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Abstract

Inverse folding is a classic instance of negative RNA design which consists in
finding a sequence that uniquely folds into a target secondary structure with
respect to energy minimization. A breakthrough result of Bonnet et al. shows
that, even in simple base pairs-based (BP) models, the decision version of a mildly
constrained version of inverse folding is NP-hard.
In this work, we show that inverse folding can be solved in linear time for a large
collection of targets, including every structure that contains no isolated BP and
no isolated stack (or, equivalently, when all helices consist of 3+ base pairs). For
structures featuring shorter helices, our linear algorithm is no longer guaranteed
to produce a solution, but still does so for a large proportion of instances.
Our approach introduces a notion of modulo m-separability, generalizing a prop-
erty pioneered by Hales et al. Separability is a sufficient condition for the existence
of a solution to the inverse folding problem. We show that, for any input sec-
ondary structure of length n, a modulo m-separated sequence can be produced
in time O(nm 2m) anytime such a sequence exists. Meanwhile, we show that
any structure consisting of 3+ base pairs is either trivially non-designable, or
always admits a modulo-2 separated solution. Solution sequences can thus be pro-
duced in linear time, and even be uniformly generated within the set of modulo-2
separable sequences.

Keywords: RNA structure, String Design, Parameterized Complexity, Uniform
Sampling
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1 Introduction

RNA inverse folding is a fascinating algorithmic problem which, given a target sec-
ondary structure T , consists of designing one or several sequences, all of which
should uniquely fold into the target T according to a reference folding prediction
algorithm. Considering a folding prediction algorithm as a mathematical function
Φ : {A,C,G,U}⋆ → S ∪ {⊥} mapping an RNA sequence to a unique predicted struc-
ture (or ⊥ if equally likely alternatives exist), inverse folding can be abstracted as the
search for a preimage w ∈ Φ−1(T ) of the target structure T . This naturally general-
izes into a variety of design tasks which, given a predictive algorithm implementing
a function Φ, aim to create one or multiple instances predicted to behave in a cer-
tain way. Such a formulation is, in general, overly broad (e.g. it encompasses the
concept of one-way functions in cryptography) to inspire reasonable hopes for a gen-
eral solution. Still, a restriction of the inverse problem to certain types of computable
functions/algorithms (e.g. amenable to dynamic programming) appears realistic and
generally relevant to (synthetic) biology, yet poorly studied to this day.

In the specific case of RNA, despite being the object of substantial attention since
its formal introduction in the early 1990s [1], the complexity of RNA inverse folding
has remained elusive for almost three decades. A generalization of RNA inverse folding,
including the energy model as part of the input, was shown to be NP-hard by Schnall-
Levin et al. [2]. However, their reductions critically relied on (ab)using the energy
model to encode a 3SAT instance, leaving the hardness of the problem largely open
for a fixed energy model. The classic complexity of inverse folding was only settled, in
2020, when Bonnet et al. [3] finally showed the NP-hardness of RNA folding in a classic
base pairs maximization setting. Such computational intractability (retrospectively)
legitimizes a very large quantity of heuristic or exponential-time methods, based on
local search [1, 4–7], bio-inspired metaheuristics [8–11], global sampling [12, 13], con-
straint programming [14, 15] and, more recently, neural networks-inspired generative
models [16].

In parallel to complexity studies, Hales et al. [17] revisited the problem from a
structural angle, attempting to characterize designable or undesignable families of sec-
ondary structures. The authors showed that saturated structures, having all positions
paired, are designable if and only if their multiloop degrees do not exceed 4. They also
introduced a notion of separability, a sufficient, yet not necessary in general, condition
for a sequence to be a design for a given target. This notion allowed them to show
that any target structure either features an occurrence of a locally-undesignable motif
{m3•,m5}, or can always be transformed into a separable structure by adding at most
one base pair per helix. More strikingly, they proposed linear-time algorithms for pro-
ducing a single solution for each characterized class of designable structures, painting
a – puzzling – contrasted picture of general hardness (as per Bonnet et al. [3]) and
practical facility for inverse folding.

In this work, we further those studies and show that:

• While conceptually elegant, we show that separability unfortunately remains chal-
lenging: Finding a separated design for a given structure is NP-hard, even when
restricted to structures avoiding isolated base pairs;
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Fig. 1 Local design rules. Base pair compatibility graph (A) and incompatibility graph for base
pairs and unpaired nucleotides occurring within a loop (B): Connected base pairs, when jointly
occurring within a loop of the target structure, can refold to form a local, an alternative structure
having same number of base pairs as the target (C, left). Unpaired nucleotides may also interfere
with some (A or C) or every (G or U) base pairs, leading to local alternatives (C, right).

• Conversely, we prove that any structure with helices of length greater than 3
base pairs is either trivially not designable (i.e. contains {m3•,m5}), or separable.
Moreover, if designable, a solution sequence can then be designed in linear-time.
This constraint is relevant to the objectives of RNA design, as targeted secondary
structures are typically stable and tend to avoid shorter – unstable – helices;

• To establish this result, we introduce of the concept of modulo m-separability, a
refined version of separability, which coincides with general separability upon setting
m ≥ n/2. Deciding m-separability clearly remains NP-hard in general, but it can be
solved (+ a solution sequence be produced) in time O(n 2m) by a Fixed-Parameter
Tractable (FPT) algorithm for m;

• We prove that this algorithm solves all instances of inverse folding with minimal
helix lengths of 3 BPs when invoked with m = 2 and, even in this restricted setting,
many instances with shorter helices;

• We adapt our algorithm into a uniform random generator of separated designs,
combining a mildly unambiguous dynamic programming scheme with a rejection
strategy that achieves an average-case O(nm 2m) time complexity;

• Finally, we empirically observe that m-separated sequences often represent solutions
for instances featuring isolated base pairs or stacks. Moreover, despite being only
guaranteed to represent designs with respect to base pair maximization, are also
likely to represent designs in the more realistic Turner energy model and, in a
relaxed setting, are also superior than mere compatible sequences for multiloops of
larger cardinalities. Finally, we observe that m-separated sequences seem to often
sufficient diversity to enable a control of the GC%.

2 Problem statement, definitions, and prior work

Algorithmically, RNA can be abstracted as a nucleotide sequence, i.e. a string w ∈
Σn, Σ := {A,C,G,U} , where n denotes the length of w. Given a length n, a (non
crossing/pseudoknot-free) secondary structure is a set T ⊂ [1, n]2 consisting of base
pairs such that:

• Each position in [1, n] is involved in at most one base pair;
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• Base pairs in T are pairwise non-crossing: ∀(i, j) ̸= (k, l) ∈ T , i < k, either i < k <
l < j or i < j < k < l.

• Minimal distance in nucleotide number is parameterized by θ (default θ equals 0).

The set Sw of secondary structures compatible with an RNA sequence w is defined
as: Sw := {Secondary structure T | ∀(i, j) ∈ T, {wi, wj} ∈ {{G,C}, {A,U}, {G,U}}} .

Without loss of generality, a secondary structure can be represented as a tree
T = (V (T ), E(T )), whose nodes V (T ) are in bijection with base pairs (internal nodes1)
and unpaired regions (leaves), and whose edges represent the inclusion of base pairs.
Given a node v ∈ V (T ), we denote by parent(v) the parent of v in T , and by children(v)
the list of children of v in T . A loop is the subtree restricted to node and its (direct)
children. The tree is rooted in a special Root node, associated with the whole sequence
interval. An helix of length ℓ of the tree is a maximal path v1, . . . , vℓ of base pair
nodes such that each vi with i < ℓ has a single child vi+1 (no leaf attached). A helix
of length 1 is an isolated base pair. A helix of length 2 is an isolated stack. We define
hmin as the minimum length over all helices of T . As the target tree is always explicit
and unmodified through proofs and algorithms we do not specify it explicitly in the
notations.

RNA inverse folding considers a target secondary structure T , and constructs a
sequence ω ∈ Σn whose unique base-pair maximizing secondary structure is T .

Problem 1. Inverse-FoldingBP

Input: Target secondary structure T , sequence length n
Output: Sequence w ∈ Σn satisfying both:

• Compatibility with target structure: T ∈ Sw;
• Uniqueness of the target as the optimal fold for the sequence:

∀T ′ ∈ Sw, T
′ ̸= T, |T ′| < |T |.

or ⊥ if no such sequence exists.

Nevertheless, Inverse-FoldingBP, mildly extended to allow further restrictions
on individual sequence positions, was shown to be NP-hard by Bonnet et al. [3]. (The
used restriction requires the inclusion of some constraints of the form “nucleotide i
must be labeled by the base letter b”)

A sequence is called a design for a structure T if it represents a solution to the
inverse folding problem for the input T . Note that the uniqueness condition can be
tested in polynomial time using a variant of the Nussinov algorithm [17, 18]. In addi-
tion to showing that Inverse-FoldingBP is in NP, such an algorithm enables, for
moderate sequence lengths, a systematic folding of all sequences in order to character-
ize the set of structures admitting a solution. For instance, Figure 2 shows that, while
only 2.4% of RNA sequences of length 12 represent a design for some target, roughly
half of the secondary structure admits at least one solution sequence, and ≈ 49 on
average, for the inverse folding problem.

1Base pairs may also be leaves of the tree when involving consecutive positions, which happens rarely in
practice. We thus qualify as internal node any node in bijection with a base pair.
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Fig. 2 Exhaustive designability analysis of 12nts RNA sequences/structures. (Left) For
a minimum base pair span of θ = 0, there exists 15 511 secondary structures over 12 nucleotides, of
which little over half (8 111) admits at least a solution to the inverse folding problem. (Right) The
number of valid solutions varies substantially between targets and appears to depend on the number
of base pairs. Overall, out of the 16 777 216 RNA sequences of length 12, only 399 348 (≈ 2.4%)
represent a valid design for some structure.

a - e+1

a+1 - b b+1 - c c+1 - d d+1 - e

. . . . . . . . . . . . . . . . . .

a - c+2

a+1 - b b+1 - c c+1

. . . . . . . . . • . . .

Fig. 3 Forbidden motifs. Motifs m5 (left) and m3• (right), both shown as a tree (with a, b, c d,
e arbitrary integers) and as nested base-pairs. Note that the relative order of the children base-pairs
and the leaf in the m3• pattern is irrelevant. Any assignment of base pair letters (either matching a
proper coloring of the tree or not) leads to a possible local rerooting of at least two base pairs yielding
an alternative thus making the structure undesignable. [17].

We remind that, as noted by Halès et al. [17], two key motifs are not designable
in a base pair maximization setting, see Figure 3:

• The m5 motif consists of 5 base pairs occurring on the same loop (not counting the
Root). No sequence can be designed for such a motif, since exposing 5 base pairs on
a loop always allows for local refolding to have the same number of base pairs. This
follows from the inspection of Figure 1, where the largest set of mutually compatible
base pairs clearly has cardinality 4;

• Them3• motif consists of 3 base pairs (excluding the Root) and at least one unpaired
position. Indeed, as shown in Figure 1, the presence of an unpaired nucleotide either
forbids the co-occurrence of any adjacent base pair (G or U), or only allows three
(C or A). Since at most two of those base pairs can co-occur in a successful loop
design, m3• is not designable.

Any occurrence of these structures (or of any other undesignable structure, cf [19])
as a subgraph of an instance makes the instance undesignable.

2.1 Inverse folding as a tree coloring problem

We start by reminding the coloring framework introduced by Halès et al. [17].
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Fig. 4 A proper coloring is necessary towards design. In (A), having two children implies
that the sequence derived from this coloring features a motif where G and C can reconfigure locally. In
that case, they form an alternative structure that contains the same number of base pairs. Conversely,
in (B), the proper coloring ensures that locally no alternative of equal (or better) energy exists by
forcing some consecutive incompatibilities.

Definition 1 (Coloring). A coloring of a (secondary structure) tree T is a function
χ : V (T ) → { , , ,∅} associating a color to each node (except the root and the
leaves which always get ∅).

A coloring of a tree T typically induces multiple RNA sequences that are com-
patible with, but not guaranteed to fold into, the given secondary structure through
letters assignment rules. Namely, in any sequence w derived from a coloring χ, we
have for each (i, j) ∈ T :

• If χ((i, j)) = → (wi, wj) = (G,C);
• If χ((i, j)) = → (wi, wj) = (C,G);
• If χ((i, j)) = → (wi, wj) ∈ {(A,U), (U,A)}.
For nodes, the freedom in choosing (A,U) or (U,A) depends on the context: the
choice may be unconstrained (e.g. when isolated within a helix), or forced (e.g. when
two gray nodes are involved in a multiloop or stack). However, this property will only
impact the number of sequences associated with the coloring, but bears no consequence
on the existence of a solution to Inverse-FoldingBP, since the problem asks for the
production of a single sequence.

Denote by c the inverse of a color c, defined as = , = and = . Denote
by |C|c the number of occurrences of color c in vector C.

Definition 2 (Proper Coloring). A coloring χ is proper when, for each node v ∈ V (T ),
the vector of colors C, composed of the complementary color of the node concatenated
with the colors of its children, respects the following constraints:

|C| ≤ 1, |C| ≤ 1 and |C| ≤ 2 with C :=
[
χ(v)

]
.
[
χ(v′) | v′ ∈ children(v)

]
.

The use of the complementary color of v in C enables a compact definition: it forbids
and to have respectively and children which would result in an alternative

rerooting of the pairs. These conditions must also hold for the colorless Root, but with
C being restricted to the colors of children(Root).

In terms of RNA design, the proper condition is necessary for an associated
sequence to be a solution to inverse folding. Indeed, any coloring that is not proper
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3) A separated proper coloring

Fig. 5 1) 2D and dot-bracket representations of a secondary structure. Helices of sizes respectively
1 (isolated base pairs), 2 (isolated stacks) and more than 3 are represented in light red, purple and
blue. 2) Same secondary structure as a tree. The tree is colored and levels are represented in red
and blue bubbles. The coloring is proper and non-separated as the level of the leaf 19 is the same as
the level of the node 34-51. A non-separated coloring is not guaranteed to induce a design for its
target, but may still do so, as is the case here. 3) Same secondary structure, colored in a separated
(necessarily proper) manner. This coloring yields one or multiple designs (depending on the choice of
AU or UA for nodes). Notably, this coloring is 2-separated, as leaves and nodes end up at odd
and even levels respectively.

will be associated with sequences that can be locally reconfigured, this without losing
any base pair (see Figure 4 for an example).

Definition 3 (Levels). Given a coloring χ of a tree T , the level L : V (T ) → Z of
a node v is L(v) := |p| − |p| where p denotes the color vector associated with the
shortest node sequence from parent(v) to Root.

On an RNA level, the concept of level helps categorize, and possibly control, the set
of alternative structures to the target. Indeed, consider a sequence w generated from a
coloring χ. First remark that, in order for an alternative structure to be competitive,
every occurrence of C must be paired. Whenever two positions i and j interact to form
a base pair, it can be shown that the inner interval ]i, j[ interval contains L(i)− L(j)
more G than C. Meanwhile the outermost interval [1, i[∪ ]j, n] features the opposite
imbalance (L(i) − L(j) more C than G). In other words, any structure that contains
a base pair (i, j) /∈ T already has 2 × |L(i) − L(j)| fewer base pairs than the target
structure. Thus only structures made of pairs (i, j) such that L(i) = L(j) need to
be considered as viable alternatives to T . This property can be exploited as a design
principle, as formalized by the following property.

Definition 4 (Separated coloring). A coloring χ is separated for a target T if and
only if it is proper and the levels of -colored nodes and leaves do not overlap:

{L(v) | χ(v) = } ∩ {L(v) | v is a leaf} = ∅

This immediately suggests a design strategy that associates A to unpaired positions
and assigns and colors such that nodes end up as different levels as the
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leaves. Indeed, in this setting, Hales et al. [17] showed that the proper coloring of
a saturated structure (without unpaired position) yields a sequence that uniquely
folds with respect to base pair maximization. It follows that a competitive/alternative
structure may only result from a base pair (i, j) /∈ T , a position of which is a node
while the other is a leaf. Ensuring that all nodes and leaves are found at different
levels is thus sufficient to guarantee the designability of T , i.e. the existence of a
solution to this instance of the inverse folding problem.

More generally, we say that a target secondary structure T is separable if there
exists a coloring χ such that ‘χ is separated for T . We recall the main results of Halès
et al. [17] here.

Theorem 1 (Separable =⇒ Designable (Halès et al., 2017)). If a tree/secondary
structure T is separable, then T is designable.

Moreover, given a separated coloring, an RNA sequence that uniquely folds into
T , i.e. a solution to the inverse folding problem, can be found in linear time.

Remark 1. Note that any design sequence w, generated through a separated coloring,
avoids any alternative structure featuring GU base pair(s). Indeed, every G and C need
to be paired to achieve the number of base pairs featured in the MFE. Meanwhile, the
formation of any GU base pair, leaves one C and one A unpaired, resulting in the
overall loss of at least one base pair. Structures featuring GU base pairs can thus be
safely ignored.

Remark 2. Note that an alternative assignment of letters would be C to the unpaired
positions, UA for nodes, AU for nodes . It has no impact thanks to the symmetry
of the base pair compatibility graph as depicted on Figure 1. In practice, it gives access
if desired to double the number of sequences with the ones with the unpaired position
at C that could have a slightly different content in terms of G and C even if not studied
in this manuscript.

3 Separability: Intrinsic and computational limits

3.1 Structures containing small helices can escape the scope of
separability

Despite utilizing separability to explore a design of approximative instances, the work
of Halès et al. [17] left open the complexity of searching for a separated coloring, as
well as the existence of designable, yet non-separable, structures. An exhaustive search
for all structures with up to 12 bases, summarized in Figure 2, shows that for such
small instances, all designable instances are separable.

However, we show that non-separable designable instances can be constructed.

Proposition 2 (Designable ≠⇒ Separable). There exists a target structure which:
i) does not admit a separated coloring; and ii) admits a solution to the inverse folding
problem.

Proof. We use the tree T of Figure 6 as a counterexample to the notion that separa-
bility fully captures designability. First, note that a separated coloring χ of T would
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Fig. 6 Designability does not imply separability. Left: A target structure that does not admit
any separated coloring instance. Note that the coloring χ shown here puts the node 8-9 and the
leaf 3 both at level 1. Right: Sequence w compatible with the coloring χ, which provably admits T
as its single base pair-maximization structure (i.e. w is a design for T ).

be extremely constrained. Node 5− 18 should be and the nodes 2− 4 and 19− 21
are and respectively, or vice-versa due to their respective leaf. Thus, we have two
leaves at levels 1 and −1. At least, one of the two children of 5− 18, w.l.o.g 6− 7 is
or . One child of 6− 7 is then necessarily , leading to a child of level +1 or −1.
With two leaves at level +1 and −1, a direct consequence is that T is non-separable.

Now, we show that T is designable. We propose the sequence w of Figure 6. Using
a simple dynamic programming algorithm, it is possible to check that the best folding
for w is unique and corresponds to the secondary structure encoded as the tree T .
Intuitively, the only competitive alternative base pair is the one corresponding to the
overlap of the levels. It consists of joining the U from 8− 9 with the A at position 3.
By doing so, note that the base pair 5− 18 will be disconnected with no way to pair
A with another U due to the connection between 5 and 7.

Notice that, despite not being separated, the coloring shown in Figure 6 is com-
patible with a sequence that is a design for its target. This illustrates the fact that,
while not being guaranteed to uniquely fold as their intended target, sequences pro-
duced from non-separated colorings may still represent solutions for the inverse folding
problem.

Proposition 3. There exist non-separable structures with hmin = 2.

The full proof relies on a counterexample built from the gadget in Figure 7 and
is given in the next paragraph. Intuitively, T (a, b) saturates all levels modulo b with
leaves, so that none remains available for nodes. Meanwhile, the presence of mul-
tiloops forces proper colorings to use nodes, so a collision occurs and the gadget
is not m-separable for any m ≤ b. By assembling 5 copies of T (a, b) with large b and
increasing values of a, we obtain a target that is not separable for any m.

Non-separable target without isolated base pairs

We start with the following remark:

Proposition 4. If u0, . . . , uk is a path in T and each ui for even i has a leaf attached
to it then, for any coloring χ of the path, we have χ(u0) ∈ { , } and χ(ui) = χ(u0)
for all i.
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Fig. 7 Main gadget used to build non-separable instances with hmin = 2. Left: Admissible
colors for each node (up to branch symmetries). Right: Example coloring and levels of a selection of
leaves and nodes. Note that along with the node at level ℓ, there always exists a leaf at level
ℓ+m or ℓ−m for 2 ≤ m ≤ b, ruling out modulo separability for small m.

Proof. Indeed, by the proper coloring constraint, every node with an attached leaf or
with a leaf sibling may not be , so all χ(ui) ∈ { , } for all i. Moreover, there can
be no direct edge between and nodes, so χ(ui) = χ(ui−1) for all i which gives
the desired property by induction.

We now build a non-separable instance I without size-1 helix nor (m3•,m5) motif.
Let a ≥ 2 and b ≥ 2 be even numbers. Let T (a, b) be the gadget from Fig 7, containing
a length-a path from the to an internal node denoted t, and three length-b branches
attached to t. Further attach a leaf to every node at an even distance from the root
(except t itself). Note that all helices in T (a, b) have length 2. The level of a copy of
some T (a, b) gadget is the level reached under node t of this gadget.

We build the instance I as a tree containing 5 copies of the gadget T (a, b), precisely
I = (((T [10, 100], T [20, 100])), ((T [30, 100], T [40, 100])), T [50, 100]).

First note that for a copy of gadget T (a, b) at level ℓ in any separable coloring,
there is a node at level ℓ, since the node t has three children and at least one must
be . Also, there exist two integers u, v such that, for every x ∈ [1, b[, there is a leaf
at level ℓ + ux if x is odd, and level ℓ + vx if x is even. Indeed, pick one gray child
U of t, and one non-gray child V . All vertices under U form an all-white or all-black
branch by Proposition 4 (we let respectively u = −1 and u = 1), and vertices at levels
l+ u, l+3u, . . . , l+ bu (or l+ (b− 1)u) have a pending leaf. We similarly define v = 1
if V is black and v = −1 if V is white, and vertices at levels l + 2v, l + 4v, . . . , l + bv
(or l+(b− 1)v) have a pending leaf. From the above, if there are nodes at levels ℓ1
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and ℓ2 with ℓ− b ≤ ℓ1 < ℓ < ℓ2 ≤ ℓ+ b, then ℓ1 ̸= ℓ2 mod 2 (since otherwise, one of
ℓ1, ℓ2 could be written as ℓ+ ux with even x, so that level would be a leaf level).

Aiming at a contradiction, assume that I admits a separable coloring. Let ℓ1 ≤
ℓ2 ≤ ℓ3 ≤ ℓ4 ≤ ℓ5 be the levels of all five copies of the T [a, b] gadgets of I, in ascending
order. Then from the length of the branches from the root, we have ℓi ∈ [−50, 50] and
ℓi ̸= ℓj . Then by the remark above applied to the gadget with level ℓ2, we have ℓ1 ̸≡ ℓ3
mod 2, and similarly using gadgets with level ℓ4 we have l3 ̸≡ l5 mod 2 and l1 ̸≡ l5
mod 2, leading to a contradiction (any three integers such as ℓ1, ℓ3 and ℓ5 may not
have pairwise distinct parities).

3.2 Computational hardness of deciding separability

Regarding computational complexity, although looking for a separable coloring is not
directly equivalent to finding a design for a structure, we show that this decision
problem (formalized below) is also NP-complete.

Problem 2. Separability
Input: Target tree T (without any occurrence of m3• or m5 motif)
Output: Coloring χ of the tree T such that χ is separated

Theorem 5. Separability is NP-complete.

We further that even when isolated base pairs are forbidden in the input structure
(e.g. helices are all of size 2 or more), the separability problem is still NP-hard. Thus,
unless P = NP , the hope to find a polynomial algorithm for separability holds only
when helices are of size 3 or more:

Problem 3. 2-helix Separability
Input: Target tree T (without any occurrence of m3• or m5 motif) whose corresponding
target structure contains no isolated base pair (hmin = 2)
Output: Coloring χ of the tree T such that χ is separated

Theorem 6. 2-Helix Separability is NP-complete.

Clearly, Theorem 5 follows from Theorem 6, since the latter relates to a strictly
more general problem. We first give an outline of the reduction below, then provide
the full proof in the following subsections.

Although proper colorability is a local constraint, separability implies a form a
synchronization between different branches of the tree, since a conflict can appear
between a leaf and a node even if they are in remote sections of the tree. However,
we do not have a direct way to enforce that a specific level has nodes or leaves,
since there is a lot of freedom in proper coloring constraints, especially in trees with
hmin = 2. The first building block for our reduction is a blocking gadget that saturates
one parity (either odd or even levels) in some interval with leaves. This is matched with
a constant-size synchronization gadget where two levels of different parities necessarily
have nodes. So, even if both gadgets are present in different branches, they must
be placed at different levels.

Using these two gadgets, we build our reduction from Bin Packing with a tree
using one branch per item. Each item has a blocking gadget having the size of the item
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surrounded by two synchronization gadgets. This enforces that items must be packed
in non-overlapping ranges of levels. Additional synchronization gadgets further enforce
that series of consecutive items sum up to the target bin size, thus enforcing that items
are ordered according to a correct bin packing. However, the synchronization gadget
induces some margin of freedom on the specific position of the levels, so consecutive
items may be misaligned by some constant margin. This leads to a formulation of Bin
Packing as an interval packing problem, with blurred endpoints with some constant
margin L.

3.3 Formulation of Bin Packing as L-blurred interval packing

2-helix Separability is clearly in NP, since any coloring (certificate) can be checked
in linear time. We prove hardness by reduction from Bin Packing which we formulate
as an interval packing problem using unary encoding and blurred endpoints.

Definition 5. Given a set of pairwise distinct even integers A = {a1, · · · , an}, inte-
gers k and B with kB =

∑n
i=1 ai and a constant L, an L-blurred interval packing of

(A, k,B) is a set of integers ui, vi for each 1 ≤ i ≤ n and xj for 0 ≤ j ≤ k such that:

• −L ≤ xj ≤ kB + L for all j and x0 − L ≤ ui, vj ≤ xk + L
• |xj+1 − xj | ≤ B
• vi ∈ [ui + ai − L, ui + ai + L]
• for i ̸= i′, intervals [ui, vi[ and [ui′ , vi′ [ have an intersection of size at most L
• there is no i, j such that xj ∈]ui + L, vi − L[.

Let A0 = {α1, . . . , αn}, k, B0 be an instance of Bin Packing with kB0 =
∑n

i=1 αi

and L be any constant. Let M be the smallest even integer with M > (n+4)L. Write
ai = Mαi and B = MB0.

Lemma 1. The following are equivalent:

1. (A0, k, B0) is a yes-instance of Bin Packing
2. (A, k,B) admits an L-blurred interval packing
3. (A, k,B) admits a 0-blurred interval packing

Proof. We show 1. ⇒ 3. ⇒ 2. ⇒ 1..
1. ⇒ 3. Set xj = jB for each 0 ≤ j ≤ k. Let (p1, . . . , pn) be a permutation

of [1, n] such that bin 1 contains elements αp1 , αp2 , . . . , αpm for some m, then bin 2
contains elements αpm+1 , αpm+2 , . . . , αpm′ for some m′, etc. Define ui with up1 = 0,
upi+1 = upi +api , and vi = ui+ai. Then the first four conditions are trivially verified.
For the final condition, for each j, the items in the first j− 1 bins have sizes summing
to exactly (j − 1)B, so there is some i such that ui = xj , and by the fourth condition
there is no i′ with ui′ + L < xj < vi′ − L.

3. ⇒ 2.. Trivial, all conditions are weaker for L-blurred interval packing than
0-blurred interval packing.

2. ⇒ 1. We start with the following observation: by the constraints 1. and 2., one
can have xj < xj−1. However, considering only indices such that xj ≥ xj−1, the union
of intervals [xj−1, xj [ contains at least [x0, xk[. Let Ij be the set of indices i such that
xj−1 − L ≤ ui < xj − L. Sets Ij form a partition of [1, n] (it is clear that they are
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disjoint, and each i ∈ [1, n] is in some Ij since otherwise ui < x0 − L or ui ≥ xk − L
so vi > ui +L ≥ xk). For each j, and i ∈ Ij , we have vi ≤ xj +L, so interval [ui, vi[ is
included in [xj−1 − L, xj + L[. Each interval has size between ai − L and ai + L, and
these intervals overlap on at most L positions, so

∑
i∈Ij

ai ≤ xj −xj−1+ |Ij |L+2L ≤
B+(n+2)L. Since each ai and B is a multiple of M > (n+2)L, we have

∑
i∈Ij

ai ≤ B,

and
∑

i∈Ij
αi ≤ B0: sets Ij form a solution of Bin Packing(A0, k, B0).

3.4 Reduction from Interval Packing to Separability

The reduction is based on two gadgets called blocking and synchronization gadgets.
The first gives a long chain of nodes with a leaf attached to every other node; we
show that this enforces a long interval of levels with leaves at all odd or even level.
The second has a fixed size, and is incompatible with a blocking gadget since any
separated coloring has both an odd and an even level. Both gadgets are defined
in the following paragraphs, as well as their main properties. These properties are
formulated in terms of synchronized and blocked levels, defined now.

We set H = 12 (chosen as the height of the synchronization gadget defined below),
and use a blur value L = 3H + 2.

A level u is H-synchronized if there are two levels with different parity in
[u−H,u+H].

A level u is H-blocked if either all odd or all even levels in [u−H,u+H] are leaf
levels.

Observation 1. In any separated coloring, no level can be both H-synchronized and
H-blocked.

Blocking gadget

A blocking gadget of size q in a tree is a chain of q node s1, . . . , sq with a leaf attached
to si for each odd i.

Proposition 7. In any proper coloring of a size-q blocking gadget, all nodes have the
same or color. Furthermore, let ℓ1, ℓ2, be the levels above the root and below the
last node of the chain, such that ℓ1 ≤ ℓ2. Then ℓ2 = ℓ1 + q and all levels in interval
[ℓ1 +H, ℓ2 −H] are H-blocked.

Proof. By the proper coloring condition, no parent or sibling of a leaf can be , and
2 adjacent non- nodes must have the same color, so all nodes si are given the same
non- color. Furthermore, if the gadget is colored , then ℓ1 is the level above the
root, and ℓ2 = ℓ1 + q. Plus, there are leaves at levels ℓ1 + 2i + 1 for all i such that
1 ≤ 2i + 1 ≤ q, so all levels j with ℓ1 +H ≤ j ≤ ℓ2 −H are H-blocked. Similarly if
the gadget is colored , then ℓ2 is the level of the root, ℓ1 = ℓ2 − q, and again levels
ℓ1 +H ≤ j ≤ ℓ2 −H are H-blocked.

Synchronization gadget

The main gadget for our reduction is a fixed-sized tree for which any separated coloring
uses two levels with distinct parity (see Lemma 2 below).
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Fig. 8 The synchronization gadget with a proper coloring of its nodes using leaf levels {2, 3, 6, 7}
and levels {0, 1, 4, 5, 8, 9}. By Lemma 2, any proper coloring has two levels with distinct parity
so the root level is H-blocked.

Lemma 2. The synchronization gadget shown in Figure 8 admits a separated coloring
with root and using only leaf and levels in [r+0, r+9] (where r is the level of its
root). Moreover, for any separated coloring with the level of the root is H-synchronized.

Proof. Let r be the level of the root. The coloring with gray levels in [r + 0, r + 9] is
given in Figure 8.

For the main part of the proposition, assume that the gadget admits a coloring χ
such that all nodes have the same level parity. Since all distances to the root are at
most H, we need to ensure that there are two nodes with levels at different parity
anywhere in the gadget.

Suppose first that some node ri (i ∈ {1, 2, 3, 4}) of the gadget is colored , then
among the 3 chains below ri, one starts with a node, one starts with a node,
and the last with a node. We denote the nodes of the chain starting by c1, c2, c3
and c4 with c1 a node and the chain starting by b1, b2, b3, b4. Note that b1 and
b2 are . c2 can only be or as it has a leaf child (w.l.o.g. we assume it is ). c3
should also be due to the leaf of c2 and to the proper condition. c4 should also be

to avoid conflict with the leaf child of b2. Thus, c4 has necessarily a child and it
has a parity different from the node c1 as there are 3 nodes between them.

Suppose now that each ri, i ∈ {1, 2, 3, 4} is non- . Consider r1, we again denote
the four vertices starting on chain starting on a node c1, c2, c3 and c4. Then c1 is ,
c2 and c3 have the same non- color (again because of the leaf attached to c2), and
c4 = ri for some i ∈ {2, 3, 4} also has the same non- color. Let c′1 be a children
of c4: the level difference between c1 and c′1 is 3, so they have different parity, which
concludes the proof.
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Object gadget

An object gadget of size a (with a even and a ≥ H) is a chain of a+1 nodes, with two
synchronization gadgets attached respectively to the first and last nodes in the chain,
and a leaf attached to the ith node for each even i > H.

Proposition 8. If an object gadget of size a appears in a tree with a separated coloring
χ, there exist levels u ≤ v such that:

• levels u and v are H-synchronized
• a− L ≤ v − u ≤ a+ L (recall that L ≥ 3H + 2)
• all levels in [u+ L, v − L] are H-blocked.

Proof. We define u and v as the levels of the roots of both synchronization gadgets
(with u ≤ v). Both u and v are H-synchronized by Lemma 2. Write b1, b2 respectively
for the (H + 1)th and ath node of the object gadget. The chain from b1 to b2 form a
blocking gadget of size a−H. Let u′, v′ be the levels above b1 and below b2 respectively,
with u′ ≤ v′. By the distance in the tree, |u′ − u| ≤ H + 1 and |v′ − v| ≤ H + 1.
Moreover, by Proposition 7, |v′ − u′| = a−H (so a− 3H − 2 ≤ |v− u| ≤ a+ 3H + 2)
and all levels in [u′ +H, v′ −H] (that contains [u+ L, v − L]) are L-blocked.

Given an instance A, k,B of L-Blur Interval Packing, we build a tree T as
follows:

• We start with a chain P of length 2n, with vertices denoted q0, p0, q1, p1, . . . , qn, pn.
(In order to avoid isolated base pairs, we only attach subtrees to nodes pi, not qi).

• For each i ≥ 1 we attach a chain (denoted Pi) of kB nodes to pi followed by an
object gadget Ci of size ai.

• We attach a blocking gadget X1 of size 4kB to p0.
• We attach a long chain to p0 composed successively of:

– a chain S of kB+2 nodes with a synchronization gadget attached to the (iB+2)th
node for each 0 ≤ i ≤ k

– a subtree X2 composed of a blocking gadget of size 2kB with a synchronization
gadget attached to the last node.

3.5 Correctness proof

We now complete the correctness proof of the reduction with the following Lemma.

Lemma 3. We have the following two implications

(A, k,B) admits a 0-blurred interval packing ⇒ T is separable

T is separable ⇒ (A, k,B) admits an L-blurred interval packing

The proof is given in the following two sections. This lemma completes the proof
of Theorem 5, since together with Lemma 1 we have that (A0, k, B0) admits a Bin
Packing if and only if T is separable. Moreover, using the strong NP-hardness of
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Fig. 9 Left: details of the four main parts of the reduction, i.e. an object gadget Ci of size ai, the
chain S, and blocking gadgets X1 and X2). Right: general layout of the tree built in the reduction.

Bin Packing, we can assume that all integers αi are bounded by a polynomial in
|A0| (corresponding to a unary encoding), so T can be built in polynomial time from
(A0, k, B0). Finally, it can easily be checked that T does not have isolated base pairs
(however, T does contain isolated stacks, so hmin = 2).

From 0-blurred interval packing to separated coloring

We consider a 0-blurred interval packing assigning integers ui, vi to each item ai (and
xj = jB) as defined in Figure 10. In words, chain P is colored . Each chain Pi

(i ≥ 1) starts with a node, ends with ui nodes, and all remaining nodes are .
All synchronization gadgets are colored as in Figure 8. The chain X1 is , and all
other nodes are colored .

We show that this coloring is separated. Note that nodes either have level 0
or 1, or are part of a synchronization gadget. Let X = {ui | 1 ≤ i ≤ n} ∪ {kB},
all synchronization gadgets have level x ∈ X, so nodes have levels in {0, 1} ∪⋃

x∈X [x, x + 9]. Since synchronization gadgets are separated (locally), it remains to
verify that no leaf in the rest of the tree has a level in this set. Indeed, leaves in Ci

have levels between ui +L and vi − 2, while X1 and X2 have leaf levels < 0 or > kB.

From separated coloring to L-blurred interval packing

Suppose now that T admits a separated coloring χ. Assume that the level below node
p0 is 0 (otherwise, apply an offset to all level values below). Consider first blocking
gadget X1. By Proposition 7, it is either colored or . Without loss of generality,
assume it is colored . Then since it has size 4kB, all levels in [−4kB +H,−H] are
H-blocked. In particular, since there is no path of length ≥ 4kB − H in the rest of
the tree, all synchronization gadgets must have a level ≥ −H.

Consider now the blocking gadget X2, let N be the level of its first node. We
have |N | ≤ kB + 1. If X2 is colored , then the synchronization gadget below it
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Fig. 10 Example of the reduction with n = 4 items with sizes {a1, a2, a3, a4} to be sorted into k = 2
size-B bins. Each item is mapped into a branch Pi followed by an object gadget Ci, containing 2
synchronization gadgets (shown as red nodes with crosses) separated by the size of the item. Leaves in
object gadget enforce that any two gadgets may overlap only if the synchronization gadgets are aligned
(within a margin of L levels). The bins are implemented using the chain S, with synchronization
gadgets at every Bth position, enforcing that series of consecutive items are packed into size-B bins.
Finally, blocking gadgets X1 and X2 may not overlap with any synchronization gadget, and enforce
that all object gadgets as well as the chain S are packed together in a size-kB range of levels.

would be at level N − 2kB ∈ [−4kB + H,−H], which is not possible (this level
is blocked), so X2 is colored , and all levels in [N + H,N + 2kB − H] are H-
blocked. Since all synchronization gadgets in the S or Ci chains are at distance at most
2n+kB+max ai+2 from the root, and this distance is upper bounded by N+2kB−H
(with the reasonable assumption that B is large enough with respect to n, precisely
kB ≥ 2n+max ai + 2), they all have level at most N +H − 1 ≤ kB +H ≤ kB + L.

Write xj for the level of the jth synchronization gadget in S: xj is a synchronized
level. By the size of path between successive gadgets, |xj+1 − xj | ≤ B, and by the
remark above, −L ≤ xj ≤ kB + L.

For each object gadget Ci, by Proposition 8, there exist H-synchronized levels
ui, vi such that vi ∈ [ui −L, ui +L], and such that all levels in [ui +L, vi −L] are H-
blocked. Overall, we have integers xi, ui, vi satisfying the conditions for an L-blurred
interval packing.

4 Modulo separability as a parameterized tractable
alternative

Then, we introduce a stratified version of separability, called modulo m-separability,
or m-separability in short, which prescribes different modular values for the levels of

and leaves nodes. Figure 11 describes the relative positioning of classes of instances
and associated complexity results.
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Fig. 11 Instances of Inverse-FoldingBP. For unconstrained instances (Left), Inverse-
FoldingBP is likely NP-hard, as suggested by the hardness of a constrained version [3]. Finding a
design for a separable target is also NP-hard but, for any fixed modular level m, m-separable targets
can be designed in Θ(n) time. This suggests an algorithm, FPT on m, for all separable structures.
When hmin ≥ 3 (Right), Theorem 11 applies and the hierarchy collapses: any instance becomes 2-
separable ( =⇒ separable and designable) and Inverse-FoldingBP can be solved in Θ(n) time.

Definition 6 ((Modulo) m-separability). Let m be an integer. A coloring χ is m-
separated (or separated with modulus m) for a target secondary structure T , if an
only if χ is proper and

{L(v) mod m | χ(v) = } ∩ {L(v) mod m | v is a leaf} = ∅

using for negative levels l < 0 the classic l mod m := (l + ⌈−x/m⌉ ×m) mod m.
Structure T is m-separable if it admits an m-separated coloring.

Clearly, modulo separability implies classic separability: if a coloring χ is m-
separated for a target structure T , then χ is separated for T . Conversely, if a target
structure admits a separated coloring, assigning levels in [−a, b] to and leaf nodes,
then the same coloring is provably m′-separated for m′ := (b + a + 1) (since, for
l, l′ ∈ [−a, b], l ̸= l′ implies that l mod m′ ̸= l′ mod m′). Note that, since there are at
most n/2 base pairs/internal nodes in a target tree, then 0 ≤ a, b ≤ n/2, and we have
m′ ≤ n.

The concept of m-separability thus provides an angle to address the generation
of separated colorings, so we introduce below the associated formalized algorithmic
problem.

Problem 4. Modulo Separability
Input: A tree T (with no m3• or m5 motif), a modulus m ∈ N
Output: A coloring χ of T that is m-separated, or ⊥ if no such coloring exists.

As noted above, the problem specializes in the Separability problem when m =
n, implying that Modulo Separability remains NP-complete. However, it can be
efficiently solved for moderate values of m, as shown below. Practically, one may focus
on small values of m since 99% of instances without isolated base pairs are separable
with modulus m ≤ 6 (cf Table 13).

4.1 Fixed parameter tractable algorithm for
modulo-separability

We now show that, for any fixed modulus m, Modulo Separability can be solved
in linear time. In particular, the problem is Fixed Parameter Tractable (FPT) for the
parameter m.
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Towards that goal, we consider a constrained version of Modulo Separability,
where the modular values of levels are prescribed. Formally, we enforce that leaves only
occur at modular levels in ξL ⊆ [0,m[, and nodes only occur at levels [0,m[\ξL. In
this constrained version of Modulo Separability, the existence of a valid solution
can be solved in linear time using dynamic programming.

Namely, let us denote by dξLv→c,ℓ the existence of a valid assignment (i.e. solution)
for a subtree of T rooted at internal node v, with v occurring at level ℓ, and being
assigned a prior color c. Provably, dξLv→c,ℓ can be computed recursively by progressing
along the tree, keeping track of the current level and checking that leaves and end
up being assigned at modular levels ξL and [0,m[\ξL respectively. This leads to the
following formula:

dξLv→c,l =



False
if ℓ ∈ ξL ∧ c =

or ℓ′ /∈ ξL, and ∃ leaf in children(v)

True if children(v) = ∅

∨
c′ proper coloring of

children(v) given v → c

∧
v′∈children(v)

dξLv′→c′(v′),ℓ′ otherwise.

with ℓ′ := ℓ+ δ(c) mod m

where δ denotes the level increment induced by a color c, defined as δ( ) = +1,
δ( ) = −1 and δ( ) = 0. Moreover, in the outermost loop, the color assignment
explored for children is meant to be locally proper: the colors c(v′) of the children, in
conjunction with the color c of v must obey the conditions of Definition 2. Note that,
in the absence of m3• and m5, the number of (proper) assignments is bounded by a
constant, so this conjunctive loop does not impact the complexity. The existence of a
ξL coloring for the full tree is then SeparableξL := dξLRoot→∅,0.

The decision version of the problem can thus be solved in Θ(m.n) time. Indeed,
the number of left-hand side terms scales in Θ(m.n), the number of proper coloring for
children is bounded by a constant (since avoiding m3• and m5 =⇒ |child(v)| < 5),
and the total number of executions of the conjunctive loops is in overall Θ(n). A
backtracking procedure could also be defined to reconstruct a solution coloring in Θ(n)
if such a solution exists (SeparableξL = True) or return ⊥ otherwise (SeparableξL =
False).

An algorithm for Modulo Separability can then be obtained by explicitly
considering all the possible subsets of admissible modular levels for leaves:

• If T contains m3• or m5, return ⊥
• For each ξL ⊆ [0,m[:

– If #DesignsξL > 0, then backtrack to produce ξL-separated design

• Return ⊥
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The algorithm is correct: for any m-separated coloring χ, there exists at least one
ξL ⊆ [0,m[ corresponding to the leaves of χ solution and any them-separated property
implies a partition of the leaves and nodes into disjoint levels ξL and χ ⊆ [0,m[\ξL
respectively. A m-separated coloring is thus always found by invoking the DP algo-
rithm over the 2m subsets ξL ∈ [0,m[. The overall complexity of the algorithm is
in Θ(n.m.2m) time and Θ(m.n) memory, and we conclude with the parameterized
complexity of the problem with respect to m.

Theorem 9. Modulo Separability is Fixed Parameter Tractable for the modulus
parameter m

4.2 Random generation of m-separated sequences

We then turn to the uniform random generation of m-separated sequences, defined as
a design w for T , featuring A on unpaired positions, and such that the coloring χw,
obtained by replacing base pairs with suitable color ((G,C) → , (C,G) → and
(A,U) or (U,A) → ), is m-separated.

Problem 5. Uniform Modulo Separated Generation
Input: Target tree T (with no m3• or m5 motif)
Output: RNA sequence w, associated with m-separated coloring χw, such that

P(w | χw is m-separated) =
1

|{w′ ∈ Σn such that χw′ is m-separated}|

4.2.1 Linear-time uniform sampling for fixed modular assignments

Once again, we approach this problem by first solving a more constrained version
where the modular levels of leaves are explicitly given as a set ξL, denoted as modular
assignment in the following. Then, in the spirit of Reinharz et al. [12], we adapt the

above recurrence, through a simple algebra change, to count the number pξLv→µ,l of
RNA sequences, associated with what we call a ξL separated coloring, that is to say a
m-separated coloring such are all leaves levels are ξL. (for a subtree of T rooted at v,
with v occurring at level l, and being assigned a nucleotide assignment µ).

pξLv→µ,ℓ =



0 if ℓ ∈ ξL and µ ∈ {(A,U), (U,A)}
0 if ℓ′ /∈ ξL and v has a leaf attached

1 if children(v) = ∅∑
µ′ proper assignment
children(v)→Σ2∪{∅}

∏
v′∈children(v)

pξLv′→µ′(v′),ℓ′ otherwise.

with ℓ′ := ℓ+ δ(µ) mod m

where µ′ is function assigning nucleotides to the children of v, consistent with a proper
coloring and additionally respecting natural constraints on the content ((A,U) or
(U,A)) of pairs of nodes (same for both if one parent of other, different content if
siblings). Once again, the colorless Root node needs to be distinguished, and the overall
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number of designs is given by #DesignsξL := pξLRoot→∅,0. We next propose a backtrack

procedure backtrackξLv′→µ′(v′),ℓ′ with exactly the same parameters than pξLv→µ,ℓ and that

process exactly the same cases and then produces a uniform random RNA sequence
that corresponds to a m-separated coloring for a fixed set ξL. In that case, by abuse of
language, we say that the sequence is ξL separated. More precisely, backtrackξL(→v,,c, ℓ)

produces a random sequence, associated with a ξL separated coloring, for the subtree
anchored in v, reached at height ℓ, where the root is assigned a pair of bases µ ∈ Σ2.
It first picks a random proper assignment µ′ for the children, weighted by the corre-
sponding number of solutions (namely,

∏
v′∈children(v) p

ξL
v′→µ′(v′),ℓ′ , with ℓ′ := ℓ+ δ(µ)

mod m). The resulting sequence is then

∏
v∈children and leaves(v)

{
A If v′ is a leaf

b.(backtrackξLv′→µ′(v′),ℓ′).b
′ otherwise, with µ′(v′) = b.b′

The resulting algorithm, consisting of precomputing all pξLv→µ,ℓ, followed by a
sequence of k backtracks, provably returns k random, uniformly-distributed and
independent designs that are ξL separated in time Θ(n.m+ k.n).

4.3 Integrating over all modular assignments and correcting
for uniformity through rejection

Clearly, a random generation algorithm could be obtained by generating a random
modular assignment ξL uniformly, and then use the above algorithm to produce a
design. However, if naively implemented, such a strategy would suffer from multiple
shortcomings:

1. It may not always produce a valid design, even when such a design exists. Indeed,
a naive choice of ξL may lead to zero ξL separated design;

2. The overall generation scheme would not be uniform over the set of m-separated
sequences (at a fixedm). Indeed, the emission probability of am-separated sequence
w that is only compatible with a single assignment ξL (i.e. populating all levels in
ξL), is then strictly inversely proportional (for a fixed m) to the number of designs
compatible with ξL. Such a probability will thus typically differ across modular
assignments, inducing a bias. Even if corrected by a suitable correction upon choos-
ing ξL, this scheme will favor sequences that are compatible with multiple modular
assignments, thus motivating further countermeasures.

To correct those issues, and leverage the uniform generation for a fixed ξL into a
uniform generation of m-separated designs, we implement a classic rejection strategy
(see [20, pp 77] for a general exposition). It start by generating some ξL according
to a suitable distribution, and then uses a suitable rejection to correct the emissions
probabilities of sequences compatible with several ξL.
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Theorem 10. Uniform Modulo Separated Generation can be performed in
Θ(n.m.2m) average-case complexity, i.e. Fixed Parameter Tractable on the modulus
parameter m.

We consider a rejection-based approach, which starts by precomputing all
#DesignsξL in time Θ(n.m.2m) (see Section 4.2), and accumulates them into Zm :=∑

ξ′L⊆[0,m[ #Designsξ′L . It then iterates the following steps until a suitable sequence is

returned:

1. Choose some ξL ⊂ [0,m[ with probability P(ξL) = #DesignsξL/Zm

2. Generate a ξL separated sequence w
3. Compute the number Ξw of ξ′L ⊂ [0,m[ such that w is ξ′L separated
4. With probability 1/Ξw, accept/return w ; Reject/restart from 1. otherwise.

Due to the full reset on each rejection, the emission probability pw of any suitable w
does not depend on the prior sequence of rejections (folklore, proven in [20, pp 77]),
and we have:

pw ∝
∑

ξL such that w
is ξL separated

P(ξL)× P(w | ξL)×
1

ΞL

=
∑

ξLsuch that w
is ξL separated

#DesignsξL
Zm

× 1

#DesignsξL
× 1

Ξw
.

Some terms directly cancel out and, by definition, we have

∑
ξLsuch that w
is ξw separated

1 = Ξw.

It follows that pw ∝ 1/Zm, a term that no longer depends on w, from which we
conclude that the overall generation is uniform.

Complexity-wise, a prior accumulation of the 2m terms #DesignsξL , each smaller
than 4m, into a suitable data structure (see Lorenz and Ponty [21] for details) enables
a random choice of ξL (Step 1.) in Θ(n.m). Once ξL is chosen, the above DP algorithm
uniformly generates w in time Θ(m.n) (Step 2). The computation of Ξw (Step 3) is
trivial and consists in identifying, in time Θ(n+m), the subset Φw ⊆ [0,m[ of modular
levels that are populated by neither leaves nor nodes in χw. Indeed, those levels
represent the only degrees of freedom available while choosing a compatible ξL, the
others modular values being forced to either or leaves. Since such modular values
can be independently chosen to be in or out of ξL, then we have Ξw = 2|Φw|. Clearly,
we have Ξw ≤ 2m, so the expectation of the number of (independent) rejections admits
an upper bound in 2m, and the overall average-case complexity is in Θ(n.m.2m).
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5 Structures without isolated stacks and base pairs
are 2-separable

Although separability does not give a full characterization of designability in general
(cf Prop. 2 and Prop. 3), we obtain a much stronger result for structures without
small helices, as hinted by the fact that all counter-examples and hardness gadgets
heavily use isolated base pairs or isolated stacks in their construction. Indeed, we show
that a 2-separated coloring can be constructed for all structures without forbidden
motifs (m3•,m5) and hmin ≥ 3, so indeed all such structures are designable. Since
avoiding (m3•,m5) is a necessary condition for designability, we obtain the stronger
characterization stated in Corollary 2.

Theorem 11. Every (m3•,m5)-avoiding target T , having hmin ≥ 3, admits a
2-separated coloring

Proof. First, let us remark that helices can be treated as atomic objects, and com-
pacted into the edges of a helix tree, whose edges are helices (sequence of consecutive
BP nodes), and whose internal nodes are either:

• Multiloops, consisting of 2 or 3 children/BPs/Helices, and no leaf (so m3• does not
occur);

• Internal/Bulges/Hairpin (IBH) loops, consisting of at most 1 BP/Helix and
featuring at least one leaf/unpaired node.

Remark that, while constructing a separated coloring assigning a modular level ξL to
leaves, those two motifs are the only sources of immutable constraints:

• Any proper coloring of a multiloop features at least one node, so the levels of
children/nodes need to be set to a level ξL := ξL + 1 mod 2;

• Any IBH loop features at least one leaf within its children, which needs to be set to
a modular level ξL.

Conversely, beyond their first BP, helices may be colored with very limited constraints
and can be used to offset multiloops and IBH loops.

Lemma 4. Let ξL denote the prescribed modular level for nodes. Consider an helix
H consisting of 3 BPs or more (hmin ≥ 3), whose first BPs is assigned some color
c ∈ { , , }.

Then for each modular level l ∈ [0, 1] for the first BP of H (c = only if l = ξL),
and targeted exit modular level l′ ∈ [0, 1], there exists a coloring for the rest of H such
that:

• The modular level of the upcoming nodes, i.e. those immediately following H, is l′;
• Base pairs can only be -colored at modular level ξL.

Proof. The proof is essentially based on case decomposition, and summarized in
Figure 12. We show that, for any l and hmin ≥ 3, there exists a color assignment to
the first 3 nodes of the helix, such that the modular level of upcoming nodes is either
0 or 1, so l′ can be reached. Moreover, if such a coloring starts with or , and uses
a single node, then there exists an alternative coloring placing this node at the
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Fig. 12 Alternative colorings for helices consisting of 3+ base pairs (hmin ≥ 3), such that the
modular level of the following nodes is offset as needed. Such colorings can be chosen to respect a
prescribed level for nodes and, a predetermined color for the first node/base pair of the helix.

opposite modular level, so one of them places their node at the intended level ξL.
Finally, if the first node is set to , then the consistency condition above implies that
l mod 2 = ξL, so that nodes are naturally found at an admissible modular level.

It follows that any helix tree starting with an initial helix H can be colored into
a 2-separated coloring. Starting at initial level l = 0 and having initial BP color c (̸=

if ξL = 0), color the rest of H as shown in the proof of Lemma 4, depending on ξL
and the type of upcoming loop (target l′ = ξL for Multiloops; l′ = ξL for IBH loops),
while ensuring that nodes end up at ξL modular level (which can always be done
from Lemma 4). The remaining nodes of the loop are then colored in a proper/greedy
manner, and we iterate the process recursively on the children helices of the loop (if
any) until the full tree is colored.

Since its level cannot be offset, the Root node must be treated as a special case.
Indeed, if the Root has at least one leaf/unpaired position, then the modular value 0
is taken by the leaf, so we must have ξL = 0. Conversely, if the Root supports at least
3 helices, then at least one needs to start with a node, so we must have ξL = 1.
Regardless of this restriction on ξL, in both cases the first base pair of each helix (if
any) supported by the Root can be properly colored, and helices can be independently
colored using the above strategy, ultimately yielding a 2-separated coloring.

Corollary 1. Inverse Folding, restricted to instances with hmin ≥ 3 (containing
no isolated base pair and no isolated stacks) is solvable in linear time and space.

It is a direct consequence of Theorem 11 and of the DP scheme introduced in
Section 4.1. Indeed, for m = 2, the DP algorithm only needs to be run twice (ξL = 0
and ξL = 1) in linear time/space, to produce a 2-separated coloring whenever such
a coloring exists (guaranteed by Theorem 11). The coloring can then be transformed
into a design, i.e. a solution to the inverse folding problem. Similarly, Uniform
Modulo Separated Generation can also be performed in linear expected time
and space as long as input instances contain only helices of size 3 or more.

Corollary 2. Let T be a target structure with hmin ≥ 3, then the following are
equivalent: i) T is designable; ii) T is 2-separable; and iii) T avoids (m3•,m5).

With this result, the hierarchy of instances collapses as depicted on the left of
Figure 11 A natural follow-up question is whether the bound 3 on the helix length is

24



tight. Indeed, there are non-separable and designable instances with hmin = 1 (Proposi-
tion 2), but the question remains for hmin = 2. In Proposition 3 we give a non-separable
instance without isolated base pairs, so hmin = 3 is indeed tight to ensure separability.

6 Assessing the relevance of separated sequences
towards realistic designs

While the existence of a linear-time algorithm for a reasonable restriction of the inverse
folding problem is already notable, its practical relevance may be perceived as hin-
dered by several limitations: our algorithms are only guaranteed to produce design
solutions for helices beyond 3 base pairs; proper colorings only allows the design of
highly-constrained (multi)loops; and solutions to the base pair inverse folding are not
guaranteed to represent good solutions in more realistic energy models, such as the
Turner nearest-neighbor model. To assess the potential of separated designs to inform
future RNA design methods, we performed computational experiments, using a Python
implementation available at:

https://gitlab.inria.fr/amibio/linearbpdesign

6.1 Targets with isolated BPs/stacks are frequently separable

While our algorithm is only guaranteed to produce a design when hmin ≥ 3, it also
produces (guaranteed correct) solutions for input with smaller helices, as long as a
separated coloring exists for them. For very small targets, an exhaustive analysis is
feasible, consisting of folding/testing the unicity of the MFE folding for all sequences
of length n = 12 (see Figure 2). Moreover, once a design w is found for a target T ,
it is easy to test if the associated coloring χw is separated, and to compute minimal
modulus value m⊖ such that χw is m⊖ separated. We found that all of the 8 111 des-
ignable targets are also separable, despite a very large proportion of them featuring
isolated stacks and base pairs. Moreover, all designable targets admit separated solu-
tions associated with very small values of the modulus m (7 690 for m = 2, 420 for
m = 3 and m = 1 only for the empty structure).

To further measure the proportion of separable structures within larger targets fea-
turing isolated stacks, we implemented a uniform random generation algorithm [20].
We produced random target secondary structures of length 100 with a min base pair
span of θ = 3. Note that our dynamic programming algorithm does not make use
of this property as we forbid every alternative base pair with no regard to the dis-
tance between the extremities of these base pairs. However, it is realistic to focus our
attention on the target structures with θ = 3 relevant in the Turner energy model.
We used rejection to produce a synthetic dataset consisting of 10 000 targets having
at least one helix of size 2 while avoiding m3• and m5. For each target T , we ran an
in-house implementation of the algorithm in Section 4.1 with increasing modulus, to
find the minimal modulus m⊖ such that T admits a m⊖ separated coloring. Table 13
summarizes our results, which we discuss below.

Remarkably, all of the 10k targets in the datasets could be designed using our algo-
rithm, and thus admit a separable coloring. Moreover, roughly three-quarters (80%)
of the targets were found to be 2-separable, and less than 1% of the targets required
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Fig. 14 Average runtime of our algorithm (pre-
processing + sampling of single instance) for
separable instances (hmin=3; no m3•/m5) on a
domestic laptop (AMD Ryzen 7 3700U).

the consideration of values for m⊖ beyond 6. The max value for m⊖ in this dataset
was 9, an order of magnitude lower than the sequence length. Clearly, since we have
shown the existence of non-separable instances with isolated stacks and no isolated
base pair, this observation does not generalize to arbitrary sequence lengths. How-
ever, the large size of these counterexamples suggests that the proportion of separable
structures, despite ultimately decaying exponentially [19], may remain non-negligible
for relevant RNA target sizes.

6.2 Separated designs are promising candidates in the Turner
model

We now consider a more realistic setting, where the inverse folding problem is now
considered with respect to the Turner nearest-neighbor energy model [22]. To assess
the value of a sequence in the Turner model, we introduce a metrics which we call the
(signed) energy distance ∆∆G(w, T ) of a target T to its most stable distant alternative
for the sequence w:

∆∆G(w, T ) := ∆G(w,αd−(w, T ))−∆G(w, T ),

where α(w, T ) := min{∆G(w, T ′) | |T ′, T | ≥ d−} with ∆G(w, T ) the Turner free-
energy, |T, T ′| := |T △T ′| denotes the base-pair distance, and d− represents the
minimum base pair distance to T . Both ∆G and αd−(w, T ) can be obtained by appro-
priate calls to the ViennaRNA package [1], namely RNAeval and RNAsubopts, using
max energy distance parameter E = 5 (so our estimation of ∆∆G(w, T ) is bounded
by 5). A positive energy distance confirms that w is a solution to the Turner version
of inverse folding, and dominates its competitors by ∆∆G(w, T ) kcal.mol−1. Mean-
while, a negative energy distance indicates that the target T is dominated by some
alternative structure, having ∆∆G(w, T ) kcal.mol−1 lower free-energy than the target.

We consider three strategies for sampling sequences: i) The compatible model
uniformly generates random sequences compatible with the target (A for unpaired
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Fig. 15 Comparison of compatible (baseline), separated, and relaxed models for targets
having n = 100, θ = 3, hmin = 3. For energy distance parameters, we took d− = 3 and E = 5.

positions; AU, UA, GC or CG for base pairs); ii) The separated model uses the sam-
pler described in Section 4.2 to generate sequences that are 2-separated and proper;
iii) The relaxed, sometimes also called the unproper model, generates sequences that
are 2-separated, but not necessarily proper by assigning uniform random pairs to the
base pairs of a multiloop. The relaxed model enables a heuristic extension of our algo-
rithms supporting multiloops of arbitrary degrees, noting that the local refolding (see
Figure 4) occurring in the BP model for non-proper sequences are either unrealistic
or outright impossible, in the Turner energy model.

Separated sequences substantially improve over compatible random
sequences. We first asked a basic question: Are separated sequences better candidates
for design in the Turner model than sequences compatible with the target? The answer
is not obvious since separated sequences are only guaranteed to represent designs for
the BP max. model. We considered instances of size n = 100 admitting a solution to
Inverse-FoldingBP (θ = 3; no m3•/m5; hmin ≥ 3). We generated 10 000 random
targets and, for each target, sampled a single sequence using each of the 3 strategies
above and computed the energy distance.

The results, summarized in Figure 15.top suggest that separated sequences repre-
sent a substantial improvement over merely compatible sequences. Indeed, while 10%
of compatible sequences ended up being good design candidates (∆∆G > 0), the pro-
portion of successful designs increases to approximately one-third (35%) for separated
sequences, and further to 43% for relaxed design. A similar trend can be observed
for the average ∆∆G (distance to the first alternative/competitor) among successful
designs, being of 0.79/0.98/1.06 kcal.mol−1 in the compatible, separated and relaxed
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models respectively. The surprisingly good behavior of the relaxed model, which was
mostly introduced to overcome unrealistic limitations on multiloops, remains to be
explained. As a small hint why the character unproper of the design does not seem to
matter, note first that if we have an unproper m-separated design ω then if it has an
unpaired position in a high-degree multiloop M , pairs AU will still be forbidden in M
due to the separability condition. Furthermore, most of the local rearrangements will
mainly produce some rerooting unrealistic thanks to θ = 3 or that would represent
some base pairs that have high chances to worsen the Turner energy of the structure
over ω.

Relaxed sequences enable designs for higher degrees multiloops. We also
tested the capacity of the relaxed model to generate solutions for multiloops of higher
degrees, noting that the avoidance of m3• and m5 restricts the maximum degree of
a multiloop to 4. We used the above-mentioned generation algorithm to generate
uniform design targets of size n = 100, featuring at least one (but frequently many)
occurrence of m3• and m5. As shown in Figure 15.bottom, compatible sequences are
again substantially outperformed by the relaxed separated model in this setting, with
31.5% of the separated/non-proper sequences (as opposed to only 5.1% of compatible
sequences) representing successful designs (∆∆G > 0), on average 0.86 kcal.mol−1

more stable than their best competitor.

6.3 Using multidimensional Boltzmann sampling to control GC
content

Targeting a realistic G+C content (GC%) is a traditional secondary objective of inverse
folding [12]. In particular, it is generally believed that solution sequences featuring
artificially high GC% (≫ 50%) are somewhat easier to find computationally yet may
suffer from slow kinetics due to the transient formation of alternative stable helices
which, delaying convergence to the thermodynamic equilibrium.

To control the GC% of m-separated designs produced by our random generation
algorithm (cf Section 4.2), we use multidimensional Boltzmann sampling, a technique
introduced in the context of enumerative combinatorics [23, 24], and more recently
adapted to efficiently constrain stochastic sampling within classified dynamic pro-
gramming [12, 15, 25, 26]. Its core idea is to induce a Boltzmann distribution for the
emission probabilities, such that:

P(w | T, πGC) =
eπGC·#GC(w)

ZπGC

, ZπGC
:=

∑
w′ m-sep. for T

eπGC·#GC(w′),

using a weight πGC ∈ R whose value can be used to control the expected GC% of gen-
erated sequences. Generating in such a distribution can be achieved through a simple
adaptation of the random generation algorithm from Section 4.2, to incorporate a mul-
tiplicative weight e2πGC anytime a G·C or C·G content is chosen for a given base pair.
Then, a rejection strategy keeps only those sequences having desired GC%, resulting
in a random generation algorithm with guaranteed uniformity at fixed GC%. Using a
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binary search for a suitable value of πGC, the associated average-case time complex-
ity then increases as Θ(n

√
n) under mild concentration assumptions (i.e. asymptotic

convergence of GC% to a Normal distribution).
We generated 10 000 uniform random separable structures (m3•/m5-free; hmin = 3)

of length 100nts. For each structure, we produced a single m-separated design (mod
2-separated sequences), initially in the uniform distribution πGC = 0 to determine
the typical GC% distribution. The results, summarized in Figure 16 (Left), show that
a low average GC% of 40% (40% median) can be consistently reached (5.1% std).
Unsurprisingly, extreme GC% values are difficult to reach, both due to the assignment
of A to unpaired positions (37.5% of total positions), and the necessity to alternate
G·C/C·G and A·U/U·A within multiple loops.

We then reprocessed the same structure dataset, this time using a numerical
iteration to determine values of πGC which minimize GC% while avoiding numerical
underflows (−59 ≤ πGC ≤ −34). Figure 16 (Center) showcases the resulting GC%
distribution, which is tightly concentrated around 32.7% (3.8 std).

Finally, the GC% can be pushed by setting πGC to its maximum while avoiding
numerical overflows (18 ≤ πGC ≤ 39). Again, we observe a relatively tight concentra-
tion around the mean value of 51% (6.8 std), approximately equating the GC% and
AU%.

Overall, this study confirms that modulo 2 separated sequences, despite being a
strict subset of all designable sequences, represent a sufficiently rich family to imprint
further constraints, as demonstrated here by our modulation of the GC%. Future work
may consider the utilization of such sequences as reasonable starting points (aka seeds)
for design heuristics targeting the Turner energy model [1].

7 Conclusion

Adapting a coloring perspective initially introduced by Halès et al. [17], we have shown
that the inverse folding problem can be solved in linear time for all target secondary
structures having minimum helix length equal to 3. Towards that main result, we have
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established the existence of designable, yet non-separable, instances of inverse folding,
and the NP-hardness of finding a separable design in the initial sense of Halès et al.
We have also introduced concrete algorithms for the problem of finding a m modulo-
separated coloring, which we have shown to be NP-hard yet FPT-solvable for m.
Already form = 2, the scope of our algorithms encompasses all targets without isolated
base pairs and stacks, but also extends much beyond, in a way that remains to be fully
characterized. Beyond base pair maximization, modulo-separated sequences may also
represent a solid foundation towards concrete design methodologies. Namely, we have
empirically observed that, for the Turner energy model, separated sequences tend to
represent better design candidates than merely compatible sequences, and that the
limitations on loop degrees (intrinsic to the BP maximization model) can be overcome
by relaxing our design model while retaining substantial performances. Moreover, we
have showed that m-separated sequences offer sufficient diversity to modulate the GC
content of produced sequences.

Future work should focus on how much of designable sequences are covered by
sequences obtained with (modulo)-separated colorings. More importantly, does the
space of (modulo)-separated colorings always/often contain a design with respect to
the nearest-neighborhood Turner energy model? Even if it unlikely to hold uncondi-
tionally, it is plausible that some extensions of separability and m-separability will
achieve theoretical and practical solutions for inverse folding in more general energy
models. As a first step, separability in a stacking energy model seems a relevant goal,
even if less ambitious than the Turner nearest-neighbor model. It would probably
require to go beyond the current coloring formalism, and motivate the introduction of
more general notions of defects to capture imbalance at the level of dinucleotides com-
positions. Finally, extensions of this work may explore generalizations of the notion
of (m-)separability, possibly in combination with further constraints-based filters, to
directly address real world design scenarios. Towards that goal, we have introduced
the concept of biseparability to enable a joint presence of As and Cs in unpaired posi-
tions, and used the produced sequence as a starting point (aka seeds) in the context
of various popular heuristics, leading to improved performances [27].
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