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Abstract 
We apply data analytics to the publicly available and recently updated Chicago 2007-2024 
Mosquito Database. In this database, 195 traps have been deployed in Chicago, Illinois, USA, 
from 2007 to 2024. Every year, from late May to early October, public health workers in Chicago 
set up mosquito traps scattered across the city. These traps collect mosquitoes, which are then 
partitioned into batches of fifty specimens. Each batch has been assessed using Polymerase 
Chain Reaction (PCR) for the presence of West Nile virus before the end of each week. The 
database records include the number of mosquitoes, the mosquito species, geographical 
information, and whether West Nile virus is present in each cohort. 
In its first part, this work explores the application of mosquito data analytics to the manually 
collected data, focusing on the potential to identify trends, find the outbreaks, and localize 
hotspots to support vector control strategies. In its second part, we investigate at what extent a 
virus-positive batch can be predicted using the rest of the variables recorded in the database, 
showing that an AUC score of approximately 81% can be achieved on a 2-year held out subset 
without including weather data. 
Finally, we discuss our findings in the context of integrating automated insect counting traps (e-
traps) with mosquito data analytics. We argue that optical counters with environmental sensors 
embedded in traps can provide the supplementary information used in the Chicago database to 
predict the probability of an infected cohort without the use of PCR analysis. The probability of 
an infested cohort is less accurate than PCR but comes at no extra cost and is delivered almost 
real-time contributing to public awareness and resource allocation to intervention activities. 

Introduction 
Mosquito-borne diseases continue to pose a significant threat to public health globally, 
with over one million people dying from these diseases each year (World Health 
Organization, 2023) [1]. The ability to effectively monitor and predict the spread of 
mosquito populations is therefore critical in mitigating the risks associated with diseases 
such as West Nile Virus (WNV) [2-4], malaria, Zika and dengue among others [5-7]. This 
has led to the emergence of mosquito monitoring programs as an essential tool in public 
health planning, vector control, and disease prevention efforts [8-15]. 
The application of data analytics to mosquito surveillance data allows for the 
identification of spatial and temporal trends in mosquito activity, providing insights into 
the drivers [8] and dynamics [9] of disease transmission. By integrating data from multiple 
sources, including mosquito traps, weather stations, and population health records, 
predictive models can be developed to estimate disease risk in different areas. For 
instance, predictive modeling has been used successfully in [8] to estimate WNV 
occurrences based on mosquito population data and environmental variables such as 
temperature and precipitation. 



Recent advances in machine learning and spatial analysis have further enhanced the 
capabilities of mosquito data analytics (see [9]-[10] and [11] for statistical challenges). 
Spatial analysis tools such as geographic information systems (GIS) have enabled 
researchers to map high-risk areas and understand how environmental factors contribute 
to mosquito breeding and disease spread [12-13].  
The use of statistics is particularly important to understand mosquito surveillance Data 
in Arizona [14] and elsewhere, where recent studies have utilized detailed mosquito 
trapping and WNV occurrence data to identify outbreaks and guide targeted interventions 
[15]. Data analytics and machine learning has been applied on mosquito-related dataset 
in various contexts [16-19]. Research in [20] models the distribution of invasive mosquito 
species using several machine learning techniques on tabular datasets. In [21], the 
authors use climate data to predict malaria incidence, which is linked to mosquito 
populations. In [22], researchers explore the use of tabular data to forecast mosquito 
vector abundance. In [23], machine learning models are applied to mosquito occurrence 
data, analyzing mosquito habitat based on regional climate data. In [24-25], data mining 
and machine learning techniques are used to understand relationships among vectors, 
hosts, and pathogens. The established procedure for identifying mosquitoes with a virus 
load is to subject them to PCR testing. 
PCR is a molecular biology technique used to detect the presence of specific pathogens 
or viruses in mosquito samples. It works by amplifying small segments of DNA or RNA, 
allowing researchers to identify and confirm the presence of disease-causing agents, 
such as West Nile Virus, Dengue Virus, or Malaria Plasmodium in mosquitoes. While PCR 
is highly effective for detecting pathogens, it has several practical disadvantages: (a) PCR 
requires specialized reagents (such as enzymes, primers, and nucleotides) and 
consumables (e.g., tubes and plates). The cost per test can add up significantly, making 
it expensive for large-scale mosquito surveillance programs. (b) PCR requires skilled 
personnel and sophisticated laboratory equipment, such as thermal cyclers, which are 
costly to purchase and maintain, especially in under-resourced regions. (c) PCR is not a 
real-time monitoring tool; the process involves collection, transportation to a lab, sample 
preparation, and testing, which introduces delays. It may take days or weeks to process 
and analyze samples from the field, leading to a lag between data collection and 
actionable results. Near-infrared (NIR) spectrometry has been suggested as an 
alternative approach for virus detection in mosquitoes. Although it relaxes some of the 
strict requirements of PCR, such as reagent use, it still requires specialized personnel and 
costly equipment [26-30]. NIR spectrometry is faster than PCR but not instantaneous, 
and it requires careful placement of the sensing probe on a mosquito specimen, making 
it unsuitable for automated analysis of large numbers of mosquitoes.  
Although is a strong statement, we argue that traditional mosquito surveillance practices 
are time-consuming, expensive, and lack scalability [31]. In this work, we are mainly 
interested in investigating whether we can predict the probability of an infected WNV 
batch in mosquito traps based on other variables such as the date, location, number of 
batches per trap, and number of mosquitoes per batch given historical data with 
manually verified virus presence. Machine learning models have been employed to 
predict mosquito populations and disease outbreaks with high accuracy, often 
outperforming traditional statistical approaches. This work seeks to explore the growing 
role of mosquito data analytics and machine learning on the publicly available, tabular 
dataset of Chicago Mosquito records (2007-2024) in addressing public health challenges 
posed by mosquito-borne diseases.  
While our findings indicate that the probability attributed to each batch of being infected 
is not as accurate as PCR, it is a cost-effective and instantaneous approach. We then 
discuss the technical challenges that must be overcome so that automated optical 



counters embedded in mosquito traps [32-38], which can extract the variables used in 
this study, could be adapted to report an informed probability of a WNV-positive cohort. 
Additionally, in terms of resource allocation, which is always an issue in practice, we 
suggest that it is more effective to allocate PCR analysis to the cohorts flagged as positive 
by automated traps. 
We open-source the code used to analyze the public data and classify the Chicago 
mosquito (2007-2024) database, making it applicable to any mosquito database with a 
similar structure (see Appendix). 

Materials & Methods 
The Chicago Database (2007-2024) 
The Chicago West Nile Virus (WNV) Mosquito Database last updated October 4, 2024, is 
a publicly available dataset focused on mosquito surveillance in the city of Chicago, 
Illinois, for monitoring the spread of the WNV [39]. The dataset is primarily used by public 
health agencies, researchers, and data scientists to study mosquito population trends, 
virus prevalence, and the effectiveness of vector control strategies. The database reflects 
the city’s mosquito control and disease surveillance efforts. The data is collected weekly 
during mosquito season, typically between late-May to early-October when mosquitoes 
are most active. The mosquitos are grouped in batches of up to fifty specimens and each 
batch is tested for the presence of WNV before the end of the week. The test results 
include the number of mosquitos in the batch, the mosquito’s species, and whether WNV 
is present in the cohort. 

The location of deployed traps 
The database is centered around the Chicago area and includes community areas, trap 
addresses, and environmental factors like latitude and longitude coordinates for the 
mosquito traps. The location of the traps is described by the block number and street 
name.  

The Trap Types 
In mosquito surveillance and control, various types of traps are employed to monitor 
mosquito populations, detect disease presence, and assist in vector management. Each 
trap type targets mosquitoes at different stages or conditions, using specific attractants 
or designs [40]. In the Chicago database, four mosquito trap types are mentioned: 
1. GRAVID Traps: Gravid traps are designed to attract and capture female mosquitoes that 
are ready to lay eggs (gravid mosquitoes). These traps typically use organic matter-infused 
water, mimicking the stagnant water sites where females prefer to lay their eggs. Gravid 
traps are particularly effective for collecting mosquitoes from the Culex genus, known 
vectors of the WNV. By targeting gravid mosquitoes, which have already fed on blood and 
are potentially infectious, these traps are critical for disease surveillance. 
2. CDC Light Traps: The CDC (Centers for Disease Control and Prevention) light traps are 
among the most widely used tools for mosquito surveillance. These traps utilize light as 
an attractant, usually a small incandescent or LED bulb, combined with a fan to capture 
flying mosquitoes. In many cases, CO2 is also used as an additional lure to mimic the 
presence of a warm-blooded host. CDC traps are effective in capturing a wide variety of 
mosquito species, including Anopheles, Aedes, and Culex, making them versatile in 
mosquito population monitoring. 



3. OVI Traps (Oviposition Traps): Oviposition traps, or OVI traps, are designed to attract 
female mosquitoes looking for a site to lay eggs. These traps often consist of dark 
containers filled with water and a rough surface for mosquitoes to deposit their eggs. 
Oviposition traps are useful for detecting mosquito species like Aedes aegypti and Aedes 
albopictus, which are known carriers of diseases such as dengue, Zika, and chikungunya. 
By collecting eggs rather than adults, these traps provide early indications of mosquito 
activity and help in monitoring invasive species. 
4. SENTINEL Traps: Sentinel traps are used primarily for long-term mosquito monitoring 
and disease surveillance. These traps are often baited with animal hosts (e.g., live birds) 
or attractants such as CO2 or pheromones. The primary function of sentinel traps is to 
capture mosquitoes that are actively seeking blood meals. They are instrumental in 
tracking potential disease outbreaks, particularly in areas with a high risk of vector-borne 
diseases. Their design allows for continuous operation, making them valuable in both 
research and public health monitoring programs. 
Each of these traps serves a specific purpose in mosquito surveillance, with different 
characteristics tailored to the behavioral ecology of the target mosquito species. 
These four trap types are mentioned in the Chicago database though OVI is practically not 
employed. Another trap-type called ‘Magnetic’ is mentioned but with no valid 
measurements. 

The database’s fields 
The database is tabular, and it is important to note that each row corresponds to a batch 
of mosquitoes and several rows can belong to the same trap visit as the catches are 
partitioned in groups of fifty specimens. The database is highly unbalanced as less than 
10% of the batches have a WNV positive label. The mosquito occurrences dataset 
contains the following columns: 
SEASON YEAR: The year of data collection. 
WEEK: The week of the year that has been assessed with PCR. 
TEST ID: Unique identifier. 
BLOCK: General location of the mosquito trap. 
TRAP: Trap ID. 
TRAP_TYPE: Type of trap used (GRAVID, CDC, OVI, SENTINEL). 
TEST DATE: Date and time the test was performed. 
NUMBER OF MOSQUITOES: Number of mosquitoes collected. 
RESULT: Outcome of the test (positive or negative for the presence of WNV). A positive 
case means that the batch has been subjected to PCR and has been found positive due 
to an unknown number of infected mosquitoes in the batch. 
SPECIES: Mosquito species found.  
COMMUNITY AREA NUMBER: Number identifying the community area. 
COMMUNITY AREA NAME: Name of the community area. 
LATITUDE: Latitude of the trap location. 
LONGITUDE: Longitude of the trap location. 

Automatic Mosquito counters 
In the Chicago database, specialized personnel maintain and manually annotate (count 
mosquitos, recognize species composition from catch bags and perform data entry). In 
this work we suggest that mosquito monitoring can be automatized to a certain extent. 
The cooperation of data analytics/AI with automated mosquito traps is feasible at the 
server level and commercial automated mosquito traps already produce most of the 
variables in the Chicago database. We show in this work that given historical data; these 
variables can predict if a batch is infected without resorting to PCR. Therefore, we include 



a basic introduction to the principles of this technology to inform the interested reader 
about the potential of this technology and the possibility to predict WNV infection in 
batches without employing PCR. The integration of automatic counters in mosquito traps, 
such as optical sensors and automated imaging systems, offers significant advantages 
for monitoring mosquito populations. The primary benefit is the wireless transmission of 
mosquito catches on daily basis that reduce manpower and budget constraints, allowing 
these systems to be deployed on a large spatial scale. Additionally, automatic counters 
facilitate the delivery of data from remote, hard-to-reach, and often hostile environments 
in near real-time (see [32-38] for such approaches). 
In the Chicago Database, GPS coordinates, timestamps and mosquito counts per 
species are provided manually and historical data of these variables can be used to 
predict the probability of an infected batch. We argue that the same variables can also be 
provided by automated traps, allowing the inference in real-time, but this needs to be 
verified in practice. 

Basic principles 
Optical counters typically use an array of light-emitting diodes (LEDs) as an emitter and 
photodiodes as receivers. The light can be modulated in two ways. In the first approach, 
a thin flow of infrared light is interrupted as a mosquito is drawn in by the trap's fan, 
casting a shadow onto the photodiodes. This shadow results in a voltage fluctuation, and 
the root mean square (RMS) value of light intensity at the receiver is used to generate a 
binary signal indicating the presence or absence of an insect. When the emitter shapes a 
field of view (FOV) with small width, the optoelectronic counter can sense the presence 
of an insect but nothing more as the suction imposes high speed movement and the 
insect has no time to beat its wings inside the FOV. Devices described in [36] are of this 
type and return a binary value (presence versus absence). In an enhanced setup, the 
emitter-receiver pair can be arranged in a 2D array to expand the (FOV), so that the 
incoming insect can have the time to complete some full wingbeat cycles thus enabling 
the registration of short recordings of wingbeat, as demonstrated in [33-36]. 
The second approach involves placing both the emitter and receiver on the same side to 
record the backscattered light from the mosquito's main body and wingbeat as it enters 
the trap (see [41-43] for a related technology applied in a different context). The 
backscattered-light setup captures more detailed information by allowing for the 
detection of additional wingbeat harmonics. The apparatus described in [34-35] and [36] 
exemplifies this type of device. Overall, capturing wingbeat frequencies from a 
sufficiently large FOV enables the analysis of species, sex, or genus of mosquitoes by 
comparing the incoming signal to pre-existing wingbeat prototypes. These prototypes are 
derived in laboratory settings using mosquito colonies contained in net cages with 
enclosed e-traps. Although there are thousands of mosquito species globally, only a 
limited number coexist in designated locations. For example, in the Chicago dataset, 
three species are mainly responsible for nearly all WNV positive cases. Automatic 
counters provide an efficient method for identifying these key species, contributing to 
more effective surveillance and targeted vector control strategies. 

Technical challenges 
Automatic mosquito traps are not currently without limitations and in an automated 
monitoring setting connected to data analytics modules their errors will affect the quality 
of predictions. There are several technical challenges that must be addressed to ensure 
the effective operation of these systems. 
One major issue is that automatic counters often struggle to accurately differentiate 
between mosquito species and other non-targeted species. The ability to discern insect 
size from the shadow or backscattered signal is inherently limited due to variability in 



insect orientation and flight patterns as they pass through the detection area. 
Consequently, size-based differentiation has significant constraints, and only broad 
classifications can be made. This leads to non-target insects being erroneously counted, 
especially in environments where mosquito traps are exposed to high populations of 
other insects. In an evaluation of this technology in [37] it has been reported that in areas 
where the relative mosquito abundance is especially low, the optical counter has been 
ineffective and unable to provide data that are reflective of the actual number of 
mosquitoes suffering many false alarms. 
In another independent, field-evaluation [38], automatic counters have been evaluated, 
yielding mixed accuracy levels that can be very low in some settings and highlighting 
certain technical challenges. If the technical obstacles identified in [38], are valid, then 
they can be addressed using the current maturity status in technology. For example, in 
[38] is stated that 15% of deployed devices did not connect and failed to deliver data. If a 
device cannot connect to the mobile network, then it does not get a success confirmation 
from the server and can proceed into storing that data internally until the next successful 
programmed connection and therefore, loss of data is not inevitable. Moreover, in a quite 
recent advancement, new affordable communication modems and global SIM cards now 
support satellite communications, and the modem can switch to this option when 
terrestrial communications fail. In the same evaluation it is also reported that the 
counters can transmit all data to an online server every 15 min, probably because they 
need to extract activity pattern of mosquitoes. However, frequent transmissions must be 
avoided if they are not of absolute necessity because during transmission the optical 
counter is deactivated to avoid the effects of electromagnetic interference from the 
emitting antenna. Additionally, GPS communication must be set once during installation 
and not in every transmission as traps are not moving platforms and GPS communication 
affects a delay and increased power consumption. Therefore, during transmission of data 
any mosquitoes sucked-in are not counted by the e-trap. Finally, commercial mosquito 
traps use a suction to trap and retain mosquitoes in an embedded net/bucket. In long 
deployments the number of mosquitoes can be so large that it affects air circulation 
which, in turn, affects the imposed pressure from the suction fan that is reduced and may 
lead to escaping mosquitoes as there is not enough pressure to contain them in the catch 
net. These failures will end up to false alarms in the counting process and lead to errors 
that day by day pile up. 
Finally, if the sex, species and genus is to be discerned then temperature dependent 
corrections/normalizations need to apply as temperature variations affect the wingbeat 
of insects and its attribution to species classes [44].  
Current optoelectronic counters in mosquito traps can wirelessly transmit environmental 
variables (typically temperature, humidity and ambient light intensity), GPS coordinates, 
mosquito counts, timestamps of captures and battery status as main variables. 
Experimental approaches can also provide sex, genus, species categorization based on 
its wingbeat at various accuracies, after being adapted to the species composition of the 
operating location [34-36]. We suggest that there is a need for another round of technical 
improvements in optical counters embedded in mosquito traps and then they need to be 
assessed in the field by independent organizations/institutes at medium to large scale 
deployment. This is imperative for advanced devices that beyond counts they report sex, 
genus and species composition of their mosquito catches. 

Evaluation using ROC curve and AUC 
In the Results section we evaluate classification results using the Receiver Operating 
Characteristic (ROC) metric and the area under this curve (AUC). ROC curves are widely 
used in classification problems to evaluate the performance of a binary classifier. ROC 
curves plot the True Positive Rate (TPR) (sensitivity) against the False Positive Rate (FPR) 



at various classification thresholds, providing a comprehensive view of how a model's 
performance changes across different thresholds. Unlike metrics like accuracy, 
precision, or recall, which depend on a specific threshold, the ROC curve provides an 
aggregate measure of performance across all possible thresholds. This is particularly 
important in applications where there is no natural or predefined threshold. ROC curves 
are less affected by class imbalance compared to metrics like accuracy. In a highly 
imbalanced dataset, accuracy can be misleading, as the classifier might simply predict 
the majority class. The Chicago database is imbalanced because the WNV-positive cases 
are rare compared to the negative cases (<10% of the batches). ROC curves provide a way 
to visualize the trade-off between correctly identifying positives and mistakenly 
classifying negatives as positives. The Area Under the ROC Curve (AUC) is often used as 
a summary statistic for model performance. A perfect classifier has an AUC of 1.0, while 
a random classifier has an AUC of 0.5. Higher AUC values indicate better performance, 
capturing how well the model discriminates between positive and negative classes over 
all thresholds. In practical applications, choosing an appropriate threshold—also called 
an operational point—depends on the specific requirements of the use case and the cost 
of erroneous decisions. A ROC curve figure helps to select the best operational point by 
visualizing the trade-off between True Positive Rate and False Positive Rate. 

Results 
Data Preprocessing 
Traps and trap-types 
Traps in the Trap column of the database named T240, T240B, T143 have missing data. 
For T240, T240B we have tracked the address: 24 Lincoln Park with Latitude: 41.9187, 
Longitude: -87.6715. The T143 address is Norwood Park. The approximate GPS 
coordinates for this area are 41.995 latitude and -87.799 longitude.  
Some traps in the Chicago database are "satellite traps". These are traps that are set up 
near (usually within 6 blocks) an established trap to enhance surveillance efforts. 
Satellite traps are postfixed with letters. For example, T220A is a satellite trap to T220 [46]. 
This dataset is organized in such a way that when the number of mosquitos found in the 
catch bug/backet exceed fifty, they are split into another record (another row in the 
dataset), such that the number of mosquitos is capped at fifty. Therefore, the maximum 
number of mosquitoes per batch is fifty with only 2 exceptions in the records in 2014 and 
2022 with 77 and 61 mosquitoes respectively (probably outliers).  
Regarding trap types, in this dataset the OVI trap exists only in a single valid record in 2007 
and, therefore, has no influence on the statistics. There are other entries as well, but the 
crucial parameter of the infection status is missing and for that reason these records are 
dropped. 
There are 195 unique traps but the traps in Table 1 add up to 210. The discrepancy arises 
because some traps appear under multiple TRAP_TYPE categories (e.g. Trap 009). When 
one sums these counts, it treats each instance of a trap across different TRAP_TYPE 
categories as unique, leading to an inflated total. This is either a data entry mistake or 
TRAP ids are reserved for a location, but the type of trap can change during the monitoring 
period. 
 
 
 
 
 



Table 1. There are 195 trap ids in the dataset. 169 are GRAVID traps, 28 CDC, 12 SENTINEL 
and 1 OVI. These numbers add up to 210 because some IDs appear with two different trap 
types. 
 

TRAP TYPE Multirow counts Traps 
GRAVID 34573 169 
CDC 1256 28 
SENTINEL 319 12 
OVI 1 1 

 

Missing values 
After we impute traps: T240, T240B, T143, we drop all records that do not have data entry 
(NaN value) in the column of RESULTS (infection status) as this is the most crucial 
variable, it is rare, and we refrain from imputing it. We end up with a database of 36233 
rows and we keep 14 relevant columns (variables): 'SEASON YEAR', 'WEEK', 'TEST ID', 
'BLOCK', 'TRAP', 'TRAP_TYPE', 'TEST DATE', 'NUMBER OF MOSQUITOES', 'RESULT', 
'SPECIES', 'COMMUNITY AREA NUMBER', 'COMMUNITY AREA NAME', 'LATITUDE', 
'LONGITUDE'. 

Data Analytics 
In this section we proceed to pose useful questions of practical value. These are the 
questions that would affect policy decisions, would be used to improve public awareness 
and to evaluate intervention strategies. The code is provided in the appendix and would 
be applicable to any other infection and mosquito database with corresponding 
structure. 

What is the distribution of WNV positive cases by year?  
In Figure 1 we meant to visualize the distribution of the West Nile Virus presence by year 
to see if there is a potential trend in this pattern. Each bar represents the number of 
occurrences where the virus was detected in that specific year. By doing so, the histogram 
helps to identify which years had a higher or lower incidence of West Nile Virus presence 
and the trend. We see that the number of incidents in Chicago, based on this particular 
database, has been relatively stable over the years. This picture can be used to assess the 
impact of an intervention policy. We are not aware of the intervention policies currently 
applied but there is no steady decline of the phenomenon in Figure 1. 

The mosquito species distribution of the whole database is gathered in Table 2. This Table 
shows all the species that are included in the database. The Culex pipiens/restuans 
categorization is the most prevalent, followed by Culex restuans and Culex pipiens. The 
term Culex pipiens/restuans is sometimes used when the differentiation between the two 
species is not clear, especially in mixed pools of collected mosquitoes. Because of their 
similarities in appearance and overlapping habitats, many mosquito surveillance 
programs use the combined term Culex pipiens/restuans when distinguishing between 
the two is difficult, especially without genetic testing. Therefore, Culex pipiens and Culex 
restuans are distinct species but are often grouped together due to their similarity. This 
vagueness in class attribution imposes an additional difficulty in the classification 
experiments. What this data definitely suggests is that the majority of the captured 
mosquitoes belong to the Culex genus, known for their role in transmitting diseases like 
West Nile Virus. 
 



 

Figure 1. WNV positive cases out of all traps with respect to the year. The y-axis holds the 
number of batches that have been found positive for WNV. 
 
Table 2. The Table holds the Species composition, the total # of mosquitoes and the 
positive batches that correspond to them. Culex pipiens and Culex restuans have been 
the main carriers of WNV virus in the Chicago database. 
 

Species # of mosquitoes # batches with WNV present 
CULEX PIPIENS/RESTUANS 280858 2038 
CULEX RESTUANS 115613 780 
CULEX PIPIENS 68122 489 
CULEX TERRITANS 1967 4 
CULEX SALINARIUS 492 3 
CULEX TARSALIS 97 0 
UNSPECIFIED CULEX 52 0 
CULEX ERRATICUS 46 0 

 

How does the species composition in catches of mosquito traps evolve over 
time?  
Figure 2 provides an overview of mosquito trends in Chicago, focusing on variations in 
mosquito species and the prevalence of WNV over time. The analysis reveals the evolving 
population of different species, which may indicate changes in environmental factors, 
mosquito control measures, or virus prevalence. 
The Culex pipiens (orange line in Figure 2) shows an initial peak in 2007, reaching the 
highest count among all species at that time. After 2007, the population rapidly declines 
in 2008, and stays consistently low from 2009 onwards, with only minor fluctuations in 
2013 and 2014. The Culex pipiens/restuans (green line in Figure 2) is the dominant case 
throughout most of the time period (mind though that this is not a species but a collective 
characterization). Peaks can be observed in 2007, 2012, 2015, 2021, and 2023. The 



population shows a cyclical pattern, with significant rises and falls. Notably, there is a 
sharp decline in 2024 for the attribution to the mixed class Culex pipiens/restuans 
indicating either potential classification errors or some advancement in discerning these 
species. 

 
Figure 2. Mosquito species composition trend over the years in the Chicago WNV 
database. The y-axis holds the counted number of mosquitoes in trap catches. 
 
The Culex restuans (red line) initially has a low population but begins a steady increase 
from around 2013 to 2015. There are some year-to-year fluctuations but generally stay 
moderate from 2015 onwards. Notable peaks occur in 2015 and 2023, with a general 
trend of maintaining a steady presence. 
Culex erraticus (blue line) demonstrates very low numbers throughout the entire period. 
This species shows no significant spikes, suggesting either low prevalence or limited 
environmental suitability in the study area. 
Culex salinarius, Culex tarsalis, Culex territans, Unspecified Culex (purple, yellow, grey 
lines) consistently have nearly zero to low populations throughout the time period. 
This suggests that these species are either not as prevalent in the area or may be more 
challenging to trap using the specific trap types. 
 

When is it most probable to detect WNV infection in batches of traps’ catches?  
Figure 3 is, in our view, the most significant figure in this work as it highlights the peak and 
distribution of WNV occurrences over time, providing insight into the seasonal pattern of 
outbreaks. It illustrates WNV-positive batches in relation to the weeks and months in 
which the virus was detected, across all years and species. This visualization is especially 
valuable for identifying potential seasonal trends, such as spikes in virus presence during 
specific months. It allows us to pinpoint periods of heightened activity, which can inform 
vector control strategies and public health responses. Notably, peak activity is observed 
between the last week of August and the first week of September. 



 
Figure 3. WNV positive batches (y-axis) with respect to the week and month they have 
been identified. The main x-axis shows the week numbers (from 1 to 52), while a 
secondary x-axis on-top displays the months. Between the last week of August and the 
first week of September we have peak activity from data pooled from 2007 to 2024. 

 

Which trap types are most effective in catching most mosquitos and have the 
most WNV-infected batches? What about species composition? 
To compare the effectiveness of each trap type fairly, we need to account for the unequal 
distribution of traps among trap types (see again Table 1). Since each TRAP_TYPE has a 
different number of traps, directly comparing the total mosquito counts would be biased. 
Normalizing by the number of traps within each TRAP_TYPE allows us to account for this 
imbalance, providing a fairer comparison of each trap type’s effectiveness. Figure 4 
visualizes the effectiveness of different trap types in catching mosquitoes, broken down 
by species. The data is grouped by the TRAP_TYPE and SPECIES variables of the database, 
aggregating the normalized number of mosquitoes caught (variable NUMBER OF 
MOSQUITOES) for each species by each trap type. Since each bar in the bar-plot of Fig. 4 
represents a specific trap type and species combination, we can see which traps are 
more successful at capturing certain species. This insight can guide the deployment of 
different trap types to target specific mosquito populations more effectively, focusing on 
species that are major vectors of diseases like WNV. It is also helpful in optimizing 
trapping strategies by selecting the most effective trap types based on the target species 
in an area. The outcome of this analysis is that the GRAVID trap type is found to be the 
most effective trap in Culex catches followed by CDC. Note the difference in species 
caught by each trap type. The SENTINEL trap does not perform very well with Culex. 
 



 
Figure 4. The visualization shows how effective different trap types are in catching various 
mosquito species. Y-axis is normalized. It answers the question: Which trap types are 
best suited for capturing high numbers of mosquitoes overall. 
 
Figure 5 is related to Figure 4, but the y-axis now holds the WNV positive cases normalized 
by the number of traps in each trap type. Therefore, it depicts the correlation between the 
trap type, the species and only the WVN positive batches. Gravid traps are the trap-types 
found with most cases of WNV-positive mosquito batches, particularly Culex 
pipiens/restuans and Culex restuans. Note again that there are two species Culex pipiens 
and Culex restuans and the combined class is introduced when distinguishing between 
them is not possible, often due to mixed mosquito collections or limitations in 
identification methods. 
Other traps like CDC and sentinel have limited success, highlighting the need for a 
strategic approach in mosquito surveillance, focusing on trap types that maximize the 
likelihood of capturing disease-carrying species. Again, the GRAVID type is associated 
with the larger number of catches (normalized) followed by the SENTINEL trap type this 
time followed by CDC. 
 

 
Figure 5. Visualizes which trap type have been found with the most WNV positive cases 
normalized by the number of traps in each trap type. Gravid type trap again has most of 
the captures for the cases of Culex pipiens, and Culex restuans. 



Which trap IDs were responsible for more mosquito catches and WNV infected 
batches with respect to species? Where are the corresponding addresses? 
There are 195 unique mosquito Trap Numbers that the public health workers in Chicago 
set up and scattered across the city. In Figure 6, we identify the top-performing mosquito 
traps based on two key metrics: West Nile Virus presence (variable RESULT in the left y-
axis) and the total number of mosquitoes caught (in the right y-axis). If a trap has high 
mosquito counts but low WNV detections, it may indicate that the mosquitoes caught are 
not the primary carriers of the virus, suggesting a lower risk. Conversely, a high number of 
WNV detections, even with a moderate number of mosquitoes, points to a high 
concentration of infected mosquitoes, indicating that the location has a heightened risk 
of virus transmission. 
 

 
Figure 6. The top 10 traps ranked based on WNV-positive batches and the number of 
mosquitoes per batch. 
 
Once we have the best performing trap names, we proceed into composing a table of their 
Address in Table 3. 
 
Table 3. Addresses and Trap type of the best performing trap IDs. Note that many traps 
with different trap-types can be installed in the same location. 
 

Trap ID Location Trap type 
T913 100XX W OHARE AIRPORT GRAVID 
T008 70XX N MOSELLE AVE GRAVID 
T002 41XX N OAK PARK AVE GRAVID 
T916 100XX W OHARE AIRPORT GRAVID 
T912 100XX W OHARE AIRPORT GRAVID 
T151 70XX W ARMITAGE AVE GRAVID 
T009 91XX W HIGGINS RD CDC 
T009 91XX W HIGGINS RD GRAVID 
T028 58XX N WESTERN AVE GRAVID 
T011 36XX N PITTSBURGH AVE GRAVID 



Trap T009 is located at 91XX W HIGGINS RD and appears with two different trap types—
CDC and GRAVID. This is either a data entry mistake or they have the same physical trap 
location reused over time, but the trap type is changed during different trapping periods. 
 

Which locations in the city constitute a hotspot for WNV batches? 
We proceed to identify the geographic location of hotspots. The first approach is to find 
the community areas (variable COMMUNITY AREA NAME) associated with virus-positive 
cases and sort them by value. Then we derive heatmaps of the trap locations with the 
highest numbers of WNV-positive cases. The histogram in Fig. 7 visualizes the distribution 
of WNV detections across different areas of the town. Fig 7 helps in identifying high-risk 
locations, to guide public health efforts for targeted vector control and preventing the 
spread of WNV. This information can help in prioritizing vector control efforts, such as 
targeting these high-risk areas for increased spraying, public awareness campaigns, or 
other preventive measures. Understanding which traps consistently detect the virus can 
help in allocating resources efficiently. Health authorities can use this information to 
optimize monitoring locations, ensuring that the most significant risk areas are 
continuously observed to prevent outbreaks. This allows you to see which geographic 
blocks have higher instances of WNV presence, indicating potential hotspot areas like 
O’Hare airport. 
Figure 8a and 8b depict two types of geospatial visualizations that can be used to analyze 
the spatial distribution of WNV presence in the region covered by the dataset. The 
heatmap displays the intensity of WNV occurrences geographically. Each point on the 
map represents a location with the attributes of latitude and longitude, with the color 
intensity indicating the presence of the virus. Note that the points contribute to traps’ 
locations and not the actual distribution of WNV in the field over the area. 
The heatmap helps in identifying hotspot regions where the density of infected 
mosquitoes is highest. Areas with darker colors indicate higher virus activity, suggesting 
areas of greater risk. Health officials can use this information to focus vector control 
efforts like pesticide spraying or mosquito breeding habitat elimination in the most 
affected regions. 
The convex hull can be used to define the boundary of the region that needs to be 
monitored or controlled for WNV. It gives an idea of the geographical limits of areas where 
traps have detected the virus. By looking at how the traps are distributed within the convex 
hull, authorities can assess the spatial spread and identify areas where traps may be 
missing (i.e. identifying gaps in monitoring). Regions within the hull but with fewer traps 
could need additional monitoring. 
Both figures are useful for effective resource allocation, monitoring coverage, public 
health interventions, and communicating risk to stakeholders and the public. They can 
be used in public health campaigns to inform communities of areas with a high risk of 
WNV transmission and encourage protective behaviors, such as avoiding outdoor 
activities at peak mosquito times or using insect repellent. 
 
 



 
Figure 7. We mark the Addresss where most incidents of WNV positive occurred. The 
address that stands out corresponds to the station at the Community area Name O’ Hare 
International Airport. 
 

  
Figure 8. a) Heatmap of WNV positive traps in Chicago b) The convex hull is a 
mathematical boundary that encapsulates all the points representing trap locations (i.e., 
latitude and longitude of each trap). Larger size of spots for WNV, default size otherwise. 

Identify outbreaks 
To identify outbreaks of West Nile Virus (WNV), we can look for clusters of positive cases 
within a certain time period and/or geographic area. Outbreaks can be defined by: A high 
number of positive cases in a short time frame (e.g., several days to weeks). Geographic 
clustering in the context of mosquito outbreaks refers to multiple WNV-positive traps 
located close to each other. Identifying outbreaks of WNV over the years has practical 
value for public health planning, resource allocation, and risk mitigation. By identifying 
periods of outbreaks, public health authorities can plan and execute targeted 
interventions such as mosquito control, spraying campaigns, and public awareness 



initiatives. Knowing the precise periods when outbreaks tend to occur helps in taking 
proactive measures rather than reactive responses, thereby reducing the spread of WNV. 
By analyzing the timing of outbreaks over multiple years, authorities can understand 
whether they follow a predictable seasonal pattern or are influenced by certain 
environmental or climatic conditions. This information can be used to forecast future 
outbreaks, thereby allowing for preparedness and mitigation planning can evaluate the 
effectiveness of previous public health interventions and mosquito control efforts. If the 
frequency or intensity of outbreaks decreases over time, it may indicate that current 
strategies are effective. 
 
Figure 9 identifies and plots WNV outbreaks, defined as periods with at least 3 
consecutive weeks of WNV-positive cases (i.e. identifying the temporal pattern). 
Outbreaks are highlighted in red on the weekly WNV occurrence plot.  
 

 
Figure 9. Identifying West Nile Virus Outbreaks Over Time: Highlighted periods indicate 
consecutive weeks of heightened WNV activity. We consider an outbreak as a period with 
3 or more consecutive weeks of number of WNV incidences in any trap >= 1 
 

What is the distribution of WNV positive cases over batch size?  
In the Chicago database, 9.15% of the mosquito batches are classified as infected with 
WNV, meaning some mosquitoes in those batches tested positive for the virus. In Figure 
10, we examine the batch sizes when they were found to be WNV-positive. The histogram 
displays the distribution of the number of mosquitoes in each batch where the virus was 
detected. This visualization helps reveal the relationship between batch size and WNV 
presence, offering insights into the data distribution. As expected, larger batches of fifty 
mosquitoes were more likely to test positive, but positive cases were also observed in 
smaller batches. 



 
Figure 10. WNV positive cases with respect to the size of the batch in mosquito captures 
(1-50 specimens).  

PRREDICTION 
A prediction model in the context of this work would provide a forecast of mosquito 
catches, but most importantly, infer which batches are going to be found infested based 
on the rest of the variables. Note that such an approach relies on reliable, historical data. 
This information can guide public health officials on when to implement interventions 
such as pesticide spraying, public awareness campaigns including alerting, and vector 
control measures. By understanding the probability of WNV occurrence over a time span, 
resources can be optimized, instead of evenly distributing resources in time and 
locations. This helps in efficient allocation of resources—for example, more frequent 
mosquito trapping and testing during peak times, reducing resource use during periods 
with low risk. For instance, if the peak occurrence falls around mid-August, health 
authorities can plan proactive measures just before this peak, focusing and geographic 
locations (hotspots) to minimize mosquito populations and, consequently, the 
transmission of WNV. 
In this work we are interested only in the accuracy of a single model implementing a core 
idea, and we do not examine approaches like stacking or voting of a group of classifiers. 
We also focus only on the data of the Chicago database, and we do not integrate 
environmental factors such as spraying records, temperature, precipitation, and 
humidity, which are not part of this database, but it is known to greatly affect mosquito 
activity each year. 

The Kaggle Competition 
A portion of this dataset, spanning from 2007 to 2014, was used in a Kaggle competition 
where participants were tasked with predicting which mosquito batches were infected 
with WNV in the years (2008, 2010, 2012, 2014) given the data in years (2007, 2009, 2011, 
2013) [46]. In the Kaggle competition, submissions were evaluated using a hidden portion 
of the dataset, with performance scores displayed publicly on a leaderboard. The final 



ranking was based on a separate hidden portion of the data, which was evaluated after 
the competition deadline (the private part of the dataset). 
In that competition, winning participants often used the publicly available leaderboard 
results to fine-tune their algorithms. If the data distribution of the private portion closely 
matches that of the public portion, this fine-tuning can be beneficial; otherwise, it may 
have a detrimental effect on the accuracy of the predictor. In this particular competition, 
fine-tuning on the public subset proved advantageous and many competing teams used 
it. However, this approach represents a form of data leakage, where information from the 
test set influences the shaping of the predictor —a scenario that is unrealistic in real 
operational settings. 
Kaggle competitions are valuable sources of knowledge but several competing practices 
such as averaging of many models (stacking) and test-set leakage through fitting the 
leaderboard are not met in real situations. In this work we use the last two years as a test 
set, and this is a tougher prediction task as the training-test set is not partitioned into 
adjacent years. Our contributions are the following: a) We examine several ideas 
presented in the Kaggle winning solution which was sophisticated in view of becoming 
‘features’ in different modeling approaches. In the 2023-2024 test-set they are not that 
helpful, but we explain the statistics behind the coding as they are complex and not 
commented on in the literature. b) We introduce a new approach based on a bivariate 
Normal fitting with trap significance assessment (see Appendix for code and 
mathematical derivation). c) We refactor the Kaggle approach that now executes at 10% 
of the original time and is suitable for large databases, and its application to the 2023-
2024 test-set after removing the data leakage practices. d) We upload the dataset and the 
associated code so that different approaches can be tested for different splits of training 
and testing years of the Chicago database.  

The Gaussian as a basic predictor 
The Gaussian distribution (or normal distribution) is a common statistical tool used to 
model natural phenomena. The approach in [46] starts with fitting a Gaussian distribution 
on the histogram of WNV occurrences to a time span centered around August 1 (see Fig. 
11). The 1st of August was selected because it is in the middle of the monitoring period 
and close to the peak. The value of such a figure lies in its ability to model and estimate 
the probability of WNV occurrences simply based on time. This base estimator is further 
refined significantly with subsequent steps that give detail to the Gaussian fit. As an 
example, the probability of a specific batch (a row in the Chicago database) being infected 
must be updated on the fact that this batch may be in the middle of an outbreak or near a 
hotspot or this specific trap is less/more reliable in shaping a probability. That is, the 
probability of a specific row is affected by the information in other rows. This is analyzed 
in the Multirow and TrapBias section. 
The monitoring period extends from late May to the first week of October. By fitting a 
Gaussian distribution to data pooled across all years with respect to each day in the 
monitoring period, one creates a baseline probabilistic model that estimates the 
likelihood of observing WNV on specific dates, relying solely on the date. This approach 
has the advantage of simplicity, requiring only two parameters: the mean and standard 
deviation, which makes it less susceptible to overfitting compared to other classification 
methods with numerous parameters. 
In essence, this model suggests that when a dataset adheres to a straightforward 
probabilistic structure, using a maximum likelihood approach with a Gaussian model can 
be more effective. This framework is preferable to complex models, which may easily 
overfit, especially when dealing with limited data. 
 
 



 
Figure 11. The histogram of the positive West Nile Virus has been re-indexed with respect 
to 1st of August (day 0) which is approximately in the middle of the monitoring period. A 
Gaussian is fitted on the positive WNV cases with maximum likelihood approximation of 
the mean and standard deviation. 
 
We have evolved the base predictor by fitting a bivariate Normal jointly on the variables of 
the train dataset: ‘Dates’ re-indexed from 1st of August and ‘Number of mosquitoes’ (the 
log of it) for the WNV positive class and WNV negative class. This can be seen in Fig. 12 
and Fig. 13 (see also Appendix for code and mathematical derivation).  
Using basic Bayesian statistics, we can derive the probability of an infested batch given 
the test date and test 'NumMosquitos' variable that we have access to assuming that the 
same bivariate fit holds for the test set. The 'NumMosquitos' variable was not available at 
the Kaggle’s competition test-set, but our view is towards connecting data analytics with 
automated mosquito traps that report this variable. The suggested approach alone will 
give an AUC of almost 80% without using any other variable or processing on the database 
(vs 78.38% for the approach in Fig 11).  
This is a result of interest to our point of view as it returns an accuracy very close to more 
complex classification methods but still is embeddable in microprocessors with few lines 
of code (see Appendix). 
In Fig. 12 we see that the bivariate Gaussian fits on Days and log(Number of Mosquitoes) 
for WNV positive and negative classes of the train set are partly disjoint. This will allow to 
extract some information on the probability of a batch being infected and this probability 
can only be better than the approach in the winning solution (see Fig. 11) as the extra 
dimension allows the histograms of virus-negative mosquito catches and positive cases 
to be better separated. Note also in Figs 12 that the peak of WNV positive cases comes a 
bit after the peak in mosquito catches and is more concentrated in this 2-D feature space. 
In Fig. 13 we can easier see gross decision boundaries: a) before August, it is unlikely to 
have WNV positive batches especially in batches with small number of catches, b) 
between the last week of August and the first week of September, in batches with high 
number of mosquitoes, the probability of an infested batch is in its peak.  
 



 
Figure 12. A bivariate Gaussian fits on Days and log(Number of Mosquitoes) for WNV 
positive and negative classes of the train set. The pdfs are partly disjoint. The bivariate fit 
is applied on the training set, and it is assumed to characterize also the test. Using the 
dates and the corresponding number of mosquitoes of the test set we can predict the 
probability of the infested batches of the test set. Note also that the peak of positive cases 
comes after about two weeks after the peak in mosquito catches. 

 
Figure 13. A maximum likelihood plot of the difference between the pdf of WNV positive 
and the pdf of negative classes. We can identify regions where one decision is more likely 
than the other (i.e. identify "decision boundaries," which help distinguish between two 
classes). 



The multirow counts 
In the Chicago Database, each week the mosquito catches of the traps are grouped in 
batches of fifty specimens and are subsequently processed manually to identify species 
and WNV infection status through PCR. Therefore, although we have a single event (i.e. 
the opening of the catch bug at a specific date and trap), if the number of mosquitoes 
traps is large, this is catalogued in the database as many rows having the same Species, 
Trap number, Address, and Date but different numbers of mosquitoes and WnvPresence 
for each batch. This grouping constitutes a multirow record. 
The data is grouped (i.e. a multi-index is created) using columns (Species, Trap, Address, 
Date). This uniquely identifies different multirows in the dataset. Then, the number of 
occurrences of each unique multirow in the dataset is computed. This essentially tells us 
how many records we have for each unique combination of (Species, Trap, Address, 
Date). In the Kaggle competition, multirow counts have been used as proxy for the total 
number of mosquitoes as this variable was removed from the test set. However, our work 
moves towards the direction of connecting data analytics with automated traps and 
automated traps do transmit the number of captured mosquitoes. Nevertheless, 
multirow counts constitute a feature of interest and we present it, as it is not encountered 
in literature. In Table 4 we show the distribution of multirows in the whole database (i.e. 
grouping together ‘Species’, ‘Trap number’, ‘Address’, and ‘Date’).  
 
Table 4. Multirow counts in the Chicago 2007-2024 Mosquito Database. These are rows 
with the same Species, Trap, Address and Date. We show only cases up to 13 rows. Most 
cases are single entry, but a notable percentage is multirow (i.e. the mosquito bag in a 
single visit of a specific trap is partitioned in many 50-specimen batches due to its large 
size). 
 

Multirow Count   # Mosquitos   # Mean cases 
1 30614 8.4 
2 2596 30.6 
3 1026 36.8 
4 464 43.2 
5 255 44.1 
6 234 45.6 
7 168 46.0 
8 104 46.7 
9 108 46.1 
10 80 47.8 
11 22 48.1 
12 48 48.0 
13 39 48.1 

 

The trap biases 
Another interesting idea in [46] is to calculate Trap-biases. One first calculates the 
observed WNV incidence rate for each trap relative to the overall incidence rate. Then one 
computes a p-value using the hypergeometric distribution to assess the statistical 
significance of the observed WNV cases in each trap. Then adjusts the trap bias by 
considering both the incidence rate ratio and the p-value, to account for traps with few 
observations. In the hold out test-set based on the years 2023-2024 they do not help 
much but again we decide to present them as an interesting feature. 



We define in (1) the global ratio of WNV (ratio_WNV_global) that is calculated from the 
training data and represents the baseline occurrence of WNV across all traps:  
 

𝑟𝑎𝑡𝑖𝑜_𝑊𝑁𝑉_𝑔𝑙𝑜𝑏𝑎𝑙 =
𝑛𝑢𝑚_𝑊𝑁𝑉

𝑛𝑢𝑚_𝑇𝑜𝑡𝑎𝑙
    (1) 

 
And the ratio per trap (ratio_WNV_trap): 
 

𝑟𝑎𝑡𝑖𝑜_𝑊𝑁𝑉_𝑡𝑟𝑎𝑝 =
𝑛𝑢𝑚_𝑊𝑉𝑁_𝑡𝑟𝑎𝑝

𝑛𝑢𝑚_𝑇𝑜𝑡𝑎𝑙_𝑔𝑙𝑜𝑏𝑎𝑙
    (2) 

 
We then define the ratio of (1) and (2), weighted with a factor α. This is described in (3) 
 

𝑏𝑖𝑎𝑠 = (
𝑟𝑎𝑡𝑖𝑜_𝑊𝑁𝑉_𝑡𝑟𝑎𝑝

𝑟𝑎𝑡𝑖𝑜_𝑊𝑁𝑉_𝑔𝑙𝑜𝑏𝑎𝑙
)

𝑎

     (3) 

 
This ratio indicates whether a trap has a higher or lower mean incidence of WNV 
compared to the overall mean. If a trap has very few observations, a high or low incidence 
rate might not be statistically significant. A hypergeometric statistical test assessed the 
significance of each trap’s performance in comparison to the overall data, which adjusts 
the calculated ratio to avoid overfitting or bias due to small sample sizes. By incorporating 
statistical significance, this feature aims to provide a reliable and interpretable measure 
of each trap's effectiveness while mitigating the risk of overfitting to small number of 
mosquito catches. 
The p-value assesses the probability of observing k or more (or k or fewer) WNV cases in 
the trap under the null hypothesis that WNV cases are randomly distributed among traps. 
This bias is adjusted through ‘α ’by statistical significance. 
 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log
𝑝

1 − 𝑝
 

α = logit(1-prob)/bias_factor. The bias_factor is set to 45. The prob is calculated using the 
hypergeometric distribution forming essentially a two-tail test (see code in Appendix). In 
Figure 14, the trap bias of all traps is sorted by value. In the probability estimation task, 
the Trap Bias of each trap is calculated only for the training set and is applied to the same 
Traps in the test. If a trap in the test set does not exist in the training set it receives a bias 
of 1. 

 
Figure 14. Trap bias of the first 20 traps sorted by value. 



Kernel weighted regression by applying distances in time and space 
In [46] the code uses a kernel-weighted regression approach to estimate the expected 
mosquito count for each observation, considering neighboring data points in time and 
space. Kernel-weighted regression is a type of ‘local regression’ where data points closer 
to a given input point are given more weight in estimating the probability of that batch 
being infected. The code estimates the number of mosquitoes per row based on the count 
of mosquitoes from similar rows. The "similarity" is defined by temporal proximity, spatial 
proximity, and optionally species or trap type. The final estimate is computed as a 
weighted average, where weights are determined by a custom distance function that 
considers both temporal and spatial distances. The statistical significance of each 
nearby row’s contribution is adjusted by the count of mosquitoes. The estimates are 
influenced by distance-based weighting (giving more weight to closer rows in time and 
geographic location). The specific characteristics of the row, including species and trap, 
determine which nearby observations are relevant. This approach helps in providing a 
more robust estimate of mosquito counts, particularly when the original data may be 
sparse or inconsistent across different spatial and temporal dimensions. All these ideas 
and their influence on the public and private part of the test set are gathered in Table 4 
(see also Appendix). 
 

Classification results on the Chicago Kaggle (2007-2014) and 2007-2024 data 
In Table 4 we gather the results for the Kaggle dataset which is based on the (2007-2014) 
Chicago database. In the Appendix, we include the submission files to the Kaggle 
competition that recreate Table 4. 
 
Table 4. Winning solution on the Kaggle (2007-2014) Chicago database. Given the data in 
years (2007, 2009, 2011, 2013) predict infected batches in (2008, 2010, 2012, 2014). We 
show how the different biases affect the AUC score of the base predictor. 
 

Original Cardal PUBLIC PRIVATE COMMENT 
1_Normal distribution 
as base predictor 0.62906 0.62689 

Apply a Gaussian on WNV-positive vs date as 
base predictor 

2_Applying yearly 
biases 0.74882 0.75322 Yearly biases derived from multirow counts 
3_Applying species 
biases 0.79820 0.79360 Species biases derived from multirow counts 
4_Applying 
date_location_trap -
based outbreak 0.86284 0.84246 Outbreak biases (leaderboard feedback) 
5_Applying trap bias 0.86352 0.84363 Trap biases 
6_Applying combined 
multirow counts 
probabilities 0.88315 0.85992 Multirow counts probabilities 

 
We partitioned the data into a training set containing all years from 2007 to 2022 and held 
out the years 2023 and 2024 as a test set. We removed leaderboard fitting practices and 
applied the refactored code from the Kaggle competition to a different data split. This 
presents a more challenging scenario, as we need to predict two consecutive years based 
on training data that includes years from the distant past. 
 



Table 5. Refactored winning solution of the Kaggle competition as applied to the (2007-
2024) Chicago database without data-leakage practices. The training set includes the 
years 2007-2022 and the test set the last two remaining years, 2023 and 2024. AUC score. 
 

Refactored Cardal PRIVATE COMMENT 
1_Normal distribution 
as base predictor 0.7845 Apply a Gaussian on WNV-positive vs date as base predictor 
2_Applying yearly 
biases 0.7843 Yearly biases derived from multirow counts 
3_Applying species 
biases 0.7922 In 2024 there is a fundamental change in Species tagging 
4_Applying 
geo_location outbreak 0.7970 Outbreak biases  
5_Applying trap bias 0.7973 Trap biases 
6_Applying combined 
multirow counts 
probabilities 0.8056 Multirow counts probabilities 

 

Other classifiers 
The Chicago Database is a tabular one, and this kind of data structure is typically treated 
with tree-based classifiers. Tree-based classifiers are particularly effective for 
structured/tabular data due to their ability to compare features and handle mixed data 
types, manage non-linear relationships, and deal with missing values. We used the 
following: 
GradientBoostingClassifier is an ensemble machine learning technique that builds a 
sequence of weak learners (typically decision trees), each correcting the errors made by 
the previous one. By combining these weak learners, Gradient Boosting can produce a 
much better predictive model, often achieving high accuracy for both regression and 
classification tasks. This method iteratively minimizes a loss function (AUC score in our 
case), making it effective at capturing complex relationships in the data. 
XGBClassifier (XGBoost) is a specific implementation of the Gradient Boosting approach. 
It introduces features like regularization, which helps reduce overfitting. XGBoost is 
widely applied for its performance in data science competitions due to its accuracy and 
flexibility in handling a wide range of data types and problems, including those with high 
dimensionality and class imbalance (like the Chicago database). 
ExtraTreesClassifier (Extremely Randomized Trees) is an ensemble method that builds 
multiple decision trees using random splits of the dataset and random feature selections. 
Unlike Random Forests, Extra Trees make splits using random thresholds, which 
introduces more randomness. This often helps improve generalization and reduces 
overfitting. ExtraTreesClassifier is particularly effective in reducing variance and 
improving prediction performance, especially in datasets with a high number of features. 
HistGradientBoostingClassifier is a variant of Gradient Boosting that employs histogram-
based techniques to optimize decision trees. Instead of processing each data point 
individually, it bins continuous features into discrete intervals, significantly improving 
training speed, especially on large datasets. All tree-based classifiers have been adjusted 
for class imbalance. 
The following variables have been converted to categorical: 'TRAP_TYPE', 'Species', 'Trap', 
'Address', 'COMMUNITY AREA NAME'])  
The columns used are ['Block', 'Species', 'TRAP_TYPE', 'Trap', 'Latitude', 'Longitude', 
'month', 'week', 'NumMosquitos', 'Address', 'COMMUNITY AREA NAME'] 



Table 6. Tree-based classifiers as applied to the (2007-2024) Chicago database. The 
training set includes the years 2007-2022 and the test set the last two remaining years, 
2023 and 2024. AUC score. 
 

Model AUC score 
GradientBoostingClassifier 0.80 
XGBClassifier 0.81 
ExtraTreesClassifier 0.80 
HistGradientBoostingClassifier 0.81 

 
The ROC curve rises above the diagonal (gray dashed line), indicating that the model is 
better than random chance in distinguishing between positive and negative classes (see 
Fig. 13). 
The area under the curve (AUC) is 0.81, which suggests that the model has a reasonably 
good ability to discriminate between the two classes. An AUC closer to 1 would indicate 
a very strong classifier, while an AUC of 0.5 would represent a classifier that performs no 
better than random guessing. The True Positive Rate (TPR), also known as sensitivity, is 
around 0.78 at the operational point. This means that the model correctly identifies 
approximately 78% of the actual positive cases and suffering 28% of false positives.  
 

 
Figure 13. ROC curves of classification approaches. The probabilistic approach and tree-
based classification return equal results. 
 

Additional Parameters 
Spraying records and weather conditions can significantly influence the probability of a 
mosquito batch testing positive for WNV. Spraying—a common mosquito control 



measure—can directly reduce mosquito populations, particularly those carrying WNV, 
thereby lowering the likelihood of WNV-positive batches. Weather factors such as 
temperature, humidity, and rainfall also play a crucial role; warmer temperatures and 
increased rainfall create favorable conditions for mosquito breeding, potentially raising 
WNV transmission risk. Therefore, integrating spraying records and weather data into 
predictive models could enhance accuracy by accounting for these critical 
environmental factors. 

Discussion 
The key findings of this paper reveal that maintaining detailed historical data from a 
widespread network of mosquito traps, including counts of WNV incidents, enables the 
prediction of future WNV-infected batches. We show that a probabilistic approach is 
quite effective but is on par with other data-driven, tree-based techniques. This predictive 
capability is rooted in the analysis of hotspots, species composition, geographic location, 
and spatiotemporal correlations of outbreaks. While predictions based solely on 
variables like location, species composition, and mosquito counts do not match the 
accuracy of PCR-based methods, they significantly outperform random guessing. The 
accuracy can increase with the incorporation of weather and spraying data. 
Another important finding is that detailed records of mosquito catches from a distributed 
network of traps allow for the rapid identification of hotspots, community names, and 
specific trap locations responsible for the highest number of infected batches. This 
information enables swift identification of problematic areas. Rising trends may signal 
the need for more aggressive control measures, while declining trends could indicate the 
effectiveness of current practices, providing a reference point for future efforts. 
In this study, we analyzed manually entered data, but we propose that commercial, 
automated mosquito traps could report all key variables from the Chicago database, 
including GPS coordinates, precise timestamps of mosquito catches, trap addresses, 
and mosquito counts per hour. Note that the time stamping capabilities of automatic 
traps are far superior to manual practices as each mosquito is time-stamped at its 
entrance time allowing to reveal the circadian rhythm of the species, an information that 
is lost in the manual weekly counting. In principle, species composition could be 
determined by classifying the wingbeat patterns of incoming mosquitoes. Note that in the 
Chicago database the main collective Species group is Culex pipiens/restuans has not 
been sorted out denoting the difficulty of this task if carried out manually. Accurately 
predicting WNV-infected batches requires a long-term network of traps in fixed locations, 
supplemented by PCR analysis over several years to correlate variables with WNV 
presence. Current commercial mosquito counting devices need upgrades to address 
criticisms regarding their varying accuracy, and advanced traps capable of reporting sex, 
species, and genus must progress from TRL-7 to TRL-9, with independent evaluation on a 
medium scale at least.  

Conclusion 
We envision a connected world where extensive, permanently installed networks of 
mosquito traps are seamlessly integrated with the internet via terrestrial and satellite 
communication, enabling real-time monitoring of parameters such as mosquito counts, 
timestamps of captures, and the sex, species, and genus of trapped mosquitoes. 
Leveraging current data, historical trends, and data analytics, these traps could send 
alerts directly to mobile phones of individuals near hotspot areas in urban/suburban 
areas. Based on mosquito species and their known circadian rhythms, these warnings 
could inform vulnerable visitors near hotspots, such as the elderly, when to avoid outdoor 
exposure during peak activity times. Additionally, digital signage could display alerts only 



during critical periods to avoid overloading the public with frequent alerts, based on the 
probability of infected batches in traps, reminding people to wear protective clothing and 
avoid high-risk areas. A public agency that merges reports from automated traps with 
anonymized hospitalization records of WNV-positive cases would allow for deeper cross-
correlation and more comprehensive public health responses. 
The large-scale deployment of automated mosquito counters is expected to grow with 
the advent of cost-effective modems and SIM cards utilizing satellite technology. The 
integration of advanced data analytics with reliable automated mosquito traps offers 
accurate predictions of infection likelihood in captured batches, eliminating the need for 
PCR testing and at no extra cost. Beyond issuing early warnings, these predictions could 
help public health agencies to efficiently allocate resources for prevention and 
intervention efforts and secure necessary funding for mosquito control, which remains a 
top concern for policymakers. 
However, significant technical challenges persist in achieving effective automated 
mosquito monitoring, including maintaining data quality, integrating information from 
diverse sources, and ensuring timely action on predictions. Addressing these challenges 
and the social and ethical considerations that come with them will require a 
multidisciplinary collaboration, combining public health expertise, data science, and 
ecological knowledge. Comprehensive surveillance data, like that from the Chicago 
database, is crucial for identifying high-risk areas, understanding mosquito species 
involved, and evaluating the effectiveness of current monitoring programs. 

Appendix 
Code 
The Chicago database can be found [39] and in our github account [47] we include a 
slightly preprocessed version. 
The original code for the winning solution of the Kaggle competition is in [45]. In [46] one 
is still able to make late submissions after logging in. A refactored version of ours needing 
10% of the original execution time can be found in [47]. In the same link, we include the 
files to reproduce the findings in Table 4 concerning the Kaggle West Nile Virus prediction 
competition. We also provide python code for reproducing all figures, calculating the 
bivariate predictions and running the classification tasks.  
 

Bivariate fitting on WNV counts and Mosquito Counts 
We aim to predict the probability of West Nile Virus (WNV) presence (WNV=1) in the test 
using two features of the database:  
x1: DaysSinceAug1: Number of days since August 1, and  
x2: NumMosquitos: Number of mosquitoes captured. 
For the two classes c, 𝑐 ∈  {0, 1} (WNV=0, WNV=1) 
Our approach involves: 
a) Modeling the joint distribution of features (x1, x2) for each class (WNV = 0 and WNV = 

1) independently using a bivariate Gaussian distribution fitted on (x1, x2) for each class 
separately. 

b) Computing the likelihoods of the observed data under each class's distribution. 
c) Applying Bayes' Theorem to compute the posterior probability that WnvPresent = 1 

given the observed features. 
Steps (a-c) in mathematical terms are presented below. 
We assume that the features (x1, x2) follow a bivariate Normal pdf within each class c. 
The bivariate Gaussian distribution models the joint probability of two continuous 
random variables (x1, x2). The probability density function (PDF) is: 



𝑓(𝐱) =
1

2π√|Σ|
exp (−

1

2
(𝐱 − μ)⊤Σ−1(𝐱 − μ))   (1) 

 
where the joint feature vector is 𝑥 = (𝑥1, 𝑥2). The mean of x in (1) is μ = (μ1, μ2) 
The covariance matrix in (2) is: 

Σ = (
σ1

2 σ12

σ12 σ2
2 )    (2) 

 
The determinant of the covariance matrix is |Σ| = σ1

2σ2
2 − σ12

2  
 
The means of each class c are calculated from the features (x1, x2) of the training set as in (3): 
 

μ𝑐 =
1

𝑁𝑐
∑ 𝑥𝑖

𝑁𝑐
𝑖=1      (3) 

 
The covariance of each class is calculated from the features of the training set as in (4): 
 

Σ𝑐 =
1

𝑁𝑐−1
∑ (𝑥𝑖 − μ𝑐)(𝑥𝑖 − μ𝑐)⊤𝑁𝑐

𝑖=1    (4) 

 
The likelihood of each class c (i.e. WNV=0 vs WNV=1) is in (5) 
 

𝐿𝑐 = 𝑃( 𝑥 ∣ WnvPresent = 𝑐 ) = 𝑓𝑐(𝑥)   (5) 
 
The priors of each class c are derived from the training set as in (6): 
 

𝑃(WnvPresent = 𝑐) =
𝑁𝑐

𝑁
    (6) 

 
The evidence P(x) is calculated in (7) and requires the priors in (6): 
 

𝑃(𝑥) = 𝐿0 ⋅ 𝑃(WnvPresent = 0) + 𝐿1 ⋅ 𝑃(WnvPresent = 1)  (7) 
 
The likelihood of each class needed in (7) is calculated in (8): 
 

𝐿𝑐 =
1

2π√|Σ𝑐|
exp (−

1

2
(𝑥 − μ𝑐)⊤Σ𝑐

−1(𝑥 − μ𝑐))   (8) 

 
The exponent can be calculated in terms of the so called Mahalanobis distance in (9): 
 

𝐷𝑐
2 = (𝑥 − μ𝑐)⊤Σ𝑐

−1(𝑥 − μ𝑐)    (9) 
 
So (8) is rewritten as in (10) for each class c and plugged into (7). 
 

𝐿𝑐 =
1

2π√|Σ𝑐|
exp (−

1

2
𝐷𝑐

2)    (10) 

 
Finally using Bayes theorem, we calculate the probability of an infested batch as in (11), using 
(10), and (6): 
 

𝑃( WnvPresent = 1 ∣ 𝑥 ) =
𝐿1⋅𝑃(WnvPresent=1)

𝐿0⋅𝑃(WnvPresent=0)+𝐿1⋅𝑃(WnvPresent=1)
   (11) 
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