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Abstract—High-altitude uncrewed aerial vehicles (UAVs) with
millimeter wave communication are well-suited for fifth-
generation (5G) and beyond applications. UAVs may cause
significant interference to ground user equipment (GUE). We
consider using a moving tethered aerial base station (TBS) as
an alternative to a terrestrial base station. We consider, the
UAV and GUE locations as contexts to perform joint TBS
location, UAV and GUE power allocation optimization in a
three-dimensional environment. We propose a contextual multi-
armed bandit framework using a novel counterfactual Thompson
sampling (CTS) algorithm. We compare its performance against
a joint optimization using vanilla Thompson sampling (TS) and
single optimization TS (SOTS) approaches. Our results show that
the CTS approach converges faster. We conclude that the CTS-
based approach achieves better interference mitigation for both
aerial and ground users.

Index Terms—tethered aerial base station, unmanned aerial
vehicle, multi-armed bandit, 5G and beyond, counterfactual
causal inference.

I. INTRODUCTION

Integration of uncrewed aerial vehicles (UAVs) into cellular
networks is of significant interest to fifth generation (5G)
and the upcoming sixth generation (6G) wireless communica-
tions [1]. In recent years, drones are used in applications such
as remote drug and face mask deliveries, to improve safety
in retirement villages during pandemics like COVID-19 [2].
The UAVs move rapidly in a semi-autonomous manner. They
can cover large areas from high altitudes at low cost providing
new opportunities.

Traditional cellular networks are primarily designed to
effectively provide ground coverage. As a result, cellular-
connected UAVs flying at high altitudes frequently encounter
connectivity issues due to large distances from a base station
(BS) and ground-tilted antennas [2], [3]. Also, high power
allocation to such UAVs is not a viable option as they can
interfere with neighbouring ground cells and surrounding
UAVs [3]. Hence, addressing such connectivity challenges is
critical to promote practical usage of the cellular-connected
UAVs in future wireless networks. Recent publications [4],
[5], mention uncrewed aerial vehicle (UAV)-BS or relay node
as an alternative to a terrestrial BS to provide ground user
equipment (GUE) services. But, such a moving BS role is
impractical to high altitude UAVs due to their limited connec-
tivity and battery standards [6]. In [7], [8], authors consider
using tethered aerial base station (TBS) to serve GUEs. They

have limited three dimensional (3D) mobility, compared to a
UAV-BS, but they have no battery limitations. In this work,
we focus on using TBS to support aerial communications
for high altitude UAVs. A TBS is connected to the ground
station through a tether which provides data and energy. It
can be placed at high points such as building rooftops. They
can favour free space path loss (FSPL) conditions. However,
simultaneously serving high altitude UAVs and GUEs with
limited interference is a challenging problem. This can be
addressed by jointly determining the optimal power allocation
of UAVs, GUEs and their link distances from TBS resulting
in lower interference on the neighbouring cells. Thus, a joint
optimization framework for TBS is necessary to serve high
altitude UAVs and GUEs effectively in a 3D environment.

In this work, we propose a contextual multi-armed bandit
(CMAB) strategy for the TBS joint optimization framework
to serve high altitude UAVs and GUEs, simultaneously in
downlink communications. The main contribution of this
paper is to model the learning framework at TBS using
counterfactual-CMAB (C-CMAB) and CMAB approaches. We
consider the problem under 5G millimeter-Wave (mmWave)
communications with appropriate signal-to-interference-plus
noise ratio (SINR) threshold requirements. Note that we design
the C-CMAB scheme by combining the traditional CMAB
approach with unobserved confounders using counterfactual
causal reasoning as shown in Fig. 1. Here, unobserved con-
founders are the variables that influence both independent
and dependent variables like contextual information and joint
optimization parameters, respectively. Our simulation results
show that counterfactual causal inference can be beneficial
for quick convergence of the TBS optimization problem.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the system and
communication model followed by the problem formulation.
Section V discusses implementation details. Section VI pro-
vides simulation results. Section VII concludes the paper.

II. RELATED WORK

Different studies highlight the importance of dedicated BS
deployments, interference and handover management for high
altitude UAVs operating as user equipment (UE) [9]–[11]. The
field trails in [9] demonstrate a strong uplink (UL) interference
over ground users with the increase in UAVs altitude levels.
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Fig. 1: Causal graph for counterfactual decision making.

In [10], authors investigate the handover issues for high speed
UAVs flying at 300 m to 400 m using fourth-generation
networks. These experiments show that reliable connectivity is
required for high-speed flying UAVs. The authors in [11] con-
sider up-tilted antennas on rooftop-mounted BSs and achieve
high data rates for UAVs flying at a maximum altitude of
120 m. This shows that reduced link distances and dedicated
BS deployments enhance connectivity for high altitude UAVs.

The authors in [4], [5] consider UAV-BS as a dedicated
BSs or relay node for serving GUE. In [4], for serving moving
vehicles with different velocities, the authors study the joint
optimization of power and movement for UAV-BS and reduce
their power consumption by 26 percent. This work highlights
the joint optimization importance using a UAV-BS at a fixed
altitude of 100 m. The authors in [5] use a dedicated UAV relay
node in vehicular communications using MAB learning and
maximize data rates by identifying optimal drone locations.
This shows the learning-based optimization significance in
improving drone connectivity for moving vehicles. However,
the work limits only to a single vehicular source node location
and does not consider interference.

Recent studies also consider TBS as a dedicated BS for
GUE [7], [8]. The authors in [7] analyze the potentiality of
using TBS in 6G cellular networks. The results show that TBS
with 120 m tether length outperforms the maximum coverage
probability of UAV-BS by nearly 30 percent. In [8], authors
propose a heuristic algorithm for optimal 3D placement and
transmit power of TBS using green antennas. However, a
heuristic joint optimization-based interference mitigation may
be less practical for large coverage environments. Instead,
a learning-based joint optimization for TBS can minimize
interference effects quickly and reliably.

Recent works incorporate counterfactual causal inference
into classic MAB approaches [12], [13]. The authors in [12]
show the benefit in CMAB performance with causal fairness
over the classic CMAB algorithm. In [13], authors develop
a decision-supportive system to diagnose Apple diseases by
modelling a C-CMAB approach with human intuition to
identify the correct diagnosis. Their results show that the

unobserved con-founders affect the choice of outcome and
outperform the traditional CMAB approach.

In our work, we consider TBS as the dedicated BS to serve
high altitude moving UAVs and GUE. We consider TBS as the
reinforcement learning (RL) agent and incorporate C-CMAB
to jointly optimize the TBS location and power allocation
at UAV and GUE. Under this approach, we investigate the
con-founders as shown in Fig. 1 and propose a counterfactual
Thompson sampling (CTS) learning algorithm by incorporat-
ing human intuition to find the optimal strategy.

III. SYSTEM AND COMMUNICATION MODEL

In this section, we discuss the system model and communi-
cation model between TBS, GUE and high altitude UAVs. The
objective of this problem is to perform effective interference
management by jointly optimizing TBS location and UAVs,
GUE power allocations.

A. System Model

We consider a single TBS, single UAV and a single GUE as
shown in Fig. 2 and consider downlink (DL) communication
between TBS to UAV and GUE. We observe the random
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Fig. 2: System model.

mobility of UAV and GUE in a 3D Cartesian grid coverage
within their regions UUAV and UGUE while the TBS are
hovering in its limited 3D semi-spherical grid coverage area
A1.The UAVs are flying at altitudes ranging between 300 m to
400 m and GUE are moving randomly on the ground at 1 m
and 2 m heights. Each UAV and GUE acts as a receiver (Rx)
while the TBS acts as a transmitter (Tx) and is connected using
a tether to a ground station (GS) at a position O(0, 0, hBS) in
a grid environment with elevation angle ξ, azimuthal angle ϕ
and hovering radius δ with respect to GS. The ground distance
between GS and GUE is D. The TBS locations in the grid area
in Cartesian form are represented as

ltbs = (δ cos(ξl) cos(ϕl), δ cos(ξl) sin(ϕl), δ sin(ξl) + hBS)
(1)

where ltbs ∈ A1, ξl ∈ [0, π/2], and ϕl ∈ [−π, π]. Every
time a UAV and GUE move to a new location, the SINR for
the TBS-UAV link and TBS - GUE links are measured. This
work considers only interference between UAVs and GUEs for



simplicity. Using these apriori SINR measurements, the TBS
learns the optimal location to support reliable connectivity
to each UAV and GUE grid location at the same time. We
consider a simple random mobility model to evaluate the
performance of the UAVs as we select locations of randomly
moving UAVs as contexts.

B. Communication Model

We consider a separate narrow band line of sight (LoS)
and multipath links between TBS-aerial UE and TBS-ground
UE, respectively, as shown in Fig. 2. Here, TBS acts as Tx
while the UAV and GUE act as the Rx. Each of the Rx and
Tx are equipped with single radio frequency (RF) chain Nr

and Nt uniform linear array (ULA) antennas, respectively. At
each time instant, the TBS can serve a UAV and GUE with a
single RF chain of the antenna arrangement. Let θtx be the
angle of departure (AoD) at Tx side, θr1 and θr2 are the
angle of arrival (AoA) at UAV-Rx and GUE-Rx, respectively.
Baseband equivalent of the received signal at UAV and GUE
are individually given by

y1[k] =
√
P1 ωH

R1H1ωTx[k]︸ ︷︷ ︸
r1[k]

+ν1[k],

y2[k] =

M∑
m=0

√
P2 ωH

R2H2,mωTx[k]︸ ︷︷ ︸
r2[k]

+ν2[k], (2)

where P1 and P2 are the transmission powers considered
for UAV and GUE, M represent the number of multi-
paths or reflections in the TBS-GUE environment. For
UAV and GUE, H1 ≜ η1aR(θr1)a

H
T (θtx) and H2,m ≜

η2,maR(θr2,m)a
H
T (θtx,m) are the channel matrices, aR(θr1) ∈

CNUAV
r , aT (θtx,m) ∈ CNt and aR(θr2,m) ∈ CNGUE

r ,
aT (θtx,m) ∈ CNt are the array response vector pairs cor-
responding to mth communication links, respectively. θ =
θr1, N = NGUE

r for aR(θr2), and θ = θtx, N = Nt,
for aT (θtx), respectively. ωR1 ∈ CNUAV

r and ωR2 ∈ CNGUE
r ,

ωT ∈ CNt are the transmitting and receiving unit-norm beam-
forming vectors, ∆ = λ/2 is the antenna element spacing,
λ = c/f is the wavelength, c is the velocity of light, f is the
mmWave carrier frequency. ν1[k], ν2[k] ∼ CN (0,WN0) are
the additive white Gaussian noise (AWGN) noises with zero
mean and two-sided power spectral density N0

2 , x[k] is the
kth sample of the time-domain transmitted signal from TBS
to both UAV and GUE respectively, with equal bandwidth
W and 1

K

∑K
k=0 |x[k]|2 = 1. In this work, we assume η1

and η2 to follow free space propagation (FSP) LoS and
multipath conditions, respectively between TBS and UAV,
GUE radio units [14]. We define r1[k] =

√
P1 ω

H
R1H1ωTx[k]

and r2[k] =
∑M

m=0

√
P2ω

H
R2H2,mωTx2[k] and consider

succesive interference cancellation (SIC) at GUE by assuming
UAV as the strong UE [15]. Then, the SINR for UAV and GUE
(assuming P1 < P2) are given as

SINRU =
P1|r1[k]|2

P2|r2[k]|2 +N0
, SINRG =

P2|r2[k]|2

N0
. (3)

IV. PROBLEM FORMULATION

We consider a 5G new radio (NR) mmWave communication
DL from a TBS to a UAV. The UAV and GUE are denoted
as U , with location u, and G, with location g. The sets UUAV

and UGUE denote all U and G locations. The TBS acts as a
learning agent. It is initially placed randomly. Starting from
the initial context (u, g), the TBS repeatedly applies actions,
until it reaches a location satisfying a SINR threshold for both
U and G. Let A and rew denote the action set and reward
parameters. At any instant, the action a in A of the TBS
agent corresponds to the selection of its location, from A1,
and a power allocation, from A2, for the pair (U,G). Thus,
a equals to the pair (a1, a2), with a1 in A1 and a2 in A2.
Here, a2 is equal to the pair (p1, p2). The set A2 is equal to
{(p1, p2) : p1 ∈ P1, p2 ∈ P2)}, where P1 and P2 are the power
allocation sets for U and G. We assume that the TBS provides
the power allocation estimates for U and G. We model the joint
optimization problem at the TBS using the CMAB framework,
to learn sequential decision-making while U and G are mobile
in a discrete-time setting. At any instant, the location pairs of
U and G are treated as a context c equal to the pair (u, g),
where C = {(u, g) : u ∈ UUAV, g ∈ UGUE}. Let a denote
the action applied by the TBS agent. For a given context and
action pair (c, a), let USINR(c, a) and GSINR(c, a) denote the
SINRs measured for the TBS-UAV and TBS-GUE links. Let
rew represent the reward associated with the SINRs for the
locations u and g and the action a. For the given context c, the
optimal action is chosen as the one that receives the maximum
reward. The objective is to find the optimal action a∗c for each
context c with maximum reward rew(c, a) and regret Reg
calculated as follows:

a∗c = argmax
a

E[rew(c, a)], s.t. (4)

rew(c, a) =

{
1 if USINR(c, a) ≥ γ1 and GSINR(c, a) ≥ γ2,

0 otherwise

Reg =

R∑
r=1

(pr − qr) (5)

where γ1 and γ2 are the SINR threshold requirements for
U and G. Regarding the choice of the value for γ1, it is
determined taking the average SINR for all locations in the set
UUAV. For γ2, it is done in a similar way using the set UGUE.
pr and qr represent the agent’s possible maximum reward and
the received reward at each round r. Here, R denotes the total
number of rounds performed.

We define the average regret-reduction ratio (ARR) metric
as ARR = 100 ·

(
1
|C|

∑
c

(
1− Regcmab(c)

Regref (c)

))
. Regcmab(c)

denotes the regret performance of the CMAB framework.
Regref (c) represents the regret performance of a referred
scheme with which CMAB is compared against, for instance,
single optimization TS (SOTS), traditional TS-based joint
optimization, and the conventional terrestrial BS approaches.
We use this metric in section VI.



A. Counterfactual Causal Reasoning

Different factors may prevent an agent from obtaining the
maximum reward. Addressing the cause-and-effect of such
factors using counterfactual reasoning results in faster con-
vergence with maximum reward [16]. The TBS agent learns
from observed factors, such as U and G locations. However,
unobserved factors, such as channel information, have impact
on the outcome. The distance between U and G locations and
their mobility can be considered by counterfactual reasoning.

We introduce counterfactual reasoning observing that a TBS
location at any instant favors U or G, or both. Incorporating
such inference into the TBS agent, as depicted in Fig. 1,
leverages human intuition to reduce the exploration of the
action space, leading to faster convergence. To capture intu-
ition, we divide the TBS grid space into two layers, limited
by an altitude. The location space is separated into two layers,
namely, Ufav and Gfav , referred to as U ’s and G’s favorable
location sets. The flowchart of Fig. 3 captures the intuition.
This approach allows the TBS to choose the optimal arm from
the Ufav or Gfav sets by maximizing rewards through CTS-
based learning.

Fig. 3: Intuition flowchart. When arm ai is played in round r >
1, the next arm ai+1 is selected following these conditions.

V. IMPLEMENTATION

Every TBS location is an arm of the bandit machine. At
each time instant, the location pair (U , G) acts as the context.
The TBS agent chooses an optimal arm from A and computes
the reward. The objective of this approach is to identify and
choose an optimal arm establishing reliable connectivity for
(U,G) contextual location with the largest expected reward.

We jointly optimize the power allocation of U and G besides
the TBS location. We observed that Thompson sampling (TS)
performs better than upper confidence bound (UCB). Hence,

we employ the TS algorithm [17], without any causality, with
Eq. (4) formulation as our TS-based CMAB framework. Our
counterfactual CMAB approach uses the CTS algorithm by
incorporating the TS algorithm with human intuition.

A. Counterfactual Thompson Sampling

At any instant, the TBS plays an arm a ∈ A and computes
the reward. If the reward is 0, then TBS chooses the next arm
from the Ufav or Gfav location sets based on the conditions
given in Fig. 3. The complete steps followed by CTS-based
learning are shown in Algorithm 1.

Algorithm 1 CTS-based CMAB learning
1: Input: Context set C, Arm set A
2: Initialization:
3: SumR← 0
4: AverageR← 0
5: Count← 0
6: Beta Distribution(α, β)← (1, 1)
7: for c← 1 to NumberOfContexts do
8: for r ← 1 to R do
9: Sampling from the distribution of each action

10: A′ ← A
11: Select a with maximum CTS(A′, α, β)
12: if r > 1 & USINR(c, a) ≥ γ1 & GSINR(c, a) ≥ γ2 then
13: reward← 1
14: A′ ← {a}
15: else if r > 1 & USINR(c, a) ≥ γ1 & GSINR(c, a) ≤ γ2

then
16: reward← 0
17: A′ ← Ufav arms
18: else if r > 1 & USINR(c, a) ≤ γ1 & GSINR(c, a) ≥ γ2

then
19: reward← 0
20: Select A′ ← Gfav arms
21: else
22: reward← 0
23: Select A′ ← A
24: SumR(c, a)← SumR(c, a) + reward(c, a)
25: AverageR(c, a)← SumR(c,a)

Count(c,a)

26: if reward = 1 then
27: α(c, a)← α(c, a) + 1
28: else
29: β(c, a)← β(c, a) + 1

VI. SIMULATION RESULTS

We first implement the SOTS schemes for UE power
allocation with a terrestrial BS and a static TBS. This helps
understanding the TBS dynamics for the joint optimization
problem. Secondly, we compare the performance of the TS-
based and CTS-based approaches in terms of their regret and
SINR to UEs. We assume that U and G move randomly in their
area UUAV and UGUE. For simplicity, we consider a single U
and a single G with five randomly selected grid positions for
each UE resulting in |C| equal to 25 contextual location pairs.
This approach can be extended to a large number of aerial,
ground users and contexts. For the human intuition, we use
130 m as the separation altitude to divide the TBS locations
into Ufav and Gfav . The simulation parameters are listed in
Table I.



TABLE I: Simulation parameters.

Parameter Value
mmWave carrier frequency f 28 GHz
antenna element spacing ∆ 0.5λ
Transmit power P1(dBm) {0, 2, 4, 6, 8, 10}
Transmit power P2(dBm) {10, 12, 14, 16, 18, 20}

Bandwidth W (MHz) 150
Transmit antenna elements Ntx 8
Receiver antenna elements Nrx UAV = 2,GUE = 4

Noise power density
(
NUAV

0 , NG−UE
0

)
(−100,−160) dBm/Hz

γ1, γ2 (in dB) 10, 5
TBS Max.hovering radius 110 m
TBS latitude angle (in ◦) [0, 180]

TBS longitude angle (in ◦) [−180, 180]
Coverage xloc, yloc UAV,GUE (in m) [−500 : 10 : 500]

Coverage zloc UAV (in m) [300 : 10 : 400]
Coverage zloc GUE (in m) {1, 2}

UUAV, UGUE (in m) {xloc, yloc, zloc}
Number of contexts |C| 25
tbs grid locations |A1| 107

No. of (P1, P2) pairs, |A2| 6
No. of Arms, |A| = |A1| × |A2| 642

Rounds R 10000
UAV channel FSP-LoS [14]
GUE channel FSP-LoS, FSP-nLoS [14]

A. SOTS Performance using Terrestrial BS and static TBS

Fig. 4 depicts the cumulative SINR across all the contextual
distances between U and G for both terrestrial BS-based and
static TBS-based SOTS, respectively. From the terrestrial BS
plots, we observe that G achieves higher SINR compared to U
due to their closer proximity to the terrestrial BS. Similarly, the
static TBS favors the SINR of U compared to G. Moreover, the
performance of the static TBS approach is dependent on the
selected static TBS location, hindering reliable connectivity
requirements. Thus, relying on a terrestrial BS and a static
TBS-based SOTS do not favour simultaneous interference
mitigation at both U and G UEs.
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Fig. 4: Cumulative SINR performance of U and G using static
TBS-based and terrestrial BS-based SOTS schemes.

B. Regret and UE Power allocation using TBS Joint Optimiza-
tion Schemes

Fig. 5 shows the average regret over |C| contexts and 10k
rounds for random sampling-based, TS-based, CTS-based joint
optimization approaches, and static TBS-based SOTS, respec-
tively. We observe that all the joint optimization approaches
have faster convergence with lower average regret performance
compared to the static TBS-based SOTS. Furthermore, we ob-
serve that the CTS and traditional TS-based schemes converge
significantly faster than the random sampling strategy with an
ARR of 62.85% and 48.40%, respectively. We also observed
that the runtime for CTS is 177.19 seconds, whereas for TS,
it is taking 540.10 seconds to run the program to completion.
Thus, learning the TBS optimal locations alongside the power
allocations for each (U,G) pair is critical in satisfying the
given SINR threshold requirements. Similarly, we observe that
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Fig. 5: Average regret over entire contexts.
the proposed CTS joint optimization strategy converges faster
over the traditional-TS joint optimization scheme with an ARR
of 27.99%.
C. SINR performance CTS-based approach over Unobserved
Confounders

Fig. 6 displays the U and G SINRs with TBS optimal
arms for the TS-based and CTS-based approaches. Firstly, we
observe that both these approaches achieve reliable SINRs
for both U and G by satisfying their respective thresh-
old requirements. Furthermore, the CTS-approach achieves
relatively higher SINRs compared to the TS-based scheme
for both U and G. We observe that CTS algorithm has a
relatively improved exploration over large action spaces A
and chooses arms with higher power allocation values. Thus,
embedding counterfactual reasoning into the TS algorithm
through intuition results in achieving reliable SINRs with
better interference mitigation for both aerial and ground users.

We note that the TBS and origin are located on the same
building, as shown in Fig. 2. From the plot in Fig. 6a, we
observe that for a given U located from the origin, the SINR
values increase by ≈ 10 dB as the G user moves ≈ 2 m away



from the TBS grid locations. Similarly, for a given G located
at the origin, the SINR values increase by ≈ 15 dB as U moves
away from the TBS grid locations. Similar observations can
be realized in the Fig. 6b CTS plots. Thus, we observe that
the mobility and separation distance of U and G influence one
another (as shown in Fig. 1) in achieving the reliable SINR
threshold requirements.

(a) SINR of U with TBS optimal arms satisfying γ1 threshold
requirements.

(b) SINR of G with TBS optimal arms satisfying γ2 threshold
requirements.

Fig. 6: SINR plots with optimal TBS arms in TS-based and
CTS-based approaches across all (U,G) distance pairs from
O(0, 0, 0). VII. CONCLUSION

In this paper, we proposed a C-CMAB framework to per-
form joint TBS location and UE power optimization for effec-
tively serving high altitude UAVs. Under this framework, we
designed the CTS-based approach by incorporating counterfac-
tual reasoning into a TS algorithm using human intuition. We
compared the performances of TS-based and CTS-based joint
optimization against terrestrial BS-based and static TBS-based
SOTS approaches. Also, we observed that the CTS algorithm
converges faster with an ARR of 27.99% compared to the

TS-based approach. We conclude that the CTS-based approach
achieves reliable SINRs with better interference mitigation for
both aerial and ground users. In our future works, we intend
to extend these results by considering multiple ground users,
UAV swarms, and multiple TBS.
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