFH(0, 6or (iior)) [or)  for k' =k, (7.1a)

oT T Wby (Gpr (i) for k' =k +1, (7.1b)
with the high-order potential reconstruction operator R?H : Vcﬁ — PFTY(T;R) such that

(VR (1), Va) g2y = (Vwr, V@) poipy + (wor — wr, Vanr)2or) Vg € PYTHTIR),  (7.2)

with P{YY(T3R) = {q € P¥Y(T;R) : (q,1)2(r) = 0}, and (R (W) — wr, 1) g2y = 0. Thus, we

now consider the stabilization bilinear form sy, : th X V}{“ — R such that

sn(tn, 2n) = > srlir, 2r),  srlir, 2r) = 1or(Shy (r), S (21)) r2om), (7.3)
TeT,

with the stabilization parameter
—17 —2a . -1 7 -1 1
Tor = Ay hyp with Ap = ¢rpr = ¢ kr, hr := L5 hr, a € {0, 30 (7.4)

This leads altogether to four variations: equal- vs. mixed-order setting and O(1)- vs. O(+)-stabilization
with S5 defined in (7.1).
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The first important point is that the stabilization (7.1) generally calls for implicit schemes, for
both equal- and mixed-order settings. Indeed, in the equal-order case, the invertibility of the face-face
stabilization matrix is not guaranteed (this property is required to handle the static coupling between
cell and face unknowns in explicit schemes). Moreover, it is not clear how to prove (A2). In the
mixed-order case, the invertibility of the face-face stabilization matrix is guaranteed, but again (A2)
fails. It is still possible to prove that

) 1o 1. X .
[wnls S e5oh“h 2|7 L2 () + Sh™ T2 wT L2 1.g) + [AF(@) s Yy, Vio- (7.5)

Thus, for a = %, we loose a factor h~=2 and this eventually leads to a 2-CFL condition for explicit
schemes. For o = 0 instead, we can repeat the analysis in Sections 5 and 6, but this leads to the same
convergence rates as in the equal-order case with LS stabilization. In any case, if one is ready to run
an implicit scheme with either equal- and mixed-order or to run an explicit scheme with mixed-order
using a 2-CFL condition, one obtains (’)(ﬁo‘h’”%) convergence rate on polyhedra, which is optimal for

-1
a=3.

To summarize, Table 7.1 displays the convergence rates and CFL conditions for all the combinations
of HHO discretizations discussed in the paper. The two rows labelled A correspond to the analysis of
Sections 5-6, and the rows labelled B and C to the variations discussed in Section 7.

e Interpolation operator
Stabilization | HHO Mesh Convergence Tmplicit Fxplicit CFL
Al o), sor ¥k Simplices O(hk 1) HDG HDG fi/1
Polyhedra | O(h"*2) HHO HHO 3/1
Yok Simplices | O(RFFT) HDG-HHO ] ]
B | 0(1), s Polyhedra | O(h**2) HHO
or K — k4 1 | Smplices | O(RFT) HDGT HDGT 2/1
Polyhedra | O(h**2) HHO or HT |HT i1
c | o), gme K=k Polyhedra | O(RFF1) HHO - -
h72=0T '} =k + 1 | Polyhedra | O(h**1) HHO or HY | HT 2/2

Table 7.1: Choices of stabilization parameters and order setting: convergence rates and suitable
interpolation operators defined in Section 7.2

7.2 Interpolation operators

We discuss possible choices of the interpolation operator satisfying (I1) and (I2) to prove the conver-
gence rates stated in Table 7.1. We focus on (I2) which is the more delicate property.

For equal-order on simplices, one can replace the stabilization weight )\;1 by 1o and the difference
operator dg7 by Sy in the third condition (4.19¢) defining the HDG interpolation operator Iy (we call
this slightly modified HDG interpolation operator with HHO stabilization the HDG-HHO interpolation
operator) and prove that the consistency error is still zero. Namely, (4.19¢) is replaced by

((r = IE (W) nr, 1) 2 (o) = Tor (St (I (w), g (wlar)), S (0, 1)) r20ry Vit € Ve (7.6)

However, on general polyhedra, adapting the arguments from [4], an error analysis can be carried out
using the classical HHO interpolation operator for a € {0, %}

For mixed-order on polyhedra, the first term on the right hand-side of (4.14) can no longer be
bounded using only the stabilization seminorm from (7.1b). To circumvent this problem, we propose
to use the HT interpolation operator defined in [17] (where it is called HDG™ interpolation operator).

Specifically, the HT interpolation operator ILL" : H (T) — P*(T;RY), v, € (%, 1], is defined for
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all T € Ty, as follows. We consider the L-orthogonal decomposition P¥(T;R%) = VPAY(T;R) ¢
ZF(T;RY), where PiT (T R) == {q € P**}(T;R) : (¢,1)2(p) = 0} and ZF(T;RY) := VP (T;R)L N
PE(T;RY). Then, for all T € H"* (T, we define IL'}" (1) € % from the following conditions:

(T (1) = 7,€) g2y = 0 Ve € ZF(T; RY), (7.7a)
(I (1) = 7,V2) 2 () = (g (Tmr) — Tonp, 2) 12001y V2 € PEFH(TSR). (7.7b)

The global interpolation operator ITF : H" (Q) — X% is defined as (I (7))|7 := IL (7]7) for
all 7 € H"(2). We then define the H' interpolation operator iﬁ* YRt Kfzo with Yt .=
H"> () x H" (), with v € (3, 1], v, € (3,1], such that, for all w := (7,w) € Y"T,

I (w):=

Iy (w) == (I (), 15 (w), - (w| ) € VE. (7.8)

P ()

Thus, I " approximates the dual variable T using the H interpolation operator and the primal variable
w using the usual L?-based HHO interpolation operator. One can verify that the Ht interpolation
operator leads to O(fza hk+%) convergence rates on polyhedra. Finally, using similar arguments to those
in Section 4.4 in the equal-order case, this rate can be improved to O(h**1) on simplices for o = 0 using
the HDG™ interpolation operator from [16, Section 4.1]. Specifically, for all w := (7,w) € H" (T) X
HY(T), with vy € (3,1], vy € (3,1], one defines I} (w) = (IIF (w), II¥ (w)) € P¥(T;RY) x P¥ (T;R)
on any simplex 7' € T, by using (4.19a)-(4.19b), replacing (4.19¢) by

((r = OF(w))-nr, 1) r2(o7) = Tor (Sor (17 (w), Wr(wlor)), 6o (0, 1)) r2om) Vit € Vi, (7.9)

and adding that

(V-(ITF (w) — w), X) 27y = Tor(Shy (- (w), W (wlor)), Sy (6 0)) p2ory  Vx € B¥ (T3 R),
(4.19d)

with ﬁ”kl(T;R) is composed of homogeneous polynomials of degree ¥’ = k + 1. Notice that the two
interpolation operators H™ and HDG™ are considered in the HDG™ literature with O(%)—stabilization,
but they are also well-defined for O(1)-stabilization.
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