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A R T I C L E  I N F O   

Keywords: 
Actin-membrane linkers 
Synthetic reconstituted systems 

A B S T R A C T   

At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes 
related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane 
organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in 
regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. 
While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the 
actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise ac-
tions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model 
membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers 
direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin- 
membrane linkers that have been studied by using reconstitution systems. We will discuss the design princi-
ples of these reconstitution systems and how they have contributed to the understanding of the cellular functions 
of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding 
the intricate actin-membrane interaction.   

1. Introduction 

The surface of eukaryotic cells comprises the plasma membrane with 
integrated and attached proteins (Kusumi et al., 2012; Jacobson et al., 
2019; Nicolson and Ferreira de Mattos, 2023). The plasma membrane is 
physically supported by the actin cortex, an approximately 200 nm thick 
layer of cross-linked actin filaments (Salbreux et al., 2012; Chugh and 
Paluch, 2018; Svitkina, 2020). The actin cortex has a significant influ-
ence on the organization of the plasma membrane. It acts as corrals, 
restricting the movements of lipids and membrane-associated proteins 
(Kusumi et al., 2012; Jacobson et al., 2019). The contractile forces 
generated by myosin II motors in cortical actin drive some 
membrane-associated proteins into clusters (Rao and Mayor, 2014; 
Köster et al., 2016), and regulate the surface tension and its propagation 
on the cell surface (Sens and Plastino, 2015; Sitarska and Diz-Muñoz, 
2020; De Belly et al., 2023). For a plethora of membrane remodeling 
processes in cells, the principle driving forces are the polymerization of 
actin filaments, their subsequent assembly into different structures, and 
the contractile forces generated by myosin II motors (Mogilner and 
Oster, 1996; Murrell et al., 2015). Actin-dependent membrane remod-
eling includes local membrane deformation for endocytosis and 

exocytosis, the generation of membrane protrusions like lamellipodia, 
filopodia, microvilli and tunnelling nanotubes, large-scale phagocytosis 
and macropinocytosis, as well as global cell migration and division 
(Blanchoin et al., 2014; Goode et al., 2015; Kessels and Qualmann, 2021; 
Jaumouillé and Waterman, 2020; Mylvaganam et al., 2021; Ljubojevic 
et al., 2021; Blake and Gallop, 2023; Sauvanet et al., 2015; Morales 
et al., 2023; Rottner and Schaks, 2019; Faix, 2006; Faix and Rottner, 
2022; Yang and Svitkina, 2011; Mattila and Lappalainen, 2008). 

To assist the actin cytoskeleton in reorganizing and reshaping the 
plasma membrane, proteins that connect the actin cytoskeleton to the 
membrane are crucial players (Bezanilla et al., 2015; Diz-Muñoz et al., 
2010; Janmey et al., 2018; Saarikangas et al., 2010; Sheetz, 2001; 
Sitarska and Diz-Muñoz, 2020; Suetsugu et al., 2014). A prevalent mo-
lecular aspect of actin-membrane linkers is that they possess a domain 
that interacts with the membrane by binding to lipids or to trans-
membrane proteins, and another domain that interacts with actin fila-
ments or with actin regulatory proteins. In addition, actin-membrane 
linkers possess specific molecular properties associated with how they 
are regulated to function as actin-membrane linkers at specific times and 
membrane locations, which we have used to classify them into four 
categories: phosphorylation-regulated linkers, membrane 
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curvature-sensitive linkers, force-sensitive linkers, and linkers with 
ATPase activity. This classification is intended to aid in the identification 
of the various functions of these linkers. 

This review focuses on actin-membrane linkers that interact directly 
with the membrane through binding to lipids. It occurs via electrostatic 
interaction with negatively charged lipids such as phosphatidylserine 
(PS) or phosphoinositides lipids (PIs), including phosphatidylinositol 
4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate 
(PI(3,4)P2) (Janmey et al., 2018; Senju and Lappalainen, 2019). These 
PIs are locally enriched or synthesized in the plasma membrane, 
depending on cellular processes (Posor et al., 2022; Saarikangas et al., 
2010; Senju and Lappalainen, 2019; Suetsugu et al., 2014; van Meer 
et al., 2008). The local enrichment of PIs assists cells in regulating the 
spatial-temporal recruitment and activation of actin-membrane linkers 
on the membrane. Conversely, some actin-membrane linkers that are 
equipped with specific lipid interaction domains, such as PH and FERM 
domains, have demonstrated an ability to affect the distribution of PIP2 
on membranes (Yamamoto et al., 2020; Ehret et al., 2023; Brown, 2015; 
Wen et al., 2021). The locally enriched PIP2 by the actin-membrane 
linkers can regulate actin assembly (Bezanilla et al., 2015; Janmey 
et al., 2018; Suetsugu et al., 2014; Suetsugu and Gautreau, 2012). 

Given the intricate and reciprocal interactions between actin and the 
membrane, it is widely acknowledged that to attain a comprehensive 
mechanistic understanding of the actin-membrane interplay and its 
function in membrane remodeling, the membrane and the actin cyto-
skeleton have to be investigated jointly as a composite system (Sitarska 
and Diz-Muñoz, 2020; Doherty and McMahon, 2008; Köster and Mayor, 
2016; Harris et al., 2018; Liu and Fletcher, 2009). Over recent decades, 
synthetic reconstituted systems have been widely used as effective 
platforms for elucidating the precise functions of the actin-membrane 
linkers at the actin-membrane interfaces (Ganzinger and Schwille, 
2019; Jia and Schwille, 2019; Lopes dos Santos and Campillo, 2022; 
Baldauf et al., 2022). This review will discuss the discoveries made so far 
with such systems and some of the four types of actin-membrane linkers. 
Our focus will be on physiologically relevant actin-membrane linkers 
only, and synthetic linkers such as biotin-streptavidin will not be dis-
cussed. For in vitro studies using non-physiological actin-membrane 
linkers or actin nucleators such as WASP or its VCA domain, we refer the 
readers to a list of reviews and recent articles (Lopes dos Santos and 
Campillo, 2022; Lemière et al., 2016; Suzuki et al., 2015; Muresan et al., 
2022; Sakamoto et al., 2023; Hsu et al., 2022; Sciortino and Bausch, 
2021; Baldauf et al., 2023). Finally, future perspectives will be proposed 
to conclude this review. 

2. Phosphorylation-regulated actin-membrane linkers: ERM 
proteins 

To date, one of the most well-studied actin-membrane linkers are the 
proteins from the Ezrin/radixin/moesin (ERM) family (Fehon et al., 
2010; Fiévet et al., 2007; Michie et al., 2019; Senju and Tsai, 2022; 
McClatchey, 2014). At the N-terminus, ERM proteins contain a FERM 
(Four-point-one, Ezrin, Radixin, Moesin) domain responsible for mem-
brane association by interacting with PI(4,5)P2 (Ehret et al., 2023). 
Their C-terminus contains an actin-binding domain (C-ERMAD) for their 
direct interaction with actin filaments. ERM proteins exhibit auto-
inhibition through the intramolecular association of the N- and 
C-ERMAD, which masks the F-actin binding site. Using bioluminescence 
resonance energy transfer (BRET)-based conformational biosensors, a 
pool of inactive but membrane-associated ezrin was found in cells 
(Leguay et al., 2021). The disinhibition of ERM proteins i.e., the disso-
ciation of the C-ERMAD from the FERM domain, relies on several reg-
ulatory pathways, including binding to PI(4,5)P2 and notably 
post-translational modifications such as phosphorylation by ROCK ki-
nase (Bosk et al., 2011; Jayasundar et al., 2012; Lubart et al., 2018; 
Pelaseyed et al., 2017; Ramalho et al., 2020; Senju and Tsai, 2022; 
Shabardina et al., 2016). Activated ERM proteins can link the actin 

cytoskeleton to the plasma membrane (Senju and Tsai, 2022; 
McClatchey, 2014). 

ERM proteins have been well-recognized to play crucial roles in 
regulating and stabilizing a variety of actin-dependent cellular pro-
cesses. For instance, they contribute to the structural integrity and sta-
bility of microvilli, thin (about 100 nm wide), finger-like membrane 
protrusions on the apical surface of epithelial cells by establishing stable 
connections between the membrane and the actin bundles. At the cell 
surface, ERM proteins connect the plasma membrane and the actin 
cortex composed of cross-linked actin filaments forming a meshwork 
(Salbreux et al., 2012; Chugh and Paluch, 2018; Svitkina, 2020; Fehon 
et al., 2010; Bretscher et al., 2002). To retract outward membrane de-
formations such as blebs or the rear of cells during migration via 
actomyosin-II contractility, cells have to recruit ezrin to these regions to 
establish actin-membrane anchorage (Charras et al., 2006; Tsujita et al., 
2021). Conversely, to initiate cell protrusions such as filopodia or to 
facilitate directed cell migration, the amount of actin-membrane linkers, 
such as ezrin, is reduced at specific membrane regions (Welf et al., 2020; 
Bisaria et al., 2020). In addition, the ability to modulate the adhesion 
between the plasma membrane and the actin cortex allows ERM proteins 
to control the tension of the cell surface, which is essential for processes 
such as migration and mitosis (Sitarska and Diz-Muñoz, 2020; Diz-Mu-
ñoz et al., 2010; Tsujita et al., 2021; Larson et al., 2010; Kunda et al., 
2012; Liu et al., 2012; Rouven Brückner et al., 2015; Paraschiv et al., 
2021). 

Extensive studies using model membranes along with purified ERM 
proteins, particularly ezrin, have provided a detailed understanding of 
how phosphorylation of ERM proteins regulates their interactions with 
membranes and actin. Using PI(4,5)P2-containing liposomes of various 
sizes - giant unilamellar vesicles (GUVs, typical diameters larger than a 
few μm), multilamellar vesicles (MLVs, typical diameters larger than 
500 nm), large unilamellar vesicles (LUVs, typical diameters of 100 – 
1000 nm), and small unilamellar vesicles (SUVs, typical diameters 
smaller than 100 nm) - combined with co-sedimentation assays or 
fluorescence correlation spectroscopy (FCS), the apparent dissociation 
constant (Kd) was found to be around 5 μM for ezrin and moesin (Blin 
et al., 2008; Maniti et al., 2013; Senju et al., 2017). The binding of ERM 
proteins to PI(4,5)P2 has been shown to be cooperative for the lipids. On 
the one hand, by combining computer simulations and supported lipid 
bilayers (SLBs), the multivalent binding of the FERM domain of ezrin 
and PI(4,5)P2 was shown, with an average stoichiometry of 1:4 (Ehret 
et al., 2023). In the case of moesin, the phosphomimetic moesin was 
shown to be able to bind two PI(4,5)P2 molecules but not the wild type 
moesin (Lubart et al., 2018). On the other hand, by performing quartz 
crystal microbalance (QCM) and scanning force microscopy (SFM) to 
study the binding process of ezrin on PI(4,5)P2-containing SLBs, it was 
proposed that ezrin exhibits lateral protein-protein interactions, result-
ing in a cooperative adsorption of an ezrin monolayer on the SLBs 
(Herrig et al., 2006). 

Upon PIP2 binding, ezrin undergoes a conformational change 
(Jayasundar et al., 2012; Shabardina et al., 2016). Phosphorylation of 
ezrin at T567 enhances its conformational change towards an active 
state upon binding to PIP2, enabling its interaction with actin filaments 
(Fig. 1A) (Bosk et al., 2011; Shabardina et al., 2016; Tsai et al., 2018). In 
the presence of PI(4,5)P2, a larger number of bonds between ezrin and 
actin filaments can be formed (Braunger et al., 2014). In a more recent 
study using SLBs, it was found that the addition of actin cross-linkers, 
fascin and α-actinin, rearrange the organization of ezrin-mediated 
actin networks on membranes (Schön et al., 2019). This suggests that 
ezrin-anchored filaments on the membrane possess a certain degree of 
freedom, allowing actin cross-linkers to reorganize them. Besides, a 
recent study of contractile actin-myosin II networks coupled to SLBs by 
ezrin demonstrated that the presence of negatively charged PS lipids 
together with PI(4,5)P2 influence the connectivity and contractility of 
the actin filaments in the network (Fig. 1B) (Liebe et al., 2023). Notably, 
another study using contractile actomyosin networks anchored to SLBs 
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through a truncated ezrin (its C-terminal domain) demonstrated that the 
contractile forces can be transmitted to the membrane, thereby driving 
the re-organization of ezrin on the membrane (Köster et al., 2016). In 
summary, using reconstituted systems, we have gained some molecular 
understanding of how ERM proteins are regulated by phosphorylation to 
link the actin cytoskeleton to membranes, which relates to cellular 
structures such as the actin cortex. In the future, it would be insightful to 
elucidate how the different types of actin nucleation and polymerizing 
factors, including formin and Arp2/3 complex, and actin cross-linkers 
such as α-actinin found in the actin cortex, work together with myosin 
II contractile forces to modulate the spatial distribution of 
actin-membrane linkers (Rao and Mayor, 2014; Köster et al., 2016; 
Köster and Mayor, 2016; Muresan et al., 2022; Sakamoto et al., 2023; 
Fritzsche et al., 2014, 2013). 

Using a single-molecule optical trap assay, a recent study demon-
strated that ezrin forms complexes that can slide along an actin filament 
over micrometer distances when subjected to a pulling force perpen-
dicular to the filament (Korkmazhan and Dunn, 2022). This observation 
provides mechanistic insights into how ezrin provides a stable link be-
tween the membrane and the actin cytoskeleton, acting as a force 
mediator so that the contractile forces are not transmitted directly to 
either the actin filaments or the membrane but instead mediating their 
relative sliding with each other. This force-mediating effect of ezrin may 
help to protect the structural integrity of the actin cortex from disruption 
by myosin II forces, as demonstrated in in vitro reconstitution systems 
(Murrell and Gardel, 2012). It would be enlightening to investigate how 
the presence of the membrane affects the sliding of ezrin along actin 
filaments and how this in turn affects the modulation of membrane 
tension (De Belly et al., 2023; Sakamoto et al., 2023). 

3. Membrane curvature-sensitive actin-membrane linkers: BAR- 
domain proteins 

Besides being able to interact with both the actin cytoskeleton and 
the plasma membrane, two key molecular features of the Bin/Amphi-
physin/Rvs (BAR) domain proteins are their ability to sense and 
generate curved membranes as well as to regulate actin assembly 
(Suetsugu and Gautreau, 2012; Qualmann et al., 2011; Nishimura et al., 
2018; Simunovic et al., 2019). BAR domains form intrinsically curved, 
anisotropic antiparallel homodimers (Carman and Dominguez, 2018; 
Snider et al., 2021). Based on their crystal structures, BAR domains can 
be divided into three main subfamilies: classical BAR, longer and less 
curved Fes/CIP4 homology-BAR (F-BAR) and inverse-BAR (I-BAR) do-
mains. Some classical BAR domains with an N-terminal amphipathic 
helix are called N-BAR domains. BAR domains themselves are known to 
interact with membranes via binding to negatively charged lipids, 
including PS lipids, and more specifically to PI(4,5)P2 (Mattila et al., 
2007; McMahon and Gallop, 2005; Suetsugu et al., 2014). Some BAR 
proteins are equipped with extra lipid-binding domains including the PH 
and PX domains (Carman and Dominguez, 2018). The interaction of 

BAR proteins and actin filaments can be mediated by the electrostatic 
interaction between the BAR domains and the filaments (Disanza et al., 
2006; Rocca et al., 2008; Kostan et al., 2014; Dräger et al., 2017). 
Notably, some BAR domain proteins are equipped with a SRC Homology 
3 (SH3) domain, allowing them to interact with many actin regulator 
proteins, including notably the WASP-WAVE family proteins, which 
regulates the Arp2/3 complex for the assembly of branched actin net-
works (Takenawa and Suetsugu, 2007). 

The activity of BAR proteins is known to be modulated so that they 
are in an auto-inhibited state in the cytoplasm, limiting remodeling of 
the plasma membrane and actin cytoskeleton (Nishimura et al., 2018; 
Carman and Dominguez, 2018). The release of BAR proteins from 
auto-inhibition requires their interaction with several effectors (Nishi-
mura et al., 2018; Carman and Dominguez, 2018). For example, binding 
of IRSp53 to Cdc42, PIP2, and several actin regulatory proteins, 
including Eps8, VASP and N-WASP, is known to activate IRSp53, leading 
to the formation of membrane ruffles and filopodia-like protrusions 
(Disanza et al., 2006, 2013). To maintain IRSp53 in the auto-inhibition 
state, it relies on the binding of 14–3–3 to phosphorylated IRSp53, 
which inhibits IRSp53-membrane binding and counteracts the activa-
tion of phosphorylated IRSp53 by Cdc42, Eps8 and VASP, thereby 
impairing filopodia formation and dynamics as well as directed cell 
migration (Kast et al., 2014; Kast and Dominguez, 2019a,b). 

BAR proteins are commonly found associated with curved regions on 
the plasma membrane to facilitate membrane deformation that can be 
primarily driven by actin assembly. A prominent well-studied example is 
endocytosis where various BAR proteins are involved, including F-BAR 
protein FCHSD2, N-BAR proteins endophilin and amphiphysin, BAR 
protein SNX9, and I-BAR protein IRSp53 (Kaksonen and Roux, 2018; 
Thottacherry et al., 2019). Moreover, BAR proteins, including IRSp53 
and MIM/ABBA, contribute to the formation of flat membrane pro-
trusions such as lamellipodia as well as finger-like protrusions such as 
filopodia, microvilli, and tunnelling nanotubes (Ljubojevic et al., 2021; 
Disanza et al., 2013; Lim et al., 2008; Kast and Dominguez, 2019b; 
Postema et al., 2018; Bisi et al., 2020; Henderson et al., 2022). More-
over, BAR proteins such as SNX9 and GAS7 have also been implicated in 
membrane ruffling, a precursor to macropinocytosis and phagocytosis 
(Miki et al., 2000; Yarar et al., 2007; Hanawa-Suetsugu et al., 2019). 

Studies using model membranes and purified BAR proteins have 
shown that at low surface density, BAR domains can “sense” membrane 
curvature while at a high surface density, they can generate curved 
membranes (Nishimura et al., 2018; Simunovic et al., 2019, 2018; 
Snider et al., 2021; Saarikangas et al., 2009; Baumgart et al., 2011; 
Kozlov and Taraska, 2023; Suetsugu, 2016). The classical BAR proteins 
associate preferentially with membranes exhibiting positive curvature 
(Heinrich et al., 2010; Sorre et al., 2012; Zhu et al., 2012; Hsieh et al., 
2012), whereas I-BAR proteins preferentially associate with membranes 
with a negative curvature (Prevost et al., 2015). In addition, BAR pro-
teins have been recognized for their significant role in controlling actin 
assembly (Suetsugu and Gautreau, 2012; Nishimura et al., 2018; 

Fig. 1. ERM protein ezrin recruits actin filaments to flat membranes containing PI(4,5)P2. (A) Phosphorylation of ezrin at T567 (ezrinTD) anchors actin filaments on 
the surface of giant unilamellar vesicles. Scale bar, 5 μm. Figure adapted from (Tsai et al., 2018) (B) Re-organization of the actin-myosin II contractile networks 
anchored on supported lipid bilayers by ezrin, in the absence (Top) and presence (Bottom) of POPS in the bilayers. Scale bars, 5 μm (Left) and 10 μm (Right). 
Figure adapted from (Liebe et al., 2023). 
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Carman and Dominguez, 2018). The BAR-mediated actin assembly is 
primarily attributed to the direct interaction between the SH3 domain of 
BAR proteins and the actin nucleation-promoting factor N-WASP 
(Suetsugu and Gautreau, 2012). Taken together, since the recruitment of 
BAR proteins to membrane sites can be regulated by membrane curva-
ture, we thus classify BAR proteins as membrane curvature-sensitive 
actin-membrane linkers. 

While there is a wealth of information regarding BAR protein- 
membrane interactions, the understanding of how BAR proteins regu-
late actin assembly on membranes remains largely unexplored. Several 
studies have used reconstituted systems to address this question in the 
context of endocytosis. Using PI(4,5)P2-containing LUVs, it was 
demonstrated that SNX9 synergize with PI(4,5)P2 to activate N-WASP, 
leading to the formation of Arp2/3 complex-mediated branched actin 
network (Yarar et al., 2007, 2008). The addition of PI(3)P in PI(4,5) 
P2-containing membranes facilitates BAR protein-associated actin as-
sembly (Gallop et al., 2013). Notably, membrane curvature and the 
presence of PI(4,5)P2 and PI(3)P synergistically allow SNX9 to mediate 
N-WASP-Arp2/3 complex-mediated actin assembly on curved mem-
branes (Fig. 2A and B) (Daste et al., 2017). These studies clearly 
demonstrate the critical and synergistic roles of PIs and membrane 
curvature in BAR protein-mediated actin assembly, providing a molec-
ular understanding of how BAR-mediated actin assembly occurs in 
endocytosis. 

Aiming to understand how filopodia are initiated at specific mem-
brane locations in cells, a recent study using a reconstituted system 
consisting of GUVs as model membranes demonstrated that IRSp53 can 
form clusters on the membrane, due to its intrinsic curvature and 
membrane deformation ability (Jarin et al., 2021). These IRSp53 clus-
ters recruit the actin polymerase VASP to the membrane, which triggers 
localized actin assembly, ultimately leading to the formation of 

filopodia-like membrane protrusions (Fig. 2 C and D) (Tsai et al., 2022). 
Overall, this minimal reconstituted system provides a physical basis for 
the mechanism of filopodia initiation and formation proposed in (Blake 
and Gallop, 2023; Disanza et al., 2013). A potential future direction for 
in vitro reconstitution is to investigate how two types of BAR proteins, 
with different preferred membrane curvatures, can collaboratively 
regulate actin assembly and influence membrane morphology. This idea 
is inspired by a recent study conducted in live neuron cells that 
demonstrated the cooperative action of the I-BAR protein IRSp53 and 
the N-BAR protein ArhGAP44 in inducing and inhibiting actin assembly 
at specific membrane regions, ultimately facilitating the formation of 
membrane protrusions (Mancinelli et al., 2021). Besides, it would be 
insightful to use reconstituted systems to investigate how BAR proteins 
mediate different actin structures i.e., Arp2/3-mediated branched actin 
networks or actin bundles, to generate different types of membrane 
deformations, such as finger-like filopodia, sheet-like lamellipodia and 
less well-defined geometries in phagocytosis and macropinocytosis. 

Of note, some BAR proteins, specifically the I-BAR IRSp53, the F-BAR 
pacsin2, the N-BARs PICK1 and Bin1 are able to bind to actin filaments 
via their BAR domains, resulting in the generation of actin bundles 
(Disanza et al., 2006; Rocca et al., 2008; Kostan et al., 2014; Dräger 
et al., 2017). These observations highlight the molecular complexity of 
the interactions between BAR proteins and membranes, as well as BAR 
proteins and actin, and call for detailed analysis on how physiologically 
relevant biochemical and biophysical conditions modulate BAR 
protein-membrane and BAR protein-actin interactions. 

4. Mechano-sensitive linkers: the focal adhesion integrin 
complex 

Focal adhesions contain many proteins, including transmembrane 

Fig. 2. Actin assembly on membranes in the presence of curvature sensing BAR proteins, SNX9 (A and B) and IRSp53 (C and D). (A and B) Dense accumulation of 
actin (in green) on liposomes (a mixture of SUVs, LUVs and GUVs) containing PI(4,5)P2 and PI(3)P (magenta) in the presence of the BAR protein SNX9, the Arp2/3 
complex, Cdc42⋅GTP-γS, N-WASP–WIP complex, and actin. Branched actin networks form at the surface of highly curved liposomes. Scale bar, 6 μm. Figure adapted 
from (Daste et al., 2017) (C and D) Filopodia-like membrane protrusions formed on Giant Unilamellar Vesicles (GUVs) (magenta) in the presence of the I-BAR protein 
IRSp53, VASP, capping protein, profilin, AX488 phalloidin, fascin, and actin (green). Scale bar, 5 μm. Figure adapted from (Tsai et al., 2022). 
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integrins as the main elements, that link the extracellular environment 
to the actin cytoskeleton inside the cell through cytoplasmic proteins. 
The integrin complex acts as a mechano-sensitive linker by establishing 
a mechanical reciprocity between the rigidity of the extracellular matrix 
and pulling forces exerted by the cytoskeleton (Sun et al., 2016). 
Integrins have 18 different α chains and 8 types of β subunits in humans, 
which can assemble into 24 different integrin heterodimeric members 
(Kechagia et al., 2019). Integrin heterodimers share a similar domain 
organization. The extracellular domains bind to ligands, the trans-
membrane domains and the cytoplasmic tails interact with the actin 
cytoskeleton via cytoplasmic adaptor proteins. 

The main function of integrins is in cell adhesion and they are 
consequently involved in a wide range of biological processes including 
cell migration, proliferation, differentiation, hemostasis and thrombosis 
(Takada et al., 2007). These functions depend on the activation and 
clustering of integrins. Integrin activation is regulated by outside-in and 
inside-out signaling pathways. Outside-in signaling mediates cellular 
responses induced by extracellular ligand binding to integrins. Inside-in 
signaling activates the ligand binding. Among cytoplasmic adaptor 
proteins, talin and kindlin are indispensable for integrin activation and 
function cooperatively (Lu et al., 2022; Calderwood et al., 2013). 

Talin is a large protein, composed of a N-terminal head domain, 
containing a 4.1-ezrin-radixin-moesin (FERM) domain (F0 to F3), fol-
lowed by a linker and a rod domain (R1 to R13), and a C-terminal 
dimerization domain (Goult et al., 2018). The FERM domain includes a 
PIP2-binding interface. The F3 domain interacts with the membrane 
proximal NPxY motif of the β integrin cytoplasmic tail to permit integrin 
conformational changes leading to an increased affinity for extracellular 
ligands (Wehrle-Haller, 2012). Talin contains also three actin-binding 
sites (Hemmings et al., 1996). 

Kindlin also contains a FERM domain (F0 to F3), that binds to 
another membrane distal NxxY motif in the β integrin cytoplasmic tail. 
Unlike talin, kindlin F2 domain has an inserted pleckstrin homology 
(PH) domain that interacts with phosphoinositides with higher affinity 
for PIP3 than for PI(4,5)P2 (Liu et al., 2011). The FERM domain is 
required for integrin activation (Bouaouina et al., 2012). 

Different biomimetic in vitro systems containing platelet trans-
membrane αIIbβ3 integrin have been developed to understand how they 
are activated and clustered during adhesion. Although challenging, the 
purified inactive integrins were reconstituted into SUVs and giant GUVs 
as well as nanodiscs (Frohnmayer et al., 2015; Streicher et al., 2009; 
Souissi et al., 2021; Gingras et al., 2013; Dransart et al., 2022). These 
reconstitution assays allow the organization of integrins to be observed 
and their level of activation to be measured. This is reflected either by 
the binding of the PAC1 antibody specific for the active form, or by 
adhesion to extracellular ligands and spreading of GUVs containing 
integrins on ligand-coated surfaces, or by interaction with cytoplasmic 
regulators. Using GUVs, it has recently been shown that, in addition to 
their individual ability to cluster integrins, talin and kindlin act syner-
gistically to induce the formation of larger integrin clusters that are key 
for integrin activation (Pernier et al., 2023). An important role of 
phosphoinositides for their recruitment to the membrane was demon-
strated, as also shown with an in vitro study for talin and vinculin (Kelley 
et al., 2020). Moreover, kindlin increases the surface density of talin and 
integrin. Finally, kindlin significantly enhances the segregation of 
talin-integrin clusters, which conversely reinforces the pulling force 
induced by actomyosin contractility, leading to the formation of tubules 
on the GUV (Fig. 3) (Pernier et al., 2023). These studies now open the 
possibility to develop new in vitro systems to determine how extracel-
lular ligands influence the organization of clusters induced by 

Fig. 3. Kindlin enhances the actomyosin-dependent segregation of integrins. (A–C) Representative epifluorescence images of integrin (magenta) containing GUVs 
without and with actin (2 µM, 2% Alexa Fluor 488 labeled, cyan) and myosin II (50 nM), supplemented with talin F2-F3-R1-R2-R3-R13 (200 nM), mCherry–kindlin-2 
(200 nM, yellow), and both talin and kindlin. White arrows indicate membrane deformations (tubules) mediated by actomyosin recruitment on area enriched in 
integrins in the presence of kindlin. The mean background was subtracted for each image. Scale bars: 10 µm. 
Figure adapted from (Pernier et al., 2023). 
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cytoplasmic proteins and by forces produced by actomyosin contrac-
tility, and conversely. This perspective is in line with the emergence of 
new developments in synthetic cell biology. New promising approaches 
involving microfluidics and pico-injection into droplet-stabilized giant 
unilamellar vesicles (dsGUVs) have allowed to reconstitute integrins in 
an efficient manner (Weiss et al., 2018). Active contractility systems and 
integrin regulators, including vinculin, might be further encapsulated in 
these artificial cells, potentially allowing for the reconstitution of 
functional mechanosensitive focal adhesions in artificial cells in the 
future (Kelley et al., 2020). Altogether, these more advanced systems 
should help in the future to progress in our understanding of focal 
adhesions. 

5. Linkers with ATPase activity: type I myosin motors 

Many unconventional myosin motors have the capability to simul-
taneously interact with the actin cytoskeleton and the plasma membrane 
(Batters and Veigel, 2016; Hartman et al., 2011; Fili and Toseland, 2020; 
Houdusse and Titus, 2021; Woolner and Bement, 2009). In this section, 
we will focus on Class I myosins (Myosin-1) (McConnell and Tyska, 
2010; McIntosh and Ostap, 2016). 

Myosin-1 motors are part of the myosin super-family. In vertebrates, 
there are 8 types of myosin-1 named as Myo1a to Myo1h (McConnell 
and Tyska, 2010). The N-terminal end of myosin-1 contains a motor 
domain that includes a nucleotide pocket for ATP hydrolysis to perform 
motor activity while interacting with actin filaments. The tail domain at 
the C-terminal end of myosin-1 contains a Tail Homology 1 (TH1) 
domain which includes a Pleckstrin Homology (PH) domain capable of 
binding to anionic lipids, specifically to PI(4,5)P2 (Feeser et al., 2010a; 
Hokanson et al., 2006a; Pyrpassopoulos et al., 2010a; McKenna and 
Ostap, 2009; Hokanson and Ostap, 2006). The interaction with specific 
lipids is crucial for the recruitment of myosin-1 to specific membrane 
regions in the plasma membrane and intracellular organelles. Notably, 
the tail domains of Myo1e and Myo1f include an additional SH3 domain 
that can interact for instance with WASP, which allows these motors to 
directly regulate actin assembly (Evangelista et al., 2000). The head and 
tail of the myosin-1 motors are linked by a neck domain of the protein, 
formed of several IQ domains (1− 6) binding to Calmodulin (CaM). This 
neck domain functions as a mechanical lever arm for myosin-1 motors 
(Greenberg et al., 2016; Greenberg and Ostap, 2013). 

The ability of myosin-1 to dynamically couple the actin cytoskeleton 
and the membrane is involved in various cellular activities, as exem-
plified in the following (McIntosh and Ostap, 2016; Pernier and Schauer, 
2022). A prominent example is that myosin-1 motors modulate the 
tension of the cell surface by bridging the plasma membrane to the 
underlying actin structures (Diz-Muñoz et al., 2010; Dai et al., 1999; 
Nambiar et al., 2009a). Operating at the interface of actin bundles and 
plasma membrane, Myo1a facilitates vesicle shedding at the tip of 
microvilli (Tyska and Nambiar, 2010; McConnell and Tyska, 2007). 
Myo1c controls exocytosis by facilitating the anchoring of actin struc-
tures at the exocytosis sites, which is required for the compression of the 
vesicles fused on the plasma membrane (Kittelberger et al., 2016). 
Phagocytosis requires Myo1g and Myo1e to spatially target and reor-
ganize actin structures at phagocytotic cups (Barger et al., 2022, 2019; 
Dart et al., 2012). Moreover, Myo1e regulates the efficiency of endo-
cytosis by regulating actin assembly at the endocytic sites (Cheng et al., 
2012). Finally, Myo1b regulates the propagation of actin structures 
along axons to facilitate the formation of membrane protrusions for 
neuronal development (Iuliano et al., 2018). However, despite the 
well-recognized contributions of myosin-1 motors in many cellular ac-
tivities, their precise mechanistic roles on the actin cytoskeleton, on the 
plasma membrane, or both remain elusive. 

Extensive studies using optical tweezers combined with recon-
stituted assays, in which myosin-1 motors are anchored on solid sub-
strates, have revealed the ATP hydrolysis cycles of myosin-1 motors in 
great molecular detail. In particular, it has been reported that Myo1b 

and Myo1c are mechanosensitive, acting as catch-bonds (Greenberg 
et al., 2016), i.e. the binding lifetime to actin filaments increases when 
the motors are exposed to loading forces in the direction opposite to 
their movement (Laakso et al., 2008, 2010; Greenberg et al., 2012). In 
addition, the motor activity of myosin-1 can be characterized using actin 
motility assays in which the motors are anchored on flat substrates while 
interacting with single actin filaments suspended in solution. Using the 
forces generated by their power strokes, myosin-1 motors collectively 
propel the actin filaments, thereby causing them to glide laterally. Using 
these motility assays, the actin gliding velocities driven by several 
myosin-1 motors, such as Myo1b, Myo1c and Myo1d have been reported 
ranging from 5 to 150 nm/sec (Greenberg et al., 2016; O’Connell et al., 
2007). 

The interaction of myosin-1 motors with specific lipids have been 
studied using model membranes, notably LUVs. Myo1b, Myo1c and 
Myo1e have been shown to have a strong preference to negatively 
charge lipids like PS or PIs through their PH domain (Hokanson and 
Ostap, 2006; Feeser et al., 2010b; Pyrpassopoulos et al., 2010b; Dawicki 
McKenna and Ostap, 2009; Hokanson et al., 2006b; Komaba and 
Coluccio, 2010). 

To elucidate how myosin-1 motors interact with actin filaments at 
the actin-membrane interface, several studies have used in vitro sys-
tems. On substrate-supported membranes, Myo1c has been demon-
strated to generate forces of about 1 pN on actin filaments, parallel to the 
membrane plane (Pyrpassopoulos et al., 2016). Moreover, 
membrane-bound Myo1b was shown to facilitate the depolymerization 
of actin filaments at the barbed end, thanks to its catch-bond capability 
(Pernier et al., 2019). This Myo1b-mediated actin depolymerization is 
thought to impact actin organization by reducing the length of actin 
filaments, thereby the connectivity of the actin cortex and consequently 
the cortical contractility (Pernier et al., 2019; Ennomani et al., 2016; 
Alvarado et al., 2017). In addition, the Myo1b motors can collectively 
deform the membrane of GUVs by pulling membrane nanotubes along 
actin bundles immobilized on substrates (Fig. 4) (Yamada et al., 2014), 
recapitulating the formation of membrane tubules from the Golgi or 
endosomes reported in cellulo (Salas-Cortes et al., 2005; Almeida et al., 
2011). 

Using in vitro assays, it has been reported that both membrane- 
bound mouse Myo1c and Drosophila Myo1d drive actin filament 
gliding in a curved path (counterclockwise), with the later been impli-
cated to contribute to the Left-Right symmetry breaking during 
Drosophila development (Serapion Pyrpassopoulos et al., 2012; Spéder 
and Noselli, 2007; Báez-Cruz and Ostap, 2023; Lebreton et al., 2018). 
This asymmetric, circular actin gliding originates from the motor 
domain and not from the tail domain of the myosin. Notably, this curved 
actin gliding is not universal, as the actin gliding of human Myo1a, 
mouse Myo1b and Drosophila Myo1c does not show this turning bias. 

So far, while much is known about the motor activity of myosin-1, 
our understanding of how these molecular motors modulate the orga-
nization and the architecture of the actin cytoskeleton at the actin- 
membrane interface remains incomplete (McIntosh and Ostap, 2016; 
Pernier and Schauer, 2022). A recent study showed that when anchored 
on glass substrates, Myo1b breaks apart branched actin structures 
assembled by the Arp2/3 complex (Pernier et al., 2020), providing a 
mechanism for its effect on the morphology of growth cones (Iuliano 
et al., 2018). It remains to be investigated if and how membrane-bound 
myosin-I motors influence the assembly and organization of different 
actin structures given that myosin-I motors are known to interact with 
branched actin networks, for instance during endocytosis and phago-
cytosis, as well as actin bundles as in filopodia and microvilli (McIntosh 
and Ostap, 2016). 

6. Perspectives 

Here, we propose three aspects involving actin-membrane linkers 
that could be addressed by using in vitro reconstitution assays. 
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To elucidate the precise molecular mechanisms of actin assembly taking 
place on membranes, regulated by the interplay between actin-membrane 
linkers and membrane-associated actin regulatory proteins or nucleation 
promoting factors. Many actin regulatory proteins, including profilin, 
formin, and actin nucleation promoting factors (NPFs), such as WAVE 
and WASP, have been shown to interact with the plasma membrane, 
either by interacting with small GTPase at the plasma membrane 
(including RhoA, Cdc42 and Rac1) or by binding to PIs, in particular PI 
(4,5)P2 (Bezanilla et al., 2015; Doherty and McMahon, 2008; Janmey 
et al., 2018; Senju and Lappalainen, 2019). The assembly of actin 
structures thus occurs in close proximity to membranes, for example 
through the recruitment and activation of NPFs at specific membrane 
locations enriched in PI(4,5)P2 (Senju and Lappalainen, 2019; Suetsugu 
et al., 2014; Posor et al., 2022; Mullins et al., 2018; Papayannopoulos 
et al., 2005; Liu and Fletcher, 2006). Furthermore, it has been shown 
that the residence time of N-WASP and the Arp2/3 complex can be 
extended through liquid-liquid phase separation of the 
Nephrin-Nck-N-WASP signaling pathway on membranes (Case et al., 
2019). To date, only a handful of studies have provided molecular in-
sights into how actin-membrane linkers synergize with 
membrane-associated NPFs to trigger localized actin assembly. For 
example, SNX9 has been shown to facilitate N-WASP-mediated actin 
assembly at curved membranes, for instance during endocytic vesicle 
formation (Yarar et al., 2007, 2008; Gallop et al., 2013; Daste et al., 
2017). While it has been recognized that a synergistic BAR-NPF inter-
action facilitates actin-driven membrane reshaping in several cellular 
processes, such as lamellipodia and filopodia formation and intracellular 
trafficking, we are still in the early stages of unravelling how actin 

assembly on membranes is spatially regulated by the interplay between 
actin-membrane linkers and membrane-associated NPFs (Suetsugu and 
Gautreau, 2012; Nishimura et al., 2018; Mancinelli et al., 2021; Sitarska 
et al., 2023). In addition, we know little about how membrane me-
chanical properties, such as viscosity, stiffness, and tension, in turn 
modulate the linker-NPF interplay and thereby affect actin assembly 
processes on the membrane. 

To measure how actin-membrane linkers mediate the transmission of 
mechanical forces from the actin cytoskeleton to membranes. The trans-
mission of forces between an actin polymerization machinery and a 
membrane remains a key challenge that needs to be addressed (Doherty 
and McMahon, 2008). Currently, we lack suitable tools for accurately 
measuring the distribution and magnitude of forces exerted by actin 
assemblies to a membrane at the molecular level. One promising 
approach to measure molecular forces sensitive at the pN range is For-
ster resonance energy transfer (FRET)-based tension sensors that have 
been used to measure forces transmitted through e.g. focal adhesion 
proteins vinculin and talin in cells (Guo et al., 2014; Ringer et al., 2017; 
Grashoff et al., 2010). Notably, FRET tension sensors have also been 
used to measure forces transmitted from the assembly of actin networks 
to the plasma membrane through Sla2-Ent1 linkers that bridge actin to 
the plasma membrane in budding yeast endocytosis (Abella et al., 2021). 
Sla2 was modified to incorporate a mechanosensitive peptide connected 
by two fluorophores undergoing FRET, which allows the reporting of pN 
ranged forces (Abella et al., 2021). Notably, a recent study introduced a 
force sensor based on protein condensation (Ren et al., 2023). In this 
study conducted in fission yeast, the actin-membrane linker End4p was 
engineered to carry coiled-coil force sensors, enabling the visualization 
of spatial force distribution around the endocytic pit. In the future, it 
would be valuable to incorporate similar force sensors into in vitro 
reconstituted systems. This would offer fresh insights not only into the 
mechanisms of force transmission at actin-membrane interfaces but also 
into how membrane properties, such as membrane tension and curva-
ture, can influence actin force generation and the mechanical resistance 
(Harris et al., 2018; Jarsch et al., 2016; McMahon and Gallop, 2005; 
Romet-Lemonne and Jégou, 2013; Sens and Plastino, 2015; Simon et al., 
2019; Sitarska and Diz-Muñoz, 2020). Moreover, integrating reconsti-
tution systems with fluorescent polarization super resolution micro-
scopy, which provides detailed information on actin structural 
organization, would allow for a comprehensive understanding of both 
forces distribution and actin’s structural dynamics at the 
actin-membrane interface (Rimoli et al., 2022; Cruz et al., 2016). 

To elucidate the mechanistic contributions of actin-membrane linkers in 
membrane tension propagation. Both ERM protein ezrin and myosin-I 
motors are known to regulate the tension of the cell surface, a mea-
sure of the sum of membrane tension and the energy per unit area 
required to detach the membrane and the cortex (Dai et al., 1999; 
Diz-Muñoz et al., 2010; Nambiar et al., 2009b; Sens and Plastino, 2015; 
Sitarska and Diz-Muñoz, 2020). Recent biophysical studies have inves-
tigated the rate of membrane tension propagation across the plasma 
membrane by pulling membrane tethers from the plasma membrane of 
living cells (De Belly et al., 2023; Shi et al., 2018, 2022; Gomis Perez 
et al., 2022; Barnoy et al., 2023). While several mechanisms have been 
proposed to explain the wide range of tension propagation rates 
observed in cells, including frictional drag arising from actin-membrane 
linkers, direct validations of these proposed mechanisms are still lacking 
(De Belly et al., 2023; Shi et al., 2018, 2022; Gomis Perez et al., 2022; 
Barnoy et al., 2023). In vitro reconstituted systems provide an ideal 
platform to directly test these proposed mechanisms. For example, by 
pulling membrane tethers from GUVs encapsulating Arp2/3 
complex-mediated actin networks assembled by 
actin-nucleation-promoting factors anchored to GUV membranes via 
biotin-streptavidin linkers, it was shown that the presence of the actin 
shell restricts lipid mobility and thereby membrane flow, similar to the 
corral-like effect of the actin cortex in cells (Guevorkian et al., 2015). 
Notably, thanks to the recent advances in the cDICE method, based on 

Fig. 4. Membrane tubulation driven by Myo1b. Myo1b motors, bound to the 
surface of a Giant Unilamellar Vesicle containing PI(4,5)P2, collectively pull 
membrane nanotubes by moving on actin bundles immobilized on a glass sur-
face. Scale bars, 5 μm. Figure adapted from (Yamada et al., 2014). 
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the use of water-in-oil-based emulsion droplets in microfluidic devices, 
we can generate cell-sized GUVs that encapsulate well-controlled mo-
lecular compositions, including actin networks anchored to the inner 
surface of the GUVs by biologically relevant actin-membrane linkers at a 
controlled density (Baldauf et al., 2023; Litschel et al., 2021; Loiseau 
et al., 2016; Van de Cauter et al., 2021; Abkarian et al., 2011; Bashir-
zadeh et al., 2021). Therefore, by performing tether pulling experiments 
as in cells, but using actin-filled GUVs, one can address how 
actin-membrane linkers contribute to the propagation of membrane 
tension in the presence of tension gradients. 
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Báez-Cruz, F.A., Ostap, E.M., 2023. Drosophila class-i myosins that can impact left-right 
asymmetry have distinct ATPase kinetics. J. Biol. Chem. 299 (8), 104961 https://doi. 
org/10.1016/j.jbc.2023.104961. 

Baldauf, L., Van Buren, L., Fanalista, F., Koenderink, G.H., 2022. Actomyosin-driven 
division of a synthetic cell. ACS Synth. Biol. 11 (10), 3120–3133. https://doi.org/ 
10.1021/acssynbio.2c00287. 

Baldauf, L., Frey, F., Arribas Perez, M., Idema, T., Koenderink, G.H., 2023. Branched 
actin cortices reconstituted in vesicles sense membrane curvature. Biophys. J. 122 
(11), 2311–2324. https://doi.org/10.1016/j.bpj.2023.02.018. 

Barger, S.R., Vorselen, D., Gauthier, N.C., Theriot, J.A., Krendel, M., 2022. F-actin 
organization and target constriction during primary macrophage phagocytosis is 
balanced by competing activity of Myosin-I and myosin-II. Mol. Biol. Cell 33 (14), 
br24. https://doi.org/10.1091/mbc.E22-06-0210. 

Barger, S.R., Reilly, N.S., Shutova, M.S., Li, Q., Maiuri, P., Heddleston, J.M., 
Mooseker, M.S., Flavell, R.A., Svitkina, T., Oakes, P.W., Krendel, M., Gauthier, N.C., 
2019. Membrane-cytoskeletal crosstalk mediated by Myosin-I regulates adhesion 
turnover during phagocytosis. Nat. Commun. 10 (1), 1–18. https://doi.org/10.1038/ 
s41467-019-09104-1. 

Barnoy, A., Tsaturyan, A.K., Kozlov, M.M., 2023. Mechanism of tension propagation in 
cell membranes, 2023.03.22.533804 bioRxiv March 22. https://doi.org/10.1101/ 
2023.03.22.533804. 

Bashirzadeh, Y., Wubshet, N., Litschel, T., Schwille, P., Liu, A.P., 2021. Rapid 
encapsulation of reconstituted cytoskeleton inside giant unilamellar vesicles. No. 
177 J. Vis. Exp. JoVE. https://doi.org/10.3791/63332. 

Batters, C., Veigel, C., 2016. Mechanics and activation of unconventional myosins. 
Traffic 17 (8), 860–871. https://doi.org/10.1111/tra.12400. 

Baumgart, T., Capraro, B.R., Zhu, C., Das, S.L., 2011. Thermodynamics and mechanics of 
membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. 
Chem. 62, 483–506. https://doi.org/10.1146/annurev.physchem.012809.103450. 

Bezanilla, M., Gladfelter, A.S., Kovar, D.R., Lee, W.-L., 2015. Cytoskeletal dynamics: a 
view from the membrane. J. Cell Biol. 209 (3), 329–337. https://doi.org/10.1083/ 
jcb.201502062. 

Bisaria, A., Hayer, A., Garbett, D., Cohen, D., Meyer, T., 2020. Membrane-proximal F- 
actin restricts local membrane protrusions and directs cell migration. Science 368 
(6496), 1205–1210. https://doi.org/10.1126/science.aay7794. 

Bisi, S., Marchesi, S., Rizvi, A., Carra, D., Beznoussenko, G.V., Ferrara, I., Deflorian, G., 
Mironov, A., Bertalot, G., Pisati, F., Oldani, A., Cattaneo, A., Saberamoli, G., Pece, S., 
Viale, G., Bachi, A., Tripodo, C., Scita, G., Disanza, A., 2020. IRSp53 controls plasma 
membrane shape and polarized transport at the nascent lumen in epithelial tubules. 
Nat. Commun. 11 (1), 3516. https://doi.org/10.1038/s41467-020-17091-x. 

Blake, T.C.A., Gallop, J.L., 2023. Filopodia in vitro and in vivo. Annu. Rev. Cell Dev. Biol. 
https://doi.org/10.1146/annurev-cellbio-020223-025210. 

Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., Plastino, J., 2014. Actin dynamics, 
architecture, and mechanics in cell motility. Physiol. Rev. 94 (1), 235–263. https:// 
doi.org/10.1152/physrev.00018.2013. 

Blin, G., Margeat, E., Carvalho, K., Royer, C.A., Roy, C., Picart, C., 2008. Quantitative 
analysis of the binding of ezrin to large unilamellar vesicles containing 
phosphatidylinositol 4,5 bisphosphate. Biophys. J. 94 (3), 1021–1033. https://doi. 
org/10.1529/biophysj.107.110213. 

Bosk, S., Braunger, J.A., Gerke, V., Steinem, C., 2011. Activation of F-actin binding 
capacity of Ezrin: synergism of PIP₂ interaction and phosphorylation. Biophys. J. 100 
(7), 1708–1717. https://doi.org/10.1016/j.bpj.2011.02.039. 

Bouaouina, M., Goult, B.T., Huet-Calderwood, C., Bate, N., Brahme, N.N., Barsukov, I.L., 
Critchley, D.R., Calderwood, D.A., 2012. A conserved lipid-binding loop in the 
kindlin FERM F1 domain is required for kindlin-mediated αIIbβ3 integrin 
coactivation. J. Biol. Chem. 287 (10), 6979–6990. https://doi.org/10.1074/jbc. 
M111.330845. 

Braunger, J.A., Brückner, B.R., Nehls, S., Pietuch, A., Gerke, V., Mey, I., Janshoff, A., 
Steinem, C., 2014. Phosphatidylinositol 4, 5-bisphosphate alters the number of 
attachment sites between Ezrin and actin. Filam. J. Biol. Chem. 289 (14), 
9833–9843. https://doi.org/10.1074/jbc.M113.530659. 

Bretscher, A., Edwards, K., Fehon, R.G., 2002. ERM proteins and merlin: integrators at 
the cell cortex. Nat. Rev. Mol. Cell Biol. 3 (8), 586–599. https://doi.org/10.1038/ 
nrm882. 

Brown, D.A., 2015. PIP2Clustering: from model membranes to cells. Chem. Phys. Lipids 
192, 33–40. https://doi.org/10.1016/j.chemphyslip.2015.07.021. 

Calderwood, D.A., Campbell, I.D., Critchley, D.R., 2013. Talins and kindlins: partners in 
integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14 (8), 503–517. https://doi. 
org/10.1038/nrm3624. 

Carman, P.J., Dominguez, R., 2018. BAR domain proteins-a linkage between cellular 
membranes, signaling pathways, and the actin cytoskeleton. Biophys. Rev. 10 (6), 
1587–1604. https://doi.org/10.1007/s12551-018-0467-7. 

Case, L.B., Zhang, X., Ditlev, J.A., Rosen, M.K., 2019. Stoichiometry controls activity of 
phase-separated clusters of actin signaling proteins. Science 363 (6431), 1093–1097. 
https://doi.org/10.1126/science.aau6313. 

Charras, G.T., Hu, C.K., Coughlin, M., Mitchison, T.J., 2006. Reassembly of contractile 
actin cortex in cell blebs. J. Cell Biol. 175 (3), 477–490. https://doi.org/10.1083/ 
jcb.200602085. 

Cheng, J., Grassart, A., Drubin, D.G., 2012. Myosin 1E coordinates actin assembly and 
cargo trafficking during clathrin-mediated endocytosis. Mol. Biol. Cell 23 (15), 
2891–2904. https://doi.org/10.1091/mbc.e11-04-0383. 

Chugh, P., Paluch, E.K., 2018. The Actin Cortex at a Glance. J. Cell Sci. 131 (14), 
jcs186254 https://doi.org/10.1242/jcs.186254. 

Cruz, C.A.V., Shaban, H.A., Kress, A., Bertaux, N., Monneret, S., Mavrakis, M., 
Savatier, J., Brasselet, S., 2016. Quantitative nanoscale imaging of orientational 
order in biological filaments by polarized superresolution microscopy. Proc. Natl. 
Acad. Sci. 113 (7), E820–E828. https://doi.org/10.1073/pnas.1516811113. 

Dai, J., Ting-Beall, H.P., Hochmuth, R.M., Sheetz, M.P., Titus, M.A., 1999. Myosin I 
contributes to the generation of resting cortical tension. Biophys. J. 77 (2), 
1168–1176. https://doi.org/10.1016/S0006-3495(99)76968-7. 

Dart, A.E., Tollis, S., Bright, M.D., Frankel, G., Endres, R.G., 2012. The motor protein 
myosin 1g functions in fcγr-mediated phagocytosis. J. Cell Sci. 125 (24), 6020–6029. 
https://doi.org/10.1242/jcs.109561. 

Daste, F., Walrant, A., Holst, M.R., Gadsby, J.R., Mason, J., Lee, J.-E., Brook, D., 
Mettlen, M., Larsson, E., Lee, S.F., Lundmark, R., Gallop, J.L., 2017. Control of actin 
polymerization via the coincidence of phosphoinositides and high membrane 
curvature. J. Cell Biol. 216, 3745–3765. https://doi.org/10.1083/jcb.201704061. 

Dawicki McKenna, J.M., Ostap, E.M., 2009. Kinetics of the Interactin of Myo1c with 
Phosphoinositides. J. Biol. Chem. 284 (42), 28650–28659. https://doi.org/10.1074/ 
jbc.M109.049791. 

De Belly, H., Yan, S., Borja da Rocha, H., Ichbiah, S., Town, J.P., Zager, P.J., Estrada, D. 
C., Meyer, K., Turlier, H., Bustamante, C., Weiner, O.D., 2023. Cell Protrusions and 
Contractions Generate Long-Range Membrane Tension Propagation, 00533-0 Cell 
S0092-8674 (23). https://doi.org/10.1016/j.cell.2023.05.014. 

F.-C. Tsai et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.devcel.2021.08.007
https://doi.org/10.1039/C1SM05239J
https://doi.org/10.1038/ncb2262
https://doi.org/10.1039/C7SM00834A
https://doi.org/10.1016/j.jbc.2023.104961
https://doi.org/10.1016/j.jbc.2023.104961
https://doi.org/10.1021/acssynbio.2c00287
https://doi.org/10.1021/acssynbio.2c00287
https://doi.org/10.1016/j.bpj.2023.02.018
https://doi.org/10.1091/mbc.E22-06-0210
https://doi.org/10.1038/s41467-019-09104-1
https://doi.org/10.1038/s41467-019-09104-1
https://doi.org/10.1101/2023.03.22.533804
https://doi.org/10.1101/2023.03.22.533804
https://doi.org/10.3791/63332
https://doi.org/10.1111/tra.12400
https://doi.org/10.1146/annurev.physchem.012809.103450
https://doi.org/10.1083/jcb.201502062
https://doi.org/10.1083/jcb.201502062
https://doi.org/10.1126/science.aay7794
https://doi.org/10.1038/s41467-020-17091-x
https://doi.org/10.1146/annurev-cellbio-020223-025210
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1529/biophysj.107.110213
https://doi.org/10.1529/biophysj.107.110213
https://doi.org/10.1016/j.bpj.2011.02.039
https://doi.org/10.1074/jbc.M111.330845
https://doi.org/10.1074/jbc.M111.330845
https://doi.org/10.1074/jbc.M113.530659
https://doi.org/10.1038/nrm882
https://doi.org/10.1038/nrm882
https://doi.org/10.1016/j.chemphyslip.2015.07.021
https://doi.org/10.1038/nrm3624
https://doi.org/10.1038/nrm3624
https://doi.org/10.1007/s12551-018-0467-7
https://doi.org/10.1126/science.aau6313
https://doi.org/10.1083/jcb.200602085
https://doi.org/10.1083/jcb.200602085
https://doi.org/10.1091/mbc.e11-04-0383
https://doi.org/10.1242/jcs.186254
https://doi.org/10.1073/pnas.1516811113
https://doi.org/10.1016/S0006-3495(99)76968-7
https://doi.org/10.1242/jcs.109561
https://doi.org/10.1083/jcb.201704061
https://doi.org/10.1074/jbc.M109.049791
https://doi.org/10.1074/jbc.M109.049791
https://doi.org/10.1016/j.cell.2023.05.014


European Journal of Cell Biology 103 (2024) 151402

9

Disanza, A., Mantoani, S., Hertzog, M., Gerboth, S., Frittoli, E., Steffen, A., 
Berhoerster, K., Kreienkamp, H.-J., Milanesi, F., Di, F., Ciliberto, A., Stradal, T.E.B., 
Scita, G., 2006. Regulation of cell shape by Cdc42 is mediated by the synergic actin- 
bundling activity of the Eps8–IRSp53 complex. Nat. Cell Biol. 8 (12), 1337–1347. 
https://doi-org.insb.bib.cnrs.fr/10.1038/ncb1502. 

Disanza, A., Bisi, S., Winterhoff, M., Milanesi, F., Ushakov, D.S., Kast, D., Marighetti, P., 
Romet-Lemonne, G., Müller, H.-M., Nickel, W., Linkner, J., Waterschoot, D., 
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