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Abstract—Uncrewed Aerial Vehicle-User Equipment (UAV-UE)

is integral to millimeter wave (mmWave)-based wireless cellular

systems. UAV-UE at high altitudes encounter limited connectiv-

ity with terrestrial base stations. Tethered Aerial Base Stations

(TABS) are viable alternatives to terrestrial base stations. Optimal

placement of a TABS in a three-dimensional environment is

necessary and critical to serve multiple moving UAV-UE units with

reliable connectivity. In this work, we propose a contextual multi-

armed bandit framework to learn the optimal TABS locations. We

consider multiple UAV-UE units moving at high altitudes in an

uplink mmWave setting. Under this framework, the TABS acts as

a learning agent leveraging position information about served UAV-

UE units to provide connectivity with minimum Signal to Noise

Ratio (SNR) threshold requirements. We first compare the Upper

Confidence Bound (UCB) and Thompson Sampling (TS)-based

learning strategies against the traditional naive-based approach.

Our simulation results show that the TS-based approach learns

optimal locations with a 31% and 51% average regret-reduction

ratio (ARR) over UCB and naive-based approaches, respectively.

Also, the TS-based learning strategy for TABS reliably achieves the

required SNR for UAV-UE units under multiple contexts, compared

to a static TABS location.

Index Terms—tethered aerial base station, uncrewed aerial

vehicle, multi-armed bandit, mmWave communications.

I. INTRODUCTION

Uncrewed Aerial Vehicle-User Equipment (UAV-UE) in cel-
lular ecosystems play a vital role in Fifth-Generation (5G) and
beyond wideband communications. Furthermore, the high mo-
bility and cost-effective communication from Uncrewed Aerial
Vehicles (UAVs) can enable a myriad of applications such as
contactless delivery, defense, weather monitoring, and surveil-
lance [1], [2]. The traditional connectivity of high altitude UAV-
UE is limited due to fixed terrestrial Base Station (BS) locations.
The BS antennas are optimized for terrestrial coverage causing
interference to ground users [3]. A flying BS can provide a
better service than a terrestrial BS [4], [5]. Fotouhi et al. focused
their research work on providing service for ground users using
flying BS [4], [5].The power source is a battery with a limited
lifetime. The service is provided for a short time period. The
focus of this paper is providing 5G service to UAV-UE. A flying
BS for providing 5G service to UAV-UE may require frequent
battery recharge to support. Instead, a Tethered Aerial Base
Station (TABS) is a viable option to provide connectivity to
high altitude UAV-UE (hereafter called UAVs).

A TABS is connected to a ground power source through
a cable that provides both energy and data connectivity, thus

enabling long flying time. Also, aerial communications with a
ground BS is essentially free space with none of the typical
terrestrial obstacles such as buildings and trees [3], [6]. This
results in Line of Sight (LoS) communication for high-altitude
UAVs. However, there is a higher degree of uplink interference
to the neighboring ground BS and ground users.

TABLE I
UAV CELLULAR COMMUNICATION RESEARCH WORK.

BS Cell devices References Challenges

Terrestrial
Ground users
& UAVs [3], [6]–[8] Interference to

ground users

Untethered

drone
Ground users [4], [5], [9]

Interference to
ground users.
Limited service
time

Tethered

drone

Ground users [10]–[14] Aerial users are
not considered

UAVs Our work Connectivity to
UAVs

A TABS can mitigate uplink interference by moving closer
towards UAVs and providing LoS communication. At the same
time, serving multiple UAVs, while providing wide coverage to
each of them, is a challenging problem. Hence, determining
an optimal location for a TABS is necessary in order to
serve multiple UAVs effectively in a Three-Dimensional (3D)
environment. Classical location optimization approaches may
not be adapted to dynamic constraints such as UAV mobility
and large TABS to ground user separation distances. Hence, we
consider learning approaches like Contextual Multi-Armed Ban-
dit (CMAB) to solve TABS location optimization problems. We
observe that simple learning architecture like CMAB is enough
to guide TABS with satisfactory environmental connectivity and
adaptability.

A. Contributions and Outline of the Paper

We first review the related work in different aspects of BSs
investigated by other researchers, see table I. We highlight
the new aspects of TABS that we are investigating. We pro-
pose a CMAB Reinforcement Learning (RL) framework to
optimize the location of a TABS while serving multiple high
altitude UAVs. Under this framework, we solve the location
optimization objective using Upper Confidence Bound (UCB)
and Thomson Sampling (TS)-based CMAB algorithms. We



compare their performance against the naive-based approach
and static TABS location. This framework aims to optimize the
TABS locations and provide connectivity to UAVs satisfying
Signal to Noise Ratio (SNR) threshold requirements during their
uplink communication. Our simulations show that the TS-based
approach learns optimal locations with minimum regret and
also achieves the SNR requirements for UAVs within multiple
contexts, compared to a static TABS location.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the system and
communication model followed by the problem formulation.
Section IV discusses implementation details. Section V provides
simulation results. Section VI concludes the paper.

II. RELATED WORK

Terrestrial BS-UAV communications have been extensively
studied [3], [6]–[8]. Lin et al. conducted a field trial to en-
hance the applicability and performance of mobile networks
for low-altitude drones [3]. The experimental results showed
a decrease in Signal-to-Interference-Plus Noise Ratio (SINR)
with increased drone flying altitude. This results in low spectral
efficiency due to interference. The same authors present SINR
measurements for three different altitudes, for a UAV in the
presence of ground users. The results show strong interference
in cells with drones flying at high altitudes, unlike cells that do
not serve UAVs [6]. Challita et al. proposed an approach where
multiple UAVs autonomously learn their path, transmit power
levels, and association vectors with BS [7]. The approach is
based on a dynamic non-cooperative game using deep RL. This
idea mitigates the interference created by multiple UAVs while
simultaneously improving the latency. The results are presented
for drone altitudes up to 120 m. Susarla et al. proposed an RL-
based beamforming approach [8]. The learning agent is a BS
serving UAVs. Their work shows that the concept is practical
with the current battery limitations.

Several works studied the use of drones as BS or relay nodes
to serve ground User Equipment (UE) [4], [5], [9]. Fotouhi et al.
improved the spectral efficiency of ground user communications
by hovering the drone BS in 2D space at fixed altitudes [4], [5].
A drone BS, with dynamic positioning, improves the spectral
efficiency but may offer only a limited service time due to
battery capacity. In terms of energy consumption, a flying BS
may be impractical for serving UAVs effectively moving in
a 3D space at high altitudes [4]. In [9], Pourbaba et al. pro-
posed a drone relay positioning approach to improve vehicular
communications with a terrestrial BS. They model a Multi-
Armed Bandit (MAB) approach using the state-of-art UCB
algorithm to identify the optimal drone location for maximizing
the total data rate in wireless networks. However, the work does
not consider a multi-vehicular scenario. This may result in a
contextual MAB to find the optimal drone location for each
vehicle movement. The research of Fotouhi et al. has focused on
untethered relay drones supporting ground communication [4].
Hence, we consider a TABS as an alternative to serve high-
altitude UAVs with wired energy and data connectivity. It
has mobility limitations to certain distances and altitudes. In

contrast to an untethered BS, a TABS does not have the battery
limitation.

Similar to the work in [9], we use a CMAB approach to
identify the optimal location of a TABS serving multiple high
altitude UAVs. The goal is to provide good communication
to the UAVs. TABS-ground user communications have been
extensively studied in the recent literature [10]–[14]. In [10],
Mustafa et al. provided a comparative performance analysis
of TABS over untethered drones to maximize the Quality of
Service (QoS) in heavy-traffic regions. Similarly, Kishk et al.
discussed the potential of TABS for cellular coverage and
capacity enhancement for ground users [11]. Simulations have
shown that a TABS with a 120 m long tether outperforms
untethered drones. This is achieved by maximizing the cov-
erage probability of ground users to nearly 30%. Lou et al.
proposed a low complexity heuristic to find the optimal transmit
power, 3D placement, and user association of a TABS. Their
work demonstrated that power optimization could minimize the
Electro Magnetic Force (EMF) exposure, in the environment,
by more than 20%. It also achieves effective communication
with ground users [13]. Lim et al. compared a performance-
based multi-agent Q-learning approach over a conventional
random action-based algorithm. The goal is to optimize the
TABS trajectories, for maximizing the throughput in multi-cell
users [14]. In [12], Mustafa et al. developed a mathematical
model for 3D placement of a TABS to minimize the average path
loss inside a hovering region. All these works convey that TABS
location optimization is critical to effectively serving ground
users.

In [15], Militaru et al. investigated the handover issues
of Long Term Evolution (LTE) terrestrial networks at drone
altitudes of 300 m to 400 m. Also, at high altitudes, UAVs
create strong interference to neighboring cells [6]. Hence, in this
work, we focus on using a TABS to provide service to UAVs
at high altitudes under 5G uplink communications. Similar to
the learning formulation proposed in [8], and using the CMAB
approach, the TABS acts as a smart agent and find the optimal
location in each context while serving multiple UAVs flying
around 300 m to 400 m. Unlike a terrestrial BS, a TABS can
be operational at high altitudes. It can be placed and relocated
according to the traffic and channel conditions with the served
UAVs. A small space like the rooftop of an urban building is
sufficient for placing the Ground Station (GS) of a TABS. The
GS consists of processing units, core network elements, and
connections to energy resources. Unlike a permanently fixed
terrestrial BS, a TABS can be quickly relocated from one rooftop
to another. TABSs have also been practically used in multiple
scenarios such as petroleum refineries for fire fighting exercises,
in Rydercup events for monitoring and preventing intrusions,
and in Port-of-Spain carnivals to provide non-stop coverage and
live footage [16].

III. SYSTEM MODEL

As shown in Fig. 1, we consider cellular millimeter-Wave
(mmWave) Multiple-Input Multiple-Output (MIMO) uplink
communication between a single TABS and multiple UAVs.
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Fig. 1. System model considered around a Carleton University landscape with
UAVs hovering at altitudes ranging from 300 m to 400 m.

Each UAV acts as a Transmitter (Tx) while the TABS acts as
a Receiver (Rx) in a bounded 3D semi-spherical grid coverage
area UTABS. Using a tether, the TABS is hovering attached to
a GS at position O(0, 0, hBS) in a grid environment. The TABS
has elevation angle ⇠ 2 [0,⇡/2], azimuthal angle � 2 [�⇡,⇡],
and maximum hovering radius � equal to 110 m. A grid location
in lTABS 2 UTABS in the TABS hovering region is represented
in Cartesian form as

(� cos(⇠) cos(�), � cos(⇠) sin(�), � sin(⇠) + hBS) (1)

All the UAVs are moving randomly within the same 3D Carte-
sian grid region UUAV at altitudes ranging from 300 m to 400 m.

The TABS communicates with the UAVs following the 5G
New Radio (NR) standards. Every time a UAV moves to a
random location, the SNR for the UAV-TABS link is measured.
No interference across UAVs is assumed for simplicity. Hence,
only SNR measurements are considered. Using a priori SNR
measurements, the TABS learns the optimal location to support
reliable 5G communication to each UAV. Different mobility
models can be considered for UAVs to evaluate the performance.
In this work, we do not require any specific mobility model as
we select locations of moving UAVs randomly.

A. Communication Model

We consider LoS narrow band radio communication between
each UAV (Tx) and the TABS (Rx). Each Tx and Rx is equipped
with a single Radio Frequency (RF) chain consisting of Nt

and Nr Uniform Linear Array (ULA) antennas, respectively.
At any time instant, the TABS can serve only one UAV with
a single RF chain of the antenna arrangement. Let ✓tx be the
Angle of Departure (AoD) and ✓rx be the Angle of Arrival
(AoA) at a UAV and the TABS, respectively. Let k be the time
domain index of a sample of a transmitted signal. The baseband
equivalent of the received signal is given by

y[k] =
p
Ptx⌘ !H

R aR(✓rx)a
H

T
(✓tx)!Tx[k]| {z }

r[k]

+⌫[k] (2)

where Ptx is the transmission power, and ⌘ equal to
�
4⇡d
�

�2 is
the antenna channel gain under Free Space Path Loss (FSPL)
conditions with d as the distance between the UAV and TABS,
in meters, and !R 2 CNr , !T 2 CNt are the transmit and
receive unit-norm beamforming vectors given by

!R|T (✓)|
N�1
n=0 =

1
p
N

exp

✓
j
2⇡n�

�
sin ✓

◆
(3)

where � equal to �/2 is the antenna element spacing, � equal
to c/f is the wavelength, c is the velocity of light, f is the
mmWave carrier frequency. aR(✓rx) 2 CNr , aT (✓tx) 2 CNt

are array response vectors for the ✓rx and ✓tx radio links,
respectively. The H exponent is the conjugate transpose op-
erator. Here, a(✓)|N�1

n=0 = 1p
N
exp(j 2⇡n�

�
sin ✓), where ✓ =

✓rx, N = Nr and ✓ = ✓tx, N = Nt for aR(✓rx) and aT (✓tx),
respectively. x[k] represents the k

th sample of the time-domain
transmitted signal with bandwidth W and 1

K

PK
k=0 |x[k]|

2 = 1,
⌫[k] ⇠ CN (0,WN0) is the effective noise with zero mean and
two-sided power spectral density N0/2. In this work, we assume
free space propagation between a UAV and a TABS with the LoS
channel matrix H(✓tx, ✓rx) , ⌘ aR(✓rx)aHT (✓tx). We define r[k]
equal to

p
Ptx!H

R H(✓tx, ✓rx)!Tx[k]. Then, the SNR is given as

SNR =
1
K

P
K

k=0 |r[k]|
2

N0W
dB. (4)

B. Problem Formulation

We consider mmWave uplink communications between M

UAVs (U1, U2, .., UM ) and a single TABS following the 5G
NR framework. The TABS location optimization problem is
modeled in the CMAB learning framework. The TABS acts as a
learning agent and provides optimal connectivity to M randomly
moving UAVs by adjusting its location each time inside UTABS.
We consider L random grid locations for each UE during its
mobility. These locations form contextual information for the
learning agent. We represent the contextual information set B
equal to {(U l

1, U
l

2, ..., U
l

M
),with U

l

k
2 UUAV, 1  k  M, 1 

l  L}. The TABS grid locations in UTABS are represented as
the CMAB arms. This set is denoted as A. For each context
b 2 B, the agent plays an arm a 2 A. The beamforming
gain between the TABS and UAVs is evaluated using the SNR
formulation in Eq. (4). Under this framework, r represents the
reward associated with the obtained SNR measurements. The �

represents the SNR threshold requirement. The objective of this
problem is to choose the optimal TABS location for context b
by selecting the arm that yields the maximum reward, given by

a
⇤
b
= argmax

a

E[r(b, a)],

s.t.

r(b, a) =

(
1 if Si(b, a) � �, 8i = {1, 2, ...M}

0 otherwise.

(5)

Si(b, a) is the SNR of the uplink between the BS and Ui for
action a and context b. For each context b, the CMAB agent
selects an arm at each round until the objective of Eq. (5)



is achieved. The average regret incurred by the agent for all
contexts is defined as

R = E
"

TX

i=1

(pi � qi)

#
(6)

where pi is the total maximum reward until round i, qi is the
cumulative reward obtained by the agent until round i, and T is
the total number of rounds the agent plays. Following Eqs. (5)
and (6), we implement the CMAB framework for TABS location
optimization using the UCB and TS algorithms. We define the
average regret-reduction ratio (ARR) metric as

ARR =
100

|C|

X

c

✓
1�

Rcmab(c)

Rref (c)

◆
(7)

to estimate the regret performance of the proposed CMAB
framework over other referred learning schemes. We use this
metric to analyze the results in Section V.

IV. IMPLEMENTATION

We discuss the implementation of the UCB and TS algo-
rithms, between a single TABS and M UAVs. Each TABS
location in UTABS is an arm of a bandit machine. At each time,
we consider the TABS contextual information as described in
Section III-B. The TABS learns the optimal arm for each context
and establishes reliable 5G communication links with the M

UAVs. Thus, the agent selects an arm from a given set of arms
for each context and computes the reward following Eq. (5).
The objective of CMAB is to identify and choose the optimal
arm for each context with the largest expected reward.

A. The Upper Confidence Bound (UCB)-based Approach

We are the first to propose learning-based communications
between TABS and high altitude UAVs. Hence, we consider
the UCB approach used to learn UAV relay positioning [9] as
the main contribution of our work. All the steps followed by
UCB-based approach is shown in Algorithm 1.

Algorithm 1 UCB-based MAB learning

1: Input: Context set B, Arm set A
2: Initialization:

3: SumR(b, a) 0
4: AverageR(b, a) 0
5: Count(b, a) 0
6: for b 1 to NumberOfContexts do

7: for j  1 to rounds do

8: if round  totalArms then

9: a round

10: else

11: Calculate UCB(b, a)
12: Select a with maximum UCB
13: Count(b, a) Count(b, a) + 1
14: Compute r(b, a) following Eq. (5)
15: SumR(b, a) SumR(b, a) + r(b, a)
16: AverageR(b, a) SumR(b,a)

Count(b,a)

B. The Thomson Sampling (TS)-based Approach

TS is a Bayesian-type approach where the reward distribution
is estimated considering a given prior distribution [17]. Unlike
the UCB algorithm, TS selects the optimal arm with the highest
probability at each time based on the available historical obser-
vations. In this work, we use the beta distribution for each arm as
the prior probability distribution with positive shape parameters
↵ and � in the range [0, 1]. We initialize both ↵ and � with the
same value. The reward values 0 and 1 are used to update the
↵ and � parameters. Each time the agent pulls an arm, when it
receives the best reward, the distribution of the arm is updated
by incrementing the ↵ value by one unit. Else, the distribution of
the arm is updated by incrementing the � value by one unit. As
time progresses, an accurate approximation of the distribution
of the reward is obtained from the accumulated observations.
In contrast to the UCB policies, TS can achieve significantly
better performance. Another advantage of TS is that there is no
need for parameter tuning. When there is a prior distribution of
the rewards, and their update is computationally effective, using
TS is preferable. All the steps followed by TS learning-based
location optimization are shown in Algorithm 2.

Algorithm 2 TS-based MAB learning

1: Input: Context set B, Arm set A
2: Initialization:

3: SumR(b, a) 0
4: AverageR(b, a) 0
5: Count(b, a) 0
6: Beta Distribution(↵,�) (1, 1)
7: for b 1 to NumberOfContexts do

8: for j  1 to rounds do

9: Sampling from the distribution of each action
10: Select a with maximum TS
11: Same as Lines 13 to 19 of Algorithm 1
12: if r = 1 then

13: ↵(b, a) ↵(b, a) + 1
14: else

15: �(b, a) �(b, a) + 1

TABLE II
SIMULATION PARAMETERS

Parameter Value

mmWave carrier frequency f 30 GHz
antenna element spacing � 0.5�

Transmit power Ptx 10 dBm
Bandwidth W 20 MHz

Transmit antenna elements Ntx 4
Receiver antenna elements Nrx 4

Noise power density N0 �174 dBm/Hz
SNR Threshold � 11 dB

TABS Max.hovering radius 110 m
TABS latitude angle 0 : 180

TABS longitude angle �180 : 180
Coverage xloc, yloc UAV (in m) [-250:10:250]

Coverage zloc UAV (in m) [300:10:400]
UUAV (in m) {xloc, yloc, zloc}

Number of UAVs M 2
Number of contexts |B| 10

Arms |A| 100
Rounds T 15000



V. SIMULATION RESULTS

We implemented the CMAB approach for a single TABS
and M UAVs following the UCB and TS algorithms. The
simulation code is available in Github repository1. We simulated
for scenarios where M equal to two UAVs each with L equal
to 10 randomly selected grid positions from UUAV. However,
the proposed approach is not limited and can be extended to
an arbitrary number of UAVs. We assume UAVs U1 and U2

moving randomly within the grid area UUAV. As a result,
the set B comprises 10 different contexts, as described in
Section III-B. Similar to the approach in [9], we first compare
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Fig. 2. The average regret plots for ten contexts for multiple training rounds
using the UCB, TS, and naive-based approaches.

the regret performance of our UCB and TS learning-based
TABS location optimization against a conventional naive-based
approach. The naive-based approach randomly selects an arm
without applying any learning strategy. We analyze the observed
SNR measurements for learning-based optimal placement arms
versus a static TABS location and a terrestrial BS location.
Table II lists the parameters used for the simulations. In Fig. 2,
the plots represent the average mean regrets over ten different
U1 and U2 contextual location pairs (bi = (ui

1, u
i

2) from B in
section III-B) for the UCB, TS, and naive-based approaches.
With an increase in rounds, we observe that the learning-based
approaches accumulate relatively low average regrets compared
to the naive-based approach. This shows that learning-based
schemes are appropriate for optimal placement of a TABS to
support high altitude multiple UAVs. Among these learning-
based schemes, we notice that the TS strategy converge faster
with an ARR of 31% and 51% compared to the UCB algorithm
and naive-based scheme across multiple contexts, respectively.
Thus, the TS algorithm helps in quick convergence of the
TABS location optimization problem satisfying SNR threshold
requirements, in contrast to UCB learning.

Figs. 3 and 4 show the subplots for ten U1 and U2 selected
locations, namely, Uk =

�
u
1
k
, u

2
k
, ..., u

10
k

 
, k = 1, 2 for UCB

1https://github.com/Pravs288/Drone-communication.git
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Fig. 3. SNR (dB) plots for the U1 locations with the UCB optimal arms, TS
optimal-arms, a static TABS location and a terrestrial BS location. The dotted
line along the y-axis represents the SNR threshold requirement.

and TS optimal arms with a static TABS location and a terrestrial
BS location. In each of these subplots, the achieve SNRs for
the optimal UCB and TS arms are compared with the SNRs
obtained for a static TABS location and a terrestrial BS location.
This emphasizes the benefits of a TABS and location optimiza-
tion versus a fixed terrestrial BS location. We can observe that
both learning approaches achieve the SNR threshold for most
of the U1 and U2 locations. Whereas, for a static TABS and a
terrestrial BS, most of the U1 and U2 locations do not satisfy
the SNR threshold. For the static case, we randomly select a
location from the TABS grid and fix it. For a terrestrial BS, it
is fixed location with 25 m altitude in the TABS grid.

With TS learning, we observe that all the ten U1 and U2

locations in Figs. 3 (b) and 4 (b) satisfy the SNR threshold �,
set to 11 dB. But in Figs. 3 (a) and 4 (a), six of the UCB optimal
arms, namely u11, u

3
1, u

5
1, u

6
1, and u42, do not satisfy the SNR

threshold. Under the static approach, only two out of ten U1 and
four out of ten U2 locations reached the threshold requirement
with a selective static TABS location. For a terrestrial BS
location, only two out of ten U1 and one out of ten U2 locations
achieved the SNR threshold. This is due to the long distances
from the UAV locations to the terrestrial BS. To compare the
TS learning against TABS location optimization, we analyze
the average SNR of each context increasing their number and
fixing their context size as shown in Fig 5 (a). Increasing
context size with a fixed number of them is shown in Fig 5 (b).
The results show that in both cases the TS optimal arms are
always achieving the SNR threshold. These results demonstrate
that compared to a terrestrial BS and a static TABS, the TS-
based TABS location optimization strategy can provide reliable
communications with good SNRs for high altitude UAVs.
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Fig. 5. Here, |B| and M represent the total number of contexts and the number
of UAVs considered in the system (context size), respectively. The X axis
presents context number. Each context average SNR for (a) different context
numbers with fixed context size, (b) different context size with fixed context
number.

VI. CONCLUSION AND FUTURE WORK

We proposed a CMAB-based TABS location optimization
framework for high-altitude UAVs using 5G and beyond wire-
less systems. We investigated the CMAB-based UCB and TS
learning strategies compared against the naive-based approach.
We observed that the TS-based approach learns the optimal
TABS locations with an ARR of 31% and 51% over the UCB
and naive-based approaches, respectively. We also analyzed the
performance of TS and UCB optimal arms against a static TABS
location, respectively. We conclude that the TS-based location
optimization strategy achieves reliable SNR requirements, be-

tween a TABS and high altitude UAVs uplink communications
for multiple contextual locations. Having shown some promising
results, we intend to extend the framework towards inclusion of
multiple ground users, multiple TABS, and optimal coverage
with interference mitigation, as future works.
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