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Abstract—Microbubble (MB) identification is a crucial step
in ultrasound localization microscopy (ULM) as it defines the
patches of clutter-filtered brightness (B-mode) images where
the sub-wavelength localization algorithm should be applied.
Neyman-Pearson (NP) criterion has been applied as a method
for MB detection in 2D in-vivo ULM. The principle of NP is to
establish a pixel-specific threshold based on the pixel’s temporal
statistics. NP increased the resolution compared to intensity
based identification (INT) and had a more complete mapping
of the vessels than cross-correlation based identification (COR).
However, the previously proposed method was limited to 2D and
suffered from the out-of-plane motion and from the inability to
capture the 3D structure of vascularization. Herein, NP is first
extended to volumetric imaging and then compared to 3D INT
and 3D COR. Simulation results demonstrate that the proposed
method is more effective in detecting the low signal-to-noise ratio
MBs compared to INT. In vivo rat kidney data further reveal that
NP produces fewer artifacts in ULM maps while achieving similar
resolution to INT and COR. In the other hand, NP produced less
blurry maps, which may indicate either that NP detects less noise
or that it is less sensitive to MBs.

Index Terms—Ultrasound localization microscopy, Super-
resolution, Neyman-Pearson, 3D imaging, microbubble detection

I. INTRODUCTION

Ultrasound localization microscopy (ULM) allows to map
vessels with a resolution beyond the diffraction limit, [1], [2],
[3]. The pipeline of Ultrasound ULM consists of multiple
steps, each crucial for achieving high-resolution vascular imag-
ing. Ongoing research focuses on optimizing these individual
steps to further enhance the accuracy and detail of the vas-
cular representations produced by ULM. Microbubble (MB)
detection occurs after clutter filtering: This process identify
the MB signature within the filtered data, thereby enabling the
utilization of the sub-wavelength localization algorithm. An

efficient MB identifier is of prior importance for two reasons:
(i) false MB identifications can create artifacts on the final
ULM map, and (ii) missing MBs will increase the time needed
to obtain a good representation of the vessel network.

Several MB identification methods have been developed,
two of which will be employed for comparison with NP. The
first one is directly based on the intensity of pixels (INT),
[4]. It assumes that after filtering, the n first local maxima
are produced by MBs, with n a number empirically chosen.
INT is very sensitive to noise and can fail to discriminate
residual tissue signals of high intensity from MBs. The second
widely used method is based on the cross-correlation (COR)
of the filtered B-mode images with an MB point spread
function (PSF). This PSF can be measured, simulated, or
approximated with a Gaussian kernel. INT and COR are
sometimes used together for better results [5]. COR has good
performances but will fail when the PSF shape varies with
space or because of overlapping MBs. Deep-learning-based
methods are also in development. An example comes from [6],
who correlates the filtered images with a PSF, and afterwards,
a 3D CNN transforms the correlation map into tracks. This
approach eliminates the need to choose which correlation
peaks represent MBs but still relies on the COR method.

To tackle those problems, a new MB identifier has been
developed recently by [7]. It increased the resolution on in
vivo data compared to INT and provided a more complete
reconstruction of the vascularization than COR. It uses
decision theory and the Neyman-Pearson criterion (NP) to
define an intensity threshold specific to each pixel based on
its time statistics. However, its implementation was limited to
2D ULM. It suffered from out-of-plane motion and was not
able to capture the 3D structure of the vessels.



Fig. 1. (Left) Time signal from a voxel with speckle in blue and microbub-
bles in orange. (Right) The probability density function approximated as a
Gaussian and Neyman-pearson criterion to define the microbubble intensity
threshold η. Effect of α on η is showed with two examples: α1 and α2.

This work extends NP to 3D ULM and will try to answer
whether NP should be used over COR and INT for volumetric
ULM. In this purpose, the methods are compared regarding
precision and recall on simulations. Then in vivo externalized
rat kidney data [8] are used for qualitative analysis.

II. IDENTIFICATION METHODS

A. Neyman-Pearson

In vivo temporal signal from a single voxel r after clutter
filtering is illustrated on Fig. 1 (left). The remaining clutter
signal is shown in blue, while the MB signal is depicted in
orange. It can be seen that MBs have different amplitudes
when passing by this voxel. These amplitude variations are
even more pronounced across different voxels. This variability
complicates the application of a single intensity threshold
across the entire volume. The NP approach addresses this by
computing a voxel-specific threshold based on the temporal
statistics of each voxel.

The first step of the proposed method is to define two
hypotheses:

• H0: Signal comes from speckle only.
• H1: Signal comes from speckle and MB.
The objective is now to find the threshold η such that

xr(t)
H1

≷
H0

η , (1)

with xr(t) the amplitude of voxel at the instant t. The
meaning of (1) is: ”If xr(t) is higher than η, an MB is then
detected.”

The Neyman-Pearson theory offers a methodology for de-
termining the threshold η. This requires the specification of a
false alarm rate, α ∈ [0; 1]. It quantifies the tolerance to false
detections in this context. This parameter is linked to η by

α
△
=

∫ +∞

η

p(xr(t)|H0)dx , (2)

where p is the probability density function (PDF). The PDF
of a single voxel can be approximated as a Gaussian:

p(xr(t)|H0) =
1

σ
√
2π

e−
1
2

(xr−m)2

σ2 . (3)

The mean m and the standard deviation σ are computed
on xr(t) using respectively the median and the median ab-
solute deviation for more robustness to noise. By injecting
equation (3) in equation (2), it is possible to isolate η. The
decision rule (1) finally becomes:

xi,j,k(t)
H1

≷
H0

σ
√
2erf−1 (1− 2α) +m

△
= η . (4)

with erf−1 the inverse error function. For more detailed
calculus, please refer to [7]. In equation (2), α is defined
solely based on the H0 hypothesis. However, the distinction
between the signal components corresponding to H0 and H1

is unknown in practice. Consequently, experimental estimates
for m and σ are derived from the entire signal rather than
exclusively from the speckle component.

The right side of Fig. 1 illustrates the impact of α on the
NP threshold. All MBs are detected for a high value of α =
α1. However, some speckle components are also incorrectly
classified and belong to H1. On the other hand, when α is
reduced to α2, speckle is no longer detected, but several MBs
are missed. The user is responsible for determining the α value
that best fits the data. To mitigate the effects of a high α, only
the n highest local maxima after thresholding are considered
as MBs.

B. Intensity- and correlation-based methods

The two other MB identification methods used in this study
for comparison are INT and COR. In the first case, the Matlab
function imregionalmax is applied to the volume to find the
local maxima. The first n maxima are then kept and considered
as MBs. It is a straightforward method that heavily depends
on the number n defined by the user. Furthermore, this method
can detect high intensity noise and miss low intensity MBs.
In the latter method a PSF is simulated with a 3D Gaussian
kernel. For a voxel size of half a wavelength, the standard
deviation of the Gaussian is 2. A normalized cross-correlation
is then done between the PSF and the volume. Voxels with
a correlation under a threshold τncc are set 0 and the first n
local maxima of the correlation map are considered as MBs.
This method needs two parameters to be defined: τncc and n.

III. SIMULATION STUDY

A. Simulation

The 3D simulator described in [9] was employed to gen-
erate the spatial positions of 50 MBs per volume across
400 volumes. This simulator exploits the vascular network
of a mouse brain acquired via two-photon microscopy to
produce realistic MB trajectories and velocities. Initially, the
network has dimensions of 0.5 × 0.5 × 0.65 mm, then is
expanded to a volume of 8.1 × 8.1 × 12 mm. With the MB
positions established, the MUST toolbox [10] was used to
simulate radiofrequency (RF) data from a 1024-element matrix
probe with a central frequency of 8 MHz. An experimental
speckle, acquired with the same probe on a phantom with hand



Fig. 2. Metrics comparison: (A) Precision and recall of NP and INT on
simulated data. (B) FSC of in vivo data with a grid size of 9.9 µm

movement, was subsequently added to the simulated post-
beamforming data. The signal-to-noise ratio (SNR) between
MBs and speckle varies between -5 dB and 20 dB by step of
1 dB.

B. Results

Two metrics are computed: precision and recall. The first
corresponds the ratio between the number of true detections
and the total number of detections. The second metric, recall,
is the ratio between the number of true detections with the
number of MBs in all the volumes. A detection is considered
true when an MB position is located less than a quarter of the
wavelength from it. For this application α is set to 0.1 and
n = 50. Fig. 2A shows metrics for the different SNR levels.

For high SNR values, INT and NP exhibit similar per-
formances. However, as the SNR decreases, NP begins to
outperform INT. The maximum gain is observed at an SNR of
2 dB, where NP shows an increase of 0.2 and 0.17 in precision
and recall compared to INT. COR curves are not displayed
as it did not provide satisfactory results. Speckle sometimes
exhibits PSF-like patterns that trick the detection, which
explains COR’s poor metrics. This experiment demonstrates
that NP is superior to INT for detecting MBs at low SNR on
simulated data.

IV. In vivo STUDY

In vivo data comes from the study [8]. It consists of
500 blocks of 200 volumes acquired on an externalized rat
kidney. The same matrix probe as in the simulation study
was used. Volumes were clutter filtered using a singular value
decomposition. For the ULM exploitation, all steps are identi-
cal except for the MB identification method. An Hungarian
algorithm from simpletracker toolbox is used for tracking
followed by sub-wavelength localization conducted with 3D
radial symmetry [11]. The maximum linking distance is set to
3 voxels (= 295 µm), and tracks shorter than 18 temporal steps
are removed. For this application, α and τncc are empirically
set to 0.01 and 0.6, respectively. Fig. 3 shows the ULM density
map with the three different MB identification methods on a
grid 6 times smaller than the original (= 16 µm). Volumes
are summed along the elevation axis for display. A dark line
can be seen in all images. The energy of the filtered volumes

Fig. 3. Microbubble per pixel map obtained using either INT, COR, or
NP based microbubbles identification. Maps are summed along the elevation
dimension. The grid resolution is 16 µm. (First line) Results with n = 75
local maxima. (Second line) The n = 900 local maxima. An example of the
artifact is marked with a white arrow.

Fig. 4. 3D representation of INT, COR, and NP microbubble per voxel maps
with a 9.9 µm grid size. An example of an artifact is highlighted with a white
arrow.

is lower in this area which results in a lower probability of
detecting MBs.

The first line of Fig. 3 corresponds to results with n = 75.
It appears that NP visually has the best representation of
vessels. COR reconstructed fewer tracks than INT or NP
resulting in the worst ULM map of the three. Additionally,
COR and particularly INT maps display artifacts that NP
avoided. An example of the artifact is marked with a white
arrow in Fig. 3. In the second line the number of local
maxima n retained is raised to 900. By doing so, the risk
of detecting noise is increased, but fewer MBs should be



missed. This time, all methods have a good representation of
vessels. However, NP still shows no artifacts, while the ones
from INT and COR have increased.
Fig. 4 is a 3D representation of the same maps with n = 900.
This display helps to see the numerous artifacts avoided by
NP. For example, the white arrow marks an artifact hidden
in Fig. 3. It is notable that certain regions of the volume
are less blurry with COR and are even clearer with NP,
compared to INT. This blur is created by voxels with low
MB density, which are challenging to interpret. These voxels
may represent vessels with very few MBs passage or could
be caused by noise. Two conclusions can be drawn from
this observation: either COR, and especially NP, identify less
MBs compared to INT, or COR, and particularly INT, are
detecting more noise than NP.

The Fourier shell Correlation (FSC) is computed on a grid
10 times smaller than the original (= 9.9 µm). The high
intensities and sharp edges of artifacts create high spatial
frequencies and false results. To avoid this effect, FSC is
computed in a region of interest without artifacts. In Fig. 2B,
the resulting curves are smoothed with a moving average of
6 samples. The resolution estimated using the 2σ threshold is
53 µm for all three methods.

V. CONCLUSION

In this study, we extended a MB identification method based
on Neyman-Pearson criterion from 2D to 3D and compared
it to traditional methods based on intensity and normalized
cross-correlation with a PSF. Simulation results demonstrated
that the NP criterion is more effective at detecting low SNR
MBs than INT. However, due to the PSF-like patterns present
in the speckle, we were unable to assess the performance
of the COR method using this data. Qualitative evaluations
were conducted using in vivo rat kidney acquisitions. NP
successfully reconstructed the vascular network even with a
small number of local maxima per volume, whereas INT and
COR produced false detections, leading to artifacts in the
final ULM map. Furthermore, COR reconstructed few tracks
and had the worst vessel representation. For a high number
of local maxima per volume, all methods provided a good
representation of vessels with a resolution of 53 µm . However,
INT and COR exhibited artifacts that NP avoided. The ULM
map generated by INT was found to be more blurry than
those generated by COR and NP. This may indicate that INT
detects more noise than COR and NP, or alternatively, that the
latter two methods fail to identify certain MBs detected by
INT. All three methods are highly sensitive to their respective
parameters, which were selected empirically to yield the best
results according to the authors’ subjective assessment. It is
important to note that the observations made in this study
are influenced by the specific tuning of these parameters. In
conclusion, NP’s exploiting temporal information to establish
a specific threshold at each voxel enables the reconstruction
of more accurate ULM maps with fewer artifacts. Thus, NP

may offer a superior alternative to INT and COR, even though
these methods yielded satisfactory results.
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