
HAL Id: hal-04763270
https://hal.science/hal-04763270v1

Submitted on 1 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Optimistic online caching for batched requests
Francescomaria Faticanti, Giovanni Neglia

To cite this version:
Francescomaria Faticanti, Giovanni Neglia. Optimistic online caching for batched requests. Computer
Networks, 2024, 244, pp.110341. �10.1016/j.comnet.2024.110341�. �hal-04763270�

https://hal.science/hal-04763270v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Optimistic Online Caching for Batched Requests

Francescomaria Faticantia, Giovanni Negliab

aÉcole Normale Supérieure de Lyon, 46 Allée d’Italie, Lyon, 69007, France
bInria, 2004 route des Lucioles, BP 93, Sophia Antipolis, 06902, France

Abstract

In this paper, we investigate ’optimistic’ online caching policies, distinguished by their use of future request predictions derived, for
example, from machine learning models. Traditional online optimistic policies, grounded in the Follow-The-Regularized-Leader
(FTRL) algorithm, incur a higher computational cost compared to classic policies like Least Frequently Used (LFU) and Least
Recently Used (LRU). This is due to each cache state update necessitating the resolution of a constrained optimization problem.
To address this problem, we introduce and analyze the ’batched’ version of two distinct FTRL-based optimistic policies. In this
approach, the cache updates occur less frequently, thereby amortizing the update cost over time or over multiple requests. Rather
than updating the cache with each new request, the system accumulates a batch of requests before modifying the cache content.
First, we present a batched version of the Optimistic Bipartite Caching (OBC) algorithm, that works for single requests, then we
introduce a new optimistic batched caching policy, the Per-Coordinate Optimistic Caching (PCOC) algorithm, derived from the
per-coordinate-based FTRL. We demonstrate that these online algorithms maintain ’vanishing regret’ in the batched case, meaning
their average performance approaches over time that of an optimal static file allocation, regardless of the sequence of file requests.
We then compare the performance of these two strategies with each other and against optimistic versions of LFU and LRU. Our
experimental results indicate that this batched optimistic approach outperforms traditional caching policies on both stationary and
real-world file request traces.

Keywords: Caching, Online Optimization, Predictions, Batched Requests

1. Introduction

Caching systems represent one of the most deeply studied re-
search areas that span from the design of CPU hardware [2, 3] to
the development of caching services in cloud computing, e.g.,
elastic caching systems for cloud and edge [4, 5]. The main ob-
jective of such systems is to reduce specific costs for the users,
the network operator or the content provider. Caching policies
have been studied under various assumptions on the arrival pro-
cess of file requests. Recently online learning theory has been
proposed to deal with caching settings where requests do not
exhibit a regular pattern, and can be thought to be selected by
an adversary [6, 7, 8]. Such an approach for the requests mod-
eling stands in contrast to traditional stochastic models which
can fail, e.g., in cases of small users’ populations [9].

Online caching has been studied in the online convex opti-
mization (OCO) framework [10] starting from the work [6]. In
this setting, the main objective is to design algorithms that min-
imize the regret, i.e., the difference between the costs incurred
over a fixed time horizon by the proposed solution and by the
optimal static content allocation. Specifically, if the regret of
an algorithm increases at a sublinear rate relative to the length
of the time horizon, the algorithm achieves the same cost of the
optimal static allocation in the long run. Later contributions an-

⋆Research supported by Inria under the exploratory action MAMMALS. A
preliminary version of this paper has been presented at IEEE ICC 2023 [1].

alyzed other online learning algorithms [11] and provided new
lower bounds on the regret [7].

Motivation. Nowadays, thanks to the huge availability of
data and resources in cloud systems, reliable predictions for fu-
ture requests can be generated by machine learning (ML) mod-
els [12, 13]. Online caching policies can exploit such predic-
tions to incur lower future costs by anticipating future requests.
Online algorithms with access to predictions are called opti-
mistic [14, 15]. References [14, 16] provide example of opti-
mistic online algorithms based on the Follow-The-Regularized-
Leader (FTRL) and Online Mirror Descent (OMD) frame-
works [10]. Mhaisen et al. [15] presented one of the first ap-
plications of optimistic online algorithms to a caching problem.
They proved that predictions, even if not perfectly accurate, can
improve the performance of online algorithms. They designed
an optimistic FTRL algorithm that requires the cache to be up-
dated each time a new file request is received. However, these
updates are computationally very expensive, as they require to
solve a constrained optimization problem, and can then limit the
applicability of online caching policies. Hence, the main ques-
tion we want to investigate in this work is the following: “how
will such algorithms perform if the caching system collects a
batch of requests before updating the cache in order to amortize
the computational cost?". We show that, in order to amortize
the update cost over time and over multiple requests, a batched
approach can be adopted without loss in the performance, i.e.,
the presented batched algorithms still enjoy sublinear regret. In

Preprint submitted to Computer Networks November 1, 2024

this batched scenario the caching system serves each request as
it arrives, but updates the cache less frequently on the basis of
the batch of requests collected since the last update [11]. We
stress that the batched approach does not cause any additional
delay for the user.

The novelty of this work resides in the study of optimistic on-
line caching policies able to work on batches of requests. Our
main contributions are the following:
1) We present a batched version of the optimistic caching pol-
icy in [15] and prove that it still enjoys sublinear regret.
2) We introduce a new optimistic batched caching policy based
on the per-coordinate-based algorithm in [14].
3) We analytically characterize under which conditions each of
these two caching policies outperforms the other.
4) We determine when a batched operation provides better per-
formance in terms of regret under different models for the pre-
dictions’ error.
5) We design optimistic versions of classical caching policies
like LFU and LRU.
6) We experimentally show, both on stationary traces and real
ones, that our optimistic batched online caching policies out-
perform classical caching policies like LRU and LFU achieving
both smaller service cost and per-request computational cost.

The reminder of this paper is organized as follows. The next
section discusses the main related works. Section 3 introduces
the system model and the problem description. In Section 4
we describe the optimistic caching framework and we present
the main algorithms that take into account predictions: the one
presented in [15] and the one we propose. Section 5 presents
an analysis of the regret bounds achieved by the two algorithms
and a comparison between the single-request operation and the
batched one. Experimental results are presented in Section 6.
Finally, Section 7 concludes the paper.

2. Related Work

Caching optimization problems have been deeply studied
in the literature both on the offline and on the online per-
spective [17]. Several works have explored the offline static
allocation of files under the assumption of knowing the re-
quests [18, 19, 20]. On the online perspective, online caching
policies based on gradient methods have been studied under the
assumption of stochastic requests [21, 22]. In these works, the
proposed algorithms have been evaluated under various perfor-
mance metrics. We consider adversarial requests, i.e. the re-
quests are thought as they are generated by an adversary trying
to deteriorate the system’s performance, and the regret as the
main performance metric following the recent regret-based re-
search on caching [7, 8, 23, 24, 11]. In this context, the main
goal is to design algorithms with sublinear regret with respect to
the time horizon leading to algorithms that behave as the opti-
mal static solution in hindsight on average. Such online policies
are called no-regret algorithms [6].

Adversarial requests are considered in caching since Sleator
and Tarjan’s paper [25] through the competitive ratio metric.
However, as proved in [26], algorithms that ensure constant
competitive ratio do not necessarily guarantee sublinear regret.

The main optimization framework adopted in this paper is
the Online Convex Optimization (OCO). It was first introduced
by Zinkevich [27] showing that the projected gradient descent
achieves sublinear regret bounds in the online setting. The
works from Paschos et al. [6, 17] were the first to apply the
OCO framework to caching problems providing no-regret algo-
rithms for the online caching problem. Bhattacharjee et al. [7]
extended the work from Paschos et al. showing tighter lower
bounds for the regret and proposing new online caching policies
for the networked scenario based on the Follow-The-Perturbed-
Leader (FTPL) algorithm. In our case, we consider the single-
cache scenario and analyse the framework of the Follow-The-
Regularized-Leader (FTRL) that has been proved one of the
most promising algorithms for taking into account predictions
in the online learning setting [14]. Indeed, as shown in [28],
the optimistic version of FTRL benefits more from the use of
predictions with respect to the optimistic FTPL.

The combination of predictions and caching has recently
drawn attention given the significant usage of machine learn-
ing (ML) models for the computation of such predictions. The
idea of exploiting predictions in the decision process has lead
to the design of so called optimistic online algorithms. Some
works have already incorporated predictions in stochastic opti-
mization [29, 30] assuming the requests and system perturba-
tions to be stationary. In our work we do not make any assump-
tion on the quality of the predictions that can be also thought
as generated by and adversary. Mohri et al. [14] studied the re-
gret performance of FTRL algorithms in adversarial settings in-
cluding the predictions proving sublinear regret bounds. To the
best of the authors’ knowledge, Mhaisen et al. [15] have been
the first to apply optimistic online algorithms in the caching
framework under adversarial settings. They proposed FTRL-
based algorithms that, at each new request, update the cache
state based on the previous incurred costs and the prediction
for the next request. However, such algorithms imply the ap-
plication of computationally-expensive operations, such as the
projection on the domain set of the cache states [31, 32], at
each new request. To amortize the computational cost over
time we propose to collect a batch of requests before decid-
ing the new cache state, leading to less frequent updates of the
cache state. Theoretical analysis confirm that the size of such
a batch does not affect the regret guarantees of the presented
algorithms. A batched approach in caching has been presented
in [31] but without taking into account predictions for future re-
quests. Other optimistic online algorithms for caching are pro-
posed in [28]. However, the proposed policies update the cache
state at each new request, and the files are entirely stored in the
cache, whilst, in line with recent works [6, 15], we assume that
the cache can store arbitrary fraction of files.

The novelty of this work is in studying the performance
of optimistic version of FTRL-based algorithms dealing with
batches of requests. The account of batched requests reinforces
also the use of predictions in the optimization process. It is rea-
sonable indeed, when the predictions come from ML models,
to involve a set of possible future requests in the predictions
rather than a single future request. We show that the optimistic
online batched algorithms introduced in this work present the

2

best performance in terms of final miss-ratio and computational
cost with respect the most practical and implemented caching
policies.

3. System Description and Problem Formulation

3.1. System Model
We consider the same system setting described in [11]. We

consider a catalog N = {1, 2, . . . ,N} with N equal-size files.
File requests are served by a single local cache or by a remote
server. In particular, a request for a file i ∈ N can be served
by the cache for free or by a remote server incurring a per-file
dependent cost wi ∈ R+ (more details about our cost model be-
low). This cost can be related to the time needed to retrieve the
file from a remote server, or be a monetary cost due to the utili-
sation of a third-party infrastructure for the file retrieval. We do
not make any assumption on the requests arrival process, i.e.,
we analyse the system in an adversarial online setting where
the requests can be thought as generated by an adversary trying
to deteriorate system’s performance.
Cache State. We assume the cache can store arbitrary frac-
tions of files from the catalog (as in [33, 6, 15]) up to a max-
imum of k complete files, where k ∈ {1, 2, . . . ,N}. We denote
as xt,i ∈ [0, 1] the fraction of file i stored in the cache at time
t. The cache state, at time t, is then represented by the vector
xt = [xt,i]i∈N belonging to the set

X =

x ∈ [0, 1]N |
∑
i∈N

xi = k

 .
The set X is the capped simplex defined by the capacity con-
straint of the local cache. It is sometimes convenient to express
the cache capacity as a fraction of the catalog size, i.e., k = αN,
where α ∈ [0, 1].
Cache Updates. Caching decisions are taken after batches (po-
tentially of different sizes) of requests have been served. For-
mally, at each time-slot t = 1, . . . ,T the system collects Rt re-
quests from the users and then it may updates the cache state.
The request process can then be represented as a sequence of
vectors rt = (rt,i ∈ N : i ∈ N), ∀t, where rt,i denotes the number
of requests for file i in the t-th timeslot. The request process
belongs then to the set

R =

rt ∈ NN , t = 1, . . . ,T |
∑
i∈N

rt,i = Rt

 .
For some results we will rely on the following additional as-
sumption (already proposed in [11]):

Assumption 1. Every batch contains the same number of re-
quests (i.e., Rt = R for all t ∈ 1, . . . ,T) and the number of
requests for each file within the batch is bounded by h (i.e.,
rt

n ∈ {0, . . . , h}).
Cost Function. For each new batch of requests rt the system
pays a cost proportional to the missing fraction (1−xt,i) for each
file i ∈ N from the local cache. More formally:

frt (xt) =
N∑

i=1

wirt,i(1 − xt,i). (1)

The sum is weighted by the cost wi and by the number of times
rt,i file i is requested in the batch rt.
Predictions. Predictions for the next batch of requests can be
provided by a ML model such as a neural network. The ML
model may output an estimate of the number of requests for
each file in the next time-slot, or equivalently an estimate of the
current popularity of each file (the probability that a request is
for that file). The model can be similar to those used in stream-
ing services like Netflix to provide recommendations to users
on the basis of their view history [12]. ML regression mod-
els to predict file requests for caching applications have been
proposed in [34, 35, 36]. An optimistic caching algorithm can
exploit such predictions in order to update the cache content. In
this paper, we assume that the predictor provides an estimate for
the number of requests for each file in the next time-slot. We in-
dicate with r̃t+1,i the prediction of the number of requests for file
i at time t+1. It is then possible to directly estimate the gradient
of the cost function in that time-slot. More formally, we denote
by g̃t+1 the prediction of gt+1 = ∇ frt+1 (xt+1), the gradient of the
cost function at time t+1, where g̃t+1,i = −wir̃t+1,i. We are going
to show that the presented algorithms present good performance
even in cases of low-quality estimations of the predictions.

3.2. Online Caching Problem

We can fit our caching problem in the Online Convex Op-
timization (OCO) framework [27, 37], where a learner (in our
case the caching system) has to take a decision xt from a con-
vex set X at each time slot t before the adversary selects the
cost function frt , i.e., the learner changes the cache state before
experiencing the cost. Hence, the main objective is to devise a
caching policy A that, at each time-slot t, computes the cache
state xt+1 for the next time-slot given the current cache state xt,
the whole history up to time t ((x1, r1), . . . , (xt, rt)), and possibly
the predictions for the next time-slot. As it is common in online
learning, the main performance metric for the caching policyA
is the regret defined as

RT (A) = sup
{r1,...,rT }

 T∑
t=1

frt (xt) −
T∑

t=1

frt (x
⋆)

 . (2)

This function denotes the difference between the total cost ob-
tained by the online policy A over a time horizon T , and
the total cost of the best caching state x⋆ in hindsight , i.e.,
x⋆ = arg minx∈X

∑T
t=1 frt (x). The supremum in (2) indicates

an adversarial setting for the regret definition, i.e., the regret is
measured against an adversary that generates requests trying to
deteriorate the performance of the caching system. The main
goal in this setting is to design a caching policyA that achieves
sublinear regret, RT (A) = o(T). This ensures a zero average
regret as T grows implying that the designed policy behaves on
average as the optimal static one.

In what follows, given a sequence of vectors
(y1, y2, . . . , yt, . . .), we denote their aggregate sum up to
time t as y1:t ≜

∑t
s=1 ys.

3

Algorithm 1: Optimistic Online Caching
Input: N , k, x1 ∈ X

1 for t = 1, . . . ,T do
2 Receive the batch of requests rt;
3 Incur cost frt (xt);
4 Receive the new prediction g̃t+1;
5 Compute xt+1 taking into account g̃t+1 and the

history ((x1, r1), . . . , (xt, rt)) according to (3).

4. Optimistic Caching

As highlighted in [15], an optimistic caching policy can ex-
ploit, at each time-slot t, predictions for the requests at time t+1
in order to compute the caching state xt+1. The general scheme
for optimistic online caching is described in Algorithm 1. Given
an initial feasible solution x1 ∈ X, the cache operates at each
time-slot t as follows: i) the new batch of requests rt is re-
vealed; ii) based on the current cache state xt, the cache incurs
the cost frt (xt); iii) the cache receives the prediction g̃t+1 for the
next time-slot, and iv) based on such predictions and on all the
history up to time t ((x1, r1), . . . , (xt, rt)), it computes the next
cache state xt+1.

In the OCO literature, algorithms exploiting predictions are
usually variants of the Follow-The-Regularized-Leader (FTRL)
algorithm [38, 14]. The classic Follow-The-Leader (FTL) algo-
rithm [39] greedily selects the next state in order to minimize
the aggregate cost over the past, i.e.,

xt+1 := arg min
x∈X

t∑
s=1

frs (x) = arg min
x∈X

g⊺
1:tx,

where the last equality follows from the linearity of the cost
functions. The linearity of the problem leads FTL to commit
to store entirely some files (i.e., xt+1 ∈ {0, 1}N), but this can
be exploited by the adversary and leads to a linear regret. The
FTRL algorithm improves the performance of FTL by adding
a non-linear proximal regularization term, which leads to more
cautious updates.1 Let rt(x) be the regularization function used
at time t (to be specified later). The FTRL algorithm’s update
step is given by

xt+1 := arg min
x∈X

{
r1:t(x) + (g1:t + g̃t+1)⊤x

}
. (3)

As we are going to see, the function to minimize in (3) is a
quadratic function. The Problem 3 can then be solved through
popular solvers like CVX, but the presence of the constraint
x ∈ X makes the update a potentially expensive operation, mo-
tivating the batched operation we propose.

In what follows, we describe two particular FTRL instances
applied to our caching problem. The two instances differ by
the specific regularization function used in (3) for updating the
cache state (line 5 of Algorithm 1).

1A regularizer is proximal if arg minx∈X rt(x) = xt .

4.1. Optimistic Bipartite Caching (OBC)
The first algorithm is called Optimistic Bipartite Caching

(OBC) and was introduced in [15] for a bipartite caching system
with a single request at each time-slot. OBC adopts as proximal
regularizer

rt(x) =
σt

2
∥x − xt∥

2, t ≥ 1, (4)

with the following parameters

σt = σ(
√

h1:t −
√

h1:t−1), where ht = ∥gt − g̃t∥
2, (5)

and σ ≥ 0. The regularizer r1:t(x) is 1-strongly convex with re-
spect to the norm ∥x∥(t) =

√
σ1:t∥x∥whose dual norm we denote

by ∥x∥(t),⋆. The regularizer depends on the Euclidean distance
between the actual gradient gt and the predicted one g̃t. Qual-
itatively, if predictions are very accurate, r1:t(x) is small and
then the update in (3) will focus on minimizing the (predicted)
aggregate cost (g1:t + g̃t+1)⊺x. On the contrary, if predictions
are not accurate, the regularizer will lead to more cautious up-
dates. The regularization function can then be interpreted as
an implicit adaptive learning rate [14]: as gradient predictions
become more accurate the algorithm accelerates towards the
minimum of the aggregate cost (g1:t + g̃t+1)⊺x.

In the next section, we present theoretical guarantees on the
OBC’s regret for the batched setting considered in this paper.

4.2. Per-Coordinate Optimistic Caching (PCOC)
Mohri et al. [14, Corollary 2] proposed an FTRL algorithm

where the regularization function decomposes over the coordi-
nates and thus the acceleration occurs on a per-coordinate basis.
In this case, if gradient predictions are more accurate on cer-
tain coordinates, the algorithm will accelerate the convergence
of such coordinates. Here we present a generalization of this
algorithm, called Per-Coordinate Optimistic Caching (PCOC),
which introduces a generic parameter σ in the definition of the
regularization function:

rt(x) =
N∑

i=1

t∑
s=1

σt,i

2
(xi − xs,i)2, (6)

where σt,i = σ(∆t,i −∆t−1,i), and ∆s,i =
√∑s

a=1(ga,i − g̃a,i)2. The
function r0:t(x) is 1-strongly convex with respect to2

∥x∥2(t) =
N∑

i=1

σ1:t,ix2
i , with ∥x∥2(t),∗ =

N∑
i=1

x2
i

σ1:t,i
. (7)

5. Performance Analysis

Here we prove theoretical guarantees for the regret bounds
of the algorithms presented in the previous section in the case
of a single cache and multiple requests at each time-slot. We
show that both algorithms enjoy sublinear regrets even if gradi-
ent predictions are inaccurate.

2With some abuse of notation we use the same symbols (resp. ∥·∥(t) and
∥·∥(t),∗) to denote the norms and the dual norms for OBC and PCOC. The inter-
pretation of the symbols should be clear from the context.

4

5.1. Regret bound of OBC with single cache and R requests
We extend the regret bound in [15, Theorem 1] to the case

of batched requests, but we also improve the coefficients taking
into account the capacity constraint.

Theorem 5.1. The regret of OBC is bounded as follows:

RT (OBC) ≤ 2

√√√
2 min{k,N − k} ·

T∑
t=1

∥gt − g̃t∥
2. (8)

Proof. We start from the inequality in [14, Theorem 1],

RT ≤ r1:T (x⋆) +
T∑

t=1

∥gt − g̃t∥
2
(t),⋆, ∀x⋆ ∈ X. (9)

Substituting the regularization functions we obtain

RT ≤
σ

2

T∑
t=1

(
√

h1:t −
√

h1:t−1)∥x⋆ − xt∥
2 +

T∑
t=1

ht

σ
√

h1:t
(10)

In our case, as highlighted in [6], the Euclidean diameter of X
is upper bounded by ∆

∥x − xt∥
2 ≤ ∆2 ≜ min{2k, 2(N − k)},∀x, xt ∈ X. (11)

Introducing ∆ in (10), and using [40, Lemma 3.5] it follows

RT ≤
σ

2
∆2

T∑
t=1

(
√

h1:t −
√

h1:t−1) +
T∑

t=1

ht

σ
√

h1:t

≤
σ

4
∆2

√
h1:T +

2
σ

√
h1:T = (

σ

2
∆2 +

2
σ

)
√

h1:T .

(12)

Setting σ = 2/∆ we obtain the desired bound.

Theorem 5.1 shows that the regret bound depends on the
cache size, and on the accuracy in the predictions. The al-
gorithm enjoys a zero regret if the cache is able to store the
complete catalog, i.e., k = N, or if predictions are perfect, i.e.,
g̃t = gt. On the other hand, even if predictions are imperfect,
OBC may guarantee sublinear regret, as shown by the following
corollary.

Corollary 1. Under Assumption 1,

RT ≤ 2∥w∥∞
√

2 min{k,N − k}TRh = O(
√

T). (13)

The proof easily follows from ∥g̃t − gt∥
2 ≤ ∥w∥2∞Rh under

Assumption 1.

5.2. Regret bound of PCOC
The following proof follows the steps in [14, Corollary 2],

introducing the adjustable parameter σ ≥ 0 in the definition of
the regularizer 6 and taking into account that xi ∈ [0, 1] for our
caching application.

Theorem 5.2. The regret of PCOC is bounded as follows

RT (PCOC) ≤ 2
N∑

i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2. (14)

Proof. From [14, Theorem 3], applying the regularization func-
tion defined in (6) and the norms defined in (7), we obtain

RT ≤
σ

2

N∑
i=1

T∑
s=1

(∆s,i − ∆s−1,i)(xi − xs,i)2 +

T∑
t=1

∥gt − g̃∥2(t),⋆

(a)

≤
σ

2

N∑
i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2 +

T∑
t=1

∥gt − g̃∥2(t),⋆

(b)

≤
σ

2

N∑
i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2 +
2
σ

N∑
i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2

=

(
σ

2
+

2
σ

) N∑
i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2, (15)

where (a) follows from (xi − xs,i)2 ≤ 1 and the results of the
telescopic sum

∑t
s=1 ∆s,i − ∆s−1,i, and (b) from the application

of [40, Lemma 3.5] to
∑T

t=1∥gt − g̃∥2(t),⋆ once the definition of
dual norm in (7) has been applied. For the minimization of the
regret bound we can set σ = 2.

Similar to OBC, PCOC has zero regret under perfect predic-
tions, and sublinear regret under Assumption 1.

Corollary 2. Under Assumption 1,

RT ≤ 2Nh∥w∥
√

T = O(
√

T). (16)

The proof follows from (gt,i − g̃t,i)2 ≤ ∥w∥2h2 under Assump-
tion 1.

5.3. Comparison between the two regret bounds

We compare the two bounds presented above in two specific
scenarios for the prediction error: i) a constant error on each
component of the gradient, and ii) a prediction error propor-
tional to the popularity of the files in the catalog.

In the first case, OBC presents a better bound with respect
to the one obtained by PCOC. In fact, say that |gt,i − g̃t,i| = ϵ

for each i and t, then RT (OBC) = 2
√

2 min{k,N − k}NT ϵ2 ≤
2N
√

T ϵ2 = RT (PCOC).
In the second case, PCOC may perform better because it

specifically takes into account the heterogeneity of the predic-
tion error across the components. We deviate here from the
adversarial request model and consider that 1) requests arrive
according to a Poisson process with rate λ, and 2) a request is
for file i with probability pi independently from the past [41].
Moreover, we assume the algorithm is executed every time unit,
and per-file costs equal 1. In this case, gt,i ∼ Poisson(λpi) for
each i ∈ N . We compute the expected value of the bounds in
(8) and in (14), assuming that the cache can store a fraction α
of the catalog (k = αN), and g̃t,i = λpi, i.e., we have a perfect
predictors for the expected number of future requests. For the

5

Figure 1: OBC vs PCOC, different regimes for the regret as a function of the
Zipf exponent (β) and the relative cache size (k = αN).

OBC bound, we obtain

E

2
√√√

2αN
T∑

t=1

N∑
i=1

(gt,i − g̃t,i)2

 ≤
≤ 2

√√√
2αN

T∑
t=1

N∑
i=1

E[(gt,i − g̃t,i)2] =

= 2

√√√
2αN

T∑
t=1

N∑
i=1

λpi = 2
√

2αλNT . (17)

For the PCOC bound, we obtain

E


N∑

i=1

√√√ T∑
t=1

(gt,i − g̃t,i)2

 ≤
N∑

i=1

√√√ T∑
t=1

E[(gt,i − g̃t,i)2]

= 2
N∑

i=1

√√√ T∑
t=1

λpi = 2
N∑

i=1

√
Tλpi . (18)

Comparing the two bounds (18) and (17), we find that (18) is
a smaller than (17) when α ≥

(∑N
i=1
√

pi

)2
/(2N

∑N
i=1 pi). If pi

obeys to a Zipf law with exponent β, we can numerically find
from the inequality the minimum value of α such that the bound
of (18) is tighter. In Figure 1 we can notice that the threshold
for α decreases as β increases. In the case of a uniform popu-
larity distribution (β = 0), OBC outperforms PCOC unless the
cache can store at least half of the catalog. As the popularity
distribution becomes more skewed, PCOC is expected to per-
form better than OBC in terms of regret bound, but for very
small caches.

5.4. Batch Selection

We maintain the Poisson assumption about the request arrival
process and evaluate what is the effect of requests batching on
the regret, focusing on the bound in Theorem 5.1 (the same
analysis can be carried out on the bound in Theorem 5.2). We
analyse the expected value of such bound in a general batched-
requests setting where the caching decisions are taken every τ

among an overall time interval of Θ time units where a single
request is available at each time. Looking at the expected value
of the regret bound we have:

E
[
RΘ/τ

]
≤ E

C
√√√
Θ/τ∑
t=1

N∑
i=1

(gt,i − g̃t,i)2

 , (19)

where C ≜ 2
√

2 min{k,N − k}. In this case we have gt,i ∼

Poisson(λiτ). For the predictions g̃t,i we consider two options:
i) they coincide with the expected number of future requests,
or ii) they coincide with the requests seen during the previous
times-lots.

In the first case we have

E

C
√√
Θ/τ∑
t=1

N∑
i=1

(gt,i − g̃t,i)2

 (a)
≤ C

√√
Θ/τ∑
t=1

N∑
i=1

E
[
(gt,i − g̃t,i)2] =

= C

√√
Θ/τ∑
t=1

N∑
i=1

Var(gt,i) = C

√√
Θ/τ∑
t=1

N∑
i=1

λiτ = C

√√
Θ

N∑
i=1

λi, (20)

where (a) follows from Jensen’s inequality. The right hand side
of (20) suggests that batching has no effect on the algorithm’s
regret.

In the second case, for t > 1, g̃t,i = gt−1,i = nt,i(τ) ∼
Poisson(λiτ), where nt,i(τ) is the number of arrivals within the
interval [(t − 2)τ, (t − 1)τ]. The initial prediction is given by
g̃1,i =

ni(τ0)
τ0

, where τ0 is a first warm-up interval. Looking at the
expectation of (gt,i − g̃t,i)2, we have

E[(gt,i − g̃t,i)2] =

E[(gt,i − g̃t,i − E[gt,i] + E[gt,i] − E[g̃t,i] + E[g̃t,i])2] =

Var(gt,i) + Var(g̃t,i) + (E[gt,i] − E[g̃t,i])2 =

=

2λiτ, t > 1
λiτ + (τ

τ0
)2λiτ0, t = 1.

(21)

Summing all the terms over N and Θ/τ, we obtain

N∑
i=1

Θ/τ∑
t=1

E[(gt,i − g̃t,i)2] =
N∑

i=1

Θ − τ

τ
2λiτ + λiτ + m2τ2, (22)

where m2 ≜ λiτ0

τ2
0

. Under these predictions, there is indeed

an optimal timescale τ∗ for batching, that is τ∗ = min{ τ0
2 ,Θ}.

Hence, in case of a good initial prediction (large τ0) we should
select τ = Θ. Otherwise, in case of a less accurate initial pre-
diction we should choose a smaller value τ = τ0

2 .

6. Numerical Results

6.1. Experimental Settings

6.1.1. Datasets
We evaluated the presented approaches on both synthetic

and real traces. For the synthetic case, we generated station-
ary synthetic traces where individual file requests are gener-
ated i.i.d. according to a Zipf distribution with parameter

6

(a) π = 0 (b) π = 0.3 (c) π = 0.9

Figure 2: Average Miss Ratio of OLFU vs. LFU, Zipf distribution with β = 1.5 and k = 100.

(a) π = 0 (b) π = 0.3 (c) π = 0.9

Figure 3: Average Miss Ratio of OLRU vs. LRU, Zipf distribution with β = 1.5 and k = 100.

β ∈ {0.8, 1.2, 1.5} from a catalog of N = 1000 files. The val-
ues used for the exponent of the Zipf distribution are in line
with the estimates reported in the literature for various kinds
of systems [42]. We evaluate the studied solutions against
state-of-the-art algorithms over a horizon of I = 105 requests.
Batched algorithms have a constant batch size, i.e., Rt = R
with R ∈ {100, 1000, 2000, 5000, 10000} for synthetic traces,
and R ∈ {10, 50, 100, 300, 1000} for the real trace. The cache
size k varies in {10, 50, 100, 600}. The cache capacity and the
batch sizes chosen for the experimentations are in line with the
one selected in other theoretical studies on online caching poli-
cies such as [31]. The real trace counts 2 · 104 requests for
the N = 103 most popular files as measured at a given server
in Akamai CDN provider [43]. In all the experiments we set
wi = 1,∀i ∈ N , the cost in (1) corresponds then to the total
number of misses. In Figures 2, 3, 4, 5, and 7b we report the av-
erage and the 95% confidence interval for the metric interest as
computed over 30 different runs. The sequence of file requests
is the same across different runs, but predictions are indepen-
dently generated at each run. We observe that 95% confidence
intervals are often too narrow to be observable.

6.1.2. Predictions
As stated before, the predictions for the algorithms could be

the output of a prediction ML model, such as a neural network,
that forecasts the number of requests for each file in the next
time-slot. Such predictions can be more or less accurate. In

order to show the robustness of the considered algorithms to the
quality of the predictions, we have generated the predictions in
such a way their accuracy with respect to the actual requests
can be tuned varying the values of single parameters.

Similarly to what done in related work [15, 28], we consider
some stylized predictors, which have the advantage of exhibit-
ing a tunable accuracy or to better represent an adversarial be-
haviour. In particular, we have considered three types of pre-
dictions:

• Type 1 predictions are generated according to g̃t+1 = (1 −
ξ)gt+1 + ξ

R
N , with ξ ∈ [0, 1];

• Type 2 predictions are the same as in [28]: each predicted
request is attributed to a file selected uniformly at random
with probability π and otherwise it coincides with an actual
future request;

• Type 3 predictions are random permutations of the correct
gradients.

The first type interpolates between perfect predictions (for ξ =
0) and a non-informative situation where all files are predicted
to be equally popular (for ξ = 1). The second type is similar,
but exhibits more variability in the request process. In particu-
lar, the parameter π plays a role similar to the parameter ξ with
π = 0 corresponding to perfect requests and π = 1 to an IRM
model where all files are equally popular. Finally, the third type

7

corresponds to a more adversarial setting where predictions are
misleading as the random permutation leads to attribute the ac-
tual future number of requests for a given file i to a randomly
selected file j.

6.1.3. Online Algorithms
We compare OBC and PCOC presented in Section 4 against

classical online algorithms such as LFU, LRU, and OGD [6].
Furthermore, we designed and implemented optimistic version
of LFU and LRU.

Optimistic Least Frequently Used (OLFU). The algorithm
takes into account predictions for the next requests but updates
the cache state at each new requests according to the LFU evic-
tion policy. At the beginning of each batch of requests, OLFU
increases the frequency of each file within the predictions for
the next batch of R requests. In the face of a new request, the
algorithm i) updates the cache state using LFU with the updated
frequencies; ii) checks if the file request was in the predicted
batch: if it was not, OLFU increases the frequency for that file
and decreases the frequency of a random file from the catalog
different from the requested one. At the end of each batch the
frequencies of OLFU and the ones computed by a classic LFU
policy are equal.

Optimistic Least Recently Used (OLRU). This policy con-
siders the predictions for the next R requests and consider the
files within the batch as the most recently requested. For each
file i ∈ N , the algorithm keeps a counter, namely last-time-
requested, indicating the last time file i has been requested. In
particular, given a batch of predicted requests, OLRU sets the
last-time-requested counter of all those predicted files to the
current time. In the face of a new request, the algorithm up-
dates the cache using LRU, i.e., evicting the least recently used
file from the cache according to the counters updated through
the predictions.

6.1.4. Metrics
We evaluate all the algorithms according to three metrics:

i) The Average Miss Ratio is a common metric used to evaluate
a caching policy. It is the ratio of the number of file misses over
the total number of requests up to time-slot t. In terms of the
cost function introduced in (1) (we need to set wi = 1 for each
i ∈ N), it can be written as:

1
Rt

t∑
s=0

frs (xs) =
1
Rt

t∑
s=0

N∑
i=1

rs,i(1 − xs,i).

ii) The Time Average Regret is the average regret per time-slot,
that is the regret experienced up to time-slot t divided by t:

1
t

 t∑
s=0

frs (xs) −
t∑

s=0

frs (x
⋆)

 .
iii) The Amortized Cost is the average time required by each al-
gorithm to update the cache after each new request as measured
by running the algorithm on an Intel-Core i7-5650U 2.2 GHz
with 8 GB of RAM.

6.2. Results
First of all we compare the optimistic versions of LFU and

LRU with respect to their classical versions. Afterwards, we
focus on the Follow-The-Regularized-Leader-based algorithms
evaluating their performance in terms of average regret. Con-
sequently, we compare PCOC with respect to OLFU and clas-
sical policies. Finally, we evaluate the optimistic versions of
the presented algorithms on the Akamai trace showing also the
trade-off between the final missing-ratio and the amortized cost
varying the batch size.

OLFU vs. LFU. Figure 2 compares OLFU against LFU for
increasing batch sizes and for different accuracy of Type 2 pre-
dictions with files requested according to a Zipf distribution
with β = 1.5, and cache size k = 100. We can observe the
sensitivity OLFU with respect to the batch size as the predic-
tions become less accurate. Indeed, in case of perfect predic-
tions (Figure 2a), all the versions of OLFU with different batch
sizes reach a better miss-ratio than vanilla LFU, as expected. As
the accuracy of the predictions decreases, the performance of
OLFU starts to deteriorate (Figure 2b) until the case with very
inaccurate predictions (Figure 2c), where the versions of OLFU
with larger batch size are outperformed by LFU. This is due to
the amount of incorrect information brought by the perturbed
predictions as the batch size increases. Hence, reasonably, the
algorithms’ performance deteriorates as the accuracy of the pre-
dictions decreases, however, it is worth noting that even in the
worst case of Figure 2c, the versions of OLFU with R = 100
and R = 1000 perform as well as LFU.

OLRU vs. LRU. Figure 3 shows the behaviour of OLRU in
the same settings of Figure 2. While OLFU performance im-
proves with the batch size under perfect predictions, OLRU’s
performance first improves and then degrades (Figure 3a) as
the batch size increases. This is due to the fact that the largest
the batch, the more the files requested in the batch are equally
like to be evicted. In this case, OLRU tends to act as the RAN-
DOM eviction policy [44]. Indeed, the average miss ratio val-
ues showed in Figure 3a reflect the ones that can be computed
for LRU and RANDOM from equation (1) and the equation
before Proposition 4.1 in [44], respectively, with k = 100 and
β = 1.5. Then, for less accurate predictions (Figure 3b and Fig-
ure 3c), the trend is inverted, i.e., the performance of smaller
batch sizes degrades. Reasonably, also in this case, the Av-
erage Miss Ratio increases as the accuracy of the predictions
decreases.

PCOC vs. OBC. We compare the two algorithms for differ-
ent cache capacities, i.e., k ∈ {50, 100, 600} and different expo-
nents of the Zipf distribution, i.e., β ∈ {0.8, 1.5} with R = 1000
with predictions of Type 2 (π = 0.5). As showed in Figure 4
the difference between the two algorithms becomes significant
as the values of α and β increase. This is in line with the results
shown in Figure 1 where the difference between the two regrets
becomes more evident for higher values of the cache size and
the Zipf’s exponent. In particular when k = 600, i.e., the cache
can store at least half of the catalog, PCOC clearly outperforms
OBC for all the values of β.

PCOC vs. OLFU. Figure 5 reports on the comparison be-
tween PCOC and OLF for different batch sizes and levels of

8

(a) β = 0.8, k = 50 (b) β = 1.5, k = 50

(c) β = 0.8, k = 100 (d) β = 1.5, k = 100

(e) β = 0.8, k = 600 (f) β = 1.5, k = 600

Figure 4: PCOC vs. OBC

accuracy in predictions of Type 2. For all the algorithms we
set the initial cache state as x0 := arg maxx∈X{r̃⊤1 x}, i.e., we en-
tirely store the files with the highest number of requests in the
first predicted batch. Also in this case, the quality of the pre-
dictions impact the the Average Miss Ratio of the policies. We
can observe that for high levels of accuracy in the predictions
(Figure 5a and Figure 5b) PCOC outperforms OLFU for all the
different batches. When the predictions have very low accu-
racy (π = 0.9) PCOC shows the same performance of OLFU
for R = 100, however it still remains competitive reaching the
convergence even for higher values of R.

PCOC vs. Classic Policies. Figures 6a and 6b show the per-
formance of PCOC against classical online algorithms in cases
where β = 0.9, and β = 1.2, with R = 100 with predicitons
of Type 1 and Type 3. We can notice the benefit of including
predictions in the decision process looking at the lower miss
ratio of PCOC against LFU. PCOC outperforms LFU even for
a noisy factor ξ as large as 0.9 and it is still competitive with
LFU when predictions are randomly scrambled. This confirms
the advantage of the optimistic nature of such algorithms.

Akamai Trace. Figure 7 shows the performance of PCOC
on the Akamai trace for k = 10 with predictions of Type 1. Fig-
ure 7a compares PCOC against OGD, LFU and LRU. The latter
two policies take a decision at each file request, whilst PCOC

and OGD updates the cache every R = 10 requests. Neverthe-
less, PCOC outperforms the classic policies. Furthermore, even
in a non-stationary case, the predictions can help in reducing the
miss ratio. Figure 7b shows the comparison between PCOC and
OLFU for different batch sizes and with predictions of Type 2
with π = 0.3. We can notice how the difference between the
two policies becomes more evident in case of real trace even
for higher batch sizes for PCOC. Finally, in Figure 7c, we com-
pare different versions of PCOC that updates the local cache
every R ∈ {50, 100, 300, 500, 1000} requests. The amortized
cost vanishes as the value of R increases (since the number of
projections performed in the optimization process diminishes)
at the cost of higher miss ratio. However, this confirms the ap-
plicability of such a batched method with less frequent updates
since both the final miss ratio and the time complexity reached
by PCOC with R = 300 and R = 500 are better than the perfor-
mance achieved by the most used policies in practice such as
LFU and LRU.

7. Conclusions

We presented online optimistic caching algorithms that enjoy
sublinear regret in case of batched requests. First we studied
the conditions where PCOC results to have a better regret with
respect to OBC. Secondly, we showed that the per-coordinate
based solution (PCOC) outperforms classic caching policies
and their optimistic versions in different conditions. Finally,
we showed that, over a real trace, a batched approach presents
better performance in terms of final miss ratio and amortized
cost compared to classical caching policies.

References

[1] F. Faticanti, G. Neglia, Optimistic Online Caching for Batched Requests,
in: IEEE ICC, 2023, pp. 1–6.

[2] T.-C. Chiueh, P. Pradhan, Cache memory design for network processors,
in: Proceedings Sixth International Symposium on High-Performance
Computer Architecture. HPCA-6 (Cat. No. PR00550), IEEE, 2000, pp.
409–418.

[3] A. J. Smith, Design of CPU cache memories, Computer Science Division,
University of California, 1987.

[4] D. Carra, G. Neglia, P. Michiardi, Elastic provisioning of cloud caches: A
cost-aware ttl approach, IEEE/ACM Transactions on Networking 28 (3)
(2020) 1283–1296.

[5] N. Carlsson, D. Eager, Worst-case bounds and optimized cache on mth re-
quest cache insertion policies under elastic conditions, Performance Eval-
uation 127 (2018) 70–92.

[6] G. S. Paschos, A. Destounis, L. Vigneri, G. Iosifidis, Learning to cache
with no regrets, in: IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, IEEE, 2019, pp. 235–243.

[7] R. Bhattacharjee, S. Banerjee, A. Sinha, Fundamental limits on the regret
of online network-caching, Proceedings of the ACM on Measurement and
Analysis of Computing Systems 4 (2) (2020) 1–31.

[8] Y. Li, T. Si Salem, G. Neglia, S. Ioannidis, Online caching networks
with adversarial guarantees, Proceedings of the ACM on Measurement
and Analysis of Computing Systems 5 (3) (2021) 1–39.

[9] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, S. Chou-
vardas, Placing dynamic content in caches with small population, in:
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications, IEEE, 2016, pp. 1–9.

[10] S. Shalev-Shwartz, Online learning and online convex optimization,
Foundations and Trends in Machine Learning 4 (2) (2012).

9

(a) π = 0 (b) π = 0.3 (c) π = 0.9

Figure 5: Average Miss Ratio of PCOC vs. OLFU

0 25000 50000 75000 100000
Requests

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

Av
er

ag
e

M
iss

 R
at

io LFU
LRU
OGD
PCOC = 0
PCOC = 0.9
PCOC perm

(a) β = 0.9, k = 50

0 25000 50000 75000 100000
Requests

100

3 × 10 1

4 × 10 1

6 × 10 1

Av
er

ag
e

M
iss

 R
at

io LFU
LRU
OGD
PCOC = 0
PCOC = 0.9
PCOC perm

(b) β = 1.2, k = 50

Figure 6: PCOC vs. Classic Policies

[11] T. S. Salem, G. Neglia, S. Ioannidis, No-regret caching via online mirror
descent, in: IEEE ICC, 2021, pp. 1–6.

[12] C. A. Gomez-Uribe, N. Hunt, The netflix recommender system: Algo-
rithms, business value, and innovation, ACM TMIS (2015).

[13] S. S. Khanal, P. Prasad, A. Alsadoon, A. Maag, A systematic review: ma-
chine learning based recommendation systems for e-learning, Education
and Information Technologies 25 (2020) 2635–2664.

[14] M. Mohri, S. Yang, Accelerating online convex optimization via adaptive
prediction, in: AISTAS, PMLR, 2016, pp. 848–856.

[15] N. Mhaisen, G. Iosifidis, D. Leith, Online caching with optimistic learn-
ing, in: 2022 IFIP Networking, IEEE, 2022, pp. 1–9.

[16] S. Rakhlin, K. Sridharan, Optimization, learning, and games with pre-
dictable sequences, NeurIPS 26 (2013).

[17] G. Paschos, G. Iosifidis, G. Caire, et al., Cache optimization models and
algorithms, Foundations and Trends® in Communications and Informa-
tion Theory 16 (3–4) (2020) 156–345.

[18] S. Borst, V. Gupta, A. Walid, Distributed caching algorithms for con-
tent distribution networks, in: 2010 Proceedings IEEE INFOCOM, IEEE,
2010, pp. 1–9.

[19] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, G. Caire,
Femtocaching: Wireless content delivery through distributed caching
helpers, IEEE Transactions on Information Theory 59 (12) (2013) 8402–
8413.

[20] K. Poularakis, G. Iosifidis, V. Sourlas, L. Tassiulas, Exploiting caching
and multicast for 5g wireless networks, IEEE Transactions on Wireless
Communications 15 (4) (2016) 2995–3007.

[21] S. Ioannidis, L. Massoulie, A. Chaintreau, Distributed caching over het-
erogeneous mobile networks, in: Proceedings of the ACM SIGMETRICS
international conference on Measurement and modeling of computer sys-
tems, 2010, pp. 311–322.

[22] S. Ioannidis, E. Yeh, Adaptive caching networks with optimality guaran-
tees, ACM SIGMETRICS Performance Evaluation Review 44 (1) (2016)
113–124.

[23] D. Paria, A. Sinha, Leadcache: Regret-optimal caching in networks, Ad-

vances in Neural Information Processing Systems 34 (2021) 4435–4447.
[24] G. S. Paschos, A. Destounis, G. Iosifidis, Online convex optimization for

caching networks, IEEE/ACM Transactions on Networking 28 (2) (2020)
625–638.

[25] D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Communications of the ACM 28 (2) (1985) 202–208.

[26] L. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman,
A. Wierman, A tale of two metrics: Simultaneous bounds on competi-
tiveness and regret, in: Conference on Learning Theory, PMLR, 2013,
pp. 741–763.

[27] M. Zinkevich, Online convex programming and generalized infinitesimal
gradient ascent, in: ICML 2003, 2003, pp. 928–936.

[28] N. Mhaisen, A. Sinha, G. Paschos, G. Iosifidis, Optimistic no-regret al-
gorithms for discrete caching, Proceedings of the ACM on Measurement
and Analysis of Computing Systems 6 (3) (2022) 1–28.

[29] K. Chen, L. Huang, Timely-throughput optimal scheduling with predic-
tion, IEEE/ACM Transactions on Networking 26 (6) (2018) 2457–2470.

[30] X. Huang, S. Bian, X. Gao, W. Wu, Z. Shao, Y. Yang, J. C. Lui, On-
line vnf chaining and predictive scheduling: Optimality and trade-offs,
IEEE/ACM Transactions on Networking 29 (4) (2021) 1867–1880.

[31] T. Si Salem, G. Neglia, S. Ioannidis, No-regret caching via online mirror
descent, ACM Transactions on Modeling and Performance Evaluation of
Computing Systems 8 (4) (2023) 1–32.

[32] W. Wang, C. Lu, Projection onto the capped simplex, arXiv preprint
arXiv:1503.01002 (2015).

[33] N. Golrezaei, A. F. Molisch, A. G. Dimakis, G. Caire, Femtocaching and
device-to-device collaboration: A new architecture for wireless video dis-
tribution, IEEE Communications Magazine 51 (4) (2013) 142–149.

[34] V. Fedchenko, G. Neglia, B. Ribeiro, Feedforward neural networks for
caching: N enough or too much?, acm sigmetrics performance evaluation
review 46 (3) (2019) 139–142.

[35] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, P. Ranganathan, Learning memory access patterns, in: In-
ternational Conference on Machine Learning, PMLR, 2018, pp. 1919–

10

0 5000 10000 15000 20000
Requests

100

4 × 10 1

6 × 10 1

Av
er

ag
e

M
iss

 R
at

io LFU
LRU
OGD
PCOC = 0
PCOC = 0.4

(a) R = 10, k = 10

0 5000 10000 15000 20000
Requests

3 × 10 1

4 × 10 1

6 × 10 1

Av
er

ag
e

M
iss

 R
at

io O-LFU R = 100
PCOC R = 100
O-LFU R = 500
PCOC R = 500
O-LFU R = 5000
PCOC R = 5000

(b) k = 10, π = 0.3

0.430 0.435 0.440 0.445 0.450 0.455 0.460
Final Miss Ratio

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Am
or

tiz
ed

 C
os

t (
s)

LFU
LRU

R=50

R=100

R=300 R=500 R=1000

(c) k = 10, ξ = 0.4

Figure 7: Akamai Trace

1928.
[36] P. K. Patra, M. Sahu, S. Mohapatra, R. K. Samantray, File access predic-

tion using neural networks, IEEE transactions on neural networks 21 (6)
(2010) 869–882.

[37] E. Hazan, Introduction to online convex optimization, Foundations and
Trends® in Optimization 2 (3-4) (2016) 157–325.

[38] H. B. McMahan, A survey of algorithms and analysis for adaptive online
learning, The Journal of Machine Learning Research (2017).

[39] N. Littlestone, M. K. Warmuth, The weighted majority algorithm, Infor-
mation and computation 108 (2) (1994) 212–261.

[40] P. Auer, N. Cesa-Bianchi, C. Gentile, Adaptive and self-confident on-line
learning algorithms, Journal of Computer and System Sciences 64 (1)
(2002) 48–75.

[41] R. Fagin, Asymptotic miss ratios over independent references, Journal of
Computer and System Sciences 14 (2) (1977) 222–250.

[42] C. Fricker, P. Robert, J. Roberts, N. Sbihi, Impact of traffic mix on caching
performance in a content-centric network, in: 2012 Proceedings IEEE
INFOCOM Workshops, IEEE, 2012, pp. 310–315.

[43] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, D. Tsigkari,
Access-time-aware cache algorithms, ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS) 2 (4)
(2017) 1–29.

[44] M. Garetto, E. Leonardi, V. Martina, A unified approach to the perfor-
mance analysis of caching systems, ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS) 1 (3) (2016)
1–28.

11

