
HAL Id: hal-04762253
https://hal.science/hal-04762253v1

Submitted on 31 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

WIDGET MODULATION IN FAUST
Yann Orlarey, Stéphane Letz, Romain Michon

To cite this version:
Yann Orlarey, Stéphane Letz, Romain Michon. WIDGET MODULATION IN FAUST. International
Faust Conference, Nov 2024, TURIN, Italy. �hal-04762253�

https://hal.science/hal-04762253v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

WIDGET MODULATION IN FAUST

Yann Orlarey

Univ Lyon, Inria, INSA Lyon, CITI, EA3720,
69621 Villeurbanne, France

yann.orlarey@inria.fr

Stéphane Letz

Univ Lyon, GRAME-CNCM, INSA Lyon,
Inria, CITI, EA3720, 69621 Villeurbanne,

France
letz@grame.fr

Romain Michon

Univ Lyon, Inria, INSA Lyon, CITI, EA3720,
69621 Villeurbanne, France

romain.michon@inria.fr

ABSTRACT

This article presents a novel extension to the FAUST programming
language called Widget Modulation. Inspired by Modular Synthe-
sizer, this high order operation enables developers to effortlessly
implement voltage control type modulation to existing FAUST cir-
cuits.

Although signal modulation can easily be achieved by writing
the necessary code during circuit development, Widget Modulation
expressions enable it a posteriori, after the circuit has been devel-
oped and without modifying its code. This feature allows for easy
reuse and customization without prior planning by the original cir-
cuit designer, offering a new level of expressivity and flexibility in
FAUST circuit design.

1. INTRODUCTION

The development of voltage control in analog sound synthesis, be-
ginning in the mid-20th century, marks a milestone in the history
of electronic music. This technique involves using electrical volt-
ages to modulate various synthesizer parameters, such as the pitch
or amplitude of an oscillator or the cutoff frequency of a filter. This
capability allows synthesis parameters to evolve, imparting timbral
richness, expressiveness, and dynamism to the sounds produced.

Key figures in the development of voltage control for analog
sound synthesis include Hugh Le Caine, Robert Moog, and Don
Buchla. Building on Hugh Le Caine’s concept of the voltage-
controlled oscillator (VCO), Robert Moog established a crucial
standard for modular synthesizers known as 1V/oct, where an in-
crease of one volt corresponds to a pitch change of one octave [1].

This standard enables a form of recursivity within the synthe-
sizer itself: the sound signals produced by one module can control
the parameters of other modules, including itself. This recursive
capability is a key factor in the richness and complexity of the
sounds generated by modular synthesizers. Let’s quote Suzanne
Ciani in [2]: “What we all love is the hands-on experience of
patching and tweaking . . . the way it engages both our brains
and our bodies, the freedom of choice it offers, the individualism,
the uniqueness.”

Implementing voltage control principals, à la Modular Synthe-
sizer, in FAUST [3] had always been straightforward. All we need
to do is add an audio input and implement a modulation operation
that describes how to combine this additional input signal with that
of the widget we want to modulate. The modulation operation can
be as simple as an addition or multiplication.

As an example, let’s start with a simple oscillator: myosc,
with a frequency control, but no modulation possibility:

import("stdfaust.lib");

myosc = vslider("freq[style:knob][scale:log
]", 440, 20, 20000,0.1)

: os.osc;

process = myosc;

Let’s now look at how to transform myosc to create a fre-
quency modulation (FM) circuit [4]. To do this, we need to mod-
ulate the frequency of the oscillator by introducing the influence
of another oscillator. Specifically, we will achieve this by adding
the output signal of the second oscillator (mymod) to the frequency
control (the “freq” widget) of the first oscillator, as in the following
code:

import("stdfaust.lib");

myosc = +(vslider("freq[style:knob][scale:
log]", 440, 20, 20000,0.1))

: os.osc;

mymod = hslider("fmod[style:knob][scale:log
]", 110, 20, 1000,0.01)

: os.osc * hslider("amod[style:knob
]", 25, 0, 1000, 0.01);

process = mymod : myosc;

The modification was minimal. All we had to do was add an
input signal to myosc and sum it with the “freq” widget of the
oscillator. However, we could do this because we had access to the
source code of myosc. If myosc had been defined in a library,
we would have had to either modify the library or duplicate the
myosc code in our program.

As we will see, Widget Modulation allows us to do the same
kind of transformation but without modifying the source code! It,
therefore, makes FAUST’s code reuse mechanisms, library()
and component() even more useful.

2. EXAMPLES OF WIDGET MODULATION

Before a more formal description of Widget Modulation, let’s con-
sider some very simple examples using dm.freeverb_demo
from the standard library.

Without inspecting the code, just by looking at the user inter-
face of dm.freeverb_demo (figure 1) we can see the names
of the various widgets that are involved and that could possibly be
modulated.

Here we are interested in the "Wet" slider that controls the
balance between the wet (reverbered) and dry (unprocessed) sig-
nals.

In order to modulate the "Wet" slider, we write:

https://www.inria.fr/fr
https://www.inria.fr/fr
mailto:yann.orlarey@inria.fr
http://grame.fr
http://grame.fr
http://grame.fr
mailto:letz@grame.fr
https://www.inria.fr/fr
https://www.inria.fr/fr
mailto:romain.michon@inria.fr

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

Figure 1: Freeverb user interface.

["Wet" -> dm.freeverb_demo]

As we can see, the syntax of a Widget Modulation deliberately
resembles that of a lambda-abstraction, although the semantics are
quite different and the two should not be confused. Here the string
"Wet" identifies the target of the modulation, the vslider("
Wet",...) in the definition of dm.freeverb_demo. Be-
cause we didn’t specify a modulation circuit, the modulation cir-
cuit is implicitly assumed to be a multiplication.

The resulting circuit has now three inputs: the new input for
the modulation signal, and the original left and right inputs of the
reverb. Moreover the signal delivered by the "Wet" slider is mul-
tiplied by the input modulation signal everywhere in the reverb
circuit.

This extra input can now be connected to an oscillator to mod-
ulate the Wet parameter as in:

1+os.osc(0.1)/4,_,_: ["Wet" -> dm.
freeverb_demo];

Here the modulation signal 1+os.osc(0.1)/4 is an oscil-
lator with a frequency of 0.1 Hz, and an amplitude of 0.25. The
1+ is used to ensure that the modulation signal is between 0.75
and 1.25.

Modulation Circuit. In the previous example, we didn’t indi-
cate a modulation circuit. To do so, we use the symbol ’:’ fol-
lowed by the modulation circuit. For example "Wet":+ indicates
the use of an addition as a modulation circuit. It means that our
previous example is equivalent to:

1+os.osc(0.1)/4,_,_: ["Wet":* -> dm.
freeverb_demo];

By writing "Wet":* we explicitly stated to use a multiplica-
tion * as a modulation circuit. Please note that the : symbol in "
Wet":* is used to separate the widget name from the modulation
circuit and should not be confused with the sequential composition
operator :, even if it also suggests an idea of connection.

We’ll come back to this later, but a modulation circuit can be
of three types. A circuit with two inputs and one output, like * or
+; a circuit with one input and one output, like *(2); or a circuit
with no input and one output, like 0.75.

1. Only a modulation circuit with two inputs, like + or * cre-
ates an external modulation input. Its first input is con-
nected to the widget, and the second one becomes the mod-
ulation input.

2. Another possibility is to describe the entire modulation cir-
cuit in a single expression, in which case there is no need
for an additional input, as in the following example:

["Wet":*(1+os.osc(0.1)/4) -> dm.
freeverb_demo];

3. Finally, we can completely replace the target widget with a
modulation circuit that has no inputs, for example:

["Wet":0.75 -> dm.freeverb_demo];

Then the slider will be removed from the user interface and
replaced by a constant value of 0.75, with potential speed
up of the computation.
Instead of replacing a widget with a constant, we can re-
place it with another widget, for example to change its name,
style, range, etc.:

["Wet":vslider("WetDry", 0.25, 0, 1,
0.01) -> dm.freeverb_demo];

In this case, all occurrence of vslider("Wet", 0.25,
0, 1, 0.01) in dm.freeverb_demo is replaced by

vslider("WetDry", 0.25, 0, 1, 0.01).

Multiple Targets. In the previous examples, we only had one
target widget. We can specify more than one by separating them
with commas as in the following example:

["Wet", "Damp", "RoomSize" -> dm.
freeverb_demo]

The resulting circuit has five inputs, three modulation inputs
and two reverb inputs. The first input modulates the "Wet" wid-
get, the second the "Damp"widget, and the third the "RoomSize
" widget. These three inputs are followed by the two inputs of the
reverb.

Please note that the above expression is equivalent to the “cur-
ryfied” version:

["Wet" -> ["Damp" -> ["RoomSize" -> dm.
freeverb_demo]]]

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

[1] gain

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] gain

*
*

vgroup(chan 0)

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] gain

*
*

vgroup(chan 1)

hgroup(mixer)

process

Figure 2: All gain controls are modulated by the same input.

[1] v:chan 1/gain

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)
*

vgroup(chan 0)

vslider(gain, 0.0f, 0.0f, 1.0f, 0.01f)

[1] v:chan 1/gain

*
*

vgroup(chan 1)

hgroup(mixer)

process

Figure 3: Only the gain of channel 2 is modulated.

Multiple Matches. It might happen that the same name matches
multiple widgets in different groups. In this case, all the matched
widgets will be modulated by the same audio input.

In the following example we have a kind of two voices mixer:

import("stdfaust.lib");

mixer = hgroup("mixer",
par(i,2,

vgroup("chan %2i",

*(vslider("gain", 0, 0, 1,
0.01))

)
)

);

process = ["gain" -> mixer];

Since in both channels we have “gain” widget, the modulation
will affect both channels as we can see on the bloc-diagram figure
2.

For a more specific selection of the target widget, we can in-
clude the names of some or all of the enclosing groups of the target
widget, as in ["v:chan 1/gain" -> mixer]. Here, only
the gain of channel number 1 will be modulated (see figure 3).

3. SYNTAX OF WIDGET MODULATION

In the preceding examples, we have provided an informal overview
of Widget Modulation, aiming to offer a relatively intuitive under-
standing. Now, we will present a more formal description using
syntactic rules in Backus-Naur Form (BNF), starting from the Wid-
get Modulation expression itself:

Figure 4: WidgetModulationExpression.

Figure 5: Target.

3.1. WidgetModulationExpression

WidgetModulationExpression
::= ’[’ Target (’,’ Target)*

’->’ Expression ’]’

A Widget Modulation expression is composed of a list of target
widgets and a modulated expression in which the target widgets
are presumably used. The targets are separated by a comma sign (,
). There must be at least one target. A Widget Modulation without
targets is not allowed. The targets and the modulated expression
are separated by the sign ->, and the whole Widget Modulation
expression is enclosed in square brackets.

3.2. Target

Target ::= ’"’ WidgetPath ’"’ (’:’
ModulationCircuit)?

A Target is composed of a WidgetPath that identifies the wid-
get to modulate, and an optional ModulationCircuit that indicates
how to combine the signal delivered by the widget with the mod-
ulation signal. If no ModulationCircuit is provided, the default is
multiplication.

3.3. WidgetPath

WidgetPath
::= ((’h:’ | ’v:’ | ’t:’)

GroupLabel ’/’)* WidgetLabel

The WidgetPath is used to identify widgets in a modulated ex-
pression. It is a string composed of a widget label, optionally pre-
ceded by a sequence of group labels separated by slashes. The
widget label is matched after removing any metadata. Group la-
bels are used to disambiguate the widget to match, but they do not
have to be consecutive.

Figure 6: WidgetPath.

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

3.4. ModulationCircuit

The ModulationCircuit describe how to modulate the signal pro-
duced by the target widget. It can be any FAUST circuit with up to
two inputs and one output. Three cases have to be considered:

• (2 → 1): A binary circuit with two inputs and one output,
for example + as in "Wet":+. In this case, and only in
this case, an additional input is created and the value of the
widget is combined into the binary circuit before being used
in the modulated expression.

• (1 → 1): A unary circuit with one input and one out-
put, for example *(lfo(10, 0.5)) as in "Wet":*(
lfo(10, 0.5)). In this case, the value of the widget
is routed into the unitary circuit before being used in the
modulated expression, and no additional input is created.

• (0 → 1): A constant circuit with no input and one out-
put, for example 0.75 as in "Wet":0.75. In this case all
the occurrences of widget are simply removed and replaced
by the constant circuit in the modulated expression. This
is convenient to simplify a rich interface when some wid-
gets that are not needed. In this case, no additional input is
created.

3.5. Compilation

Widget Modulation is a circuit transformation primitive that is han-
dled in the first phase of the compilation process. During this phase
the FAUST program is evaluated to produce a circuit in normal
form (a flat circuit composed solely of interconnected primitives).

Let’s illustrate this process on our previous example:

["Wet":*(1+os.osc(0.1)/4) -> dm.
freeverb_demo]

The compiler first evaluates *(1+os.osc(0.1)/4) and
dm.freeverb_demo into their respective normal forms c1 and
c2. It then computes the normal form of ["Wet":*(1+os.
osc(0.1)/4)-> dm.freeverb_demo] by replacing every
widget w labeled "Wet" occurring in c2 with w:c1.

As a circuit transformation, Widget Modulation represents a
new type of operation for FAUST, distinct from circuit composi-
tion operations (:, ,, \~, <:, :>), which assemble existing cir-
cuits without transforming them. Despite this distinction, Wid-
get Modulation fully aligns with the philosophy of a programming
language dedicated to the description and implementation of audio
circuits.

4. EXAMPLES OF MODULATION CIRCUITS

The ability to specify our own modulation circuits provides a lot
of flexibility and expressiveness to Widget Modulation. Here, we
give some examples of modulation circuits, some of which exploit
the fact that it is possible to know the minimum and maximum
values of a signal using the primitives lowest and highest,
thereby ensuring that the signal after modulation remains within
the widget’s limits.

4.1. Frequency Modulation

Let’s start with a simple example of frequency modulation show-
ing the usage of simple additive and multiplicative modulations.

Figure 7: Simple frequency modulation.

We first define an oscillator with its own user interface consist-
ing of two widgets, one controlling its frequency and the other its
amplitude.

osc(n) = hgroup("osc %2n", os.osc(f) * g
with {
f = vslider("freq[scale:log][style:knob

][unit:Hz]",440,0.25,20000,1);
g = vslider("gain[style:knob]", 0, 0,

1, 0.01);
});

The n parameter is used in the group label to distinguish os-
cillators, so that we can use more than one. The minimal value for
the frequency, 0.25 Hz, is deliberately outside the audible range in
order to use the oscillator also as a LFO.

Let’s look at a first example of frequency modulation using an
addition as the modulation circuit:

process = osc(1) : ["freq":+ -> osc(2)];

The user interface and resulting spectrum are shown in figure
7. We recognize a FM spectrum, but the amplitude of the modu-
lation oscillator is not high enough to obtain a rich spectrum. We
can fix the problem by amplifying the modulation signal:

process = osc(1)*500 : ["freq":+ -> osc(2)
];

This gives us the spectrum figure 8.
Now let’s add a third modulation stage, to modulate the “gain”

of oscillator 1 and obtain a periodic variation in the spectrum:

process = osc(0)+1 : ["gain" -> osc(1)*500]
: ["freq":+ -> osc(2)];

The resulting program can be try on line here

4.2. Advanced Modulation Circuits

In the previous examples, we did not account for the possibility of
the modulated widget signal exceeding the limits of the initial wid-
get. However, there are scenarios where this is important. There-
fore, we now present several more advanced modulation circuits
that ensure that the output value respects the range of values of

https://faustide.grame.fr/?autorun=1&voices=0&name=untitled7&inline=aW1wb3J0KCJzdGRmYXVzdC5saWIiKTsKCm9zYyhuKSA9IGhncm91cCgib3NjICUybiIsIG9zLm9zYyhmKSAqIGcgd2l0aCB7CiAgICBmID0gdnNsaWRlcigiZnJlcVtzY2FsZTpsb2ddW3N0eWxlOmtub2JdW3VuaXQ6SHpdIiwgNDQwLCAwLjI1LCAyMDAwMCwgMC4xKTsKICAgIGcgPSB2c2xpZGVyKCJnYWluW3N0eWxlOmtub2JdIiwgMCwgMCwgMSwgMC4wMSk7Cn0pOwoKcHJvY2VzcyA9IG9zYygwKSsxIDogWyJnYWluIjoqIC0-IG9zYygxKSo1MDBdIDogWyJmcmVxIjorIC0%2BIG9zYygyKV07Cg%3D%3D

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

Figure 8: Improved FM circuit.

the widget w. As a reminder, we can determine the minimum and
maximum values of a signal using the lowest and highest
primitives.

addp and add modulations. The principle here is to add a
value taken between two limits to the widget. A distinction is
made between two cases, depending on the nature of the modu-
lation signal. It could be a positive modulation signal, between
0 and +1, such as the signal from an envelope follower. Alterna-
tively, it could be an audio signal, between -1 and +1, such as the
signal from an oscillator. The obtained value is then clipped to the
limits of the widget.

The first function, addp, adds to the widget w a value between
v1 and v2 based on a positive modulation signal m ranging from
0 to +1:

addp(v1,v2,w,m) = max(lo, min(hi, w + v))
with {
lo = lowest(w);
hi = highest(w);
v = v1+m*(v2-v1);

};

The second function, add, adds to the widget w a value be-
tween v1 and v2 based on an audio modulation signal m ranging
from -1 to +1.

add(v1,v2,w,m) = addp(v1,v2,w,(m+1)/2);

mulp and mul modulations. The first function mulp multiply
the widget value w by a factor between f1 and f2 based on a
positive modulation signal m ranging from 0 to +1.

mulp(f1,f2,w,m) = max(lo, min(hi, w * f))
with {
lo = lowest(w);
hi = highest(w);
f = f1+m*(f2-f1);

};

The second one mulp multiply the widget value w by a factor
between f1 and f2 according to an audio modulation signal m
ranging from -1 to +1.

mul(f1,f2,w,m) = mulp(f1,f2,w,(m+1)/2);

mapp and map modulations. These last two functions allow
you to completely replace a widget (causing it to disappear from
the user interface) with a value that varies between two bounds
controlled by a modulation signal. The first function mapp re-
places the widget by a value between v1 and v2 based on a posi-
tive modulation signal p ranging from 0 to +1.

mapp(v1,v2,w,p) = v1 + p*(v2-v1);

4.3. Revisiting the Frequency Modulation Example

We can apply these new functions to revisit our frequency modula-
tion example. Let’s start by defining an md environment containing
all our modulation functions:

md = environment {
addp(v1,v2,w,m) = max(lowest(w), min(

highest(w), w + v))
with {

v = v1+m*(v2-v1);
};

mulp(f1,f2,w,m) = max(lowest(w), min(
highest(w), w * f))

with {
f = f1+m*(f2-f1);

};

mapp(v1,v2,w,p) = v1 + p*(v2-v1);

add(v1,v2,w,m) = addp(v1,v2,w,(m+1)/2);
mul(f1,f2,w,m) = mulp(f1,f2,w,(m+1)/2);
map(v1,v2,w,m) = mapp(v1,v2,w,(m+1)/2);

};

The revised frequency modulation example is as follows:

process = osc(0)
: ["freq":md.add(-500,500) -> osc

(1)];

It is interesting to note that the same target widget can be
modulated several times by different modulation circuits. In the
following Widget Modulation expression, two modulation circuits
are applied to the same “freq” widget. It is first modulated by an
add(-600,600), and the result by a mul(0.1,10):

["freq":md.add(-600,600), "freq":md.mul
(0.1,10) -> osc(1)]

The circuit figure 9, shows how this double modulation is im-
plemented.

To complete this section, here is a more elaborate example. It
combines double frequency modulation—by an oscillator and by
its own output signal via feedback—with the modulation of the
“gain” widgets of these two oscillators by a third oscillator.

process = osc(0) : ["gain":md.add(0,0.5) ->
(_ ,osc(1): ["freq":md.add(-600,600), "
freq":md.mul(0.1,10) -> osc(2)])~@(200)
]<: _,@(5000);

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

Figure 9: Double modulation of the "freq" widget.

5. CONCLUSION

This article introduces Widget Modulation, a novel extension to
the FAUST programming language. This high-order primitive di-
rectly manipulates audio circuits, marking the first instance of such
functionality within FAUST.

Inspired by the principles of modular synthesizers, Widget Mod-
ulation enables developers to seamlessly implement voltage control-
type modulation into existing FAUST circuits. This allows for the
redesign of user interfaces without necessitating direct access to
the underlying source code.

While mastering the use of Widget Modulation may require
time, its potential to significantly influence the development of
FAUST libraries is substantial [5]. Users will be empowered to cre-
ate libraries of modules, akin to those found in modular synthesiz-
ers, featuring rich and detailed user interfaces, with the assurance
that a posteriori customization remains feasible. Furthermore, the
extension opens avenues for the development of new libraries ded-
icated to modulation circuits.

6. REFERENCES

[1] Laurent de Wilde, Les fous du son, d’Edison à nos jours,
Grasset, 2016.

[2] Suzanne Ciani, Foreword, Bjooks, May 2018.

[3] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[4] John M. Chowning, “The synthesis of complex audio spec-
tra by means of frequency modulation,” Journal of the audio
engineering society, vol. 21, no. 7, pp. 526–534, 1973.

[5] Julius O. Smith, “Signal processing libraries for Faust,” in
Proceedings of Linux Audio Conference (LAC-12), Stanford,
USA, May 2012.

	1 Introduction
	2 Examples of Widget Modulation
	3 Syntax of Widget Modulation
	3.1 WidgetModulationExpression
	3.2 Target
	3.3 WidgetPath
	3.4 ModulationCircuit
	3.5 Compilation

	4 Examples of modulation circuits
	4.1 Frequency Modulation
	4.2 Advanced Modulation Circuits
	4.3 Revisiting the Frequency Modulation Example

	5 Conclusion
	6 References

