

An unprecedented small RNA-riboswitch interaction controls expression of a bifunctional pump that is essential forStaphylococcus aureusinfection

Gabriela González-Espinoza, Karine Prévost, Fayyaz Hussain, Jana N Radin, Carlos D Vega Valle, Julie Maucotel, Marina Valente Barroso, Benoît Marteyn, Eric Massé, Pascale Romby, et al.

To cite this version:

Gabriela González-Espinoza, Karine Prévost, Fayyaz Hussain, Jana N Radin, Carlos D Vega Valle, et al.. An unprecedented small RNA-riboswitch interaction controls expression of a bifunctional pump that is essential forStaphylococcus aureusinfection. 2024. hal-04761527

HAL Id: hal-04761527 <https://hal.science/hal-04761527v1>

Preprint submitted on 31 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An unprecedented small RNA-riboswitch interaction controls expression of a bifunctional pump that is essential

for *Staphylococcus aureus* **infection**

 $\frac{4}{5}$ **Gabriela González-Espinoza1, †, Karine Prévost2 , Fayyaz Hussain³ , Jana N. Radin⁴ , Carlos D. Vega Valle² , Julie Maucotel1 , Marina Valente Barroso¹ , Benoît Marteyn1 , Eric Massé2 , Pascale Romby¹ , Thomas E. Kehl-Fie⁴ , Jens Georg3 , and David Lalaouna^{1,*}**
8 \mathbf{q} ¹ Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
10 ² CRCHUS. RNA Group. Department of Biochemistry and Functional Genomics. Faculty of Medicine and Health $^{-2}$ CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences,
 11 Université de Sherbrooke. 3201 Jean Mignault Street. Sherbrooke. QC J1E 4K8. Canada 11 Université de Sherbrooke, 3201 Jean Mignault Street, Sherbrooke, QC J1E 4K8, Canada

³ University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimer

Germany University of Freiburg, Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, D-79104 Freiburg, 13 Germany
14 ⁴ Departn 14 ⁴ Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
15 *Correspondence: d.lalaouna@ibmc-cnrs.unistra.fr Present address: Universidad de Costa Rica, Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
10 $18¹$ $19⁷$

SUMMARY

 $\frac{21}{22}$

22 Maintaining manganese and iron homeostasis is critical for the human pathogen
23 Staphylococcus aureus. To counteract metal-based host defense strategies (e.g., *Staphylococcus aureus***. To counteract metal-based host defense strategies (e.g., nutritional immunity, metal poisoning),** *S. aureus* **uses a combination of metal-sensing transcription factors and regulatory RNAs to maintain metal homeostasis. In this study, we uncovered an unprecedented interaction between a cis- and a trans-acting regulatory RNA controlling a conditionally essential gene,** *mntY***, encoding a Mn efflux pump. This broadly conserved RNA-RNA interaction between a Fe-responsive sRNA and a Mn-sensing riboswitch allows the integration of Fe- and Mn-related stresses, notably encountered at the infection site, to fine-tune** *mntY* **expression. Remarkably, deletion of the** *mntY* **gene is strongly pleomorphic, causing growth defects, altering virulence factor expression, immune evasion, and survival during infection. We demonstrated that MntY is critical for the adaptation of** *S. aureus* **to both low and high Mn environments, due to its dual role in metalation of Mn-dependent exoenzymes and Mn detoxification. These findings point to MntY as a promising new therapeutic target to combat multidrug-resistant staphylococcal infections.**

37
38

Keywords: *Staphylococcus aureus*, metal homeostasis, manganese, iron, small RNA,

39 riboswitch, efflux pump, virulence, therapeutic target

⁴⁰**INTRODUCTION**

41

42 Metals such as iron (Fe) and manganese (Mn) are essential nutrients for life due to their
43 crucial roles in numerous structural and catalytic cellular processes^{1,2}. During infection, the crucial roles in numerous structural and catalytic cellular processes^{1,2}. During infection, the
44. host takes advantage of this dependency by removing metals from the site of infection. 44 host takes advantage of this dependency by removing metals from the site of infection,
45 thereby limiting the growth and survival of invading microbes. Critical to this metal-based 45 thereby limiting the growth and survival of invading microbes. Critical to this metal-based
46 defense strategy, called nutritional immunity, are immune effectors, including lactoferrin. 46 defense strategy, called nutritional immunity, are immune effectors, including lactoferrin,
47 transferrin and calprotectin, which bind essential metals¹⁻³. Further challenging pathogens, transferrin and calprotectin, which bind essential metals¹⁻³. Further challenging pathogens,
48. the host also actively harnesses the inherent toxicity of metals to disrupt cellular function and the host also actively harnesses the inherent toxicity of metals to disrupt cellular function and
49 inhibit growth^{4,5}. As a result, Mn and Fe are not depleted uniformly throughout the body and inhibit growth^{4,5}. As a result, Mn and Fe are not depleted uniformly throughout the body and
50. the bioavailability of metal varies extensively across host tissues^{6,7}. Thus, as pathogens the bioavailability of metal varies extensively across host tissues^{6,7}. Thus, as pathogens
51. disseminate, they must strictly maintain metal homeostasis despite wide fluctuations in metal 51 disseminate, they must strictly maintain metal homeostasis despite wide fluctuations in metal
52 bioavailability. The essentiality and toxicity of metals are dependent on the environment, 52 bioavailability. The essentiality and toxicity of metals are dependent on the environment,
53 including the abundance of other metals⁸⁻¹⁰. Several studies notably highlight close 53 including the abundance of other metals $8-10$. Several studies notably highlight close
54 interactions between Fe and Mn homeostasis^{11,12}. This indicates a need for bacteria to interactions between Fe and Mn homeostasis^{11,12}. This indicates a need for bacteria to
55. integrate the availability of both Fe and Mn into the regulatory mechanisms that manage their 55 integrate the availability of both Fe and Mn into the regulatory mechanisms that manage their
56 uptake and efflux. However, the mechanisms that enable this critical integration are 56 uptake and efflux. However, the mechanisms that enable this critical integration are
57 unknown. unknown.

58 In response to the manipulation of metal abundance by the immune response, pathogens 59 utilize transcriptional regulators, which directly interact with the cognate metal ion to control
60 adaptive responses. The ferric uptake regulator Fur and the Mn-responsive transcriptional 60 adaptive responses. The ferric uptake regulator Fur and the Mn-responsive transcriptional
61 repressor MntR are two well-characterized examples^{13,14}. In addition to directly regulating repressor MntR are two well-characterized examples13,14 ⁶¹. In addition to directly regulating 62 genes involved in metal transport and storage, metal-dependent transcription factors often
63 coordinate a small regulatory RNA (sRNA)-dependent response^{15,16}. Small regulatory RNAs. coordinate a small regulatory RNA (sRNA)-dependent response^{15,16}. Small regulatory RNAs,
64. also named trans-acting sRNAs, are usually short RNA molecules, typically ranging from 50 64 also named trans-acting sRNAs, are usually short RNA molecules, typically ranging from 50
65 to 500 nucleotides in length^{17,18}. They often interact with mRNA targets through imperfect to 500 nucleotides in length^{17,18}. They often interact with mRNA targets through imperfect
66 base pairings, altering translation initiation and/or mRNA stability, sRNAs are involved in 66 base pairings, altering translation initiation and/or mRNA stability. sRNAs are involved in
67 bacterial adaptation to environment fluctuations. stress responses. virulence. and many other 67 bacterial adaptation to environment fluctuations, stress responses, virulence, and many other
68 bhysiological processes. RyhB is the first trans-acting sRNA described as involved in metal-68 physiological processes. RyhB is the first trans-acting sRNA described as involved in metal-
69 sparing response in *Escherichia coli*¹⁹. RyhB is negatively regulated by Fur, which directly 69 sparing response in *Escherichia coli*¹⁹. RyhB is negatively regulated by Fur, which directly
70 responds to intracellular Fe levels. Upon Fe starvation. RyhB controls a large set of mRNAs 70 responds to intracellular Fe levels. Upon Fe starvation, RyhB controls a large set of mRNAs
71 to globally increase Fe uptake, reduce cellular demands for iron, and reallocate Fe to 71 to globally increase Fe uptake, reduce cellular demands for iron, and reallocate Fe to
72 essential biological processes. Over the past two decades, several RyhB-like sRNAs have 72 essential biological processes. Over the past two decades, several RyhB-like sRNAs have
73 been discovered among bacteria like PrrF1/2 in Pseudomonas aeruginosa²⁰, FsrA in Bacillus been discovered among bacteria like PrrF1/2 in *Pseudomonas aeruginosa²⁰*, FsrA in *Bacillus*
74 *aubtilis²¹, and IsrR in Staphylococcus aureus²², IsrR sRNA is necessary for staphylococcal* subtilis²¹, and IsrR in *Staphylococcus aureus*²². IsrR sRNA is necessary for staphylococcal 75 infection and prevents the expression of iron-demanding enzymes such as those involved in
76 the TCA cvcle²³⁻²⁵. While studies of metal sparing RNAs have traditionally focused on Fe the TCA cycle²³⁻²⁵. While studies of metal sparing RNAs have traditionally focused on Fe 77 homeostasis, it is now evident that sRNAs are also crucial in regulating other
78 metallosystems¹⁵. Anperfectexampleisthe Mn-responsive-sRNA-RsaC in S. aureus²⁶. RsaC The allosystems¹⁵. A perfect example is the Mn-responsive sRNA RsaC in *S. aureus²⁶.* RsaC
The is co-transcribed with the main Mn ABC transporter MntABC and then released by a specific 79 is co-transcribed with the main Mn ABC transporter MntABC and then released by a specific
80 RNase cleavage. Both MntABC and RsaC are produced in response to Mn starvation when 80 BRNase cleavage. Both MntABC and RsaC are produced in response to Mn starvation when
81 bthe control by MntR is released. RsaC sRNA notably inhibits the synthesis of the Mn-81 the control by MntR is released. RsaC sRNA notably inhibits the synthesis of the Mn-
82 dependent superoxide dismutase A (SodA), promoting the transition to the iron-associated 82 dependent superoxide dismutase A (SodA), promoting the transition to the iron-associated
83 SodM²⁷ to reestablish reactive oxygen species (ROS) detoxification pathway in Mn-starved 83 SodM²⁷ to reestablish reactive oxygen species (ROS) detoxification pathway in Mn-starved
84 cells. cells.

85
86 86 In addition to trans-acting sRNAs, riboswitches can also play a role in metal homeostasis.
87 Over 50 distinct classes of natural riboswitches, also named cis-acting RNA elements, have 87 Over 50 distinct classes of natural riboswitches, also named cis-acting RNA elements, have
88 been identified so far²⁸. These regulatory motifs, embedded in the 5' untranslated region been identified so far²⁸. These regulatory motifs, embedded in the 5' untranslated region
89. (5'UTR) of mRNAs, sense and respond to diverse molecules and metabolites including 89 (5'UTR) of mRNAs, sense and respond to diverse molecules and metabolites including
90 enzvme cofactors, amino acids and sugars. Others respond to metal availability, such as the 90 enzyme cofactors, amino acids and sugars. Others respond to metal availability, such as the
91 yybP-ykoY riboswitch, which specifically senses intracellular Mn²⁺ levels^{29,30}. When 91 *yybP-ykoY* riboswitch, which specifically senses intracellular Mn²⁺ levels^{29,30}. When
92 riboswitches bind to their cognate ligands, they can regulate downstream gene(s) expression 92 riboswitches bind to their cognate ligands, they can regulate downstream gene(s) expression
93 by controlling either the formation of an intrinsic transcription terminator or the sequestration 93 by controlling either the formation of an intrinsic transcription terminator or the sequestration
94 of the ribosome binding site. The *vvbP-vkoY* motif was originally discovered in *B. subtilis*. 94 of the ribosome binding site. The *yybP-ykoY* motif was originally discovered in *B. subtilis*,
95 upstream of *yybP* and *ykoY* genes³¹, but it has since been identified in over 1,000 bacterial 95 upstream of *yybP* and *ykoY* genes³¹, but it has since been identified in over 1,000 bacterial
96 aenomes^{29,32}. The crystal structures of the *vvbP-vkoY* riboswitch from several organisms 96 genomes^{29,32}. The crystal structures of the *yybP-ykoY* riboswitch from several organisms
97 bave been determined, revealing kev roles of Mn²⁺ in the stabilization of the conserved RNA 97 have been determined, revealing key roles of Mn²⁺ in the stabilization of the conserved RNA
98 tertiary folding^{30,33}. The riboswitch *vvbP-vkoY* is often located upstream of genes encoding 98 tertiary folding^{30,33}. The riboswitch *yybP-ykoY* is often located upstream of genes encoding
99 Mn exporters or Mn tolerance proteins such as MntP and Alx in *E. coli^{29,34}*, and YybP and 99 Mn exporters or Mn tolerance proteins such as MntP and Alx in *E. coli*^{29,34}, and YybP and
100 YkoY (MeeY) in *B. subtilis*^{35,36}. These riboswitch-controlled membrane proteins belong to four YkoY (MeeY) in *B. subtilis*^{35,36}. These riboswitch-controlled membrane proteins belong to four
101 maior protein families: TerC. P-type ATPase. UPF0016 and MntP³². Not all Mn exporters are 101 major protein families: TerC, P-type ATPase, UPF0016 and MntP³². Not all Mn exporters are
102 under the control of the *yybP-ykoY* riboswitch. For example, the cation diffusion facilitator 102 under the control of the *yybP-ykoY* riboswitch. For example, the cation diffusion facilitator
103 proteins MntE in S. aureus and MneP/S in B. subtilis³⁷ are exclusively controlled by the 103 proteins MntE in *S. aureus* and MneP/S in *B. subtilis³⁷* are exclusively controlled by the
104 transcription factor MntR¹¹. Remarkably. MntP is regulated by both *vvbP-vkoY* riboswitch and 104 transcription factor MntR¹¹. Remarkably, MntP is regulated by both *yybP-ykoY* riboswitch and
105 MntR in *E. coli³⁴*. MntR in E . col i^{34} .

106
107

107 In this study, we showed that the sole *yybP-ykoY (mnrS*) motif in *S. aureus* controls the
108 svnthesis of the Mn efflux pump MntY in response to intracellular Mn levels. Remarkably, we 108 synthesis of the Mn efflux pump MntY in response to intracellular Mn levels. Remarkably, we
109 Frevealed an unprecedented interaction between a trans-acting and a cis-acting regulatory revealed an unprecedented interaction between a trans-acting and a cis-acting regulatory 110 RNA in bacteria. By binding directly to the Mn-sensing riboswitch *mnrS*, the iron-responsive
111 IsrR sRNA alters the conformation of the riboswitch and, consequently, the synthesis of IsrR sRNA alters the conformation of the riboswitch and, consequently, the synthesis of

112 MntY. Further investigation revealed that the interaction between a Fe-responsive sRNAs 113 and a Mn-sensing riboswitch is conserved in multiple bacteria, including *B. subtilis* where 114 FsrA sRNA can interact with both *yybP-ykoY* riboswitches. This unexpected and highly
115 controlled requlation prompted us to investigate the functions of S. aureus MntY. We 115 controlled regulation prompted us to investigate the functions of *S. aureus* MntY. We
116 demonstrated that MntY critically contributes to *S. aureus* survival in both low and high Mn 116 demonstrated that MntY critically contributes to *S. aureus* survival in both low and high Mn
117 environments. In the presence of toxic levels of Mn. MntY facilitates Mn detoxification. In Mn-117 environments. In the presence of toxic levels of Mn, MntY facilitates Mn detoxification. In Mn-
118 limiting conditions. the importance of MntY stems from its role in metalating extracellular Mn-118 limiting conditions, the importance of MntY stems from its role in metalating extracellular Mn-
119 dependent proteins such as LtaS, the lipoteichoic acid synthase. Loss of MntY also impaired 119 dependent proteins such as LtaS, the lipoteichoic acid synthase. Loss of MntY also impaired
120 the ability of S. aureus to elaborate virulence factors, resist the antimicrobial activity of 120 the ability of *S. aureus* to elaborate virulence factors, resist the antimicrobial activity of 121 calprotectin, survive in the presence of immune cells, and cause infection. The drastic effects calprotectin, survive in the presence of immune cells, and cause infection. The drastic effects ¹²²observed when its function is altered, the need to precisely regulate its activity and its 123 localization at the membrane suggest that MntY is a promising drug target for staphylococcal
124 infections. infections.

- 125
- 126

¹²⁷**RESULTS**

128

¹²⁹**IsrR sRNA directly pairs with the Mn-responsive** *yybP-ykoY* **riboswitch**

130
131

131 Although the predicted targetome of IsrR sRNA is broadly similar to those described for
132 RyhB-like sRNAs, one candidate, HG001 00869, stood out in our CopraRNA analysis (Table 132 RyhB-like sRNAs, one candidate, HG001_00869, stood out in our CopraRNA analysis (Table
133 S1). Notably, this putative target was not evidenced by prior studies^{22,25,38}, IsrR is predicted to 133 S1). Notably, this putative target was not evidenced by prior studies^{22,25,38}. IsrR is predicted to 134 base pair with nucleotides -184 to -163 from the start codon of HG001 00869. base pair with nucleotides -184 to -163 from the start codon of HG001_00869. 135 HG001_00869 protein is closely related to YkoY (MeeY) (55% identity) and its paralog YceF
136 (MeeF) in *B. subtilis* (Figures S1A-B). YkoY is, a TerC family membrane protein involved in 136 (MeeF) in *B. subtilis* (Figures S1A-B). YkoY is, a TerC family membrane protein involved in
137 the efflux and metalation of extracellular Mn-dependent proteins³⁶. The structure of YkoY and the efflux and metalation of extracellular Mn-dependent proteins³⁶. The structure of YkoY and 138 HG001 00869 predicted using AlphaFold³⁹ are also similar (Figure S1C). We will use MntY 139 (Mn transporter Y) to designate HG001_00869 hereafter.

140
141

141 Remarkably, the putative IsrR binding site located upstream of *mntY* gene corresponds to
142 the well conserved and widely distributed Mn-responsive *vvbP-vkoY* riboswitch (RF00080). 142 the well conserved and widely distributed Mn-responsive *yybP-ykoY* riboswitch (RF00080).
143 The secondary structure of the S. aureus *vvbP-vkoY (Figure 1A)*, renamed *mnrS* for Mn-143 The secondary structure of the *S. aureus yybP-ykoY* (Figure 1A), renamed *mnrS* for <u>Mn</u>-
144 Fresponsive riboswitch in *S. aureus* for the sake of simplicity, was inferred from PbAc probing 144 Fresponsive <u>r</u>iboswitch in S. aureus for the sake of simplicity, was inferred from PbAc probing
145 Fassays (Figure S1D) and previously determined riboswitch conformations in *B. subtilis, L.* 145 assays (Figure S1D) and previously determined riboswitch conformations in *B. subtilis, L.*
146 *lactis* and *E. coli^{29,30}. In its OFF state. the transcription of <i>mnrS-mntY* is prematurely stopped *lactis* and *E. col^{29,30}*. In its OFF state, the transcription of *mnrS-mntY* is prematurely stopped 147 due to the presence of a Rho-independent terminator (from nts +113 to +147; Figure 1A).

148 The presence of Mn induces conformational changes to prevent premature termination,
149 allowing the formation of the full-length transcript. Based on the crystal structures of several allowing the formation of the full-length transcript. Based on the crystal structures of several 150 *yybP-ykoY* riboswitches^{30,33}, the two conserved L1 and L3 loops form a unique Mn²⁺ binding
151 site that stabilizes the overall folding of the riboswitch (Figures 1A and S1E). This Mn²⁺-150 *yybP-ykoY* riboswitches^{30,33}, the two conserved L1 and L3 loops form a unique Mn²⁺ binding
151 site that stabilizes the overall folding of the riboswitch (Figures 1A and S1E). This Mn²⁺-
152 dependent structural 152 dependent structural configuration is essential for regulating the OFF/ON switch, allowing
153 precise control of downstream gene expression. precise control of downstream gene expression.

154
155 155 To facilitate further investigation, the Mn responsiveness of the *mnrS* riboswitch was first
156 confirmed in S. aureus (Figure 1). Using Northern blot analysis, a large band corresponding 156 confirmed in *S. aureus* (Figure 1). Using Northern blot analysis, a large band corresponding
157 to the full-length *mnrS-mntY* transcript was observed using probes targeting either the ¹⁵⁷to the full-length *mnrS*-*mntY* transcript was observed using probes targeting either the 158 riboswitch (*mnrS*) or the coding sequence of *mntY* (Figure 1B). The *mnrS* probe also
159 revealed the presence of an abundant ≈150-nt long transcript, suggesting that the *mnrS*-159 revealed the presence of an abundant ≈150-nt long transcript, suggesting that the *mnrS*-160 mntY locus also produces a terminated riboswitch. The addition of supplemental Mn
161 increased the level of the full-length mnrS-mntY transcript, indicating that the abundance of increased the level of the full-length *mnrS-mntY* transcript, indicating that the abundance of 162 this transcript is dependent on cellular Mn concentrations. The transcript coding for the Mn
163 efflux pump MntE was included as its production is controlled by MntR at the transcriptional 163 efflux pump MntE was included as its production is controlled by MntR at the transcriptional
164 level in response to Mn excess¹¹. While the level of both mRNAs increases in the presence 164 Level in response to Mn excess¹¹. While the level of both mRNAs increases in the presence
165 Lof high Mn concentrations (40 and 400 uM), the full-length *mnrS-mntY* mRNA is present 165 of high Mn concentrations (40 and 400 µM), the full-length *mnrS-mntY* mRNA is present
166 even in the absence of supplemental Mn (Figure 1B). The *mnrS-mntY* transcript was only 166 even in the absence of supplemental Mn (Figure 1B). The *mnrS-mntY* transcript was only
167 drastically reduced in a chelex-treated NRPMI medium. where Mn is depleted (Figure 1C). 167 drastically reduced in a chelex-treated NRPMI medium, where Mn is depleted (Figure 1C).
168 This suggests that the presence of Mn affects the production of MntY protein via the 168 This suggests that the presence of Mn affects the production of MntY protein via the
169 formation of an anti-terminator structure, corresponding to the ON state of the mnrS 169 formation of an anti-terminator structure, corresponding to the ON state of the *mnrS*
170 riboswitch. This hγpothesis was tested with a translational *lacZ* fusion using β-galactosidase 170 riboswitch. This hypothesis was tested with a translational *lacZ* fusion using β-galactosidase
171 assavs. The endogenous *mnrS-mntY* promoter was replaced by the constitutive promoter of 171 assays. The endogenous *mnrS-mntY* promoter was replaced by the constitutive promoter of 172
172 the *hup* gene to eliminate any potential MntR transcriptional regulation (Figure S1F). We 172 the *hup* gene to eliminate any potential MntR transcriptional regulation (Figure S1F). We
173 observed that the activity of the MntY+3-LacZ fusion increases in the presence of 400 µM ¹⁷³observed that the activity of the MntY+3-LacZ fusion increases in the presence of 400 µM 174 (2.5-fold), demonstrating that the *mnrS* riboswitch is responsible for this Mn-dependent
175 activation (Figure 1D). As mentioned above, *mnrS-mntY* transcription is not completely 175 activation (Figure 1D). As mentioned above, *mnrS-mntY* transcription is not completely
176 abolished at low or physiological Mn levels. Bastet et al.⁴⁰ reported that the premature 176 abolished at low or physiological Mn levels. Bastet et al.⁴⁰ reported that the premature
177 termination efficiency of *mnrS-mntY* transcript is affected by a mispairing in the riboswitch 177 termination efficiency of *mnrS-mntY* transcript is affected by a mispairing in the riboswitch
178 terminator (Figure S1G). However, the read-through observed in Figures 1B-C cannot be 178 terminator (Figure S1G). However, the read-through observed in Figures 1B-C cannot be
179 solelv attributed to terminator leakage as the mutated terminator (U>A: more stable stem) did 179 solely attributed to terminator leakage as the mutated terminator (U>A; more stable stem) did
180 not lower the level of full-length *mnrS-mntY* mRNA (Figure S1H). This result sheds light on 180 not lower the level of full-length *mnrS-mntY* mRNA (Figure S1H). This result sheds light on
181 the conformational flexibility of the *mnrS* riboswitch at low Mn levels. the conformational flexibility of the *mnrS* riboswitch at low Mn levels.

182
183 183 To test the in silico prediction showing that IsrR sRNA binds to *mnrS* riboswitch, we
184 Derformed electrophoresis mobility shift assays (EMSA: Figure 2A) using in vitro transcribed ¹⁸⁴performed electrophoresis mobility shift assays (EMSA; Figure 2A) using in vitro transcribed ¹⁸⁵RNAs. We used either the 148-nt long *mnrS* transcript or a longer transcript ending at 186 nucleotide +115 in the coding sequence of *mntY* (referred as *mnrS-mntY*). We showed that 187 the 5' end radiolabeled IsrR forms a high-affinity complex with both *mnrS* or *mnrS-mntY* in
188 vitro, with a dissociation constant (Kd) of approximatively 17 nM and 15 nM, respectively 188 vitro, with a dissociation constant (Kd) of approximatively 17 nM and 15 nM, respectively
189 G Figure S2A). We obtained similar result by performing the opposite experiment with the 5' 189 (Figure S2A). We obtained similar result by performing the opposite experiment with the 5'
190 end of the *mnrS* riboswitch radiolabeled and cold IsrR (Figure S2B). Altogether, this suggests end of the *mnrS* riboswitch radiolabeled and cold IsrR (Figure S2B). Altogether, this suggests 191 that IsrR binds to the riboswitch rather than the ribosome binding site or the coding sequence
192 of mntY. As the mnrS riboswitch is subjected to conformational changes in the presence of 192 of *mntY*. As the *mnrS* riboswitch is subjected to conformational changes in the presence of
193 Mn²⁺ ions^{29,30}, we evaluated the impact of 10 mM MnCl₂ on the complex formation (Figures 193 Mn²⁺ ions^{29,30}, we evaluated the impact of 10 mM MnCl₂ on the complex formation (Figures 194 S2C-D). Even in the presence of Mn. IsrR binds efficiently to *mnrS* in vitro. Terminator S2C-D). Even in the presence of Mn, IsrR binds efficiently to *mnrS* in vitro. Terminator 195 efficiency assays, in which the promoter PlysC was fused to the 5'UTR of *mntY*, including
196 mnrS riboswitch, confirmed that 1 mM MnCl₂ is sufficient to induce the ON state of mnrS 196 mnrS riboswitch, confirmed that 1 mM MnCl₂ is sufficient to induce the ON state of mnrS
197 briboswitch in vitro (Figure S2E). These results suggests that IsrR can interact with the mnrS 197 tiboswitch in vitro (Figure S2E). These results suggests that IsrR can interact with the *mnrS*
198 tiboswitch regardless of its secondary structure rearrangement in the presence or absence of 198 but iboswitch regardless of its secondary structure rearrangement in the presence or absence of 1998 its li its ligand.

200
201

201 According to in silico predictions, IsrR targets a G-rich motif at the beginning of the *mnrS*
202 Friboswitch sequence (Figure 2B). This region is highly conserved among bacteria and was 202 biboswitch sequence (Figure 2B). This region is highly conserved among bacteria and was
203 breviously described as crucial for Mn responsiveness²⁹. Indeed, mutations in the G-rich 203 previously described as crucial for Mn responsiveness²⁹. Indeed, mutations in the G-rich
204 motif alter the formation of the metal binding site and hinder the Mn-dependent induction 204 motif alter the formation of the metal binding site and hinder the Mn-dependent induction
205 (Figure S1E). To validate this pairing site, we performed in vitro RNase T1 protection assavs 205 (Figure S1E). To validate this pairing site, we performed in vitro RNase T1 protection assays
206 using 5'end-radiolabeled *mnrS* riboswitch. As expected, all the quanines from nts 12 to 20 206 using 5'end-radiolabeled *mnrS* riboswitch. As expected, all the guanines from nts 12 to 20
207 vere cleaved, indicating that they are located in a single-stranded region in the absence of 207 were cleaved, indicating that they are located in a single-stranded region in the absence of
208 Mn (Figure 2C), In the presence of IsrR, this region become fully protected from RNase T1 208 Mn (Figure 2C). In the presence of IsrR, this region become fully protected from RNase T1
209 cleavage, supporting the formation of intermolecular base pairings. Mutation of the putative 209 cleavage, supporting the formation of intermolecular base pairings. Mutation of the putative
210 SISTR base pairing site (C79G and C80G; IsrR-2G) hindered binding to mnrS, as protection 210 IsrR base pairing site (C79G and C80G; IsrR-2G) hindered binding to *mnrS*, as protection
211 from RNase T1 cleavage was lost in the presence of IsrR-2G. Consistent with these data_a 211 from RNase T1 cleavage was lost in the presence of IsrR-2G. Consistent with these data, a
212 mutation in the mnrS sequence (G16C and G17C: mnrS-2C) prevented IsrR-mnrS ²¹²mutation in the *mnrS* sequence (G16C and G17C; *mnrS*-2C) prevented IsrR-*mnrS* 213 interaction (Figure 2D), whereas the complex formation was restored using the
214 compensatory mutants *mnrS*-2C and IsrR-2G (Figure 2E). Taken-together, these-results 214 compensatory mutants *mnrS*-2C and IsrR-2G (Figure 2E). Taken together, these results
215 validate a direct interaction between IsrR and *mnrS* riboswitch, involving a critical region 215 validate a direct interaction between IsrR and *mnrS* riboswitch, involving a critical region
216 required for switching to the ON state (Figure 2B). required for switching to the ON state (Figure 2B).

217
218 ²¹⁸**IsrR sRNA directly impairs the synthesis of full-length** *mnrS***-***mntY*

219

220 Since IsrR interacts with the nucleotides involved in the anti-terminator structure of the *mnrS*
221 Driboswitch, which favors the OFF state, we hvpothesized that it leads to premature riboswitch, which favors the OFF state, we hypothesized that it leads to premature 122 termination of *mnrS-mntY* transcription. To test this, we monitored the level of *mnrS* and
123 *mnrS-mntY* transcripts in WT and Δ*isrR* mutant strains by Northern blot using probes ²²³*mnrS*-*mntY* transcripts in WT and Δ*isrR* mutant strains by Northern blot using probes 224 targeting either the *mnrS* riboswitch or the coding sequence of *mntY* (Figure 3A). A
225 significant increase in the full-length mRNA level (2.45-fold) was detected in the absence of 225 significant increase in the full-length mRNA level (2.45-fold) was detected in the absence of
226 SIR with both probes (Figure 3B), suggesting that IsrR lowers the synthesis of the full-length 226 IsrR with both probes (Figure 3B), suggesting that IsrR lowers the synthesis of the full-length
227 In RNA. To determine whether this is due to the direct interaction between IsrR and mnrS ²²⁷mRNA. To determine whether this is due to the direct interaction between IsrR and *mnrS* 228 riboswitch as demonstrated in vitro (Figure 2), we monitored the level of the full-length mRNA
229 in an *isrR*-2G mutant background. The *isrR-2G* mutation results in a similar increase in the 229 in an *isrR*-2G mutant background. The *isrR-2G* mutation results in a similar increase in the
230 full-length *mnrS-mntY* mRNA level as the *isrR* deletion (Figure S3A). These results indicate 230 full-length *mnrS-mntY* mRNA level as the *isrR* deletion (Figure S3A). These results indicate
231 that IsrR interacts directly with the *mnrS* riboswitch to reduce the full-length transcript levels ²³¹that IsrR interacts directly with the *mnrS* riboswitch to reduce the full-length transcript levels 232 in vivo.

233
234

234 In the Northern blots, we occasionally observed a slight but non-significant increase in the 235 band corresponding to the *mnrS* riboswitch in the \triangle *isrR* background (Figures 3A-B), raising **235** band corresponding to the *mnrS* riboswitch in the Δ*isrR* background (Figures 3A-B), raising
236 the possibility that the *mnrS*-IsrR interaction could trigger mRNA decay. Thus, we tested the 236 the possibility that the *mnrS*-IsrR interaction could trigger mRNA decay. Thus, we tested the
237 stability of the *mnrS* riboswitch and *mnrS-mntY* mRNA using rifampicin assavs in wild tvpe 237 stability of the *mnrS* riboswitch and *mnrS-mntY* mRNA using rifampicin assays in wild type
238 and Δ*isrR* mutant strains (Figure 3C). Consistent with our previous observations (Figures 3A-238 and Δ*isrR* mutant strains (Figure 3C). Consistent with our previous observations (Figures 3A-239 B), the level of the full-length mRNA was higher at t0 in absence of IsrR (Figure 3C).
240 However, there was no difference in the *mnrS-mntY* (t_{1/2} ≈ 20 sec) or *mnrS* riboswitch (t_{1/2} ≈ 5 240 However, there was no difference in the *mnrS-mntY* (t_{1/2} ≈ 20 sec) or *mnrS* riboswitch (t_{1/2} ≈ 5
241 min) half-life in WT and ∆*isrR* backgrounds (Figure 3D). This indicates that IsrR does not 141 min) half-life in WT and Δ*isrR* backgrounds (Figure 3D). This indicates that IsrR does not
142 impact the stability of either the full-length mRNA or the riboswitch. Combined with our prior ²⁴²impact the stability of either the full-length mRNA or the riboswitch. Combined with our prior 243 results, this indicates that IsrR reduces the synthesis of full-length *mnrS-mntY* mRNA by
244 inducing a conformational change of the *mnrS* riboswitch, triggering premature termination at 244 inducing a conformational change of the *mnrS* riboswitch, triggering premature termination at
245 the co-transcriptional level. the co-transcriptional level.

246
247 247 Having observed an interaction between IsrR and *mnrS*, the possibility of an interaction with
248 the other staphylococcal efflux pump MntE was explored. However, no clear interaction 248 the other staphylococcal efflux pump MntE was explored. However, no clear interaction
249 between IsrR and *mntE* mRNA was observed in vitro using EMSA (Figure S3B). This 249 between IsrR and *mntE* mRNA was observed in vitro using EMSA (Figure S3B). This
250 suggests that, unlike MntE. Fe abundance is directly integrated into the regulatory scheme 250 suggests that, unlike MntE, Fe abundance is directly integrated into the regulatory scheme
251 that controls MntY svnthesis. that controls MntY synthesis.

252
253

254
255

255 Both *yybP-ykoY* riboswitches (Figure S4A) and RyhB-like sRNAs are widespread among
256 bacteria^{16,29}. This suggests that the interaction between the iron-sparing response regulator bacteria^{16,29}. This suggests that the interaction between the iron-sparing response regulator 257 and the Mn-dependent riboswitches could be conserved. The model organisms *E. coli* and *B.*
258 subtilis both possess a RyhB analog (RyhB and FsrA, respectively) and two copies of the ²⁵⁸*subtilis* both possess a RyhB analog (RyhB and FsrA, respectively) and two copies of the

²⁵³**The** *mnrS***-IsrR interaction is widely conserved in Firmicutes**

259 *yybP-ykoY* riboswitch. Using multiple sequence alignment, we noticed that the pairing site on
260 the riboswitch sequence is highly conserved (Figure S4B). the riboswitch sequence is highly conserved (Figure S4B).

261
262 262 To go further, we studied the co-appearance and interaction potential of Fe-responsive
263 SRNAs and Mn-sensing *yybP-ykoY* riboswitches in bacteria (Figure 4A). We compiled >8500 263 SRNAs and Mn-sensing *yybP-ykoY* riboswitches in bacteria (Figure 4A). We compiled >8500
264 V*vbP-vkoY* riboswitch homologs and categorized them based on their downstream gene ²⁶⁴*yybP-ykoY* riboswitch homologs and categorized them based on their downstream gene 265 (Table S2). The vast majority of the riboswitches belong to three families (2671 for MntP,
266 2429 for YkoY and 1647 for Gdt1/MneA). In parallel, we scanned for homologs of the Fe 266 2429 for YkoY and 1647 for Gdt1/MneA). In parallel, we scanned for homologs of the Fe
267 stress responsive sRNAs ArrF⁴¹, FsrA²¹, Isar1⁴², IsrR²², NrrF⁴³, PrrF1/2²⁰ and RyhB¹⁹. The 267 stress responsive sRNAs ArrF⁴¹, FsrA²¹, Isar1⁴², IsrR²², NrrF⁴³, PrrF1/2²⁰ and RyhB¹⁹. The
268 interaction potential of the sRNAs with the respective riboswitch in each organism was interaction potential of the sRNAs with the respective riboswitch in each organism was 169 investigated with IntaRNA⁴⁴ (Table S2). A minimal interaction energy of ≤-9 kcal/mol and an
170 interaction position covering the 5' "GGGGAGUA" motif in the riboswitch sequence were 270 interaction position covering the 5' "GGGGAGUA" motif in the riboswitch sequence were
271 chosen as criteria for a potential functional interaction based on the EMSA data (Figures 4D-271 chosen as criteria for a potential functional interaction based on the EMSA data (Figures 4D-
272 F and S4C). Given the above assumptions, only the YkoY and YvbP riboswitch families 272 F and S4C). Given the above assumptions, only the YkoY and YybP riboswitch families
273 showed a strong interaction potential with IsrR and FsrA sRNAs (Figures 4A-C). showed a strong interaction potential with IsrR and FsrA sRNAs (Figures 4A-C).

274
275 ²⁷⁵Thus, the sRNA-riboswitch interaction seems to be conserved in *B. subtilis* but not in *E. coli*. 276 To validate our in silico analysis, we performed EMSA to determine if RyhB and FsrA can
277 interact with their respective *vvbP-vkoY* riboswitches in vitro. While FsrA efficientlv binds to 277 interact with their respective *yybP-ykoY* riboswitches in vitro. While FsrA efficiently binds to
278 both *mswM-vvbP* and *mnrW-vkoY* transcripts (Figure 4D). RvhB does not interact with *vvbP-*278 both *mswM-yybP* and *mnrW-ykoY* transcripts (Figure 4D), RyhB does not interact with *yybP-*279 *ykoY-mntP* and *sraF-alx* transcripts (Figure S4C). The hybridization energies involving RyhB
280 are quite unfavorable compared to those predicted for S. aureus and *B. subtilis* (Figures 2B 280 are quite unfavorable compared to those predicted for *S. aureus* and *B. subtilis* (Figures 2B
281 and 4D). In addition, we used translational fusions to measure the potential impact of RvhB 281 and 4D). In addition, we used translational fusions to measure the potential impact of RyhB
282 in vivo. The native promoter was replaced by Plac to avoid any regulation dependent on 282 in vivo. The native promoter was replaced by Plac to avoid any regulation dependent on
283 MntR. In agreement with the EMSA, the overexpression of RyhB does not impact the ß-283 MntR. In agreement with the EMSA, the overexpression of RyhB does not impact the β-
284 Galactosidase activity of the translational Plac-*vvbP-vkoY*-MntP-LacZ and Plac-*sraF*-Alx-284 galactosidase activity of the translational Plac-*yybP-ykoY*-MntP-LacZ and Plac-*sraF*-Alx-285 LacZ fusions in *E. coli* (Figure S4D-E). As expected, each construct was activated in the 286 presence of Mn. presence of Mn.

287
288

288 Finally, we analyzed the formation of RNA duplexes by mixing a RyhB-like sRNA from one
289 Species with a riboswitch from another. We noticed that IsrR sRNA from S. aureus strongly 289 species with a riboswitch from another. We noticed that IsrR sRNA from *S. aureus* strongly
290 binds to both *mswM-vvbP* and *mnrW-vkoY* transcripts from *B. subtilis (Figure 4E). Similarly.* 290 binds to both *mswM-yybP* and *mnrW-ykoY* transcripts from *B. subtilis* (Figure 4E). Similarly,
291 FsrA sRNA from *B. subtilis* pairs with *mnrS-mntY* transcript from *S. aureus* (Figure 4F). This 291 FsrA sRNA from *B. subtilis* pairs with *mnrS-mntY* transcript from *S. aureus* (Figure 4F). This
292 cross-species interaction provides further evidence that this sRNA-riboswitch interaction is 292 cross-species interaction provides further evidence that this sRNA-riboswitch interaction is
293 conserved across Firmicutes, although there is no apparent homology between IsrR and conserved across Firmicutes, although there is no apparent homology between IsrR and 294 FsrA.

295

²⁹⁶**The deletion of** *mnrS-mntY* **induces strong phenotypic defects**

297

298 The homology of MntY with known Mn efflux pumps suggests that it contributes to *S. aureus*
299 Mn homeostasis. As a first step to test this hypothesis, a *∆mnrS-mntY* mutant was created ²⁹⁹Mn homeostasis. As a first step to test this hypothesis, a Δ*mnrS*-*mntY* mutant was created 300 and examined. Since MntY is a predicted Mn efflux pump, a Δ*mntE* mutant was evaluated in
301 parallel. Surprisinglv. during routine cultivation on blood agar plates the Δ*mnrS-mntY* mutant. ³⁰¹parallel. Surprisingly, during routine cultivation on blood agar plates the Δ*mnrS*-*mntY* mutant*,* 302 but not the Δ*mntE* mutant, differed from WT (Figure 5A). The Δ*mnrS-mntY* colonies were tiny
303 and cream colored, having lost the characteristic golden color of S. *aureus* and lacking 303 and cream colored, having lost the characteristic golden color of *S. aureus* and lacking
304 bemolysis. Similar results were observed when the *∆mnrS-mntY* mutant was plated on BHI ³⁰⁴hemolysis. Similar results were observed when the Δ*mnrS*-*mntY* mutant was plated on BHI agar (Figure S5A). Microscopic examination revealed no gross differences in the size and 306 Shape of the bacterial cells (Figure S5B). The Δ*mnrS-mntY* mutant also lacked proteolytic
307 Sactivity on 5% skim milk plates (Figure S5C) when compared to the WT strain. Finally, 307 activity on 5% skim milk plates (Figure S5C) when compared to the WT strain. Finally,
308 deletion of the *mnrS-mntY* locus caused hypersensitivity to daptomycin (Figure S5D). A 308 deletion of the *mnrS-mntY* locus caused hypersensitivity to daptomycin (Figure S5D). A
309 D*mnrS* mutant did not impact anv of the assaved phenotvpes, while expression of either 309 Δ*mnrS* mutant did not impact any of the assayed phenotypes, while expression of either *310 mnrS-mntY* or *mntY* under the control of a weak promoter (pEW plasmid⁴⁵) complemented
311 the defects of the Δ*mnrS-mntY* mutant. including hemolvsis activity (Figure 5A). ³¹¹the defects of the Δ*mnrS*-*mntY* mutant, including hemolysis activity (Figure 5A).

312
313 ³¹³As the Δ*mnrS*-*mntY* mutant had a profound growth defect, the media was changed to BHI ³¹⁴(Figure 5B). The addition of Mn to the medium decreased the ability of Δ*mnrS*-*mntY* to grow 315 consistent with a role in Mn detoxification. Unexpectedly, the removal of Mn from the medium
316 via chelex treatment did not fully rescue the growth of the *∆mnrS-mntY* mutant (Figure S5E). ³¹⁶via chelex treatment did not fully rescue the growth of the Δ*mnrS*-*mntY* mutant (Figure S5E), 317 indicating that its role is not limited to Mn tolerance. Notably, the expression of *mntY* under
318 the control of a strong promoter (pES plasmid⁴⁶) appears toxic as strains expressing *mntY* 318 the control of a strong promoter (pES plasmid⁴⁶) appears toxic as strains expressing *mntY*
319 from the pES plasmid could not be recovered. However, a pES plasmid containing *mnrS*-319 from the pES plasmid could not be recovered. However, a pES plasmid containing *mnrS*-³²⁰*mntY* could be introduced into *S. aureus*. Cumulatively, these observations reveal that loss of 321 MntY has a profound impact on *S. aureus*, but that its expression must be tightly controlled,
322 vith the *mnrS* riboswitch critically contributing to this task. with the *mnrS* riboswitch critically contributing to this task.

323
324

³²⁴Given the differences in expression between *mntY* and *mntE* (Figures 1B-C), it is not 325 surprising that loss of MntY does not phenocopy loss of MntE. However, similar to the Δ*mntE*
326 mutant (Figure 5C), the Δ*mnrS-mntY* mutant has a growth defect in the presence of excess 326 mutant (Figure 5C), the Δ*mnrS-mntY* mutant has a growth defect in the presence of excess
327 Mn (Figure 5B). This leads to the hypothesis that the growth defects of the Δ*mnrS-mntY* ³²⁷Mn (Figure 5B). This leads to the hypothesis that the growth defects of the Δ*mnrS-mntY* 328 mutant are due to intracellular Mn accumulation and toxicity. To test this hypothesis, *mntE*
329 was expressed from a plasmid under the control of a weak constitutive promoter (pEW). The 329 was expressed from a plasmid under the control of a weak constitutive promoter (pEW). The
330 ectopic expression of *mntE* did not complement the phenotypic and growth defects of the ³³⁰ectopic expression of *mntE* did not complement the phenotypic and growth defects of the 331 Δ*mnrS*-*mntY* mutant (Figures 5A and S5F), but reversed the sensitivity of the Δ*mntE* mutant ³³²to Mn toxicity (Figure 5C), indicating that *mntE* was expressed. Similar to *mntY*,

333 overexpression of *mntE* appears toxic to *S. aureus* as colonies carrying *mntE* in the pES
334 blasmid could not be recovered. plasmid could not be recovered.

335
336 ³³⁶A Δ*ykoY* ^Δ*yceF* double mutant strain in *B. subtilis* displays, amongst other phenotypes, a significant decrease in colony size³⁶. Since MntY shares 55% of sequence identity with YkoY,
338 we evaluated if *mnrW-vkoY* could complement the growth defect of the Δ*mnrS-mntY* mutant. ³³⁸we evaluated if *mnrW-ykoY* could complement the growth defect of the Δ*mnrS-mntY* mutant. ³³⁹We also used *mswM-yybP* to complement the Δ*mnrS-mntY* mutant as the *yybP-ykoY* 340 biboswitch controls the synthesis of both YkoY and YybP in *B. subtilis*. The *mnrW-ykoY*
341 bonstruct, but not *mswM-yybP*, reversed both the phenotypic and growth defects of the 341 construct, but not *mswM-yybP*, reversed both the phenotypic and growth defects of the
342 Δ*mnrS-mntY* mutant (Figures 5A-B). Cumulativelv. these observations indicate that while 342 Δ*mnrS-mntY* mutant (Figures 5A-B). Cumulatively, these observations indicate that while 343 phenotypes associated with loss of MntY are driven by a failure to secrete Mn, the role of 344 MntY extends beyond the removal of Mn from the cell. MntY extends beyond the removal of Mn from the cell.

345
346 ³⁴⁶**MntY is involved in Mn detoxification and metalation of Mn-dependent exoenzymes in** ³⁴⁷*S. aureus*

348
349

349 The totality of the current observations leads to the hypothesis that MntY contributes to the
350 ability of S. aureus to detoxify Mn, but also has a second critical function. To test the first 350 ability of *S. aureus* to detoxify Mn, but also has a second critical function. To test the first
351 aspect of this hvpothesis. we overexpressed *mnrS-mntY* in an Δ*mntE* mutant (Figure 5C). As 351 aspect of this hypothesis, we overexpressed *mnrS-mntY* in an Δ*mntE* mutant (Figure 5C). As
352 expected. the growth of the Δ*mntE* mutant is reduced bv high Mn levels. The growth defect 552 expected, the growth of the Δ*mntE* mutant is reduced by high Mn levels. The growth defect
353 of the Δ*mntE* mutant was rescued bv either the expression of *mntE* or *mnrS-mntY* construct. ³⁵³of the Δ*mntE* mutant was rescued by either the expression of *mntE* or *mnrS-mntY* construct. ³⁵⁴In conjunction with the observation that Δ*mnrS-mntY* is sensitive to levels of Mn, this 355 indicates that MntY contributes to protecting *S. aureus* from Mn toxicity. Notably, although
356 the expression of *vkoY* rescued the growth defect of the Δ*mnrS-mntY* mutant, it did not 156 the expression of *ykoY* rescued the growth defect of the Δ*mnrS-mntY* mutant, it did not
357 complement the Δ*mntE* mutant. This indicates that despite their homology, MntY and YkoY 357 complement the Δ*mntE* mutant. This indicates that despite their homology, MntY and YkoY
358 have non-redundant cellular functions. have non-redundant cellular functions.

359
360

360 Becently, YkoY and YceF were suggested to contribute to the metalation of extracellular Mn-
361 Bebendent enzymes in *B. subtilis*. including the lipoteichoic acid (LTA) synthase. LtaS^{36,47}. 361 dependent enzymes in *B. subtilis*, including the lipoteichoic acid (LTA) synthase, LtaS^{36,47}.
362 This suggests that the second critical function of MntY is the metalation of extracellular Mn-362 This suggests that the second critical function of MntY is the metalation of extracellular Mn-
363 Gebendent enzymes. Therefore, to test the second aspect of our hypothesis, the production 363 dependent enzymes. Therefore, to test the second aspect of our hypothesis, the production
364 of LTA was assessed via immunoblotting. When compared to wild type, the AmnrS-mntY 364 of LTA was assessed via immunoblotting. When compared to wild type, the Δ*mnrS-mntY*
365 amutant has substantially reduced levels of LTA (Figure 5D). As a control, Protein A levels 365 mutant has substantially reduced levels of LTA (Figure 5D). As a control, Protein A levels
366 Fremain unaffected. The expression of mnrS-mntY from a plasmid restores LTA levels. remain unaffected. The expression of *mnrS-mntY* from a plasmid restores LTA levels. 367 Notably, while YkoY did not rescue the ability of the Δ*mntE* mutant to cope with Mn toxicity, it 368 did restore LTA production. This indicates that although both MntY and MntE are involved in
369 Mn detoxification. MntY is only responsible for exoenzvme metalation in *S. aureus*. It also ³⁶⁹Mn detoxification, MntY is only responsible for exoenzyme metalation in *S. aureus*. It also 370 further supports the idea that MntY and YkoY have related but distinct functions, with MntY
371 contributing both to Mn detoxification and to the activity of Mn requiring extracellular contributing both to Mn detoxification and to the activity of Mn requiring extracellular 372 enzymes.

373
374

³⁷⁴**The Mn efflux pump MntY is crucial for** *S. aureus* **during infection**

375 MntY is important for the management of Mn within *S. aureus* and this metal crucially
376 contributes to the ability of *S. aureus* to evade host defenses. Therefore, we hypothesized 376 contributes to the ability of *S. aureus* to evade host defenses. Therefore, we hypothesized
377 that MntY would contribute to the ability of *S. aureus* to overcome nutritional immunity and 377 that MntY would contribute to the ability of *S. aureus* to overcome nutritional immunity and
378 the antimicrobial activity of immune cells. First. we investigated the ability of the Δ*mnrS-mntY* ³⁷⁸the antimicrobial activity of immune cells. First, we investigated the ability of the Δ*mnrS*-*mntY* 379 mutant to grow in the presence of calprotectin, which restricts the availability of Mn and other
380 metals from invaders during infection and is present at sites of infection in excess of 1 380 metals from invaders during infection and is present at sites of infection in excess of 1
381 ma/mL. When compared to WT bacteria, the *AmnrS-mntY* mutant was significantly more ³⁸¹mg/mL. When compared to WT bacteria, the Δ*mnrS*-*mntY* mutant was significantly more sensitive to calprotectin with a strong growth defect observed at concentrations as low as ³⁸³120 µg/mL (Figure 6A). Next, the ability Δ*mnrS*-*mntY* to survive phagocytic killing was ³⁸⁴evaluated. The mutant was 2-fold more sensitive to killing by macrophage like THP-1 cells 385 (Figure 6B). We then assessed the distribution of bacteria between the extracellular and
386 intracellular environment. With the AmnrS-mntY mutant. 59% of the viable bacteria were ³⁸⁶intracellular environment. With the Δ*mnrS*-*mntY* mutant, 59% of the viable bacteria were 387 intracellular compared to the 6% with the WT strain (Figure 6C). We repeated both assays in
388 the presence of human neutrophils (Figures 6D-E). Similar to macrophages-related assavs. 388 the presence of human neutrophils (Figures 6D-E). Similar to macrophages-related assays, 389 the AmnrS-mntY mutant is more sensitive to killing by neutrophils and tends to be ³⁸⁹the Δ*mnrS*-*mntY* mutant is more sensitive to killing by neutrophils and tends to be phagocytized at higher levels than the WT strain.

The susceptibility of the Δ*mnrS-mntY* mutant to multiple arms of the immune response
392 suggests that it should be important during infection. To test this hypothesis, the virulence of 392 suggests that it should be important during infection. To test this hypothesis, the virulence of
393 NVT and the A*mnrS-mntY* mutant strains were evaluated using a systemic infection model. 393 WT and the Δ*mnrS-mntY* mutant strains were evaluated using a systemic infection model.
394 Mice infected with the Δ*mnrS-mntY* mutant displaved substantiallv fewer signs of illness and ³⁹⁴Mice infected with the Δ*mnrS*-*mntY* mutant displayed substantially fewer signs of illness and 395 began to recover weight after 48 h of infection, while mice infected with WT strain continued
396 to lose weight for the duration of the experiment (Figure 6F). Bacterial load in kidnev, spleen, 396 to lose weight for the duration of the experiment (Figure 6F). Bacterial load in kidney, spleen,
397 Liver, and heart was also assessed at 24 and 72 h post-infection (Figures 6G-H). Mice liver, and heart was also assessed at 24 and 72 h post-infection (Figures $6G-H$). Mice ³⁹⁸infected with Δ*mnrS*-*mntY* mutant had lower bacterial burdens when compared to WT at both time points in all of the tissues assayed.

400 Altogether, these results demonstrate that the *mnrS-mntY* is critical for *S. aureus* virulence
401 and/or survival during murine and human infection. and/or survival during murine and human infection.

402

⁴⁰³**DISCUSSION**

404

405 Life is constantly faced with the need to adapt to environmental changes. This is particular
406 true for microbes, which have a limited ability to impact their environment. One challenge 406 true for microbes, which have a limited ability to impact their environment. One challenge
407 thev face is responding to changes in metal availability. These nutrients are critical for all they face is responding to changes in metal availability. These nutrients are critical for all 408 forms of life but can also be toxic. This duality is acutely faced by pathogens as the host
409 actively restricts the ability of these nutrients and harnesses their toxic properties to combat actively restricts the ability of these nutrients and harnesses their toxic properties to combat
410 infection. Leveraging S. aureus as a model, the present study revealed a previously 410 infection. Leveraging *S. aureus* as a model, the present study revealed a previously
411 unappreciated regulatory node that enables bacteria to coordinate their response to Mn and 411 unappreciated regulatory node that enables bacteria to coordinate their response to Mn and
412 Fe availability (Figure 7). At this node, the Fe-responsive sRNA IsrR interacts with the Mn-412 Fe availability (Figure 7). At this node, the Fe-responsive sRNA IsrR interacts with the Mn-
413 Sensing riboswitch *mnrS*. This enables S. aureus to control the expression of the Mn efflux 413 sensing riboswitch *mnrS*. This enables *S. aureus* to control the expression of the Mn efflux
414 pump MntY, which the current investigations revealed is critical for the bacterium to cope 414 pump MntY, which the current investigations revealed is critical for the bacterium to cope
415 vith manganese toxicity, maintain essential cellular processes, and cause infection. The 415 with manganese toxicity, maintain essential cellular processes, and cause infection. The
416 integration of the response to Fe scarcity with Mn efflux highlights how microbes must 416 integration of the response to Fe scarcity with Mn efflux highlights how microbes must
417 integrate multiple cues when managing metal homeostasis so as to preserve the function of 417 integrate multiple cues when managing metal homeostasis so as to preserve the function of
418 essential processes, while not sensitizing themselves to intoxication. Further investigations 418 essential processes, while not sensitizing themselves to intoxication. Further investigations
419 erevealed that the interaction is conserved within the Firmicutes. highlighting that while the 419 revealed that the interaction is conserved within the Firmicutes, highlighting that while the
420 interaction between an sRNA and a riboswitch is unprecedented, the mechanism is widely 420 interaction between an sRNA and a riboswitch is unprecedented, the mechanism is widely
421 used to control gene expression and integral to the ability of bacteria to respond to their 421 used to control gene expression and integral to the ability of bacteria to respond to their
422 environment. environment.

423
424

⁴²⁴*An unprecedented interaction between a cis- and a trans-acting RNA*

425
426

426 Bacteria employ both cis-acting (i.e., riboswitches) and trans-acting RNAs (referred to here
427 as sRNAs) to finely regulate gene expression. The synthesis of the membrane transporter 427 as sRNAs) to finely regulate gene expression. The synthesis of the membrane transporter
428 BtuB in E. coli was recently shown to be controlled by both an adenosylcobalamin riboswitch 428 BtuB in *E. coli* was recently shown to be controlled by both an adenosylcobalamin riboswitch
429 and OmrA sRNA via distinct and independent regulatory mechanisms⁴⁸. The current and OmrA sRNA via distinct and independent regulatory mechanisms⁴⁸. The current
430. investigations revealed a new regulatory combination, the direct interaction between a cis-430 investigations revealed a new regulatory combination, the direct interaction between a cis-
431 acting riboswitch (*mnrS*) and a trans-acting sRNA (IsrR). Both RvhB analogs and Mn-sensing ⁴³¹acting riboswitch (*mnrS*) and a trans-acting sRNA (IsrR). Both RyhB analogs and Mn-sensing 432 riboswitches (*yybP-ykoY* homologs) are widely distributed in bacteria (Figures 4A and S4A).
433 We observed that the targeted sequence on the *yybP-ykoY* riboswitch is also highly 433 We observed that the targeted sequence on the *yybP-ykoY* riboswitch is also highly
434 conserved (Figure S4B), being involved in the formation of the Mn²⁺ binding site (Figure conserved (Figure S4B), being involved in the formation of the Mn^{2+} binding site (Figure 435 S1E). A global RNA-RNA interaction prediction, confirmed by targeted validation analysis, 436 showed that the interaction between an iron-responsive sRNA and a *yybP-ykoY* riboswitch is 437 not restricted to *S. aureus,* and is likely to broadly occur in Firmicutes and some Gram-
438 negative bacteria including *Pseudomonas* species (Figure 4). It is probable that this 438 negative bacteria including *Pseudomonas* species (Figure 4). It is probable that this
439 unprecedented regulatory mechanism extends bevond Mn-sensing riboswitches and Feunprecedented regulatory mechanism extends beyond Mn-sensing riboswitches and Fe-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. bioRxiv preprint doi: [https://doi.org/10.1101/2024.09.30.615890;](https://doi.org/10.1101/2024.09.30.615890) this version posted September 30, 2024. The copyright holder for this preprint

440 responsive sRNAs, as several omics-based analyses have observed potential riboswitch-
441 SRNA interactions. Examples include a T-box riboswitch and RsaG sRNA in S. aureus⁴⁹. and sRNA interactions. Examples include a T-box riboswitch and RsaG sRNA in *S. aureus*⁴⁹, and 442 a guanidine-II riboswitch and ArcZ sRNA in *E. coli*⁵⁰.

443
444 444 Trans-acting sRNAs have long been thought to act post-transcriptionally on fully transcribed
445 mRNA. However, recent work revealed that the Hfg-associated DsrA sRNA binds faster to 445 mRNA. However, recent work revealed that the Hfq-associated DsrA sRNA binds faster to
446 the nascent *rpoS* transcript than to the refolded one in E. col⁶¹. This led to the suggestion 446 the nascent *rpoS* transcript than to the refolded one in *E. coli*⁵¹. This led to the suggestion
447 that sRNA may also bind to the nascent mRNA during transcription and prior to folding. Here, that sRNA may also bind to the nascent mRNA during transcription and prior to folding. Here,
448 ve demonstrated that binding of IsrR precludes the formation of the anti-terminator structure we demonstrated that binding of IsrR precludes the formation of the anti-terminator structure
449 of the *vvbP-vkoY* riboswitch at the co-transcriptional level, and consequently, induces the of the *yybP-ykoY* riboswitch at the co-transcriptional level, and consequently, induces the 450 premature termination of the *mnrS-mntY* transcript (Figure 3).

451
452

452 The *mnrS-mntY* locus is constitutively expressed, leading the *mnrS* riboswitch to accumulate
453 Under normal conditions (Figure 1). Notably, the half-life of the *mnrS* riboswitch (t_{1/2} = 5min) 453 under normal conditions (Figure 1). Notably, the half-life of the *mnrS* riboswitch (t_{1/2} ≈ 5min)
454 (Figure 3C) is considerably longer that the vast maiority of mRNAs⁵². Similar observations 454 (Figure 3C) is considerably longer that the vast majority of mRNAs⁵². Similar observations
455 have been made in E. coli⁵³ and B. subtilis²⁹. This suggests that the *mnrS* riboswitch. when have been made in *E. coli*⁵³ and *B. subtilis*²⁹. This suggests that the *mnrS* riboswitch, when
456 released from the full-length *mnrS-mntY* transcript, might act as a trans-acting sRNA. Further 456 released from the full-length *mnrS-mntY* transcript, might act as a trans-acting sRNA. Further
457 supporting this hypothesis is the presence of multiple 5'UTR-derived sRNAs across 457 supporting this hypothesis is the presence of multiple 5'UTR-derived sRNAs across
458 bacteria⁵⁴⁻⁵⁶. The first examples of riboswitches released by premature termination of 458 bacteria⁵⁴⁻⁵⁶. The first examples of riboswitches released by premature termination of
459 transcription and shown to function as trans-acting RNA are the S-adenosvlmethionine 459 transcription and shown to function as trans-acting RNA are the S-adenosylmethionine
460 (SAM) riboswitches. SreA and SreB. Both modulate the synthesis of the master regulator of 460 (SAM) riboswitches, SreA and SreB. Both modulate the synthesis of the master regulator of
461 virulence PfrA in *Listeria monocytogenes*⁵⁷. While the release and cellular accumulation of 461 virulence PfrA in *Listeria monocytogenes*⁵⁷. While the release and cellular accumulation of
462 the mnrS riboswitch suggests secondary trans-acting functions, such roles have vet to be 462 the *mnrS* riboswitch suggests secondary trans-acting functions, such roles have yet to be 463 identified. identified.

464
465

⁴⁶⁵*Multiple functions contribute to the importance of MntY in* S. aureus

466
467

467 The *mnrS* riboswitch and IsrR work together to regulate the synthesis of MntY, a Mn efflux
468 pump which belongs to the TerC family (Figure 7C). The present study revealed that MntY 468 bump which belongs to the TerC family (Figure 7C). The present study revealed that MntY
469 brotects against Mn intoxication, bringing the total number of known Mn efflux pumps in S. 469 protects against Mn intoxication, bringing the total number of known Mn efflux pumps in *S.* 470 aureus to two. While MntY rescues a strain lacking MntE, the converse is not true, indicating 470 *aureus* to two. While MntY rescues a strain lacking MntE, the converse is not true, indicating
471 that thev possess non-redundant functions. Notably. the *mnrS-mntY* locus is expressed even 471 that they possess non-redundant functions. Notably, the *mnrS-mntY* locus is expressed even
472 in the absence of toxic concentrations of Mn (Figure 1B). While the synthesis of MntE is 472 in the absence of toxic concentrations of Mn (Figure 1B). While the synthesis of MntE is 473 regulated by the transcriptional metal-dependent protein MntR¹¹, the Mn-sensing riboswitch Frank 173 are regulated by the transcriptional metal-dependent protein MntR¹¹, the Mn-sensing riboswitch
474 bermits the synthesis of MntY at lower Mn concentration. The possibility that MntY contribute permits the synthesis of MntY at lower Mn concentration. The possibility that MntY contribute 475 to physiology in the absence of toxicity is born out by the profound pleomorphic impacts that
476 boss of MntY has on S. aureus. This includes a drastic reduction in the production of LTA loss of MntY has on *S. aureus*. This includes a drastic reduction in the production of LTA ⁴⁷⁷(Figure 5D). MntY is a homolog of YkoY (MeeY) in *B. subtilis*, which was recently revealed to promote metalation of extracellular Mn-dependent proteins, including LTA synthase³⁶. YkoY 479 can complement the growth defect of a Δ*mnrS-mntY* mutant (Figure 5B). Thus, it seems
480 likely that under non-toxic conditions. MntY contributes to metalation of extracellular Mn-480 likely that under non-toxic conditions, MntY contributes to metalation of extracellular Mn-
481 dependent proteins in S. aureus. However, YkoY does not complement the ability of a $\Delta mntE$ dependent proteins in *S. aureus*. However, YkoY does not complement the ability of a Δ*mntE*
482 mutant to grow in the presence of Mn toxic levels (Figure 5C), and YkoY appears to make 482 mutant to grow in the presence of Mn toxic levels (Figure 5C), and YkoY appears to make
483 only a minimal contribution to protect B. subtilis from Mn toxicitv³⁵. Taken together, these 483 only a minimal contribution to protect *B. subtilis* from Mn toxicity³⁵. Taken together, these
484 observations indicate that MntY and YkoY, while homologous, have non-overlapping roles. 484 observations indicate that MntY and YkoY, while homologous, have non-overlapping roles.
485 Indeed, MntY is involved in both the prevention of Mn toxicity and the metalation of essential 185 Indeed, MntY is involved in both the prevention of Mn toxicity and the metalation of essential
186 Droteins, whereas YkoY is primarily involved in the maintenance of metal-dependent proteins, whereas YkoY is primarily involved in the maintenance of metal-dependent 487 processes (Figure 7A). *B. subtilis* appears to possess a significantly expanded repertoire of 488 Mn efflux pumps when compared to S. aureus, having two Mn²⁺-inducible cation diffusion 488 Mn efflux pumps when compared to *S. aureus*, having two Mn²⁺-inducible cation diffusion
489 facilitator efflux pumps MneP and MneS³⁷, an ABC-type exporter YknUV⁵⁸ and two TerC facilitator efflux pumps MneP and MneS³⁷, an ABC-type exporter YknUV⁵⁸ and two TerC
490 family membrane protein paralogs. YceF and YkoY³⁵. Notably, loss of both YkoY and YceF in family membrane protein paralogs, YceF and YkoY³⁵. Notably, loss of both YkoY and YceF in
491 B. subtilis is necessary to have the same effect on colony size and growth as loss of MntY in 491 B. subtilis is necessary to have the same effect on colony size and growth as loss of MntY in
492 S. aureus³⁶. YkoY homologs from L. monocytogenes and B. anthracis complement a B. *S. aureus*³⁶. YkoY homologs from *L. monocytogenes* and *B. anthracis* complement a *B.* 493. *subtilis vkoY vceF* double mutant³⁶, but it is unclear if they contribute to Mn detoxication. It *subtilis ykoY yceF* double mutant³⁶, but it is unclear if they contribute to Mn detoxication. It
494 seems likely that lifestyle and environment drive the differences in the efflux pump repertoire. seems likely that lifestyle and environment drive the differences in the efflux pump repertoire.

495
496 ⁴⁹⁶*MntY is essential for viability and virulence, but its expression must be tightly controlled.*

497

498 The contribution of MntY to maintaining the activity of LtaS, and consequently, the production
499 of LTA, highlights the critical role of this protein in preserving critical processes. Hence, it is 499 of LTA, highlights the critical role of this protein in preserving critical processes. Hence, it is
500 on not surprising that loss of MntY has strong pleomorphic impacts including sensitizing S. 500 not surprising that loss of MntY has strong pleomorphic impacts including sensitizing *S.*
501 a*ureus* to antimicrobial compounds (calprotectin, daptomycin), immune cell killing and ⁵⁰¹*aureus* to antimicrobial compounds (calprotectin, daptomycin), immune cell killing and 502 reducing the ability to causes infection (Figure 7B). At the same time, the activity of MntY
503 must be tightly controlled as its overexpression also appears to be lethal. Disruption of cell 503 a must be tightly controlled as its overexpression also appears to be lethal. Disruption of cell
504 a wall synthesis, including via inactivation of LtaS, has been proposed as a promising avenue 504 wall synthesis, including via inactivation of LtaS, has been proposed as a promising avenue
505 for therapeutic development given the extracellular nature of manv targets and the critical 505 for therapeutic development given the extracellular nature of many targets and the critical
506 contribution of the cell wall to stress resistance⁵⁹. The current study suggests a new 506 contribution of the cell wall to stress resistance⁵⁹. The current study suggests a new
507 mechanism for disrupting cell wall synthesis, namely preventing enzymes such as LtaS from 507 b mechanism for disrupting cell wall synthesis, namely preventing enzymes such as LtaS from
508 bobtaining the cofactor critical for their activity, by inhibiting MntY. The intricate regulation of 508 obtaining the cofactor critical for their activity, by inhibiting MntY. The intricate regulation of
509 MntY to avoid the toxicity associated with its overexpression and its essential nature. suggest 509 MntY to avoid the toxicity associated with its overexpression and its essential nature, suggest
510 that it may have a reduced tolerance for mutation. This, combined with its surface 510 that it may have a reduced tolerance for mutation. This, combined with its surface
511 localization, makes MntY an attractive target for therapeutic development and an opportunity 511 Iocalization, makes MntY an attractive target for therapeutic development and an opportunity
512 to combat the redoubtable human pathogen S. aureus. TerC family proteins being ⁵¹²to combat the redoubtable human pathogen *S. aureus*. TerC family proteins being 513 conserved, this therapeutic strategy could be extended to other pathogens such as *L. nonocvtogenes* and *B. anthracis*³⁶.

monocytogenes and *B. anthracis*³⁶.

515

⁵¹⁶**MATERIAL AND METHODS**

517
518

Strains, plasmids, and growth conditions

519
520

520 Bacterial strains and plasmids used in this study are listed in Table S3A. For plasmids
521 construction. PCR fragments amplified by oligonucleotides indicated in Table S3B were 521 construction, PCR fragments amplified by oligonucleotides indicated in Table S3B were
522 digested with respective restriction enzymes and ligated into a similarly digested vector. 522 digested with respective restriction enzymes and ligated into a similarly digested vector.
523 Plasmids isolated from E. coli TOP10 (Thermo Fischer Scientific) were then transferred into ⁵²³Plasmids isolated from *E. coli* TOP10 (Thermo Fischer Scientific) were then transferred into 524 proper backgrounds. To efficiently transform *S. aureus* HG001 cells, *E. coli strain* IM08B⁶⁰
525 was used as recipient strain for plasmid amplification. Unlike plasmid-based gene reporter 525 was used as recipient strain for plasmid amplification. Unlike plasmid-based gene reporter
526 systems used in S. aureus (pJB185), lacZ fusions were inserted as a single copy into the 526 systems used in *S. aureus* (pJB185), *lacZ* fusions were inserted as a single copy into the 527 strations cheft copy into the 527 strations. 527 chromosome of *E. coli* MG1655 derivates⁶¹.
528 *E. coli* strains MG1655. TOP10 or IM08B:

- ⁵²⁸*E. coli* strains MG1655, TOP10 or IM08B and *B. subtilis* 168 were streaked onto LB agar 529 plates and cultivated in lysogeny broth (LB) or M63 minimal medium. *S. aureus* strains were
530 bisolated on brain-heart infusion (BHI) or blood agar plates. Overnight cultures (3 mL) in BHI 530 isolated on brain-heart infusion (BHI) or blood agar plates. Overnight cultures (3 mL) in BHI
531 or in RPMI + 1% CA, a Roswell Park Memorial Institute (RPMI, Sigma-Aldrich) medium 531 or in RPMI + 1% CA, a Roswell Park Memorial Institute (RPMI, Sigma-Aldrich) medium
532 supplemented with 1% casamino acids (MP Biomedicals), were diluted 50-fold in fresh 532 supplemented with 1% casamino acids (MP Biomedicals), were diluted 50-fold in fresh
533 medium and grown with shaking at 37°C (180 rpm, 5:1 flask-to-medium ratio). To induce 533 b medium and grown with shaking at 37°C (180 rpm, 5:1 flask-to-medium ratio). To induce
534 b metal starvation. BHI or RPMI + 1% CA medium were mixed with 5% Chelex-100 resin 534 metal starvation, BHI or RPMI + 1% CA medium were mixed with 5% Chelex-100 resin
535 (Sigma-Aldrich) during 6h at room temperature. The resulting media, BHI chelex and NRPMI, 535 (Sigma-Aldrich) during 6h at room temperature. The resulting media, BHI chelex and NRPMI,
536 were then sterile filtered and. according to Kehl-Fie *et al.⁶².* were complemented with were then sterile filtered and, according to Kehl-Fie *et al.*⁶², were complemented with 537 Frespective metal ions at the following concentrations: 1 mM MgCl₂, 100 μM CaCl₂, 25 μM
538 FZnCl₂, 25 μM MnCl₂ and 1 μM FeSO₄ (Sigma-Aldrich). The endogenous expression of *isrR* 538 ZnCl₂, 25 µM MnCl₂ and 1 µM FeSO₄ (Sigma-Aldrich). The endogenous expression of *isrR*
539 gene was induced by addition of the Fe chelator 2.2′-dipvridvl (DIP. 250 µM: Sigma-Aldrich). 539 gene was induced by addition of the Fe chelator 2,2′-dipyridyl (DIP, 250 μM; Sigma-Aldrich).
540 Antibiotics were added when required: 100 μα/mL of ampicillin (pJET, pMAD or pJB185 ⁵⁴⁰Antibiotics were added when required: 100 μg/mL of ampicillin (pJET, pMAD or pJB185 541 derivates in *E. coli*), 10 μg/mL of chloramphenicol (pJB185 derivates in *S. aureus*), 10 μg/mL
542 of erythromycin (pMAD and pEW derivates in *S. aureus*), 300 μg/mL of rifampicin (half-life 542 of erythromycin (pMAD and pEW derivates in *S. aureus*), 300 µg/mL of rifampicin (half-life
543 odetermination: *S. aureus*). Daptomycin hypersensitivity was tested in the presence of 0.5, 1 ⁵⁴³determination; *S. aureus*). Daptomycin hypersensitivity was tested in the presence of 0.5, 1 544 and 5 µg/mL of daptomycin (Sigma) and 100 µg/mL CaCl₂.
545 Cells were streaked onto blood agar and 5% skim mi
- ⁵⁴⁵Cells were streaked onto blood agar and 5% skim milk LB agar plates to determine 546 haemolytic and proteolytic activities, respectively.
- 547
548

⁵⁴⁸**Mutagenesis and complementation**

549
550

⁵⁵⁰The deletion of *isrR* gene in *S. aureus* HG001 strain was carried out using the pMAD 551. vector⁶³. Upstream and downstream regions of *isrR* gene (≈500 nts) were amplified by PCR
552. (*isrR*-UF-Xbal/*isrR*-UR and *isrR*-DF/*isrR*-DR-Xhol, respectively) (Table S3B) and then cloned ⁵⁵²(*isrR*-UF-XbaI/*isrR*-UR and *isrR*-DF/*isrR*-DR-XhoI, respectively) (Table S3B) and then cloned 553 into XbaI/XhoI digested pMAD plasmid. The resulting plasmid was transferred to IM08B
554 Frecipient strain and then electroporated into S. *aureus* HG001. As previously described⁶³. recipient strain and then electroporated into *S. aureus* HG001. As previously described⁶³, 555 growth at restrictive temperature (44°C) was followed by subcultures at 28°C to favor double
556 crossover. The gene deletion was verified by PCR using oligonucleotides *isrR*-del-For and 556 Crossover. The gene deletion was verified by PCR using oligonucleotides *isrR*-del-For and
557 EisrR-del-Rev. The same approach was used to delete *mntE, mnrS* and mnrS-mntY and to ⁵⁵⁷*isrR*-del-Rev. The same approach was used to delete *mntE, mnrS* and *mnrS*-*mntY* and to ⁵⁵⁸mutated *isrR* sequence (*isrR*-2G).

- ⁵⁵⁹To complement mutant strains, *mntY*, *mnrS-mntY*, *mnrW-ykoY, mswM-yybP*, and *mntE* 560 coding sequences were amplified using indicated primers (Table S3B) and cloned under the
561 control of a constitutive BlaZ-derived promoter as described in Menendez-Gil *et al⁴⁵.* All 561 control of a constitutive BlaZ-derived promoter as described in Menendez-Gil *et al⁴⁵.* All
562 constructs were verified by DNA sequencing (Eurofins). constructs were verified by DNA sequencing (Eurofins).
- 563
564

⁵⁶⁴**In silico prediction of IsrR targets**

565
566

566 A list of putative targets has been obtained using CopraRNA⁶⁴ (default parameters) and the
567 Sequence of *isrR* genes from Staphylococcus aureus strain HG001 isolate RN1 567 sequence of *isrR* genes from *Staphylococcus aureus* strain HG001 isolate RN1
568 (NZ CP018205). *Staphylococcus epidermidis* RP62A (NC 002976). *Staphylococcus* (NZ_CP018205), *Staphylococcus epidermidis* RP62A (NC_002976), *Staphylococcus epidermidis* ATCC 12228 (NC_004461), *Staphylococcus haemolyticus* JCSC1435 (NC_007168), *Staphylococcus aureus* subsp. *aureus* NCTC 8325 (NC_007795), *Staphylococcus pseudintermedius* ED99 (NC_017568), *Staphylococcus warneri* SG1 (NC_020164.1), *Staphylococcus pasteuri* SP1 (NC_022737), *Staphylococcus capitis* subsp. *capitis* strain AYP1020 (NZ_CP007601), *Staphylococcus aureus* strain CA12 (NZ_CP007672), *Staphylococcus xylosus* strain SMQ-121 (NZ_CP008724), *Staphylococcus schleiferi* strain 1360-13 (NZ_CP009470), *Staphylococcus aureus* strain MS4 576 (NZ_CP009828), *Staphylococcus aureus* strain ZJ5499 (NZ_CP011685), Staphylococcus
577 sp. AntiMn-1 (NZ CP012968), *Staphylococcus equorum* strain KS1039 (NZ CP013114), 577 sp. AntiMn-1 (NZ_CP012968), *Staphylococcus equorum* strain KS1039 (NZ_CP013114),
578 *Staphylococcus lugdunensis* strain K93G (NZ_CP017069). *Staphylococcus succinus* strain *Staphylococcus lugdunensis* strain K93G (NZ_CP017069), *Staphylococcus succinus* strain 14BME20 (NZ_CP018199), *Staphylococcus capitis* strain FDAARGOS_378 (NZ_CP023966), *Staphylococcus simiae* strain NCTC13838 (NZ_LT906460).

581
582

⁵⁸²**Protein structure prediction and comparison**

583

584 The sequence alignment was performed using Clustal Omega using HG001_00869 (MntY)
585 from *S. aureus* HG001 and BSU_40560 (MeeY/YkoY) from *B. subtilis* 168. MntY secondary ⁵⁸⁵from *S. aureus* HG001 and BSU_40560 (MeeY/YkoY) from *B. subtilis* 168. MntY secondary 586 structure was predicted using AlphaFold⁶⁵ and then aligned and superposed with MeeY
587 structure (Uniprot accession O34997·YKOY BACSU) from *B. subtillis* 168 using chimera ⁵⁸⁷structure (Uniprot accession O34997· YKOY_BACSU) from *B. subtillis* 168 using chimera 588 software with default parameters⁶⁶. The sequence alignment score is 841.8 and the root
589 mean square deviation (RMSD) between 206 pruned atom pairs is 0.703 angstroms (across 589 mean square deviation (RMSD) between 206 pruned atom pairs is 0.703 angstroms (across
590 all 247 pairs: 4.318). all 247 pairs: 4.318).

591
592

⁵⁹²**Gel retardation assays**

593
594 594 Transcription start sites were determined according to Koch et al.⁶⁷. PCR fragments
595 containing T7-*mntE* (full-length. from -44 to +867). T7-*vvbP-vkoY-mntP* (from -225 to +50. E. 595 containing T7-*mntE* (full-length, from -44 to +867), T7-*yybP-ykoY-mntP* (from -225 to +50, *E.*
596 *coli*) and T7-*sraF-alx* (from -206 to +170. *E. coli*) were used for as DNA template for in vitro 596 *coli*) and T7-*sraF-alx* (from -206 to +170, *E. coli*) were used for as DNA template for in vitro
597 transcription with T7 RNA polymerase. T7-*isrR* (full-length), T7-*mnrS* (full-length), T7-*mnrS*-597 transcription with T7 RNA polymerase. T7-*isrR* (full-length), T7-*mnrS* (full-length), T7-*mnrS-*⁵⁹⁸*mntY* (from -183 to +115), T7-*ryhB* (full-length, *E. coli*), T7-*fsrA* (full-length, *B. subtilis*), T7- ⁵⁹⁹*mswM-yybP* (from -307 to +172, *B. subtilis*), and T7-*mnrW-ykoY* (from -21 to +289, *B.* ⁶⁰⁰*subtilis*) were cloned into pJET1.2*/*blunt plasmid (ThermoFisher). The *isrG*-2G and *mnrS*-2C 601 mutants were obtained using the QuickChange site-directed mutagenesis method (Agilent
602 Technologies) following manufacturer's instructions. Oligonucleotides containing the desired 602 Technologies) following manufacturer's instructions. Oligonucleotides containing the desired
603 mutations are listed in Table S3B. pJET-T7*-isrR* and pJET-T7*-mnrS* were used as template ⁶⁰³mutations are listed in Table S3B. pJET-T7-*isrR* and pJET-T7-*mnrS* were used as template 604 to generate the mutated plasmids. T7 transcriptions were performed using XbaI and/or XhoI-
605 digested plasmids as template. RNAs were finally purified and radiolabeled when required²⁶. 605 digested plasmids as template. RNAs were finally purified and radiolabeled when required²⁶.
606 5'-radiolabelled IsrR, IsrR-2G, *mnrS*, FsrA or RyhB (20,000 cpm/sample, concentration <′ 606 5'-radiolabelled IsrR, IsrR-2G, *mnrS*, FsrA or RyhB (20,000 cpm/sample, concentration <1
607 pM) and above-mentioned cold RNAs were separately denatured at 90°C in the buffer GR-607 pM) and above-mentioned cold RNAs were separately denatured at 90°C in the buffer GR-
608 120 mM Tris-HCl pH 7.5, 60 mM KCl, 40 mM NH4Cl, 3 mM DTT), cooled 1 min on ice, and 608 (20 mM Tris-HCl pH 7.5, 60 mM KCl, 40 mM NH₄Cl, 3 mM DTT), cooled 1 min on ice, and
609 incubated at room temperature for 15 min in presence of 10 mM MgCl₂. Renatured RNAs 609 incubated at room temperature for 15 min in presence of 10 mM MgCl₂. Renatured RNAs
610 vere then mix and incubated at 37°C for 15 min. Finally, samples were loaded on a 6% 610 were then mix and incubated at 37°C for 15 min. Finally, samples were loaded on a 6%
611 polyacrylamide gel under non-denaturing conditions (300 V, 4°C). ImageJ software⁶⁸ was 611 polyacrylamide gel under non-denaturing conditions (300 V, 4°C). ImageJ software⁶⁸ was
612 used to perform densitometric analysis. Results are representative of two independent 612 used to perform densitometric analysis. Results are representative of two independent 613 experiments. experiments.

614
615

⁶¹⁵**Probing experiments**

616
617

617 PbAc and RNase T1 probing assays were performed as previously described⁶⁹. Briefly, 0.04
618 uM of 5'-end-labeled *mnrS* (full-length) transcript was incubated with (+) or without (-) 1 uM 618 µM of 5'-end-labeled *mnrS* (full-length) transcript was incubated with (+) or without (-) 1 μM
619 of IsrR/IsrR-2G sRNA. Radiolabeled RNA was incubated at 90°C for 5 min with alkaline 619 of IsrR/IsrR-2G sRNA. Radiolabeled RNA was incubated at 90°C for 5 min with alkaline
620 hydrolysis buffer (OH; Ambion) or at 37°C for 5 min with ribonuclease T1 (0.1 U; Ambion) to hydrolysis buffer (OH; Ambion) or at 37°C for 5 min with ribonuclease T1 (0.1 U; Ambion) to 621 obtain the OH ladder and the T1 ladder, respectively.

622

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. bioRxiv preprint doi: [https://doi.org/10.1101/2024.09.30.615890;](https://doi.org/10.1101/2024.09.30.615890) this version posted September 30, 2024. The copyright holder for this preprint

⁶²³**Termination efficiency assays**

624

625 Termination efficiency assays were performed as described in Salvail et al.⁷⁰ with slight
626 modifications. 100 nM of linear DNA template (P/vsC-mnrS: Table S3B) were mixed with 626 modifications. 100 nM of linear DNA template (PlysC-*mnrS*; Table S3B) were mixed with 627 increasing concentration of MnCl₂ (0 to 10 mM; final volume of 6 µL). 3 µL of transcription 627 increasing concentration of MnCl₂ (0 to 10 mM; final volume of 6 µL). 3 µL of transcription
628 master mix. which is composed of 0.9 µL of 10X transcription buffer (200 mM Tris-Cl pH 8.0. ⁶²⁸master mix, which is composed of 0.9 µL of 10X transcription buffer (200 mM Tris-Cl pH 8.0**,** 629 1 M KCl, 20 mM MgCl₂, 1 mM EDTA), 0.9 μL of 10X GTP-free initiation mix (25 μM CTP, 25
630 μM ATP and 10 μM UTP), 0.1 μL of 1 mg/mL BSA, 0.13 μL of 10 mM ApA (Jena Bioscience), μ M ATP and 10 μ M UTP), 0.1 μ L of 1 mg/mL BSA, 0.13 μ L of 10 mM ApA (Jena Bioscience), ⁶³¹0.2 µL of 50% glycerol, 2 µCi ^α-UTP, and 0.4 U of *E. coli* RNA polymerase (Holoenzyme, 632 NEB) were added. The initiation of transcription was performed at 37°C during 10 min. Here, 633 the RNA polymerase stalled at the first G residue. Then, 1 µL of 10X elongation mix (1.5 mM 633 the RNA polymerase stalled at the first G residue. Then, 1 µL of 10X elongation mix (1.5 mM
634 GTP. 1.5 mM ATP. 1.5 mM CTP. 0.1 mM UTP. 1 mg/mL heparin in 1X transcription buffer) 634 GTP, 1.5 mM ATP, 1.5 mM CTP, 0.1 mM UTP, 1 mg/mL heparin in 1X transcription buffer)
635 was added to resume the reaction. Samples were incubated 30 min at 37°C. Reactions were 635 was added to resume the reaction. Samples were incubated 30 min at 37°C. Reactions were
636 finally stopped by addition of 10 µL of loading buffer II (95% Formamide, 18 mM EDTA, 636 finally stopped by addition of 10 µL of loading buffer II (95% Formamide, 18 mM EDTA,
637 0.025% SDS. 0.025% xvlene cvanol. and 0.025% bromophenol blue). and resolved on 10% 637 0.025% SDS, 0.025% xylene cyanol, and 0.025% bromophenol blue), and resolved on 10%
638 polvacrvlamide gel. polyacrylamide gel.

639
640

⁶⁴⁰**Growth monitoring assays**

641
642

642 Freshly streaked bacterial colonies were used to inoculate overnight cultures incubated at 643 S7°C with constant shaking (180 rpm). Cultures were diluted (OD_{600nm}=0.05) in fresh media 643 37°C with constant shaking (180 rpm). Cultures were diluted (OD_{600nm}=0.05) in fresh media
644 supplemented with 0. 40. and 400 µM MnCl₂ before being placed in a 96-well flat-bottomed supplemented with 0, 40, and 400 μ M MnCl₂ before being placed in a 96-well flat-bottomed 645 plate and then incubated at 37°C with constant agitation for 10-20 hours. Growth was 646 measured at OD $_{\text{eocsm}}$ in a microplate reader Multiskan SkyHigh multiplate spectrophotometer 646 – measured at OD_{600nm} in a microplate reader Multiskan SkyHigh multiplate spectrophotometer
647 – (ThermoFisher). At least three independent experiments were performed. (ThermoFisher). At least three independent experiments were performed.

648
649

⁶⁴⁹**Northern blot analysis**

650
651 651 at 10 mL of bacterial suspension were collected at indicated OD_{600nm} or time. Bacterial pellets 652 are were resuspended in the RNA Pro Solution provided in the FastRNA Pro Blue kit (MP 652 were resuspended in the RNA Pro Solution provided in the FastRNA Pro Blue kit (MP
653 Biomedicals). The FastPrep apparatus (MP Biomedicals) was used to mechanically lyse the 653 Biomedicals). The FastPrep apparatus (MP Biomedicals) was used to mechanically lyse the
654 cells. Total RNA extraction was performed following manufacturer's instructions. 654 cells. Total RNA extraction was performed following manufacturer's instructions.
655 10-20 µg_total_RNA_were_loaded_on_a_1%_agarose_gel_containing_25_mN

655 10-20 µg total RNA were loaded on a 1% agarose gel containing 25 mM guanidium
656 thiocyanate (Sigma-Aldrich) and electrophoresed at 120 V. RNAs were then transferred on 656 thiocyanate (Sigma-Aldrich) and electrophoresed at 120 V. RNAs were then transferred on
657 tHybond N+ nitrocellulose membrane (GE Healthcare Life Sciences). Membranes were 657 Hybond N+ nitrocellulose membrane (GE Healthcare Life Sciences). Membranes were
658 hybridized with specific digoxygenin (DIG)-labelled probes targeting RNA of interest or 5S hybridized with specific digoxygenin (DIG)-labelled probes targeting RNA of interest or 5S 659 rRNA (loading control), obtained using the DIG RNA Labelling kit (Roche) and corresponding 660 oligonucleotides (Table S3B). The luminescent detection was carried out as previously
661 described using CDP-Star (Roche)⁷¹. Results are representative of at least two independent described using CDP-Star (Roche) $⁷¹$. Results are representative of at least two independent</sup> 662 experiments.
663 For the deteri

663 For the determination of RNA half-lives, 250 µM of DIP were added for 15 minutes to induce
664 *isrR* expression. 10 mL of culture were collected before (0) and after (0.5, 1, 2.5, 5, 7.5, 10, 664 *isrR* expression. 10 mL of culture were collected before (0) and after (0.5, 1, 2.5, 5, 7.5, 10,
665 15, and 30 minutes) rifampicin treatment (300 µg/mL). Densitometric analyses were 15, and 30 minutes) rifampicin treatment (300 $\mu q/mL$). Densitometric analyses were 666 performed using Image J software⁶⁸. Each experiment was performed at least twice.

667
668 668 β**-galactosidase assays**

669

670 Constructs were obtained by PCR and cloned into pJB185 plasmid⁷². The MntP+45-LacZ
671 and Alx+15-LacZ translational fusions were constructed using λ red-mediated 671 and Alx+15-LacZ translational fusions were constructed using λ red-mediated
672 recombineering. Fragmentsextendedfrom –225-to-+45(*mntP*)or-–206-to-+15(*alx*)relative 672 recombineering. Fragments extended from −225 to +45 (*mntP*) or −206 to +15 (*alx*) relative
673 to the ATG were inserted into NM580 strain. which contains pBAD-*ccdB* upstream of *lacZ* at 673 to the ATG were inserted into NM580 strain, which contains pBAD-*ccdB* upstream of *lacZ* at
674 the chromosomal *lac* locus⁷³. These constructions were moved into new backgrounds by P1 674 the chromosomal *lac* locus⁷³. These constructions were moved into new backgrounds by P1
675 transduction. 675 transduction.
676 Bacterial cells

676 Bacterial cells from an overnight culture were diluted in 50 mL (flask; *E. coli*) or 10 mL of
677 fresh medium (50 mL tubes: *S. aureus*). Cells were grown at 37°C and harvested at the 677 fresh medium (50 mL tubes; *S. aureus*). Cells were grown at 37°C and harvested at the
678 appropriate OD_{600pm}. When required. the production of sRNAs was induced by addition of 678 appropriate OD_{600nm}. When required, the production of sRNAs was induced by addition of 679 0.1% arabinose (*E. coli*). B-galactosidase kinetic measurements were performed at OD_{420nm} 679 0.1% arabinose (*E. coli*). β-galactosidase kinetic measurements were performed at OD_{420nm}
680 on a Multiskan SkyHigh multiplate spectrophotometer (ThermoFisher) and analyzed with 680 on a Multiskan SkyHigh multiplate spectrophotometer (ThermoFisher) and analyzed with
681 Skanlt™ Software for Microplate Readers (version 6.1). The ß-galactosidase activity was 681 SkanIt™ Software for Microplate Readers (version 6.1). The β-galactosidase activity was
682 determined by applying the formula Vmax/OD_{600m}⁷⁴. Processed data correspond to the mean 682 determined by applying the formula Vmax/OD $_{600nm}$ ⁷⁴. Processed data correspond to the mean 683 of at least three independent experiments \pm standard deviation (SD).

684
685

LTA detection by Western blot

686
687

Lipoteichoic acid (LTA) detection was performed as previously described by He et al.³⁶ with 688 some changes. Briefly, cultures were grown at 37°C in agitation until the exponential phase
689 (OD_{600m}=0.6), 5 mL of cultures were pelleted and washed with buffer I (100□mM Tris-HCl ⁶⁸⁹(OD600nm=0.6). 5 mL of cultures were pelleted and washed with buffer I (100mM Tris-HCl 690 pH 7.4 with Halt™ protease inhibitor cocktail (1X); Thermo Scientific™). Cell pellets were
691 presuspended in one volume of buffer I and one volume of 2X Laemmli buffer (without 691 are resuspended in one volume of buffer I and one volume of 2X Laemmli buffer (without 692 are reducing agent and bromophenol Blue). Samples were then heated at 100 \Box °C for 45 \Box min, 692 reducing agent and bromophenol Blue). Samples were then heated at 100□°C for 45□min,
693 cooled down on ice for 5□min, and treated with 10 U/mL DNase I (Roche) at 37□°C for 693 cooled down on ice for 5⊡min, and treated with 10 U/mL DNase I (Roche) at 37□°C for
694 30□min. After 5 min of centrifugation, supernatants were quantified with Pierce BCA protein 694 30⊡min. After 5 min of centrifugation, supernatants were quantified with Pierce BCA protein
695 assay (Thermo Scientific™) and stored at -20⊟°C for posterior analysis. β-mercaptoethanol 695 assay (Thermo Scientific™) and stored at -20□°C for posterior analysis. β-mercaptoethanol
696 and bromophenol blue were added before denaturation at 95□°C for 10□min. Samples were and bromophenol blue were added before denaturation at $95\degree$ °C for 10 \degree min. Samples were 697 subsequently loaded (5 µg) onto a 20% SDS-PAGE polyacrylamide gel for electrophoretic
698 separation. After transfer onto a PVDF membrane using a Trans-Blot Turbo Transfer System separation. After transfer onto a PVDF membrane using a Trans-Blot Turbo Transfer System 699 (Bio-Rad), the membrane was blocked with a PBS solution containing 3% BSA (w/v) for 30
700 min with shaking. The LTA was detected by using a Gram-positive LTA monoclonal antibody 700 min with shaking. The LTA was detected by using a Gram-positive LTA monoclonal antibody
701 at 1:1000 dilution (Thermo Fisher, overnight incubation at 4°C) and a horseradish peroxidase at 1:1000 dilution (Thermo Fisher, overnight incubation at 4° C) and a horseradish peroxidase 702 (HRP)-conjugated Goat anti-mouse antibody 1:10,000 dilutions (BioRad, 1h incubation 4°C).
703 – After three washes in PBS 0.1% tween, the membrane was incubated with ECL reagents 703 After three washes in PBS 0.1% tween, the membrane was incubated with ECL reagents
704 (Bio-Rad) and scanned with a ChemiDoc image system (Bio-Rad). As a loading control, we 704 (Bio-Rad) and scanned with a ChemiDoc image system (Bio-Rad). As a loading control, we
705 loaded another gel for Coomassie blue staining, and the same transferred membrane was 705 loaded another gel for Coomassie blue staining, and the same transferred membrane was
706 stripped and re-probed for *Staphylococcus* Protein A detection with HRP-conjugated Anti-706 stripped and re-probed for *Staphylococcus* Protein A detection with HRP-conjugated Antirabbit (Bio-Rad) at 1/3000 dilution.

708
709

⁷⁰⁹**RNA-RNA interaction prediction**

710
711

⁷¹¹*Riboswitch homologs, sRNA homologs and riboswitch clustering*

The *yybP-ykoY* riboswitch dataset contains the respective Rfam sequences (RF00080)⁷⁵, the
713 Sequences described in Dambach et al.²⁹ and sequences which were additionally detected 713 sequences described in Dambach et al.²⁹ and sequences which were additionally detected
714 by a GLASSgo⁷⁶ search with the S. aureus (CP125863.1:997786-997951) and *Bacillus* 714 by a GLASSgo⁷⁶ search with the *S. aureus* (CP125863.1:997786-997951) and *Bacillus*
715 (CP000813.4:1297230-1297337) riboswitch sequences as queries. GLASSgo was done on 715 (CP000813.4:1297230-1297337) riboswitch sequences as queries. GLASSgo was done on
716 bacterial genomes (https://zenodo.org/record/1320180) (E-value≤5. minimum sequence 716 bacterial genomes (<u>https://zenodo.org/record/1320180</u>) (E-value≤5, minimum sequence
717 identitv 57%. londen mode off). Sequences with overlapping genomic coordinates were 717 identity 57%, londen mode off). Sequences with overlapping genomic coordinates were
718 merged and evaluated with Infernals cmsearch⁷⁷ against the RF00080 model and a custom T18 merged and evaluated with Infernals cmsearch⁷⁷ against the RF00080 model and a custom
T19 covariance model for riboswitches in front of the *alx* gene, using default parameters (E-value 719 covariance model for riboswitches in front of the *alx* gene, using default parameters (E-value
720 <= 0.01), resulting in 8.644 homolog sequences. The same procedure was applied to detect 720 \leq 0.01), resulting in 8,644 homolog sequences. The same procedure was applied to detect
721 homologs of the Fe stress related sRNAs ArrF⁴¹ (2788, RF00444), FsrA²¹ (726, RF02273), 721 homologs of the Fe stress related sRNAs ArrF⁴¹ (2788, RF00444), FsrA²¹ (726, RF02273),
722 Isar1⁴² (57. no Rfam familv). IsrR²² (1905. RF02578). NrrF⁴³ (515. RF01416). PrrF1/PrrF2²⁰ 722 Isar1⁴² (57, no Rfam family), IsrR²² (1905, RF02578), NrrF⁴³ (515, RF01416), PrrF1/PrrF2²⁰
723 (2695 & 2797, RF00444) and RyhB¹⁹ (3416, RF00057). ArrF, PrrF1 and PrrF2 share the 723 (2695 & 2797, RF00444) and RyhB¹⁹ (3416, RF00057). ArrF, PrrF1 and PrrF2 share the
724 same Rfam family and detected sequences might be partly redundant. Riboswitch homologs 724 same Rfam family and detected sequences might be partly redundant. Riboswitch homologs
725 were clustered based on the annotated gene 3-prime of the riboswitch location. The 725 were clustered based on the annotated gene 3-prime of the riboswitch location. The 726 respective amino acid sequences were clustered with mmseq⁷⁸ (min-seq-id = 0.2, C = 0.8, 726 Frespective amino acid sequences were clustered with mmseq2⁷⁸ (min-seq-id = 0.2, C = 0.8, 727 Frecov-mode = 1, cluster-mode = 2), initially resulting in 132 clusters, including 92 singleton 727 cov-mode = 1, cluster-mode = 2), initially resulting in 132 clusters, including 92 singleton
728 clusters. The singleton and low member size cluster are partly likely due to a still incomplete 728 clusters. The singleton and low member size cluster are partly likely due to a still incomplete
729 set of existing riboswitch homologs as well es clustering and annotation artifacts. The initial 729 set of existing riboswitch homologs as well es clustering and annotation artifacts. The initial
730 sclusters were manually curated to account for inconsistent genome annotations and a too 730 clusters were manually curated to account for inconsistent genome annotations and a too
731 sensitive clustering. Singleton clusters were not further investigated, which finally resulted in 731 sensitive clustering. Singleton clusters were not further investigated, which finally resulted in
732 16 riboswitch families. 16 riboswitch families.

733

⁷³⁴*Interaction predictions*

Riboswitch homologs were aligned with Clustal Omega⁷⁹ and the aligned sequences were 736 trimmed to a common 5'end prior to interaction prediction. The prediction of potential
737 interactions between all riboswitch homologs, sRNAs and sRNA homologs within a 737 interactions between all riboswitch homologs, sRNAs and sRNA homologs within a
738 respective organism was done with IntaRNA⁴⁴ (default parameters beside seedBP = 5). 738 in respective organism was done with IntaRNA⁴⁴ (default parameters beside seedBP = 5).
739 Based on the experimental, results we categorized the detected interaction sites based on 739 Based on the experimental, results we categorized the detected interaction sites based on
740 btheir position in the riboswitch. i.e.. interactions at the 5' end that include the "GGGGAGUA" 740 their position in the riboswitch, i.e., interactions at the 5' end that include the "GGGGAGUA"
741 (5'GGGG sites) motif and predicted interactions sites at other positions. All 5'GGGG sites 741 (5'GGGG_sites) motif and predicted interactions sites at other positions. All 5'GGGG_sites
742 with a predicted interaction energy≤-9 kcal/mol were considered as potential positive sites. A 742 with a predicted interaction energy≤-9 kcal/mol were considered as potential positive sites. A
743 frequently predicted interaction site between the 3' end of the riboswitch and RvhB sRNA frequently predicted interaction site between the 3' end of the riboswitch and RyhB sRNA 744 was identified in many Enterobacteria (Figure 4C). This pairing site was not considered, as
745 no shift between RyhB and both riboswitches was observed in *E. coli (*Figure S4C). ⁷⁴⁵no shift between RyhB and both riboswitches was observed in *E. coli* (Figure S4C).

746
747 ⁷⁴⁷*Tree generation*

748 The sRNA and riboswitch distribution are plotted across a Neighbor-Joining tree (Biopython -
749 Bio.phylo) based on a Clustal Omega⁷⁹ 16S rDNA alignment. An archeal 16S rDNA seguence 749 Bio.phylo) based on a Clustal Omega⁷⁹ 16S rDNA alignment. An archeal 16S rDNA sequence
750 from *Desulfurococcus* DSM2162 was used as outgroup for tree rooting. The trees are 750 from *Desulfurococcus* DSM2162 was used as outgroup for tree rooting. The trees are
751 visualized with iTOL⁸⁰. The outer ring shows the occurrence patterns of the 9 most frequent 751 visualized with iTOL⁸⁰. The outer ring shows the occurrence patterns of the 9 most frequent
752 briboswitch families as bars. A gradient from dark colors to light colors (predicted interaction 752 briboswitch families as bars. A gradient from dark colors to light colors (predicted interaction
753 benergy: ≥-22.19 kcal/mol to ≤-9 kcal/mol) indicates the predicted interaction potential of the 753 energy: ≥-22.19 kcal/mol to ≤-9 kcal/mol) indicates the predicted interaction potential of the
754 Frespective riboswitch with one of the present sRNAs. If an organism harbors more than one 754 Frespective riboswitch with one of the present sRNAs. If an organism harbors more than one
755 FSRNA, the lowest energy interaction is displayed. The gray color indicates an interaction 755 SRNA, the lowest energy interaction is displayed. The gray color indicates an interaction
756 Senergy >9 kcal/mol or no predicted 5'GGGG site (definition see above). The inner ring 756 energy >9 kcal/mol or no predicted 5'GGGG_site (definition see above). The inner ring
757 shows the detected sRNAs. The rDNA sequences were extracted from the GenBank files 757 shows the detected sRNAs. The rDNA sequences were extracted from the GenBank files
758 vith barrnap (https://github.com/tseemann/barrnap). For the remaining group, closely related 758 with barrnap (https://github.com/tseemann/barrnap). For the remaining group, closely related
759 organisms were condensed to one representative based on the 16S rDNA similarity (distance 759 organisms were condensed to one representative based on the 16S rDNA similarity (distance
760 threshold = 10⁻⁵). Clades with verv long branches were collapsed at an internal node (marked 760 threshold = 10⁻⁵). Clades with very long branches were collapsed at an internal node (marked
761 in red). in red).

762
763

⁷⁶³**Fluorescein-isothiocyanate (FITC) labeling**

764
765

765 Bacteria from fresh cultures were prewashed in 0.1 M sodium bicarbonate buffer, pH 9.0. *S.* 766 *aureus cells were pelleted, and stained with 0.5ug/uL of fluorescein isothiocyanate (FITC:* ⁷⁶⁶*aureus* cells were pelleted, and stained with 0,5µg/µL of fluorescein isothiocyanate (FITC; 767 Invitrogen). Bacteria were incubated for 20 min at room temperature and washed three times
768 in DPBS to remove unbound dye. Image acquisition was performed on a fluorescent in DPBS to remove unbound dye. Image acquisition was performed on a fluorescent 769 microscope at 40 X (Leica™ TCS SP5). Images were processed using Image J software⁶⁸.

770

⁷⁷¹**Calprotectin growth assays**

772
773 773 Calprotectin (CP) growth assays were performed as described previously⁸¹. Briefly, overnight
774 cultures (grown 16-18 h_in_BHI_medium_at_37°C)_were_diluted_1:100_into_96-well_round-774 cultures (grown 16-18 h in BHI medium at 37°C) were diluted 1:100 into 96-well round-
775 bottom plates containing 100 µL of growth medium (38% 3x BHI and 62% calprotectin buffer 775 bottom plates containing 100 μL of growth medium (38% 3x BHI and 62% calprotectin buffer
776 (20 mM Tris pH 7.5, 100 mM NaCl, 3 mM CaCl₂)) in presence of varving concentrations of 776 (20 mM Tris pH 7.5, 100 mM NaCl, 3 mM CaCl₂)) in presence of varying concentrations of
777 CP. For all assavs. the bacteria were incubated with orbital shaking (180 rpm) at 37°C and 777 CP. For all assays, the bacteria were incubated with orbital shaking (180 rpm) at 37°C and
778 Growth was measured by assessing optical density (OD_{600nm}) every 2 hours. Prior to 778 growth was measured by assessing optical density (OD_{600nm}) every 2 hours. Prior to
779 measuring optical density, the 96-well plates were vortexed. measuring optical density, the 96-well plates were vortexed.

780

⁷⁸¹**Neutrophil survival assay**

782
783

783 All participants provided written, informed consent in accordance with the principles outlined
784 bin the Declaration of Helsinki. Peripheral human blood samples were obtained from healthy 784 in the Declaration of Helsinki. Peripheral human blood samples were obtained from healthy
785 in donors through the Etablissement Francais du Sang (EFS) in Strasbourg. France under 785 donors through the Etablissement Français du Sang (EFS) in Strasbourg, France under
786 authorization number ALC/PIL/DIR/AJR/FO/606. Samples were collected in tubes containing 786 authorization number ALC/PIL/DIR/AJR/FO/606. Samples were collected in tubes containing
787 5.8% sodium citrate. Primary human polymorphonuclear leukocytes (PMNs) were isolated 787 3.8% sodium citrate. Primary human polymorphonuclear leukocytes (PMNs) were isolated
788 Lusing Percoll gradient separation as previously described⁸². Freshly prepared neutrophils 788 using Percoll gradient separation as previously described⁸². Freshly prepared neutrophils
789 were resuspended at a concentration of 1 x 10⁷ cells/mL and prewarmed at 37°C for 10 789 were resuspended at a concentration of 1 x 10⁷ cells/mL and prewarmed at 37°C for 10
790 minutes. S. aureus cells were grown in BHI medium and harvested at an OD_{600pm} ≈ 1. A 790 minutes. S. aureus cells were grown in BHI medium and harvested at an OD_{600nm} ≈ 1. A
791 multiplicity of infection (MOI) of 5 (5:1) was used. Samples were incubated at 37°C with 791 multiplicity of infection (MOI) of 5 (5:1) was used. Samples were incubated at 37°C with
792 aentle rotation (80 rpm) for 20 min. (A) Bacterial survival was assessed by plating serial 10-792 gentle rotation (80 rpm) for 20 min. (A) Bacterial survival was assessed by plating serial 10-
793 b fold dilutions on BHI agar plates and quantified as colony-forming units per milliliter 793 fold dilutions on BHI agar plates and quantified as colony-forming units per milliliter
794 (CFU/mL) (n=8: 3 blood donors). Alternativelv. (B) samples were centrifugated at 300 g to 794 (CFU/mL) (n=8; 3 blood donors). Alternatively, (B) samples were centrifugated at 300 g to
795 separate internalized from extracellular bacteria (supernatant). Pellets were washed with 795 separate internalized from extracellular bacteria (supernatant). Pellets were washed with
796 DPBS and then incubated for 20 minutes in RPMI media containing 25 µg/mL lysostaphin to 796 DPBS and then incubated for 20 minutes in RPMI media containing 25 µg/mL lysostaphin to
797 eliminate remaining extracellular bacteria. After centrifugation, cell pellets were resuspended 797 eliminate remaining extracellular bacteria. After centrifugation, cell pellets were resuspended
798 in sterile Triton 0.01% and allowed to stand at room temperature for 5-10 min. Extracellular 798 in sterile Triton 0.01% and allowed to stand at room temperature for 5-10 min. Extracellular
799 and internalized bacterial loads were then assessed by plating serial 10-fold dilutions on BHI 799 and internalized bacterial loads were then assessed by plating serial 10-fold dilutions on BHI
800 agar plates (n=4: 1 blood donor). agar plates ($n=4$; 1 blood donor).

801
802

⁸⁰²**THP-1 derived macrophage infection**

803
804

804 THP-1 cells were resuspended in RPMI 1640 supplemented with 2.5% fetal bovine serum
805 (FBS) and plated 48□h before infection at a density of 5□×□10⁵ cells per well. THP-1 cells (FBS) and plated 48 \Box h before infection at a density of $5\Box \times \Box 10^5$ cells per well. THP-1 cells 806 were differentiated into macrophage-like cells by treatment with 100□ng/ml phorbol 12-
807 myristate 13-acetate PMA (Sigma-Aldrich). Overnight bacterial growths were diluted 1:100 in myristate 13-acetate PMA (Sigma-Aldrich). Overnight bacterial growths were diluted 1:100 in 808 BHI medium and grown until an OD_{600nm} ≈ 1. Infections were performed at a multiplicity of 809 infection (MOI) of 5 (5:1). Cells were centrifuaed at 300 a. at room temperature for 4□min. infection (MOI) of 5 (5:1). Cells were centrifuged at 300 g, at room temperature for $4\Box$ min, 810 and incubated at 37 \square °C in a 5% CO₂ humidified atmosphere for 90 min. (A) Bacterial as 811 survival was assessed by plating serial 10-fold dilutions on BHI agar plates and quantified as 811 survival was assessed by plating serial 10-fold dilutions on BHI agar plates and quantified as
812 CFU/mL(n=7). Alternatively. (B) samples were centrifugated at 300 g to separate 812 CFU/mL (n=7). Alternatively, (B) samples were centrifugated at 300 g to separate
813 internalized from extracellular bacteria (supernatant). After centrifugation, remaining ⁸¹³internalized from extracellular bacteria (supernatant). After centrifugation, remaining 814 extracellular bacteria were lysed by addition of 25□µg/ml lysostaphin and 150□µg/ml
815 eqentamicin (Sigma-Aldrich) for 1h. As previously mentioned, extracellular and internalized 815 gentamicin (Sigma-Aldrich) for 1h. As previously mentioned, extracellular and internalized
816 bacterial loads were assessed by plating serial 10-fold dilutions on BHI agar plates (n=7). bacterial loads were assessed by plating serial 10-fold dilutions on BHI agar plates (n=7).

817

⁸¹⁸*S. aureus* **mouse infection**

819

820 Animal protocols were approved by the animal welfare ethics committee "C2EA-35" (Protocol
821 APAFIS #44185-2023111310376755). Bacterial cultures were started from freshly isolated 821 APAFIS #44185-2023111310376755). Bacterial cultures were started from freshly isolated
822 single colonies and grown overnight in BHI (3 mL in 15 mL sterile tubes) at 37°C. shaking at 822 single colonies and grown overnight in BHI (3 mL in 15 mL sterile tubes) at 37°C, shaking at
823 180 rpm. On the next dav. a 1:100 subculture in 100 mL fresh BHI (in 500 mL sterile flasks) 180 rpm. On the next day, a 1:100 subculture in 100 mL fresh BHI (in 500 mL sterile flasks) 824 was incubated at 37°C with shaking at 180 rpm until OD_{600nm} ≈ 1 for the WT and 0.6 for the 825 AmnrS-mntY mutant. Cultures were then centrifuged, and cell pellets were washed twice in 825 Δ*mnrS-mntY* mutant. Cultures were then centrifuged, and cell pellets were washed twice in 826 cold DPBS. Cells were finally resuspended in sterile DPBS to obtain an OD_{600nm} between
827 1.15-1.25 for the WT and 2.20-2.50 for the $\Delta mnrS\text{-}mntY$ mutant. corresponding to 1x10⁸ CFU 1.15-1.25 for the WT and 2.20-2.50 for the Δ*mnrS-mntY* mutant, corresponding to 1x10⁸ CFU & 828 per mL. Two aroups of 6 mice (female 9-to-10-week-old C57BL/6J mice: Charles River 828 per mL. Two groups of 6 mice (female 9-to-10-week-old C57BL/6J mice; Charles River
829 Laboratories) were inoculated with 1 × 10⁷ CFU of bacteria in 100 uL bv retroorbital iniection. 829 Laboratories) were inoculated with 1 x 10⁷ CFU of bacteria in 100 µL by retroorbital injection.
830 Mice were weighed and monitored daily. At 24 and 72h post-infection, mice were euthanized. 830 Mice were weighed and monitored daily. At 24 and 72h post-infection, mice were euthanized,
831 and organs such as kidney, spleen, liver, heart, and liver were harvested and bacterial and organs such as kidney, spleen, liver, heart, and liver were harvested and bacterial 832 burdens determined by plating on BHI agar to determine CFU/organ. Colonies were
833 enumerated after incubation at 37□°C for 24□h. enumerated after incubation at $37\Box$ °C for 24 \Box h.

- 834 835
-

⁸³⁶**ACKNOWLEDGMENTS**

837

838 The authors would like to thank Dr. Jeffrey Bose for its generous gift of the pJB185 vector.
839 They would also like to thank Dr. Kevin Waldron and all team members for helpful 839 They would also like to thank Dr. Kevin Waldron and all team members for helpful
840 discussions. D.L. was supported by the Agence Nationale de la Recherche (ANR; grant 840 discussions. D.L. was supported by the Agence Nationale de la Recherche (ANR; grant
841 ANR-20-CE12-0021. MetalAureus). J.G. was supported bv the Deutsche ⁸⁴¹ANR-20-CE12-0021, MetalAureus). J.G. was supported by the Deutsche 842 Forschungsgemeinschaft (grant DFG GE 3159/1-1). D.L. and T.K.F. were supported by
843 Thomas Jefferson Fund, a program of FACE Foundation launched in collaboration with the Thomas Jefferson Fund, a program of FACE Foundation launched in collaboration with the 844 French Embassy. The work of the Interdisciplinary Thematic Institute IMCBio, as part of the
845 FITI 2021-2028 program of the University of Strasbourg. CNRS and INSERM, was supported ITI 2021-2028 program of the University of Strasbourg, CNRS and INSERM, was supported

846 by IdEx Unistra (ANR-10-IDEX-0002), by SFRI-STRAT'US project (ANR 20-SFRI-0012), and
847 by EUR IMCBio (IMCBio ANR-17-EURE-0023)under the framework of the French

- 847 by EUR IMCBio (IMCBio ANR-17-EURE-0023) under the framework of the French
848 Investments for the Future Program. Work in the laboratory of T.K.F. is supported by grants Investments for the Future Program. Work in the laboratory of T.K.F. is supported by grants
- 849 from the NIH (R01AI179695) and by the University of Iowa's Year 2 P3 Strategic Initiatives
-
- 850 Program through funding received for the project entitled "High Impact Hiring Initiative (HIHI):
851 A Program to Strategically Recruit and Retain Talented Faculty." ⁸⁵¹A Program to Strategically Recruit and Retain Talented Faculty."
- 852

853 AUTHOR CONTRIBUTIONS
⁸⁵⁴

855 855 Conceptualization, G.G.E. and D.L.; Methodology, G.G.E, T.K.F., J.G., D.L.; Software, F.H.,
856 and J.G.: Validation, G.G.E., K.P., J.G., and D.L.: Investigation, G.G.E., K.P., F.H., J.N.R.,

and J.G.; Validation, G.G.E., K.P., J.G., and D.L.; Investigation, G.G.E., K.P., F.H., J.N.R.,

⁸⁵⁷C.D.V.V, J.M, M.V.B, J.G. and D.L.; Writing – Original Draft, G.G.E. and D.L.; Writing –

858 Review & Editing, G.G.E., K.P., B.M., E.M., P.R., T.K.F, J.G., and D.L.; Visualization, G.G.E.,
859 K.P., F.H., J.N.R., J.G., and D.L.; Supervision, E.M., T.K.F., J.G., and D.L.; Proiect 859 K.P., F.H., J.N.R., J.G., and D.L.; Supervision, E.M., T.K.F., J.G., and D.L.; Project
860 Administration. D.L.: Funding Acquisition. P.R.. T.K.F. J.G.. and D.L.

- Administration, D.L.; Funding Acquisition, P.R., T.K.F, J.G., and D.L.
- 861
862

⁸⁶²**DECLARATION OF INTERESTS**

863
864 The authors declare no competing interests.

865

⁸⁶⁶**REFERENCES**

- 868 868 1. Ullah, I., and Lang, M. (2023). Key players in the regulation of iron homeostasis at the host-
869 http://www.pathogen.interface. Frontiers in Immunology 14, 10.3389/fimmu.2023.1279826.
- 869 pathogen interface. Frontiers in Immunology *14*. 10.3389/fimmu.2023.1279826. 870 2. Murdoch, C.C., and Skaar, E.P. (2022). Nutritional immunity: the battle for nutrient metals at 871 the host-pathogen interface. Nat Rev Microbiol 20, 657-670. 10.1038/s41579-022-00745-6.
- 871 the host-pathogen interface. Nat Rev Microbiol *20*, 657-670. 10.1038/s41579-022-00745-6. 872 3. Kelliher, J.L., and Kehl-Fie, T.E. (2016). Competition for Manganese at the Host-Pathogen
873 **Interface. Progress in molecular biology** and translational science 142, 1-25. 873 Interface. Progress in molecular biology and translational science 142, 1-25.
874 10.1016/bs.pmbts.2016.05.002.
- 874 10.1016/bs.pmbts.2016.05.002. 875 4. Sheldon, J.R., and Skaar, E.P. (2019). Metals as phagocyte antimicrobial effectors. Current 876
876 compision in immunology 60, 1-9. 10.1016/j.coi.2019.04.002.
- 876 opinion in immunology *60*, 1-9. 10.1016/j.coi.2019.04.002. 877 5. Djoko, K.Y., Ong, C.L., Walker, M.J., and McEwan, A.G. (2015). The Role of Copper and Zinc
878 Toxicity in Innate Immune Defense against Bacterial Pathogens. J Biol Chem 290, 18954-878 Toxicity in Innate Immune Defense against Bacterial Pathogens. J Biol Chem *290*, 18954-
- 879 18961. 10.1074/jbc.R115.647099. 880 6. O'Neal, S.L., and Zheng, W. (2015). Manganese Toxicity Upon Overexposure: a Decade in
881 Review. Current environmental health reports 2, 315-328. 10.1007/s40572-015-0056-x. 881 Review. Current environmental health reports *2*, 315-328. 10.1007/s40572-015-0056-x.
- 882 7. Schroeder, H.A., Balassa, J.J., and Tipton, I.H. (1966). Essential trace metals in man:
883 manganese. A study in homeostasis. Journal of chronic diseases 19, 545-571. 10.101 883 manganese. A study in homeostasis. Journal of chronic diseases *19*, 545-571. 10.1016/0021-
- 884 9681(66)90094-4. 885 8. Jordan, M.R., Wang, J., Capdevila, D.A., and Giedroc, D.P. (2020). Multi-metal nutrient 886 restriction and crosstalk in metallostasis systems in microbial pathogens. Curr Opin Microbiol
887 resp. 17-25. 10.1016/i.mib.2020.01.010. 887 *55*, 17-25. 10.1016/j.mib.2020.01.010.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. bioRxiv preprint doi: [https://doi.org/10.1101/2024.09.30.615890;](https://doi.org/10.1101/2024.09.30.615890) this version posted September 30, 2024. The copyright holder for this preprint

1128

1129

¹¹³⁰**FIGURE LEGENDS**

1131
1132

1132 **Figure 1. The** *mnrS***-***mntY* **transcript is Mn-responsive in** *S. aureus***.** A. Secondary structure of the 1133 *S. aureus yybP-ykoY* riboswitch and manganese-induced structural rearrangements inferred from lead 1134 acetate (PbAc) probing assays (Figure S1C) and previously characterized riboswitch structures. The
1135 GG motif crucial for Mn responsiveness is framed. The highly conserved L1 and L3 loops, which are 1135 GG motif crucial for Mn responsiveness is framed. The highly conserved L1 and L3 loops, which are
1136 part of the Mn-binding site, are indicated in red. The +1 of mnrS was determined by RNA 1136 part of the Mn-binding site, are indicated in red. The +1 of *mnrS* was determined by RNA
1137 sequencing⁶⁷. B-C. Northern blot analysis of *mnrS, mnrS-mntY* and *mntE* mRNA levels in (B) RPMI 1137 sequencing⁶⁷. B-C. Northern blot analysis of *mnrS, mnrS-mntY* and *mntE* mRNA levels in (B) RPMI
1138 supplemented with 1% casamino acids (CA) and (C) chelex-treated NRPMI medium only 1138 supplemented with 1% casamino acids (CA) and (C) chelex-treated NRPMI medium only
1139 supplemented with 1 mM MgCl₂ and 100 μ M CaCl₂. When indicated, 40 or 400 μ M of MnCl₂ were 1139 supplemented with 1 mM MgCl₂ and 100 µM CaCl₂. When indicated, 40 or 400 µM of MnCl₂ were
1140 added at the very beginning of culture growth. Two RNA probes targeting either *mnrS* or *mntY* 1140 added at the very beginning of culture growth. Two RNA probes targeting either *mnrS* or *mntY* 1141 *(HG001_00869)* sequences were used to distinguish the premature termination from the full-length 1142 transcript formation as indicated on the right. 5S rRNA was used as loading and length (≈120 nts)
1143 control. Results are representative of at least two independent experiments. D. β-αalactosidase 1143 control. Results are representative of at least two independent experiments. D. β-galactosidase
1144 assavs using *mnrS*-MntY+3-LacZ translational fusion under the control of a constitutive hup promoter 1144 assays using *mnrS*-MntY+3-LacZ translational fusion under the control of a constitutive hup promoter
1145 (Phup) in the absence (dark) or presence of 400 uM MnCl₂ (gray). Cells were grown in NRPMI medium 1145 (P*hup*) in the absence (dark) or presence of 400 μM MnCl₂ (gray). Cells were grown in NRPMI medium
1146 supplemented with 1 mM MαCl₂. 100 μM CaCl₂. 25 μM ZnCl₂ ± 400 μM MnCl₂ and harvested at 1146 supplemented with 1 mM MgCl₂, 100 µM CaCl₂, 25 µM ZnCl₂ ± 400 µM MnCl₂ and harvested at 1147 OD_{600nm} = 1. Results are representative of four independent experiments ± SD. A Mann-Whittney test 1147 OD_{600nm} = 1. Results are representative of four independent experiments ± SD. A Mann-Whittney test 148
1148 vas performed using Prism software (*. P-value<0.05). See also Figure S1. 1148 was performed using Prism software (*, P-value<0,05). See also Figure S1.

1150 1150 **Figure 2. IsrR sRNA directly binds to** *mnrS* **riboswitch in vitro.** A. Gel retardation assays using
1151 IsrR sRNA (full-length), *mnrS* riboswitch (full-length) and *mnrS-mntY* mRNA (from -183 to +115), 5' 1151 IsrR sRNA (full-length), *mnrS* riboswitch (full-length) and *mnrS-mntY* mRNA (from -183 to +115). 5'
1152 end-radiolabeled IsrR (*) was incubated with increasing concentrations of *mnrS* or *mnrS-mntY* (0, 50, 1152 end-radiolabeled IsrR (*) was incubated with increasing concentrations of *mnrS* or *mnrS*-*mntY* (0, 50, 1153 100, 250 and 500 nM). B. The IsrR-*mnrS* pairing site was in silico predicted using IntaRNA algorithm⁴⁴.
1154 The mutation of pairing sites (*mnrS*-2C and IsrR-2G) are indicated by arrows. Nucleotides whose 1154 The mutation of pairing sites (*mnrS*-2C and IsrR-2G) are indicated by arrows. Nucleotides whose 1155 levels decrease in presence of IsrR in Figure 2C are indicated with open circles. IsrR is shown in blue.
1156 Sequences involved in the formation of the L1 and L3 loops are indicated in red. C. RNase T1 probing 1156 Sequences involved in the formation of the L1 and L3 loops are indicated in red. C. RNase T1 probing
1157 of 5'end-radiolabeled *mnrS* riboswitch (full-length) incubated in the absence (-) or presence of IsrR or 1157 of 5'end-radiolabeled *mnrS* riboswitch (full-length) incubated in the absence (-) or presence of IsrR or
1158 IsrR-2G. Ctrl, non-reacted controls: OH, alkaline ladder: T1, RNase T1 ladder. The numbers to the left 1158 IsrR-2G. Ctrl, non-reacted controls; OH, alkaline ladder; T1, RNase T1 ladder. The numbers to the left
1159 show guanine (G) positions with respect to the transcription start (+1) of *mnrS-mntY*. IsrR-induced 1159 show guanine (G) positions with respect to the transcription start (+1) of *mnrS-mntY*. IsrR-induced
1160 decreased cleavages at G residues are indicated with open circles. Gel retardation assays using either 1160 decreased cleavages at G residues are indicated with open circles. Gel retardation assays using either
1161 (D) IsrR or (E) IsrR-2G and increasing concentrations of *mnrS* or *mnrS*-2C (from 0 to 500 nM). Results 1161 (D) IsrR or (E) IsrR-2G and increasing concentrations of *mnrS* or *mnrS*-2C (from 0 to 500 nM). Results 1162 are representative of at least two independent experiments. See also Figure S2. are representative of at least two independent experiments. See also Figure S2.

1163
1164

1164 **Figure 3. IsrR alleviates production of the full-length** *mnrS-mntY* **transcript by inducing** 1165 **premature termination in response to Fe starvation.** A. Northern blot analysis of *mnrS* and *mnrS-*1166 *mntY* RNA levels in WT and Δ*isrR* backgrounds in NRPMI medium only supplemented with 1 mM
1167 MgCl₂ and 100 μM CaCl₂. Cells were harvested at OD_{600nm}=1. The *mntE* mRNA and 5S rRNA were 1167 MgCl₂ and 100 μM CaCl₂. Cells were harvested at OD_{600nm}=1. The *mntE* mRNA and 5S rRNA were
1168 used as negative control and loading control, respectively. Results are representative of five 1168 used as negative control and loading control, respectively. Results are representative of five
1169 independent experiments. B. Densitometric analysis of Figure 3A performed using ImageJ software independent experiments. B. Densitometric analysis of Figure 3A performed using ImageJ software 1170 (n=5). RNA levels were normalized by 5S rRNA and relativized to the WT condition. A two-way
1171 ANOVA analysis followed by Sidak's multiple comparison test was performed using Prism software 1171 ANOVA analysis followed by Sidak's multiple comparison test was performed using Prism software
1172 (***, P-value<0.0005; ns, non-significant). C. Determination of mnrS and mnrS-mntY mRNA half-life 1172 (***, P-value<0.0005; ns, non-significant). C. Determination of *mnrS* and *mnrS-mntY* mRNA half-life 1173 using rifampicin assays in WT and Δ*isrR* strains. IsrR expression was triggered by 2,2-dipyridyl (250
1174 μM; DIP) at OD_{600m}=1. After 15 min, the transcription was block by addition of rifampicin (300 μg/mL). 1174 μM; DIP) at OD_{600nm}=1. After 15 min, the transcription was block by addition of rifampicin (300 μg/mL).
1175 Total RNA was then extracted at indicated times. The 5S rRNA is used as a loading control. Results 1175 Total RNA was then extracted at indicated times. The 5S rRNA is used as a loading control. Results
1176 are representative of three independent experiments. D. Densitometric analyses of Figure 3C 1176 are representative of three independent experiments. D. Densitometric analyses of Figure 3C
1177 performed using ImageJ software (n=3). RNA levels were normalized by 5S rRNA and relativized to 1177 performed using ImageJ software (n=3). RNA levels were normalized by 5S rRNA and relativized to 1178 respective T0. See also Figure S3. respective T0. See also Figure S3.

1179
1180

1180 **Figure 4. The interaction between** *yybP-ykoY* **riboswitches and iron-responsive sRNAs is** 1181 **conserved across bacteria.** A. Appearance and interaction-potential of *yybP-ykoY* riboswitch families 1182 and Fe stress related sRNAs. The graph represents the 16S rDNA-based NJ tree of riboswitch and
1183 sRNA (co)-appearance. The outer ring shows the occurrence patterns of the 9 most frequent 1183 sRNA (co)-appearance. The outer ring shows the occurrence patterns of the 9 most frequent
1184 riboswitch families as bars. Colors (one per family) indicate the predicted interaction potential of each 1184 riboswitch families as bars. Colors (one per family) indicate the predicted interaction potential of each
1185 riboswitch with one of the sRNAs shown in the inner ring. The grav color indicates an interaction 1185 riboswitch with one of the sRNAs shown in the inner ring. The gray color indicates an interaction
1186 energy >9 kcal/mol or no predicted 5'GGGGAGUA-site. Closely related organisms were condensed to 1186 energy >9 kcal/mol or no predicted 5'GGGGAGUA-site. Closely related organisms were condensed to
1187 one representative based on the 16S rDNA similarity. B. Numbers of detected homologs for the 11 1187 one representative based on the 16S rDNA similarity. B. Numbers of detected homologs for the 11
1188 most frequent riboswitch families (left bars = total numbers; middle bar = predicted interaction with 1188 most frequent riboswitch families (left bars = total numbers; middle bar = predicted interaction with 1189 energy \leq -9 kcal/mol; right bar = predicted energy \leq -9 kcal/mol & interaction at 5' end covering the 5 1189 energy ≤-9 kcal/mol; right bar = predicted energy ≤-9 kcal/mol & interaction at 5' end covering the 5'-
1190 GGGGAGUA motif). The colors correspond to the colors used in (A). C. Numbers of detected 1190 GGGGAGUA motif). The colors correspond to the colors used in (A). C. Numbers of detected
1191 homologs for the 8 investigated Fe stress related sRNAs. See (B) for more details. D. Gel retardation 1191 homologs for the 8 investigated Fe stress related sRNAs. See (B) for more details. D. Gel retardation
1192 assavs using FsrA (full-length). mswM-vvbP (from -307 to +172) and mnrW-vkoY (from -21 to +289) 1192 assays using FsrA (full-length), *mswM-yybP* (from -307 to +172) and *mnrW-ykoY* (from -21 to +289) 1193 transcripts from *B. subtilis* 168. 5' end-radiolabeled FsrA sRNA (*) was incubated with increasing 1194 concentrations of cold abovementioned mRNAs (0, 50, 100, 250 and 500 nM). Putative pairing sites
1195 predicted in silico using IntaRNA algorithm are indicated below. Results are representative of at least 1195 predicted in silico using IntaRNA algorithm are indicated below. Results are representative of at least 1
1196 two independent experiments. E. Gel retardation assays using IsrR (full-length), *mswM-yybP* (from -1196 two independent experiments. E. Gel retardation assays using IsrR (full-length), *mswM-yybP* (from -
1197 307 to +172) and *mnrW-ykoY* (from -21 to +289) transcripts. RNAs from S. aureus and B. subtilis are 1197 307 to +172) and *mnrW-ykoY* (from -21 to +289) transcripts. RNAs from *S. aureus* and *B. subtilis* are 1198 shown in orange and purple, respectively. G. Gel retardation assays using FsrA sRNA (full-length) and 199
1199 mnrS-mntYmRNA (from -183 to +115). See also Figure S4. *mnrS-mntY* mRNA (from -183 to +115). See also Figure S4.

1200
1201

1201 **Figure 5.** *mntY* **is required for Mn detoxification and LTA synthesis in** *S. aureus***.** A. *S. aureus* 1202 strains were streaked onto blood agar plates and incubated at 37°C for 48h. The Δ*mnrS-mntY* mutant 1203 strain was complemented with a pEW derivate plasmid which enables the constitutive expression of
1204 indicated genes (mntY, mnrS-mntY, mntE, mnrW-vkoY or mswM-vvbP). Gene sequences from 1204 indicated genes (*mntY*, *mnrS-mntY*, *mntE, mnrW-ykoY* or *mswM-yybP*). Gene sequences from 1205 *Bacillus subtilis* are shown in purple. The empty vector pEW was used as control. Blood agar plates 1206 were supplemented with erythromycin (10 μg/mL) for plasmid selection. B. Growth monitoring
1207 (OD_{600nm}) in BHI medium supplemented with 0, 40 or 400 μM MnCl₂ and 10 μg/mL erythromycin for 1207 (OD_{600nm}) in BHI medium supplemented with 0, 40 or 400 μM MnCl₂ and 10 μg/mL erythromycin for
1208 10h at 37°C. WT and Δ*mnrS-mntY* strains contain the empty vector or a pEW derivate plasmid which 1208 10h at 37°C. WT and Δ*mnrS-mntY* strains contain the empty vector or a pEW derivate plasmid which
1209 enables the constitutive expression of *mnrS-mntY* or *mnrW-ykoY* from *B. subtilis*. Data correspond to 1209 enables the constitutive expression of *mnrS-mntY* or *mnrW-ykoY* from *B. subtilis*. Data correspond to 1210 the mean of three independent experiments \pm standard deviation (SD). C. Growth monitoring carried 1211 out under the same conditions as (B). WT and Δmn t estrains contain the empty vector or a pEW 1211 out under the same conditions as (B). WT and Δ*mntE* strains contain the empty vector or a pEW
1212 derivate plasmid which enables the constitutive expression of *mntE*, *mnrS-mntY* or *mnrW-ykoY* from 1212 derivate plasmid which enables the constitutive expression of *mntE*, *mnrS-mntY* or *mnrW-ykoY* from 1213 *B. subtilis*. D. Immunodetection of lipoteichoic acid (LTA) using cell extracts from WT+pEW, Δ*mnrS-*1214 *mntY*+pEW, Δ*mnrS-mntY*+pEW-*mnrS-mntY and* Δ*mnrS-mntY*+pEW-*mnrW-ykoY* from *B. subtilis*. 1215 Bacteria were grown to mid exponential growth phase in BHI media (OD_{600nm} ≈ 1). Equal amounts of 1216 whole-cell lysates were separated by 20% SDS-PAGE, transferred to PVDF membranes and 1216 whole-cell lysates were separated by 20% SDS-PAGE, transferred to PVDF membranes and
1217 immunodetected with anti-LTA monoclonal antibodies. Protein A was used as a loading control. 1217 immunodetected with anti-LTA monoclonal antibodies. Protein A was used as a loading control.
1218 Results are representative of two independent experiments. See also Figure S5. Results are representative of two independent experiments. See also Figure S5.

1219
1220

1220 **Figure 6. The Mn efflux pump MntY is crucial for S. aureus infection.** A. Wild type (gray) and 1221 *AmnrS-mntY* (green) cells were grown in the presence of increasing concentrations of calprotectin (0 1221 Δ*mnrS-mntY* (green) cells were grown in the presence of increasing concentrations of calprotectin (0 1222 to 480 μ g/mL). OD_{600nm} was measured after 8h of growth and indicated as percentage of growth 1223 relative to untreated. Results are representative of three independent experiments + SD. A two-way 1223 relative to untreated. Results are representative of three independent experiments \pm SD. A two-way
1224 ANOVA analysis followed by Sidak's multiple comparison test was performed using Prism software (**. 1224 ANOVA analysis followed by Sidak's multiple comparison test was performed using Prism software (**,
1225 P-value<0.005: ****. p-value<0.0001: ns. non-significant). B. D. Survival of wild type (WT: grav) and 1225 P-value<0.005; ****, p-value<0.0001; ns, non-significant). B, D. Survival of wild type (WT; gray) and
1226 AmnrS-mntY (Δ; green) cells assessed after exposure to THP-1-derived macrophages (Β; n=7) or 1226 Δ*mnrS-mntY* (Δ; green) cells assessed after exposure to THP-1-derived macrophages (B; n=7) or 1227 human purified neutrophils (D; n=8). Bacterial loads were determined by serial-dilution and plating on
1228 BHI agar. The CFU counts were normalized to the initial inoculum (%). C, E. Percentage of 1228 BHI agar. The CFU counts were normalized to the initial inoculum (%). C, E. Percentage of 1229 extracellular (light gray) and intracellular (dark gray) cells. The bacterial loads were determined for wild 1229 extracellular (light gray) and intracellular (dark gray) cells. The bacterial loads were determined for wild
1230 twoe (WT: αray) and Δ*mnrS-mntY* (Δ: green) cells after exposure to immune cells (extracellular) and 1230 type (WT; gray) and Δ*mnrS-mntY* (Δ; green) cells after exposure to immune cells (extracellular) and
1231 after internalization and treatment with Ivsostaphin/gentamicin (intracellular). The CFU counts were 1231 after internalization and treatment with lysostaphin/gentamicin (intracellular). The CFU counts were
1232 normalized to total bacteria (%). F. Mouse weight loss due to infection with WT (dark gray) and 1232 normalized to total bacteria (%). F. Mouse weight loss due to infection with WT (dark gray) and
1233 *LmnrS-mntY* (green) strains. Results were relativized to initial body weight. Results are from two 1233 Δ*mnrS-mntY* (green) strains. Results were relativized to initial body weight. Results are from two 1234 independent experiments (n=12). G-H. Wild type (WT; gray) and Δ*mnrS-mntY* (Δ; green) strains were
1235 injected retro-orbitally into C57BL/6J mice. Kidneys, spleen, liver, and heart were collected at 24 (G) 1235 injected retro-orbitally into C57BL/6J mice. Kidneys, spleen, liver, and heart were collected at 24 (G)
1236 and 72 h (H) post-infection, and bacterial loads were determined by serial-dilution and plating on BHI 1236 and 72 h (H) post-infection, and bacterial loads were determined by serial-dilution and plating on BHI
1237 agar. The CFU counts per gram of each organ were reported. Results are from two independent 1237 agar. The CFU counts per gram of each organ were reported. Results are from two independent
1238 experiments (n=12). A Mann-Whittney test was performed using Prism software (*. P-value<0.05: **. 1238 experiments (n=12). A Mann-Whittney test was performed using Prism software (*, P-value<0.05; **, 1239 P-value<0.005; ***, P-value<0.0005; ***, P-value<0.0001). 1239 P-value<0.005; ***, P-value<0.0005; ****, P-value<0.0001).

1240
1241

1241 **Figure 7. Schematic representation of Mn efflux pump MntY function and regulation.** A. The Mn
1242 efflux pump MntY is vital for the adaptation of S. aureus to both low and high Mn environments. due to 1242 efflux pump MntY is vital for the adaptation of *S. aureus* to both low and high Mn environments, due to 1243 its dual role in Mn detoxification and metalation of Mn-dependent exoenzymes, such as LtaS. B. Loss
1244 of MntY causes drastic phenotvpic and growth defects, impairs virulence, immune evasion and 1244 of MntY causes drastic phenotypic and growth defects, impairs virulence, immune evasion and
1245 antibiotic resistance. C. The expression of *mntY* is fine-tuned by an unprecedented interaction 1245 antibiotic resistance. C. The expression of *mntY* is fine-tuned by an unprecedented interaction
1246 between a Mn-sensing riboswitch mnrS and a Fe-responsive sRNA IsrR. between a Mn-sensing riboswitch mnrS and a Fe-responsive sRNA IsrR.

5'-CAAAGGGGAGUAGCUUUC…-3' *mswM* **|||| |||||** $\frac{4}{7}$
5'-CAAAGGGGAGUAGCUUUC...-3' msw
1111 11111
3'-...ACCGCCCC-CAUCGCGGU...-5' FsrA $+73$ +65 5'-CAAAGGGGAGUAGCGUCC…-3' *mnrW* **|||| |||||** $\begin{array}{ccc}\n\uparrow & & \uparrow & & \text{m} \\
5' & -\text{CAAAGGGGAGUAGCGUCC...-3'} & mnr\big) \\
& & & \text{III II III} \\
3' & -\text{...ACCGCCC}-\text{CAUCGGGU...-5'} & \text{FsrA}\n\end{array}$ $+73$ +65 Energy = -9.7 kcal/mol Energy = -11.5 kcal/mol

5'-CAAAGGGGAGUAGCUU…-3' *mswM* **||||||||:||** 3'-…AUAUUUUCCCCUUAUAAAC…-5' IsrR +1+12 +85 +75 5'-CAAAGGGGAGUAGCGU…-3' *mnrW* **||||||||:||** $5'$ -CAAAGGGGAGUAGCGU...-3' mnrl

IIIIIIII:II

3'-...AUAUUUUCCCCUUAUAAAC...-5' IsrR +85 +75 Energy = -9.7 kcal/mol Energy = -11.9 kcal/mol

5'-GCAUUUUGUCAGAGGGGAGUA…-3' *mnrS* **|:|| |||||||** ↓
5'-GCAUUUUGUCAGAGGGGAGUA...-3' mnrS
1:11 1111111
3'-...AACUAGACUAUCUCCCCAACC...-5' FsrA $+42$ +30 Energy = -14.1 kcal/mol

72h post infection

