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Abstract—Effective deployment of cellular-connected UAV net-
works necessitates efficient techniques to minimize mutual inter-
ference between UAVs and ground users. Moreover, the existing
sub-6 GHz band suffers from extreme congestion, making it chal-
lenging to allocate unused resource blocks (RBs) for UAVs. This
paper presents a learning-based UAV-path planning approach at
the Base Station (BS) side, leveraging Non-Orthogonal Multiple
Access (NOMA) and Deep Q-Network (DQN) methodologies
to address massive connectivity and air-to-ground interference.
The proposed NOMA-DQN learning approach optimizes UAV-
transmission power and RB allocation jointly, taking into account
the UAV-location. Additionally, it devises an interference-aware
path for the UAV, considering its limited battery capacity. Simu-
lation results demonstrate the efficacy of our proposed approach
in terms of maximizing the total sum rate of aerial and ground
users in a shared RB, as well as enhancing UAV energy efficiency,
as compared to shortest path, orthogonal multiple-access (OMA),
and random selection schemes.

Index Terms—Cellular-connected UAVs, deep reinforcement
learning, NOMA, effective energy-consumption, interference-
aware trajectory.

I. INTRODUCTION

Uncrewed Autonomous Vehicles (UAVs) are expected to
play a significant role in the development of 5G wireless
communications and cellular networks [1]. Their ability to
accomplish diverse missions such as surveillance, cargo de-
livery, geographical mapping, and disaster management has
dramatically increased demands for the use of UAVs in various
domains. UAVs in cellular networks can operate as flying Base
Stations (BSs), relay nodes, or aerial users. Using them as
flying Base Stations (BSs) enhances coverage, throughput, and
reliability of uplink or downlink communications for terrestrial
users. Also, a UAV as an aerial user eases information collec-
tion from target areas [1], [2]. Apart from their benefits, UAV-
effective deployment entails addressing technical challenges.

Since UAVs fly in high altitudes, Line-of-Sight (LoS) chan-
nel communication between UAVs and ground BSs, in cellular-
connected UAV networks, causes severe interference on their
co-channel ground users, exacerbating performance of their
uplink communication [3]. This challenge cannot be simply
resolved by assigning unused Resource Blocks (RBs) to the

UAVs. The number of available RBs in 5G cellular networks
is limited [4]. Therefore, effective air-to-ground interference
management techniques should be designed. Besides, UAVs
have limited battery resources. Maximization of UAV-energy-
efficiency is also critical to prolong flight time and accomplish
missions. Hence, the design of interference and energy-aware
3D trajectories is of high significance. It is the main focus of
this study.

A. Related Work
Different approaches have been proposed to address the

problem. The capability of Non-Orthogonal Multiple Access
(NOMA) in UAV-uplink interference cancellation on its co-
channel ground users is evaluated in [5], [6], considering static
UAV-locations. However, the mobility of aerial and ground
users is not investigated.

Utilizing directional antennas presents another effective so-
lution to mitigate the adverse effects of UAV-interference by
directing signals away from unwanted areas. Equipping the
UAV with a directional antenna enables control over aerial
interference [7]. Resource optimization is of importance in
interference cancellation and authors in [8] address inter-drone
interference and aerial-ground interference using scheduling
scheme and transmission power optimization in a shared
spectrum, respectively. Nevertheless, the effectiveness of the
proposed methods for UAV-energy consumption remains an
open question. An inverse Reinforcement Learning (RL) ap-
proach is proposed in [9] to address aerial interference through
joint optimization of power allocation and trajectory, although
massive connectivity is not investigated. A local interference
cancellation (IC) technique is proposed in [10]. Ground BSs
tackle air-to-ground interference, taking into account the static
locations of ground users and a UAV flying at a fixed altitude.
They manage the interference by joint optimization of users’
transmission power and UAV-trajectory design. They disregard
the mobility of ground users, also flying UAVs at different
altitudes. In our previous work [11], we proposed a learning
framework using Multi-armed Bandit (MAB) and NOMA to
mitigate the effects of UAV-interference on co-channel ground



users. The BS as an agent employs the MAB-NOMA learning
approach to find the best RB and transmission power for every
UAV-position to be paired with a terrestrial user. However,
mobility of ground users, UAV-path planning and energy
consumption are not investigated.

B. Contributions

The high-dynamic environment of cellular-connected UAV
networks demands learning approaches capable of fast adap-
tations. Deep Reinforcement Learning (DRL) offers this fea-
ture through continuous environmental interaction [12]. We
propose a learning-based NOMA-Deep Q-Network (DQN)
framework for UAV trajectory design, addressing the fol-
lowing challenges. The framework minimizes UAV-uplink
interference on co-channel ground users by jointly optimizing
UAV-transmission power and RB allocation in a dynamic
environment, i.e., ground users follow a random walk mobility
model. Based on ground user and UAV locations, at each time
step, the agent (BS) applies the NOMA-DQN framework to
acquire the environment dynamic and choose the best action
(UAV-transmission power and RB, paired with a ground user,
while moving from an initial point to a terminal point). The
optimal action leads to minimizing the UAV-interference and
maximizing the sum of data rates of aerial and ground users
in a shared RB. Moreover, the framework addresses massive
connectivity in dense networks with many ground users, which
is crucial for achieving low-latency. That is, if there is no
free orthogonal RB to be allocated to a UAV, an agent can
dynamically pair the UAV with a ground user using NOMA,
ensuring that their minimum requirements are fulfilled. Be-
sides, the framework optimizes the energy-consumption of the
UAV by designing a path that minimizes the distance it travels.
The proposed optimization function gives rise to a trade-off
between maximizing the sum of data rates of aerial and ground
users, sharing a RB, and maximizing energy-efficiency of the
UAV. The simulation results show that the framework deals
with dynamic environments and finds optimal 3D interference
minimization and energy-aware paths for a UAV.

The rest of this paper is organized as follows. Section II
illustrates our proposed system and communication model, and
provides the problem formulation using a DQN architecture.
Section III presents the simulation results, followed by a
conclusion in Section IV.

II. PROPOSED APPROACH

We first describe the system and communication models.
Then, the UAV-interference minimization problem is formu-
lated using the NOMA-DQN learning framework to obtain
energy-efficient and interference-aware trajectories for a UAV.
Finally, the architecture of DQN and the used parameters are
explained.

A. System and Communication Models

We consider a single-cell cellular-connected UAV network.
It is composed of n ground users, a rotary-wing UAV acts
as an aerial user, and a BS. The BS is located at the cell

center. It acts as a learning agent and serves aerial and ground
users. Orthogonal RBs are assigned to terrestrial users. For
simplicity, the entire 3D area is represented as a rectangle
with dimensions Gx, Gy, Gz ∈ N+. It is divided into equal
size of grid cells.

Mobility of ground users is modeled according to random
walk [13]. That is, a ground user starts form an initial random
location. At each instant t, a new direction θt is randomly
chosen in the interval (0, 2π] and a speed vt is randomly
chosen in the interval [vmin, vmax]. The new location becomes
xt = xt−1 + vt cos(θt) and yt = yt−1 + vt sin(θt).

A UAV-flight time T is discretized into N time steps. It starts
from an initial position L0 at time t = 0. It reaches a terminal
position LN at time T , with a set of pre-defined move di-
rections in a 3D space, {up, down, east, west, north, south},
and a constant speed vuav . The grid position of the UAV at
time t is denoted by (xt, yt, zt), where zt is the altitude. At
any time t, the agent chooses an action at that consists of
three elements {a1t , a2t , a3t}. Where a1t is representing a move
direction, a2t a transmission power, and a3t a RB for the UAV,
to be paired with a ground user. The new location of the UAV
is updated according to the action taken by the BS-agent. For
example, if the action is up, then the new position is equal to
xt = xt−1, yt = yt−1, and zt = zt−1 + vuavt. The altitude of
the UAV is must be between hmin and hmax.

For a terrestrial single-antenna user j at grid position i,
the uplink channel between the user and BS is affected by
large and small-scale fadings. The path loss at location i is
determined by the equation [14]:

PLi,j = PL0 + 10α log10 di,j +Xσ dB (1)

where PL0 is the path loss at reference distance one meter, α
is the path loss exponent, di,j is the distance between user j
and the BS, and Xσ denotes a shadowing effect modeled using
a Gaussian distribution with zero mean and variance one. As
a result, the channel gain of the ground user j is equal to:

hj,i = gj,i10
−PLi,j/10 (2)

where gj,i is an independent and identically distributed (iid)
exponential random variable with zero mean and variance 1,
modeling the small-fading Rayleigh effect.

The UAV is equipped with a single-antenna. The air-to-
ground channel between the UAV and BS, for every grid
position i, is modeled as the following free-space path loss
equation [15]:

hUAV,i =
ρ0

d2i,UAV

(3)

where ρ0 is the channel power gain at reference distance one
meter and di,UAV is the 3D Euclidean distance (m) between
the UAV and BS.

B. Problem Formulation

We apply the NOMA-DQN framework (Algorithm 1) to
produce an optimal UAV-flight path. The goal of the produced
path is to minimize the energy consumption of the UAV and



to minimize the UAV-uplink interference on the co-channel
ground user. The goal is reached finding, step-by-step, the
best move direction, transmission power, and RB for the UAV,
flying from L0 and reaching the destination LN . In standard
DRL frameworks [16], an agent solves the problem through
sequential decision-making and environmental interactions. At
each time t, the agent maps a state st to an action at according
to the policy π, that is, at = π(st). In this paper, the state space
S contains the locations of terrestrial and aerial users. Each
state st ∈ S is denoted by:

st = [(x1, y1, z1), . . . , (xn, yn, zn), (xuav, yuav, zuav)] (4)

where (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn) are 3D coor-
dinates of ground users. (xuav, yuav, zuav) are the 3D coordi-
nates of the UAV. The action space A is composed of three
discrete sub-action spaces defined as:

A1 = {up, down, east, west, north, south}
A2 = {p1, p2, . . . , pmax}
A3 = {RB1, RB2, . . . , RBn} (5)

where A1, A2 and A3 represent UAV-move directions, trans-
mission power values, and RBs. Hence, the set of all available
action pairs is equal to A = A1×A2×A3. An action at ∈ A,
taken by the agent at time t, is defined as at = {a1t , a2t , a3t}.

The reward rt resulting from the taken action is calculated
according to three parameters: uplink NOMA system [17],
total distance travelled by the UAV at time t, and UAV-distance
to LN . For a NOMA-uplink communication, a BS receives a
signal combining all users in the shared RB. It employs the
Successive Interference Cancellation (SIC) process to decode
the user signals following their received strength, from the
strongest to the weakest. Let n be the number of available
RBs, which is also equal to the number of ground users.
Sorting channel gains from highest to lowest in the order
h1, h2, . . . , hn, with transmit power levels p1, p2, . . . , pn, the
Signal-to-Interference-Noise Ratio (SINR) of user j in the
shared RB is computed as:

SINRj =
pj |hj |2∑n

k=j+1 pk|hk|2 +N0(B/n)
(6)

where N0 is noise power density, B/n is the bandwidth (Hz)
of the shared RB. The minimum requirement of users in a
shared RB is met when their SINRs are greater than or equal
to a defined threshold. As a result, the total uplink data rate
of all the users in the shared RB is defined as:

Rt =
B

n

n∑
j=1

log2(1 + SINRj) bits/second (7)

On the other hand, efficient UAV-energy consumption is
achieved by minimizing the total distance travelled by the
UAV. Therefore, the agent should produce a path making
a trade-off between interference mitigation and energy ef-
ficiency. In the proposed framework, the UAV-energy con-
sumption is minimized by reducing the total UAV-travel

distance. In other words, the UAV-path from L0 to LN

is defined as sequential visited locations denoted as p =
(L0, L1, L2, . . . , LN ). The distances between every pair of
locations are represented by (w1, w2, . . . , wN ). The total
distance from the initial location to the target is equal to
D =

∑N
k=1 wk meters. The UAV-energy consumption is

minimized when the agent finds an optimal path D∗ with
minimum total distance while interference is also mitigated.
It is defined as:

Dt =

t∑
k=1

wk. (8)

Let us define the reward at time t as:

rt = η1 ·
Rt

Dt
+ η2

(
dL0−LN

dLt−LN

)
(9)

dL0−LN
is the distance from the initial point to the terminal

location. dLt−LN
is distance form the current location to

the terminal location of the UAV. η1 and η2 are weight
parameters. They help the agent to capture the effect of data
rate and distance. The second part becomes larger when UAV
is approaching the terminal location. The objective is to find
the optimal policy π∗, among all polices π, that maximizes
the sum of the expected rewards, discounted by the factor γ,
raised to the power t. The objective function and constrains
are defined as:

(OF ) : π∗ = argmax
π

T−1∑
t=0

γtEπ(rt)

C1 : 0 ≤ puav ≤ pmax

C2 : hmin ≤ huav ≤ hmax

C3 : rt = 0 if SINRuav & SINRgue < Threshold

C4 : rt = 0 if dLt−LN
> dL0−LN

(10)

γ is in the interval [0, 1). Constraint C1 requires that the UAV-
transmission power puav be smaller than or equal to pmax.
Constraint C2 restricts the UAV altitude between hmin and
hmax, to avoid collision with the ground BS. Constraint C3

states that the SINR of both ground user (gue) and UAV on the
shared RB to be greater than or equal to a threshold, otherwise
rt is equal to zero. Constraint C4 specifies that the distance
from the UAV current location Lt to the terminal one LN is
larger than total distance dL0−LN

, then the reward rt is zero. It
should be noted that at the destination, we have dLt−LN

= 0.
Then, the reward is equal to η1 · Rt

Dt
. In the objective function

(OF), the BS-agent tries to maximize the cumulative returned
reward

(∑T−1
t=0 rt

)
during the training process, resulting in

the minimization of two values (Dt and dLt−LN
). Therefore,

it makes a trade-off between minimization of the travelled dis-
tance by the UAV and maximization of the users’ throughput.

C. DQN Architecture

DQN [16] is a model-free and off-policy method designed
for complex environments with many states and actions,
consisting of two neural networks, main network and target



network. In this paper, both networks are fully-connected
Deep Neural Networks (DNNs) with weight matrices, θ and
θ′, respectively. The main network acts as a Q-function ap-
proximator, mapping a state st to all possible actions. Next,
the agent employs the ϵ-greedy strategy to select an action
at. At first, ϵ is set to a value close to one, to conduct
exploration of environment. Over time, the ϵ-value is pro-
gressively reduced. The agent gradually favors exploitation
over exploration. A transition is quadruple from state st,
action at, reward rt and next state st+1. All transitions are
stored in a buffer called replay memory with capacity B,
which is used as a training data set. B is equal to a set
of form {(s1, a1, r1, s2), (s2, a2, r2, s3), . . . , (st, at, rt, st+1)}.
When B contains a number of transitions equal to or greater
that the batch size (in this paper, we use 64), then a random
mini-batch of transitions is selected from B to train the main
network and update its weight matrix θ. The target network
approximates the Q-value for all possible actions of the next
state. Its weights are frozen during training. They are updated
after M iterations by copying weights of the main network,
θ′ = θ. The use of the target network and selecting samples
randomly from B lead to a stable training and reduce the
correlation between samples. During training, the goal is to
minimize the loss value between outputs of main and target
networks using the stochastic gradient descent method, given
by:

L(θ) =
1

P

P∑
i=1

(yi −Q(si, ai; θ))
2 =

1

P

P∑
i=1

[
(ri + γmax

a′
Q(s′i, a

′; θ′))−Q(si, ai; θ)
]2

(11)

where P is the number of samples, Q(si, ai; θ) is the ap-
proximated state-action value of state si and action ai. yi =
ri + γmaxa′ Q(s′i, a

′; θ′) is the output of the target network.
It is the sum of the immediate reward and state-action value
for next state s′i. yi depends on the type of state s′i. There are
two choices:

yi =

{
ri s′i is a terminal state
ri + γmaxa′ Q(s′i, a

′; θ′) otherwise

After computing the gradient of the loss function (∇θL(θ)),
the weights of the main network (θ) are updated using the
Adam optimizer and learning rate α:

θt+1 = θt − α∇θL(θt) (12)

This process is repeated until the agent attains a convergence
level.

III. SIMULATION RESULTS

Using simulation with the help of the Pytorch framework,
we compare our approach with the OMA, shortest path-
planning, and random selection strategies. The single-cell
network simulation parameters are listed in Table I. The UAV
starts form L0 = [220, 200, 80] and ends at the destination

TABLE I
SIMULATION PARAMETERS.

Parameters Value
3D cell size 1500 m × 1500 m × 140 m

Number of ground users 2
Altitude of ground users 1 m

hBS 15 m
Ground users’ transmission power 20 dBm

pmax, vuav 20 dBm, 20 m/s
η1, η2 0.7, 0.3

T 200 s
SINR-thresholds 10, 15 dB
[hmin, hmax] [80 m, 120 m]

α, ρ0 3.5, 1.4 × 10−4

Bandwidth 50 MHz
fc, N0 2 GHz, −164 dBm/Hz

Learning rate 1 × 10−5

Discount factor (γ), Batch size 0.99, 64
Replay memory size (B) 100000
ϵmin, ϵmax, ϵ-decay 0.01, 1, 0.9998

LN = [200, 1100, 120]. Ground users are assigned a fixed
transmission power. Four discrete transmission power values
are considered for the UAV. A2 is equal to {p1, p2, p3, pmax},
which is equal to {14, 16, 18, 20}, in dBm. The number of
available RBs is equal to the number of ground users, i.e.,
A3 is equal to {RB1, RB2}. For simplicity, the single-cell
cellular-connected UAV network is designed with two ground
users. They move randomly with a random speed chosen from
interval [5, 6] m/s. The scenario can be generalized to a net-
work with more ground users. With the increase of the number
of users in the network, the dimensions of both state space S
and action space A also increase, requiring a more complex
DQN with more layers. Our DQN architecture consists of two
64 neurons hidden layers and one 128 neurons hidden layer
with ReLU and Adam as activation and optimization functions.
Fig. 1 plots the loss values for the proposed approach for
two threshold values. The loss decreases during training and
converges after 17,000 episodes, indicating that the DQN-
agent accurately predicts the Q-value of a state and training
is stable. Fig. 2 illustrates the received average reward of
the NOMA-DQN approach for threshold values of 10 and
15 dB. The increase in reward demonstrates that the agent can
successfully learn the dynamics of the environment and design
a 3D trajectory for the UAV that maximizes the cumulative
reward. However, with a threshold of 15 dB, which induces
more inter-user interference (see Fig. 3), the agent initially
performs poorly in training. It requires more time to learn the
environment and select action pairs, reducing interference. In
contrast, the random selection scheme with threshold of 10 dB
performs poorly.

Fig. 3 demonstrates the effectiveness of the proposed ap-
proach in terms of data rate compared to the orthogonal
multiple access (OMA) and shortest path schemes. For the
OMA scheme, orthogonal RBs are assigned to users using
the OFDM method, reducing the number of sub-action spaces
to only A1. Additionally, the UAV communicates with the
ground BS using its maximum transmission power, pmax. The
proposed framework achieves higher performance in terms of






