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Abstract

Time-uniform log-Sobolev inequalities (LSI) satisfied by solutions of semi-linear mean-
field equations have recently appeared to be a key tool to obtain time-uniform prop-
agation of chaos estimates. This work addresses the more general settings of time-
inhomogeneous Fokker–Planck equations. Time-uniform LSI are obtained in two cases,
either with the bounded-Lipschitz perturbation argument with respect to a reference
measure, or with a coupling approach at high temperature. These arguments are then
applied to mean-field equations, where, on the one hand, sharp marginal propagation
of chaos estimates are obtained in smooth cases and, on the other hand, time-uniform
global propagation of chaos is shown in the case of vortex interactions with quadratic
confinement potential on the whole space. In this second case, an important point is
to establish global gradient and Hessian estimates, which is of independent interest.
We prove these bounds in the more general situation of non-attractive logarithmic and
Riesz singular interactions.
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1 Introduction

We are interested in families (mt)t>0 of probability distributions solving time-inhomo-
geneous Fokker–Planck equations on Rd of the form

∂tmt = ∇ · (σ2∇mt − btmt) , (1.1)

where σ2 > 0 and bt : Rd → Rd for t > 0. This describes the evolution of the law of the
diffusion process

dXt = bt(Xt) dt+
√

2σ dBt , (1.2)
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Time-uniform LSI and applications to PoC

where B is a standard d-dimensional Brownian motion. We have particularly in mind
McKean–Vlasov equations, where bt is in fact a function of mt itself, namely

bt(x) = F (x,mt) , (1.3)

for some suitable function F . Other examples are time-integrated McKean–Vlasov
equations where bt(x) = F

(
x,
∫ t
0
mskt(ds)

)
for some kernel kt (as in [7]).

Denoting by C1c (Rd) the set of compactly supported C1 functions from Rd to R, a
probability measure µ on Rd is said to satisfy a log-Sobolev inequality (LSI) with constant
C > 0 if

∀h ∈ C1c (Rd) with

∫
Rd
h2 dµ = 1 ,

∫
Rd
h2 ln(h2) dµ 6 C

∫
Rd
|∇h|2 dµ . (1.4)

Equivalently, for all probability measure ν ∈ P(Rd) such that ν is absolutely continuous
with respect to µ and

√
dν/dµ ∈ C1c , we have

H(ν|µ) 6
C

4
I(ν|µ) ,

where H, I are the relative entropy and Fisher information defined respectively as
follows:

H(ν|µ) :=

∫
Rd

ln
dν

dµ
dν ,

I(ν|µ) :=

∫
Rd

∣∣∣∣∇ ln
dν

dµ

∣∣∣∣2 dν .

We want to determine suitable conditions under which the family (mt)t>0 solving (1.1)
satisfies a uniform LSI, in the sense that (1.4) holds with µ = mt and a constant C
independent from t. As will be discussed below in details (in Sections 3 and 4), for
McKean–Vlasov equations, this is an important tool to get uniform-in-time Propagation
of Chaos (PoC) estimates [16, 23].

The paper is organized as follows. In the rest of this introduction we state our
main results concerning time-uniform LSI (Theorem 1.3 and 1.4), which are proven in
Section 2. In Section 3 we use them to extend the range of the work [23] of Lacker and
Le Flem, obtaining sharp uniform in time PoC for McKean–Vlasov equations in cases of
smooth interaction. Section 4 addresses the question of uniform-in-time LSI and PoC for
singular (log or Riesz) interactions in Rd.

Before stating our main results, we recall first the following result of Malrieu [26],
based on the classical Bakry–Émery approach.

Proposition 1.1. Assume that there exist T > 0, L ∈ R such that for all t ∈ [0, T ] and x,
y ∈ Rd, (

bt(x)− bt(y)
)
· (x− y) 6 L|x− y|2 , (1.5)

and that m0 satisfies an LSI with constant C0 > 0. Then, for all t ∈ [0, T ], the measure
mt satisfies an LSI with constant

Ct = e2LtC0 + σ2

∫ t

0

e2Ls ds .

For completeness, the proof is recalled in Section 2.1.
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Time-uniform LSI and applications to PoC

Remark 1.2. When the curvature lower-bound L in (1.5) is negative, this already gives
an LSI uniform in t, but we are mostly interested in cases where (1.5) only holds with
L > 0. Nevertheless, this first proposition means that, in the next results (Theorems 1.3
and 1.4), in fact, if the assumptions are only satisfied for t > t0 for some t0 > 0 large
enough (for instance the condition (1.8)), we can apply Proposition 1.1 for times t ∈ [0, t0]

and then apply the other results to (mt+t0)t>0.

The next result addresses the high-diffusivity regime, namely when σ2 is high enough
(see (1.8)). It is proven in Section 2.2.

Theorem 1.3. Assume that there exist ρ, L, R, K > 0 such that, for all t > 0,

(
bt(x)− bt(y)

)
· (x− y) 6

{
−ρ|x− y|2 ∀x, y ∈ Rd with |x| > R ,

L|x− y|2 ∀x, y ∈ Rd ,
(1.6)

and, setting R∗ = R(2 + 2L/ρ)1/d,

sup
|x|6R∗

{−x · bt(x)} 6 K . (1.7)

Then, provided m0 satisfies an LSI and

σ2 > σ2
0 := 2(2L+ ρ)

(L+ ρ/4)R2
∗ +K

ρd
, (1.8)

the family (mt)t>0 satisfies a uniform LSI.
Moreover, there exists C∗ > 0 which depends on L, R, d and ρ but not on m0, K nor

σ such that, provided (1.8), there exists t∗ > 0 (depending on all previous parameters,
in particular m0) such that the measure mt satisfies an LSI with constant σ2C∗ for all
t > t∗.

More precisely, for any ε > 0, there exists σ′0 > 0 which depends only on L, R, d, ρ
and ε such that for all σ > σ′0, there exists t∗ > 0 (depending on all previous parameters,
in particular m0) such that the measure mt satisfies an LSI with constant σ2(ρ−1 + ε) for
all t > t∗.

The restrictive high-diffusivity condition (1.8) is inherited from the method of [28] that
we extend here to the time-inhomogeneous setting. It is unclear whether this condition
is necessary for this method, based on parallel coupling, to work (even in the time-
homogeneous case). A stronger result than in [28] is proven in [38], based on reflection
coupling and without any constraint on σ2, but the method crucially relies on a general
spectral result from [27, 37], making the adaptation to the time-inhomogeneous case
(where the law at time t is not given as the invariant measure of some explicit process)
much less clear. Notice that, as detailed in Section 3, one of our main motivation is to
apply the results of Lacker and Le Flem in [23] which anyway require a sufficiently large
σ (which is then necessary for the result to hold: at small temperature, counter-examples
are known where propagation of chaos cannot be uniform in time).

The next result is the adaptation in the time-inhomogeneous settings of the bounded-
Lipschitz perturbation argument of [29]. Its proof is given in Section 2.3.

Theorem 1.4. Assume that, for all t > 0, the drift writes bt = a0 + gt for some a0,
gt ∈ C1(Rd,Rd) with bounded derivatives such that the generator L0 = a0 ·∇+σ2∆ admits
a unique C2 invariant probability density µ0 satisfying an LSI. Write b̃t := 2∇ lnµ0 − bt
and ϕt := −∇ · gt + gt · ∇ lnµ0. Assume that there exist L, R, Mϕ, Lϕ > 0 and ρ > 0 such
that,

• for all t > 0, we have ϕt = ϕ1,t + ϕ2,t with Mϕ-bounded ϕ1,t and Lϕ-Lipschitz ϕ2,t;
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Time-uniform LSI and applications to PoC

• for all x, y ∈ Rd,

(
b̃t(x)− b̃t(y)

)
· (x− y) 6

{
−ρ|x− y|2 if |x− y| > R,

L|x− y|2 otherwise.
(1.9)

Finally, assume that the logarithmic relative density u0 = ln dm0/dµ0 exists and is the
sum of a bounded and a Lipschitz continuous functions. Then (mt)t>0 satisfies a uniform
LSI.

Moreover there exists C∗ > 0 which depends on L, R, Mϕ, Lϕ, σ2, ρ and the LSI
constant of µ0 but not on m0 such that, for some t∗ > 0, mt satisfies an LSI with constant
C∗ for all t > t∗.

Finally, denoting by C0 the LSI constant of µ0, the following holds. For any ε > 0,
there exists η > 0 (which depends only on ρ, L, R and ε) such that, if Mϕ + Lϕ 6 η,
there exists t∗ > 0 (depending on all previous parameters, in particular m0) such that mt

satisfies an LSI with constant C0 + ε for all t > t∗.

It may appear that the conditions of Theorem 1.4 are unnatural, in particular for
its consideration of the quantities b̃t, ϕt. Here we only mention that the proof of the
theorem is based on the Hamilton–Jacobi–Bellman (HJB) equation (2.12) satisfied by the
log-density ln dmt/dµ0 of the measure flow, where b̃t, ϕt appear by computations. This
analytical approach, despite being not very compatible with the theory of Markov diffu-
sion processes, turns out to be robust enough for our treatment of singular interactions
in Section 4.

2 Proofs of the general results

In this section we write (Ps,t)t>s>0 the inhomogeneous Markov semi-group associated
to (1.2), given by

Ps,tf(x) = E[f(Xt)|Xs = x] .

In particular, the solution of (1.1) is then given by mt = m0P0,t. In the proofs of
Proposition 1.1 and Theorem 1.3, we can additionally assume that bt is smooth with all
derivatives being bounded, and consider functions f which are for instance the sum
of a positive constant and a compactly supported smooth non-negative function, which
enable to justify the computations based on ∂tPs,tf = Ps,tLtf and ∂sPs,tf = −LsPs,tf
(using e.g. Proposition B.1). The conclusion is then obtained by approximation (as in e.g.
[8]).

2.1 Proof of Proposition 1.1

Proof of Proposition 1.1. Considering X and X ′ two solutions of (1.2) driven by the same
Brownian motion, the condition (1.5) gives

d|Xt −X ′t|2 6 2L|Xt −X ′t|2 dt , (2.1)

so that |Xt −X ′t|2 6 e2L(t−s)|Xs −X ′s|2 for all t > s > 0, which by [21] implies

|∇Ps,tf | 6 eL(t−s)Ps,t|∇f | . (2.2)

(In the initial work [26], the sub-commutation (2.2) is obtained by invoking [2], where it is
proven directly through Bakry–Émery interpolations, requiring regularity or integrability
assumptions, or approximation arguments to justify the time-differentation along the
semi-group. By using a coupling and relying on the more recent [21], this issue is
bypassed. Notice that the fact that a coupling bound implies a sub-commutation is the
easiest implication in [21]; the converse implication is more involved.) Fix a function
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f ∈ C∞(Rd,R+), globally Lipschitz continuous and lower bounded by a positive constant
(it is sufficient to prove the LSI with these functions and conclude by approximation).
For t > s > 0, we consider the interpolation Ψ(u) = Ps,u(Pu,tf lnPu,tf) for u ∈ [s, t], so
that

Ps,t(f ln f)− Ps,tf lnPs,tf = Ψ(t)−Ψ(s)

=

∫ t

s

Ψ′(u) du

= σ2

∫ t

s

Ps,u
|∇Pu,tf |2

Pu,tf
du

6 σ2

∫ t

s

e2L(t−u) duPs,t

(
|∇f |2

f

)
,

where we used that (Pu,t|∇f |)2 6 Pu,t(|∇f |2/f)Pu,t(f) by Cauchy–Schwarz. Integrating
with respect to ms gives

mt(f ln f) 6 ms(Ps,tf lnPs,tf) +mt

(
|∇f |2

f

)
σ2

∫ t

s

e2L(t−u) du . (2.3)

The proof is concluded by applying this with s = 0 and using the LSI for m0, (2.2) and
Cauchy–Schwarz to bound

m0(P0,tf lnP0,tf) 6 mtf ln(mtf) + C0m0

(
|∇P0,tf |2

P0,tf

)
6 mtfmt(ln f) + C0e

2Ltmt

(
|∇f |2

f

)
.

2.2 Proof of Theorem 1.3

Proof of Theorem 1.3. The different steps of the proof are the following. First, using
the coupling argument of [28] (at high diffusivity), we get a long-time L2 contraction
along the synchronous coupling of two solutions of (1.2). By contrast to the almost
sure contraction (2.1), this L2 contraction is not enough to get an LSI, but it gives a
uniform Poincaré inequality following arguments similar to the proof of Proposition 1.1.
It remains then to prove a so-called defective LSI, which together with the Poincaré
inequality yields the desired LSI. The proof of the defective LSI follows the arguments of
[29], except that in the present case the measure for which the LSI is proven is not an
invariant measure of a time-homogeneous semi-group (which would solve µ = µPt, which
in our case is replaced by mt = m0P0,t). These arguments combine a Wang–Harnak
inequality for the operator P0,t with a Gaussian moment bound.

Step 1: Poincaré inequality. Let X, X ′ be two solutions of (1.2) driven by the same
Brownian motion. Following the proof of [28, Theorem 1] (which is concerned with
time-homogeneous processes, but the proof works readily in the non-homogeneous case
under the time-uniform assumptions made in Theorem 1.3), we get for all t > s > 0,

E
[
|Xt −X ′t|2

]
6Me−λ(t−s)E

[
|Xs −X ′s|2

]
,

where

λ =
ρ

2
, M = 1 +

2(2L+ ρ)R2
∗

4dσ2
. (2.4)

This implies, by [21],

|∇Ps,tf |2 6Me−λ(t−s)Ps,t|∇f |2 .
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Since m0 satisfies a LSI, it satisfies a Poincaré inequality, and thus,

m0(P0,tf)2 − (m0P0,tf)2 6 C0m0|∇P0,tf |2 6 C0Me−λtmt|∇f |2 .

Besides, for fixed t > 0 and f ∈ C1(Rd,R) globally Lipschitz continuous, considering the
interpolation Ψ(u) = P0,u(Pu,tf)2 for u ∈ [0, t], we get

P0,t(f
2)− (P0,tf)2 = Ψ(t)−Ψ(0)

=

∫ t

0

Ψ′(u) du

= σ2

∫ t

0

P0,u|∇Pu,tf |2 du

6 σ2

∫ t

0

Me−λ(t−u) duP0,t|∇f |2 .

Combining these last two inequalities, we get

mt(f
2)−

(
mt(f)

)2
= m0

(
P0,t(f

2)− (P0,tf)2
)

+m0(P0,tf)2 − (m0P0,tf)2

6M

(
σ2

λ
+ e−λtC0

)
mt|∇f |2 , (2.5)

which is a uniform Poincaré inequality for (mt)t>0.

Step 2: Gaussian moment. Since m0 satisfies an LSI, there exists δ0 > 0 such that∫
Rd×Rd

eδ0|x−y|
2

m0(dx)m0(dy) <∞ .

Write V (x, y) = eδ|x−y|
2

for some 0 < δ < min(δ0, ρ/5) and L2,t the generator on Rd ×Rd
of two independent diffusion processes (1.2), namely

L2,tg(x, y) = bt(x) · ∇x + bt(y) · ∇y + σ2∆x + σ2∆y .

Using (1.6) (and that |x− y| > 2R implies that either |x| > R or |y| > R),

L2,tV (x, y)

V (x, y)
= 2δ(x− y) ·

(
bt(x)− bt(y)

)
+ 4δd+ 8δ2|x− y|2

6

{
4δd+ (8δ2 − 2δρ)|x− y|2 if |x− y| > 2R

4δd+ 4(8δ2 + 2δL)R2 otherwise

6 −δ1|x−y|>R∗ + C∗1|x−y|<R∗

with

R2
∗ = max

(
1 + 4d

2(ρ− 4δ)
, 4R2

)
, C∗ = δ

(
4d+ (2L+ 8δ)R2

)
.

Hence,
L2,tV (x, y) 6 −δV (x, y) + C∗e

δR2
∗ ,

and thus,
∂t(mt ⊗mt)(V ) 6 −δ(mt ⊗mt)(V ) + C∗e

δR2
∗ .

As a conclusion, for all t > 0,∫
Rd×Rd

eδ|x−y|
2

mt(dx)mt(dy) 6 δ−1C∗e
δR2
∗ + e−δt

∫
Rd×Rd

eδ|x−y|
2

m0(dx)m0(dy) . (2.6)
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Step 3: Wang–Harnack inequality. In the following, fix f > 0 such that mtf = 1. Using
the Röckner–Wang argument [33] for the diffusion (1.2) we get, for all x, y ∈ Rd, α > 1

and t > 0,

(
P0,tf(y)

)α
6 (P0,tf

α)(x) exp

(
α

2σ2(α− 1)

(
L2t+

|x− y|2

t

))
, (2.7)

so that∫
Rd

(P0,tf
α)(x)m0(dx)

>
(
P0,tf(y)

)α ∫
Rd

exp

(
− α

2σ2(α− 1)

(
L2t+

|x− y|2

t

))
m0(dx) ,

and thus, for any β > α,

m0(P0,tf)β

6
(
mt(f

α)
)β/α ∫

Rd

[∫
Rd

exp

(
−
α
(
L2t+ |x−y|2

t

)
2σ2(α− 1)

)
m0(dx)

]−β/α
m0(dy)

6
(
mt(f

α)
)β/α ∫

R2d

exp

(
β
(
L2t+ |x−y|2

t

)
2σ2(α− 1)

)
m0(dx)m0(dy) . (2.8)

Using Jensen’s inequality for the probability with density P0,tf with respect to m0, taking
α = 3/2 so that x 7→ xα−1 is concave, we get

mt(f
α) = m0P0,tf

α 6
(
m0(P0,tf)2

)α−1
.

Using (2.8) with β = 2 to bound the right hand side then gives

mt(f
α) 6

(
mt(f

α)
)2/3[∫

R2d

exp

(
4

2σ2

(
L2t+

|x− y|2

t

))
m0(dx)m0(dy)

]1/2
.

and we can divide by (mtf
α)2/3 to end up with

mt(f
α) 6

[∫
R2d

exp

(
2

σ2

(
L2t+

|x− y|2

t

))
m0(dx)m0(dy)

]3/2
.

Applying this result to (mt+t0)t>0 for some t0 > 0 we get that for all t > 0 and all f > 0

with mt+t0f = 1,

mt+t0

(
f3/2

)
6

[∫
R2d

exp

(
2

σ2

(
L2t0 +

|x− y|2

t0

))
mt(dx)mt(dy)

]3/2
.

Taking t0 = 2/(δσ2), the right hand side is bounded uniformly in t > 0 thanks to (2.6). As
a conclusion, we have determined t0, C > 0 such that

∀t > t0, ∀f > 0, mt

(
f3/2

)
6 C(mtf)3/2 . (2.9)

Moreover, in view of (2.6), we can find C > 0 which depends on m0 only through δ such
that (2.9) holds with this C for all t large enough. To see that we can take δ independent
from m0, we can replace the function V above by the time-dependent Vt(x, y) = eδt|x−y|

2
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where t 7→ δt is slowly and smoothly increasing starting from some small δ0 > 0 (depend-
ing on m0) and reaching ρ/5 after some time. Following similar computations as above
we get that (mt⊗mt)(Vt) is non-increasing (taking dδt/ dt sufficiently small), from which,
replacing (mt)t>0 by (mt0+t)t>0 for some sufficiently large t0, we can assume that (2.6)
holds for δ = ρ/5. As a conclusion, for times large enough, (2.9) holds with a constant C
independent from m0.

Step 4: Conclusion. For t > t0, applying (2.3) with s = t− t0 gives, for f > 0,

mt(f ln f) 6 2ms

(
Ps,tf ln(Ps,tf)1/2

)
+mt

(
|∇f |2

f

)
σ2

∫ t0

0

e2Lu du .

Assume that f is such that mtf = 1. Applying Jensen’s inequality twice (first with the
probability measure with density Ps,tf with respect to ms) gives

ms

(
Ps,tf ln(Ps,tf)1/2

)
6 ln

(
ms(Ps,tf)3/2

)
6 lnmt

(
f3/2

)
.

Thanks to (2.9), we have thus obtained that for all t > t0 and all f > 0 with mtf = 1,

mt(f ln f) 6 2 lnC +mt

(
|∇f |2

f

)
σ2

∫ t0

0

e2Lu du , (2.10)

which is called a defective LSI (and is uniform over t > t0). According to [3, Proposition
5.1.3], combining this inequality with the (time uniform) Poincaré inequality (2.5) gives
an LSI for mt uniformly over t > t0. For t ∈ [0, t0] we apply Proposition 1.1, which
concludes the proof of the uniform LSI.

Finally, as mentioned above, the constant C may be taken independent from m0, in
which case the defective LSI (2.10) holds for sufficiently large times. Similarly, we see
that the Poincaré inequality (2.5) holds with constant Mσ2/λ+ 1 (which is independent
from m0) for t large enough. This shows that there exists C ′∗ > 0 independent from m0

such that mt satisfies an LSI with constant C ′∗ for t large enough. The fact that C ′∗ 6 σ2C∗
for some C∗ > 0 independent from σ can be checked in the explicit expressions above.
More precisely, taking δ = ρ/5 and t0 = 2/(δσ2), we get that, in (2.10) the constant C
is uniformly bounded over σ > σ0 by a constant that depends only on ρ, L, R, d, and
similarly we can bound

σ2

∫ t0

0

e2Lu du 6 σ2t0e
2Lt0 6

10

ρ
e20L/ρ

in (2.10) uniformly over σ > 1. As a consequence, for large values of σ2, the leading
term in the LSI constant for large times is σ2M/λ from the Poincaré constant, with M
and λ in (2.4). As σ →∞, M goes to 1, so we may take the LSI constant (for large times)
to be σ2(λ−1 + ε) for any arbitrary ε > 0 for σ large enough. This estimate (with λ = ρ/2)
is not sharp, as we expect an LSI of order σ2/ρ (which is the Gaussian behavior). This is
due to the 1/2 factor in the definition of λ in [28], which is in fact arbitrary, in the sense
that the computations of [28] work if we take λ = αρ for an arbitrary α < 1 (see the two
first equations of [28, Section 2.1.2]), provided the lower bound on the temperature σ2

0 is
sufficiently large (depending on α). As a conclusion, we can get a Poincaré constant, and
thus an LSI constant, equal to σ2(ρ−1 + ε) for an arbitrary ε for large times, provided σ
is large enough.

2.3 Proof of Theorem 1.4

Proof of Theorem 1.4. The proof closely follows the one of [29, Theorem 1] (in the time-
homogeneous settings and with m0 = µ0, i.e. u0 = 0), the time dependencies appearing
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along the proof being dealt with the uniform-in-time assumptions of Theorem 1.4. We
recall the main arguments and refer to [29] for details. Starting from

∂tmt = −∇ · (btmt) + ∆mt ,

0 = ∂tµ0 = −∇ · (a0µ0) + ∆µ0 ,

we get that ht = mt/µ0 is a viscosity solution to

∂tht = ∆ht + b̃t · ∇ht + ϕtht . (2.11)

This gives the Feynman–Kac representation

ht(x) = E

[
h0
(
Xt,x
t

)
exp

(∫ t

0

ϕs
(
Xt,x
s

)
ds

)]
,

where Xt,x solves

Xt,x
0 = x , dXt,x

s = b̃t−s
(
Xt,x
s

)
ds+

√
2 dBt for s ∈ [0, t].

Suppose additionally that ϕt, h0 and 1/h0 are bounded and Lipschitz continuous (the
general case being obtained afterwards by an approximation argument, which we omit
here, referring to [29]). Then, applying synchronous coupling to the Feynman–Kac
formula above, for any T > 0 we obtain a constant M > 0 such that for every t, s ∈ [0, T ]

and every x, y ∈ Rd,

M−1 6 h(t, x) 6M and |h(t, x)− h(s, y)| 6M
(
|t− s|1/2 + |x− y|

)
.

Taking the logarithm we obtain that ut := lnht is a bounded and uniformly continuous
viscosity solution to the HJB equation,

∂tut = ∆ut + |∇ut|2 + b̃t · ∇ut + ϕt . (2.12)

In order to use a stochastic control representation of the solutions of such equations, for
N ∈ N, consider the approximative HJB equation,

uN0 = u0 , ∂tu
N
t = ∆uNt + sup

α:|α|6N
{2α · ∇uNt − |α|2}+ b̃ · ∇uN + ϕt , (2.13)

and the associated control problem,

V N (T, x) = sup
ν

sup
α:|αt|6N

E

[
u0
(
Xα,x
T

)
+

∫ T

0

(
ϕt
(
Xα,x
t

)
− |αt|2

)
dt

]
, (2.14)

where ν =
(
Ω, F, (F·),P, (B·)

)
stands for a filter probability space with the usual con-

ditions and an (F·)-Brownian motion B, α is an Rd-valued progressively measurable

process such that
∫ T
0
E
[
|αt|m

]
dt is finite for every m ∈ N, and Xα,x solves

Xα,x
0 = x , dXα,x

t =
(
b̃
(
Xα,x
t

)
+ 2αt

)
dt+

√
2 dBt . (2.15)

By Theorem IV.7.1 and the results in Sections V.3 and V.9 of [15], the value function V N

defined by (2.14) is a bounded and uniformly continuous viscosity solution to (2.13).
Suppose u0 = ln(m0/µ0) is the sum of an Mu0 -bounded and an Lu0 -Lipschitz function.

As shown in [29, Lemma 8], using a reflection coupling of two solutions of (2.15) with
different initial conditions but using the same control α, we get that there exist C ′, κ > 0,
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depending only on ρ, L, R, such that for every x, y ∈ Rd, N ∈ N, T > 0 and t > 0, we
have

|V N (T, x)− V N (T, y)| 6 2Mϕt+ 2Mu01T<1

+ C ′
(
1t<T

Mϕ

t
+ Lϕ + e−κT

(
Lu0 + 1T>1M

u0
))
|x− y| . (2.16)

We simply take t = 1. Since both u and V N are bounded and uniformly continuous on
[0, T ]×Rd, we can apply the parabolic comparison for viscosity solutions on the whole
space [12, Theorem 1] to obtain V N (T, x) = uT (x) for N sufficiently large. Therefore,
we have obtained that there exists C > 0 such that for every T > 0 and every x, y ∈ Rd,
we have

|uT (x)− uT (y)| 6 C(1 + |x− y|) . (2.17)

Besides, in view of (2.16), we can find C > 0 independent from m0 such that (2.17)
holds with this C for all T large enough. Moreover this C can be taken arbitrarily small
provided Mϕ + Lϕ is small enough.

We can then decompose uT as the sum of a bounded and a Lipschitz continuous
functions (with time uniform bounds for both functions). For instance we can consider
a 2C(1 +

√
d)-Lipschitz function vT that coincides with uT at all points x ∈ Zd (thanks

to (2.17)) and then uT − vT is uniformly bounded (thanks to (2.17) again) uniformly in T .
The proof is concluded by applying successively the Holley–Stroock and Aida–Shigekawa
perturbation lemmas [17, 1].

3 Sharp PoC for McKean–Vlasov diffusions

3.1 Settings and notations

In this section, we consider the non-linear McKean–Vlasov equation on Rd:

∂tmt = ∇ ·
(
σ2∇mt − F (·,mt)mt

)
, (3.1)

which corresponds to (1.1) in the case (1.3). In fact, since we want to apply the results
of [23], we consider its settings, which reads

F (x,m) = b0(x) +

∫
Rd
b(x, y)m(dy)

for some b0 : Rd → Rd and b : Rd ×Rd → Rd (which additionally may depend on time in
[23], which we don’t consider here for simplicity as it is not the case in the examples
were are interested in, although it would work similarly). It is associated to the system
of interacting particles X = (X1, . . . , XN ) solving

∀i ∈ J1, NK, dXi
t = b0

(
Xi
t

)
dt+

1

N − 1

∑
j∈J1,NK\{i}

b
(
Xi
t , X

j
t

)
dt+

√
2σ dBit , (3.2)

where B1, . . . , BN are independent d-dimensional Brownian motions. Denote by mN
t the

law of
(
X1
t , . . . , X

N
t

)
and by mk,N

t the law of
(
X1
t , . . . , X

k
t

)
for k 6 N .

The PoC phenomenon describes the fact that, in the system of interacting particles,
as N → ∞, particles become more and more independent, so that mk,N

t converges to
m⊗kt for a fixed k. Up to recently, known results were typically that, under suitable
conditions, for a fixed t > 0,

∥∥mk,N
t − m⊗kt

∥∥
TV

= O
(√
k/N

)
. This can be for instance

obtained by showing the global estimate H
(
mN
t

∣∣m⊗Nt )
= O(1) (which is optimal) using

then that H
(
mN
t

∣∣m⊗Nt )
= (N/k)H

(
mk,N
t

∣∣m⊗kt ) (assuming for simplicity that n/k ∈ N)
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and concluding with Pinsker’s inequality. This k/N rate for the marginal relative entropy
(hence

√
k/N in TV) was thought to be optimal until Lacker showed in [22] that it is

possible to get a rate k2/N2 by working with a BBGKY hierarchy of entropic bounds
instead of simply with the full entropy of the N particles system. We refer to such
entropic estimates with a rate k2/N2 as sharp PoC, by comparison with other results
(the k2/N2 rate being optimal, as it is reached, e.g., in Gaussian cases). The work [22]
deals with finite-time intervals, and the technique is then refined by Lacker and Le Flem
in [23] to get uniform-in-time sharp PoC in some cases (small interaction in the torus
or convex potentials in Rd). A crucial ingredient in their result is a uniform LSI for the
solution of the non-linear equation (3.1). Our results can thus be applied to extend their
results to more general cases, allowing for instance for non-convex potentials on Rd.

The rest of this section is organized as follows. In Section 3.2 for the reader’s
convenience we give a brief overview of the general result of Lacker and Le Flem. In
Sections 3.3 and 3.4 we apply respectively Theorems 1.4 and 1.3 to get, under suitable
conditions, uniform-in-time LSI for solutions of the McKean–Vlasov equation, and thus
uniform-in-time sharp PoC as a corollary, in cases which are not covered by [23].

3.2 Lacker and Le Flem’s result

First, for the reader’s convenience, we recall [23, Theorem 2.1]. There are two sets
of assumptions to apply this result: Assumption E of [23] is technical conditions related
to well-posedness of m and mN and we omit them as they are not important in our
discussion (see Proposition 3.5 below). The second set of assumptions of [23] is the
following.

Assumption 3.1 (Assumption A of [23]). The following holds.

1. (mt)t>0 satisfies a uniform LSI with constant η > 0.
2. (mt)t>0 satisfies a uniform transport inequality: there exists γ > 0 such that, for all

t > 0, x ∈ Rd and ν ∈ P(Rd),∣∣ν(b(x, ·))−mt

(
b(x, ·)

)∣∣26 γH(ν|mt) . (3.3)

3. (mt)t>0 and
(
mN
t

)
t>0 satisfy this uniform L2 boundedness:

sup
N∈N

sup
t>0

∫
RdN

∣∣b(x1, x2)−mt

(
b(x1, ·)

)∣∣2mN
t (dx) <∞ . (3.4)

When b is bounded, (3.4) is trivial and (3.3) follows from Pinsker’s inequality. When
y 7→ b(x, y) is Lipschitz continuous uniformly in x, (3.4) follows from time-uniform second
moment bounds, which are classically obtained by Lyapunov arguments, and (3.3) is
implied by the uniform LSI.

Theorem 3.2 (From Theorem 2.1 of [23]). Under Assumptions A and E of [23], assume
moreover that σ4 > 8γη and that

∃C0 > 0, ∀N > 2, ∀k ∈ J1, NK, H
(
mk,N

0

∣∣m⊗k0

)
6 C0

k2

N2
. (3.5)

Then,

∃C > 0, ∀N > 2, ∀k ∈ J1, NK, ∀t > 0, H
(
mk,N
t

∣∣m⊗kt ) 6 C
k2

N2
. (3.6)

Remark 3.3. As in Remark 1.2, it is in fact sufficient to enforce Assumption A with the
condition σ4 > 8γη for times t > t0 for some t0 and apply Theorem 3.2 to (mt+t0)t>0.
More precisely, for some t0, assume that (3.3) and (3.4) holds uniformly over t ∈ [0, t0].
Then, assuming the initial chaos (3.5), [22, Theorem 2.2] gives (3.6) for some constant
C > 0 uniformly over t ∈ [0, t0]. In particular, the initial chaos (3.5) holds for (mt+t0)t>0.
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In [23], the assumptions of Theorem 3.2 are shown to hold in two cases: either
convex potentials on Rd, or models on the torus. In any cases, the condition σ4 > 8γη

(corresponding to rc > 1 with the notation of [23, Theorem 2.1]) means that the PoC
estimates require that either the temperature σ2 is high enough or the strength of the
interaction is small enough. In Sections 3.3 and 3.4 we extend the range of application
of [23, Theorem 2.1] to some cases with non-convex potentials on Rd.

Before that, in order to focus on the uniform LSI afterwards, let us state a result
concerning the other technical conditions, which is sufficient for the cases considered in
the two next sections.

Assumption 3.4. The initial conditions m0 and mN
0 have finite moments of all orders,

mN
0 is exchangeable and there exists C independent from N such that

∫
Rd
|x1|2m1,N

0 (dx1)

6 C.

We omit the proof of the next result, the arguments are the same as in [23, Corollary
2.7].

Proposition 3.5. Assume that b0 and b are C1, that |b0| grows at most polynomially, that
b is the sum of a bounded and a Lipchitz continuous function, and that there exist c,
C > 0 such that for all x, y ∈ Rd,(

b0(x) + b(x, y)
)
· x 6 −c|x|2 + C(1 + |y|) .

Then, under Assumption 3.4, (mt)t>0 and
(
mN
t

)
t>0 are well defined and Assumption E of

[23] and the uniform L2 boundedness (3.4) holds.

3.3 Convergent trajectories

In this section we focus on the cases where mt converges as t → ∞ towards a
stationary solution m∗ of the non-linear equation (3.1). This is known to hold in various
cases of interest, like the granular media equation with convex potentials, or repulsive
interaction, or high temperature, or small interaction, or other models like the adaptive
biasing force method [24] or the mean-field gradient descent ascent [25]. So, assume
that

‖mt −m∗‖TV −→
t→∞

0 . (3.7)

Remark 3.6. Under suitable conditions, [32, Theorem 4.1] allows to obtain (3.7) from a
W2 convergence.

We now discuss suitable conditions to apply Theorem 1.4 with Mϕ, Lϕ arbitrarily
small for large times, where we decompose the drift F (x,mt) = a0(x) + gt(x) with
a0(x) = F (x,m∗) and gt(x) = F (x,mt) − F (x,m∗). For simplicity we focus on the case
where

F (x,m) = −∇V (x)−
∫
Rd
∇xW (x, y)m(dy) , (3.8)

for some V ∈ C2(Rd,R) and W ∈ C2(Rd×Rd,R). The next result would be easily adapted
to other cases where the density of the stationary solutions of (3.1) are explicit or solve
an explicit fixed-point equation (namely when the invariant measure of σ2∆ + F (·,m) · ∇
is explicit for each m), which is for instance the case in [24, 25].

Proposition 3.7. Let (mt)t>0 be a solution to (3.1) (in the case (3.8)) which converges
in TV in long time towards a stationary solution m∗. Assume that m0 admits a density
eu0 with respect to m∗, with u0 being the sum of a bounded and a Lipschitz continuous
function. Assume furthermore that there exists L, α > 0 such that, for all x, y ∈ Rd,

|∆xW (x, y)| 6 L , |∇xW (x, y)| 6 L

1 + |x− y|α
, |∇V (x)| 6 L(1 + |x|α) . (3.9)
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Finally, assume that V is strongly convex outside of a compact set. Then, (mt)t>0 satisfies
a uniform LSI. Moreover, as t → ∞, the optimal LSI constant of mt converges to the
optimal LSI constant of m∗.

Notice that, V being strongly convex outside a compact set, the last condition of (3.9)
can only hold with some α > 1. Hence, the second condition of (3.9) on ∇W means that
we only consider local interactions.

Proof. Considering the decomposition F (x,mt) = a0(x) + gt(x) with a0(x) = F (x,m∗)

and gt(x) = F (x,mt)−F (x,m∗), we have to show that Theorem 1.4 applies to (mt+t0)t>0

with Mϕ, Lϕ arbitrarily small provided t0 is large enough. Indeed, the last part of
Theorem 1.4 will then give that, for any ε > 0, the optimal LSI constant of mt is less than
C0 + ε for t large enough, where C0 is the optimal LSI constant of m∗. On the other hand,
for any ε > 0, there exists a non-constant C∞ function f with compact support such that

m∗(f
2 ln f2)−m∗(f2) lnm∗(f

2) > (C0 − ε)m∗|∇f |2 .

The weak convergence implied by (3.7) leads to

mt(f
2 ln f2)−mt(f

2) lnmt(f
2) > (C0 − 2ε)mt|∇f |2

for t large enough, which implies that the optimal LSI constant of mt is larger than
C0 − 2ε.

Hence, we turn to the application of Theorem 1.4 using its notations. We write
m ?W (x) =

∫
Rd
W (x, y)m(dy). The invariant measure of a0 · ∇ + σ2∆ is µ0 = m∗, with

∇ lnm∗ = −∇(V +m∗ ? W ) = F (·,m∗), so that

b̃t(x) = −∇(V + 2m∗ ? W −mt ? W ) .

Since ∇xW is bounded by (3.9), the contribution of W in b̃t is bounded (uniformly in t)
and thus (1.9) holds thanks to the convexity of V outside a compact set. From (3.9),

|∇ · gt(x)| = |(mt −m∗) ?∆xW (x)| 6 L‖mt −m∗‖TV ,

and, given (Y, Y ′) an optimal TV coupling of mt and m∗ and using the Cauchy–Schwarz
inequality,

|gt(x) · ∇ lnm∗(x)|
6
∣∣E[∇xW (x, Y )−∇xW (x, Y ′)]

∣∣L(2 + |x|α)

6 E

[
1Y 6=Y ′

(
1

1 + |x− Y |α
+

1

1 + |x− Y ′|α

)]
L2(2 + |x|α)

6 ‖mt −m∗‖1/2TV E

[(
1

1 + |x− Y |α
+

1

1 + |x− Y ′|α

)2]1/2
L2(2 + |x|α) .

Then we bound, for the first term in the expection,

E

[
1

(1 + |x− Y |α)2

]
6

1

(1 + |x/2|α)2
+ P[|Y | > |x|/2]

6
1

(1 + |x/2|α)2
+

1 + E[|Y |2α]

1 + |x/2|2α
,

and similarly for the second term involving m∗. Using that V is convex outside a
compact set and that ∇xW is bounded we easily get by Lyapunov arguments that the
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moments of mt are bounded uniformly in time. As a consequence, we have obtained, for
ϕt := −∇ · gt + gt · ∇ lnµ0, a bound

‖ϕt‖∞ 6 L′‖mt −m∗‖1/2TV

for some L′ independent from t. The TV convergence (3.7) concludes the proof.

Corollary 3.8. Under Assumption 3.4 and the settings of Proposition 3.7, assume fur-
thermore that W is bounded and V = V1 + V2 where V1 is ρ-strongly convex and V2 is
bounded. Assume that

σ2 >
4

ρ
‖∇xW‖2∞ exp

(
‖V2‖∞ + ‖W‖∞

σ2

)
. (3.10)

Then, provided the initial PoC (3.5) holds, so does the uniform in time sharp PoC (3.6).

This applies to cases on Rd where V is not convex, which are not covered by [23]. In
general cases where V may have several local minima, a condition in the spirit of (3.10),
that states that either temperature is large enough or interaction is small enough, is
necessary to have a uniform-in-time propagation of chaos estimate.

Proof. The assumptions of Proposition 3.7 imply those of Proposition 3.5. Since ∇xW is
bounded, Pinsker’s inequality gives the transport inequality (3.3) with γ = ‖∇xW‖2∞/2.
Proposition 3.7 provides the uniform LSI for (mt)t>0. Moreover, for large times, the LSI
constant of mt converges to the LSI constant C∗ of m∗, which by the Bakry–Émery and
Holley–Stroock results is less than σ2ρ−1 exp

(
(‖V2‖∞ + ‖W‖∞)/σ2

)
. Corollary 3.8 thus

follows from Theorem 3.2 (since, as noticed in Remark 3.3, the condition σ4 > 8γη only
has to be verified for sufficiently long times).

3.4 High temperature regime

Instead of Corollary 3.8, using Theorem 1.3, we can get an alternative result, which
doesn’t require the a priori knowledge that mt converges in large time and with weaker
assumptions on W , but which only works at high temperature and is less explicit (an
explicit condition on σ2 can be obtained in principle by checking the proofs, but it
wouldn’t be as nice as (3.10)). In the next statement we consider a solution (mt)t>0

of (3.1) in the case (3.8).

Proposition 3.9. Under Assumption 3.4, assume furthemore that |∇U | grows at most
polynomially, that there exist ρ, L, R > 0 such that, for all z ∈ Rd, ψz := −∇U−∇xW (·, z)
satisfies

(
ψz(x)− ψz(y)

)
· (x− y) 6

{
−ρ|x− y|2 ∀x, y ∈ Rd with |x| > R ,

L|x− y|2 ∀x, y ∈ Rd ,
(3.11)

and that ∇xW = F1 + F2 where F1 is bounded and y 7→ F2(x, y) is LW -Lipschitz with
8L2

W < ρ, uniformly in x. Then, there exists σ2
∗ > 0 (which depends on U , W and d) such

that, assuming σ2 > σ2
∗ and the initial sharp PoC (3.5), we have that the uniform in time

sharp PoC (3.6) holds.

In particular, if U is strongly convex outside a compact set and x 7→W (x, z) is convex
for all z with ∇xW being bounded, then Proposition 3.9 applies, without any further
smallness condition on the interaction. For instance, with W (x, z) = a

√
1 + |x− z|2,

it applies for any a > 0. However, in that case, the temperature threshold σ2
∗ in

Proposition 3.9 will depend on a and will become large when a is large (i.e. when the
interaction is strong).
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Proof. We verify the conditions of Theorem 3.2. Using (3.11) with y = 0 we see that
Proposition 3.5 holds. The uniform LSI in the high temperature regime σ2 > σ2

0 is
ensured by Theorem 1.3, and for times large enough it holds with a constant η = σ2η′

for some η′ > 0 independent from σ, and which can be taken arbitrarily close to 1/ρ for
σ2 large enough. Here we have used that sup{−x · bt(x) : |x| 6 R∗} can be bounded by a
constant K independent from t and such that (1.8) holds for σ large enough (for t large
enough). Indeed, we can bound

|bt(x)| 6 |∇U(x)|+ ‖F1‖∞ + |F2(x, 0)|+ LW

∫
Rd
|y|mt(dy) .

Then, the condition (3.11) implies that st :=
∫
Rd
|y|2mt(dy) satisfies dst/dt 6 −ρst/2 +

q+ 2dσ2 for some q > 0 independent from t and σ2. From this, for t large enough, we get∫
Rd
|y|mt(dy) 6 C(1 + σ) where C depends only on d, ρ, L, R. As a consequence, in (1.7)

we can take K = C ′(1 + σ) for some C ′ (independent from t and σ), so that (1.8) holds
for σ large enough, as claimed.

It remains to check the transport inequality (3.3). For any θ > 0 we can bound, for all
t > 0, x ∈ Rd and ν ∈ P(Rd),∣∣ν(b(x, ·))−mt

(
b(x, ·)

)∣∣2
6 (1 + θ)

∣∣ν(F1(x, ·)
)
−mt

(
F1(x, ·)

)∣∣2 + (1 + θ−1)
∣∣ν(F2(x, ·)

)
−mt

(
F2(x, ·)

)∣∣2
6 (1 + θ)‖F1‖2∞‖ν −mt‖2TV + (1 + θ−1)L2

WW2
2 (ν,mt)

6 γH(ν|mt) ,

where we used Pinsker’s and Talagrand’s inequalities, and γ on the last line is defined by

γ =
1 + θ

2
‖F1‖2∞ + σ2η′(1 + θ−1)L2

W .

Fixing θ (independent from σ) large enough so that 8(1 + θ−1)L2
W < ρ, the condition

σ4 > 8γη holds for σ large enough, which concludes.

4 Application to log and Riesz interactions

In this section, we still consider McKean–Vlasov equations (3.1), but now we impose
the following condition on the non-linear drift.

Assumption 4.1. We have d > 2, s ∈ [0, d − 1) and the McKean–Vlasov drift in (3.1)
reads

F (x,m) = −∇U(x) +M∇gs ? m(x) ,

where U , M , gs satisfy the following conditions:

• the function U : Rd → R has bounded Hessian ∇2U ∈ L∞ and satisfies the weak
convexity condition: there exist κU > 0 and R > 0 such that for all x, y ∈ Rd with
|x− y| > R, we have

〈∇U(x)−∇U(y), x− y〉 > κU |x− y|2 ;

• gs : Rd → R is the logarithmic or Riesz potential:

gs(x) =

{
− ln|x| when s = 0,

|x|−s when s > 0;

• in the sub-Coulombic case where s < d − 2, M is a d × d real matrix such that
M : ∇2g(x) > 0 for x 6= 0; in the Coulombic and the super-Coulombic cases where
s ∈ [d− 2, d− 1), M is anti-symmetric.
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Time-uniform LSI and applications to PoC

These models have raised a high interest over the recent years, in particular with a
series of work by Rosenzweig, Serfaty and coauthors on the one hand (see e.g. [34, 9, 35]
and references within) and Bresch, Jabin, Wang and coauthors on the other hand (see
e.g. [20, 5, 4] and references within). The main result of the section, to be stated in
Theorem 4.12 in Section 4.4, addresses the McKean–Vlasov drift force above with d > 2,
s = 0, M being anti-symmetric and U being isotropically quadratic. We show that in
this case the dynamics exhibits the time-uniform propagation of chaos. This result is
a continuation of a recent work of Guillin, Le Bris and one of the author [16], where
the uniform PoC is shown for the dynamics on the torus (thus in a periodic setting). We
also note that a non-time-uniform result on the whole space have also been obtained
very recently by Feng and Wang [14]. In terms of methodology, the main addition of
our work is that we employ the reflection coupling technique of Conforti [10] to get
regularity bounds for the mean field flow on the whole space (Theorems 4.6 and 4.11),
which enable to apply the Jabin–Wang method.

We will write g = gs if that does not lead to ambiguities. For simplicity, we also set
σ = 1 in this section. Under the assumptions above, we denote K = M∇g, and the
McKean–Vlasov dynamics writes

∂tmt = ∆mt −∇ ·
(
mt(K ?mt −∇U)

)
. (4.1)

Note that the interaction kernel K is divergence-free when the matrix M is anti-
symmetric.

Consider now the system of N particles in interaction:

dXi
t = −∇U

(
Xi
t

)
dt+

1

N − 1

∑
j∈J1,NK\{i}

K
(
Xi
t −X

j
t

)
dt+

√
2 dW i

t , i = 1, . . . , N , (4.2)

where W i
t are N independent Brownian motions. The flow of probabilities mN

t =

Law(Xt) = Law(X1
t , . . . , X

N
t ) in RdN satisfies the Fokker–Planck equation at least for-

mally:

∂tm
N
t =

N∑
i=1

(
∆im

N
t −∇i ·

(( 1

N − 1

∑
j∈J1,NK\{i}

K(xi − xj)−∇U(xi)
)
mN
t

))
. (4.3)

In this section, ηε denotes a C∞ mollifier with support in B(0, ε) that is also invariant
by rotation. We set gε := g?ηε and Kε := M∇gε = M∇g?ηε. Since under Assumption 4.1,
we are restricted to the case where s < d − 1, the interaction potential g ∝ |x|−s is
integrable around zero, so gε is infinitely differentiable with bounded derivatives. Notice
that the rotational invariance of ηε implies that the value gε(x) depends only on |x| and
thus, ∇gε(x) is parallel to x. We also work with the approximation of the confinement
Uε := U ? ηε.

Sometimes, in the rest of this section, for conciseness, we write A . B when there
exists a constant C such that A 6 CB.

4.1 Well-posedness of the mean field and particle systems

For a function f : Rd → R and θ ∈ (0, 1], we denote the homogeneous θ-Hölder
(semi-)norm of f by

[f ]Cθ = sup
x,y∈Rd : x 6=y

|f(x)− f(y)|
|x− y|θ

.

In order to study the singular interaction kernel K, we use the following crucial estimate.
This generalizes the estimate in (2.9) of [34] (which corresponds to the case p = ∞).
We refer readers to Lemma 4.5.4 and Theorem 4.5.10 of [18] for the proof, where the
statement of the latter should be accompanied with an interpolation.
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Proposition 4.2. Let s > 0. For all m ∈ L1 ∩ Lp(Rd) with
(
1− s

d

)−1
< p 6∞, we have

∥∥|·|−s ? m∥∥
L∞

. ‖m‖1−qs/dL1 ‖m‖qs/dLp ,

where p−1 + q−1 = 1. If additionally, for some θ ∈ (0, 1), we have
(
1− s+θ

d

)−1
< p 6∞,

then [
|·|−s ? m

]
Cθ . ‖m‖

1−q(s+θ)/d
L1 ‖m‖q(s+θ)/dLp .

Then, we present the well-posedness results for the mean field and the particle
system.

Proposition 4.3 (Well-posedness of the mean field system). Let Assumption 4.1 hold.
Then we have the following results:

• For each initial value m0 ∈ L1 ∩ L∞ ∩ P(Rd), there exists a unique solution to
the mean field flow (4.1) in C

(
[0,∞);L1(Rd)∩P

)
∩L∞

(
[0,∞);L∞(Rd)

)
depending

continuously on the initial value. In particular, we have the time-uniform bound:

sup
t∈[0,∞)

‖mt‖L∞ 6 C1(U, ‖m0‖L∞) <∞ . (4.4)

• If additionally the initial value m0 has finite k-th moment for some k > 0, then the
mean field flow mt has finite k-th moment, uniformly in time:

sup
t∈[0,∞)

∫
Rd
|x|kmt(dx) 6 C2

(
U,K, k, ‖m0‖L∞ ,

∫
Rd
|x|km0(dx)

)

• Finally, let Kε = K ? ηε, Uε = U ? ηε be the mollified kernel and confinement. If
mε

0 converges to m0 in L1 and if supε‖mε
0‖L∞ < ∞, then the solution mε

t of the
approximate mean field flow

∂tm
ε
t = ∆mε

t −∇ ·
(
mε
t (K

ε ? mε
t −∇Uε)

)
(4.5)

converges to mt in L1 for all t > 0. Moreover, the L∞ norm and the k-th moment
bounds above hold when we replace m by mε.

Proposition 4.4 (Well-posedness of the particle system). Let Assumption 4.1 hold with
s 6 d− 2 and suppose that for all x ∈ Rd, we have x>Mx 6 0. Then, for any initial value
X0 =

(
X1

0 , . . . , X
N
0

)
such that Xi

0 6= Xj
0 almost surely for i 6= j, the SDE system (4.2)

has a global unique strong solution. Moreover, setting Kε = K ? ηε, Uε = U ? ηε, and
considering the approximate SDE system

dXε,i
t = −∇Uε

(
Xε,i
t

)
dt+

1

N − 1

∑
j∈J1,NK\{i}

Kε
(
Xε,i
t −X

ε,j
t

)
dt+

√
2 dW i

t , (4.6)

for i ∈ J1, NK, with the initial condition Xε,i
0 = Xi

0, we have, for all t > 0 and i = 1, . . . , N ,

Xε,i
t → Xi

t a.s., when ε→ 0 .

These results may be considered mathematical folklore and we do not claim originality
from them. Their proofs are postponed to Appendix A.
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4.2 Uniform Lipschitz and Hessian bounds, and LSI

We introduce the invariant measure µ0 of the reversible diffusion generated by
∆−∇U · ∇, whose density is explicit:

µ0(x) = Z(µ0)−1 exp
(
−U(x)

)
, Z(µ0) =

∫
Rd

exp
(
−U(x)

)
dx .

Note that, under Assumption 4.1, using the HJB flow method of Conforti (see Theorem
1.3 and Remark 1.7 of [11]), we can show that the measure µ0 is the image of a Gaussian
measure under a transport mapping with an explicit Lipschitz constant, and thus satisfies
an LSI with an explicit constant.

We use the following result on the Lipschitz and Hessian bounds on the solution to a
class of HJB equations.

Theorem 4.5. Let T > 0. Let u ∈ C1,2p ([0, T ]×Rd;R) be a classical solution to the HJB
equation

∂tut = ∆ut − |∇ut|2 + b̃t · ∇ut + ϕt ,

for some b̃ ∈ C0,2p ([0, T ]×Rd;Rd), ϕ ∈ C0,2p ([0, T ]×Rd;R). Suppose the initial condition
u0 ∈ C3Lip(Rd;R). Suppose the drift b̃ satisfies the weak convexity condition(

b̃t(x)− b̃t(y), x− y
)
6 κb̃(|x− y|)|x− y|

for some C1-continuous function κb̃ : (0,∞) → R such that
∫ 1

0
r
(
κb̃(r) ∨ 0

)
dr < ∞ and

lim infr→∞ κb̃(r) < 0. Suppose supt∈[0,T ]‖∇b̃t‖L∞ < ∞. Then, we have the following
results:

• If ϕt ∈ L∞ for all t ∈ [0, T ], then, we have, for all t ∈ [0, T ],

‖∇ut‖L∞ 6 Ce−ct‖∇u0‖L∞ +

∫ t

0

Ce−cv√
v ∧ 1

‖ϕt−v‖L∞ dv , (4.7)

where C, c > 0 and depend only on κb̃.

• If additionally, ∇ϕt ∈ L∞ for all t ∈ [0, T ], then we have, for all t ∈ [0, T ],

‖∇2ut‖L∞ 6
C ′e−c

′t

√
t ∧ 1

‖∇u0‖L∞

+

∫ t

0

C ′e−c
′v

√
v ∧ 1

(
‖∇ϕt−v‖L∞ + ‖∇b̃t−v · ∇ut−v‖L∞

)
dv , (4.8)

where C ′, c′ > 0 and depend only on κb̃, ‖∇u0‖L∞ and supt∈[0,T ]‖ϕt‖L∞ .

The theorem is only an enhancement to the result of Conforti [10] by using the
short-time gradient estimates obtained by Priola and Wang [31], and by Porretta and
Priola [30]. Thus we only provide a sketch of proof here.

Sketch of proof of Theorem 4.5. The stated results differ from the main result of [10],
i.e. Theorem 1.3 of it, only in two aspects: first, we work in a time-non-homogeneous
setting; and second, the uniform gradient estimate that we utilize in the proof has
explosion t−1/2 instead of t−1 when t→ 0.

Following the method in the proof of Theorem 1.4 (and ignoring technical issues
about the correspondance to stochastic control problems), for every x, y ∈ Rd and
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t ∈ [0, T ], we can find stochastic processes Xα,x
· , Xα,y

· , α, all defined on [0, t] and taking
values in Rd, such that

Xα,z
0 = z , dXα,z

v =
(
b̃
(
Xα,z
v

)
+ 2αv

)
dv +

√
2 dBzv , for z = x, y ,

u(t, x) = E

[∫ t

0

(
|αv|2 + ϕt−v

(
Xα,x
v

))
dv + u

(
0, Xα,x

t

)]
,

u(t, y) 6 E

[∫ t

0

(
|αv|2 + ϕt−v

(
Xα,y
v

))
dv + u

(
0, Xα,y

t

)]
,

where Bx, By are Brownian motions coupled by reflection until Xα,x, Xα,y collide:

dBα,yv =

(
1−

2
(
Xα,y
v −Xα,x

v

)(
Xα,y
v −Xα,x

v

)T∣∣Xα,y
v −Xα,x

v

∣∣2
)

dBα,xv ,

for v 6 τ := inf
{
w > 0 : Xα,x

w = Xα,y
w

}
, and dBα,xv = dBα,yv for v > τ . Then, by subtracting

the dynamics of Xα,x and Xα,y, we find that their difference process
∣∣Xα,x
· −Xα,y

·
∣∣ is

stochastically dominated by a one-dimensional Itō process (rt)t>0 solving

drv = −rvκb̃(rv) dv + 2
√

2 dWv

with an absorbing boundary at 0 with initial value r0 = |x− y|. It is shown in [31] that

P[rv > 0] 6
Cr0√
v ∧ 1

for some C depending only on κb̃. Then, by combining the result above with the long-time
Wasserstein contraction studied in [13], we get, for all v ∈ [0, t],

P[rv > 0] 6
C ′e−c

′vr0√
v ∧ 1

for some C ′, c′ > 0 depending only on κb̃. Therefore, by subtracting the stochastic
representation for u(t, x), u(t, y) and applying the bound above on rv, we get the first
claim.

For the second-order estimate, we take spatial derivatives in the HJB and find that
∇ut solves the Rd-valued equation

∂t∇ut = ∆∇ut + (b̃t − 2∇ut) · ∇2ut +∇b̃t · ∇ut +∇ϕt .

Thus, ∇ut solves a second-order equation with the weakly semi-monotone drift term
b̃t − 2∇ut (as b̃t is weakly semi-monotone and ∇ut is bounded by the first claim), and a
bounded source term ∇b̃t · ∇ut +∇ϕt. Writing the Feynman–Kac formula for ∇ut and
using the coupling by reflection as above, we get the second claim. We refer readers to
[10] for a rigorous justification of the Hessian bound.

Theorem 4.6. Let Assumption 4.1 hold. Let m0 ∈ P(Rd) be such that

u0 := − ln
dm0

dµ0
= − lnm0 − U − lnZ(µ0)

is Lipschitz continuous and let (mt)t>0 be the solution to (4.1). Denote ut := − ln dmt/dµ0.
Then we have, for all t > 0,

sup
x∈Rd

∣∣K ?mt(x)(1 + |x|)
∣∣ 6 C , ‖∇ut‖L∞ 6 C , ‖∇2ut‖L∞ 6

C√
t ∧ 1
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for some C depending only on d, s, U , |M |, ‖m0‖L∞ and ‖∇u0‖L∞ . Moreover, when |M |
increases and all other dependencies are kept constant, C increases. Consequently, the
flow (mt)t>0 satisfies a uniform LSI whose constant has the same dependency as above
and is increasing in |M |.

The proof of Theorem 4.6 is postponed to Section 4.5.1.

Remark 4.7 (Modulated free energy and LSI, and kinetic case). We remark that since we
have obtained the L∞ bound of ∇2ut in the theorem above (and also in Theorem 4.11
below), we can control the Lipschitz norm of the time-dependent vector field

x 7→ σ2∇ ln
mt(x)

e−U(x)
−K ?mt(x). (4.9)

The control of this quantity, as remarked in [9, Section 1.2], is crucial for the modulated
free energy method since it appears in the “commutator estimates”. See e.g. [36,
Proposition 1.1] or [9, Proposition 2.13]. We note that unfortunately our method to
obtain this control exploits the long-time contractivity of Brownian motions coupled
by reflection, and relies fundamentally on the diffusivity of the dynamics, so it is not
useful for deterministic dynamics (i.e. σ = 0) considered originally in [36]. Nevertheless,
since similar results for the kinetic case in the time-homogeneous setting have been
established by two of the authors in [29, Theorems 2 and 13], our method provides
bounds on ∇2 lnmt, which is of interest in the perspective of applying the arguments
[20, Theorem 2] in such hypoelliptic cases.

Besides, together with the control of the Lipschitz norm of (4.9), a key ingredient
to get uniform-in-time estimates when using modulated free energy instead of relative
entropy is the modulated log-Sobolev inequalities discussed in [35]. These modulated LSI
are in fact classical LSI satisfied uniformly over a specific family of measures (called the
modulated Gibbs measures, and distinct from the lawmt that we consider in Theorem 4.6;
but a similar time-uniformity is required). The arguments of the time-uniform LSI of
Theorem 4.6 may thus be useful to establish time-uniform modulated LSI (although
additional difficulties appear in the latter case, in particular a uniformity in the number
of particles is required). On the topic of modulated free energy and modulated LSI, we
mention that an upcoming work [19] is announced in [9].

Remark 4.8 (Non-conservative flow and more singularity). Two natural extensions to the
setting considered in Assumption 4.1 are to consider a not necessarily anti-symmetric
M (notably M = −Id×d which corresponds to the gradient flow) and a more singular
interaction with s ∈ [d − 1, d). We note that in the first case, a not anti-symmetric M
poses challenges in mathematical analysis since the divergence term

∇ · (K ?mt) = M : ∇2g ? mt

appears and is more singular than the flow mt itself when s > d− 2. By re-examining the
proof, we find that the method of Theorem 4.6 will continue to work if (mt)t>0 satisfies a
uniform θ-Hölder bound for some θ > s− d+ 3 without the anti-symmetry of M , or for
some θ > s− d+ 2 with an anti-symmetric M . The authors are unfortunately unaware
of such results for Riesz flows with confinement in the whole space, which are possibly
worthy of independent studies in the future.

4.3 Global PoC for log interaction with general confinement potential

As a consequence of Theorem 4.6, we get the strong uniform-in-time propagation of
chaos result.

Theorem 4.9. Let Assumption 4.1 hold and suppose additionally that s = 0 and M is
anti-symmetric. Let (mt)t>0 be a solution to (4.1) whose initial value m0 satisfies the
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conditions of Theorem 4.6 and let (mN
t )t>0 be a solution to (4.3). Then, there exist C, C ′,

ρ > 0, depending only on d, U , |M | and m0, such that

H
(
mN
t

∣∣m⊗Nt )
6 C exp

(
−(ρ− C ′)t

)
H
(
mN

0

∣∣m⊗N0

)
+ C

(
1 + exp

(
−(ρ− C ′)t

))
(4.10)

for all t > 0, once H
(
mN

0

∣∣m⊗N0

)
< ∞. Moreover, when |M | decreases and all other

dependencies are kept constant, C decreases, ρ increases, and lim|M |→0 C
′ = 0.

By the dependency of C, C ′ and ρ in |M |, we find C ′ < ρ when |M | is sufficiently
small, and in this case the bound (4.10) becomes uniform in time. Even when |M | is
not small, we get a global PoC estimate for the dissipative log-interaction on Rd with a
confinement potential, which is new to our knowledge (the case U = 0 is addressed in
[14]).

The proof of Theorem 4.9 is postponed to Section 4.5.2.

4.4 Uniform PoC for log interaction with quadratic confinement potential

In this subsection, we impose the additional assumption.

Assumption 4.10. The confinement potential reads U(x) = κU |x|2/2 for some κU > 0.

Under Assumptions 4.1 and 4.10, we easily verify that the Gaussian measure m∗ with
density

m∗(x) = exp
(
−U(x)

)
= exp

(
−κU |x|

2

2

)
is invariant to the mean field flow (4.1). The first result that we obtain is the exponential
convergence of the mean field flow towards m∗.

Theorem 4.11. Let Assumptions 4.1 and 4.10 hold and suppose additionally that M is
anti-symmetric. Let m0 ∈ P(Rd) satisfy the conditions of Theorem 4.6 and let (mt)t>0 be
the solution to (4.1). Then, we have, for all t > 0,

H(mt|m∗) 6 exp(−2κU t)H(m0|m∗) .

Moreover, setting ut = − ln dmt/dm∗, we have, for all t > 0,

sup
x∈Rd

|x ·K ? (mt −m∗)| 6 Ce−ct , ‖∇u‖L∞ 6 Ce−ct , ‖∇2u‖L∞ 6
Ce−ct√
t ∧ 1

for some C, c > 0 that depend only on d, s, κU , M and ‖∇u0‖L∞ .

The proof of Theorem 4.11 is postponed to Section 4.5.1.
Building upon the exponential convergence above, we obtain the uniform-in-time

propagation of chaos without restriction on the strength of the interaction.

Theorem 4.12. Let Assumptions 4.1 and 4.10 hold and suppose additionally that s = 0

and M is anti-symmetric. Let (mt)t>0 be a solution to (4.1) whose initial value m0

satisfies the conditions of Theorem 4.6 and let (mN
t )t>0 be a solution to (4.3). Then,

there exists C > 0, depending only on d, κU , M and m0, such that

H
(
mN
t

∣∣m⊗Nt )
6 C exp(−2κU t)

(
H
(
mN

0

∣∣m⊗N0

)
+ 1
)

(4.11)

for all t > 0, once H
(
mN

0

∣∣m⊗N0

)
<∞.

The proof of Theorem 4.12 is postponed to Section 4.5.2. Notice that, as discussed
in e.g. [35], this result describes a generation of chaos property (not only propagation)
since it implies that H

(
mN
t

∣∣m⊗Nt )
is of order 1 (in terms of N ) for large times even if

it is not the case at time t = 0. Here, moreover, and more surprisingly, the right hand
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side of (4.11) vanishes at t→∞, which is due to the fact that in the specific case of an
isotropic Gaussian confining potential, the invariant measure of the system of interacting
particles is a tensorized Gaussian distribution, which is thus also the long-time limit of
the product of solutions of the non-linear equation. Finally, in contrast with the results
stated in Section 3, here (as in Theorem 4.9) we only state a result on the relative
entropy of the full system, and thus by sub-additivity of the relative entropy this yields
PoC estimates on the k-particles marginals which are not sharp in the sense of [22, 23].

4.5 Proofs

4.5.1 Proofs of uniform bounds and LSI

Proof of Theorem 4.6. Set µ0 = Z−1 exp(−U) with Z =
∫

exp(−U).

Step 1: Construction of a regular approximation. Recall that the initial condition m0 is
such that

u0 = − ln
dm0

dµ0
= − lnm0 − lnZ − U

is Lipschitz continuous. We construct, for ε > 0, the approximative initial value

mε
0 =

exp(−u0 ? ηε)µ0∫
exp(−u0 ? ηε)µε0

,

where µε0 ∝ exp(−Uε). Construct as well the approximative dynamics (4.5) with the
mollified kernel Kε = K ? ηε and mollified confinement Uε = U ? ηε. By construction,
the initial value mε

0 converges to m0 in L1 and is uniformly bounded in L∞, thus the
last claim of Proposition 4.3 indicates that mε

t → mt in L1 for all t > 0. Using the
uniqueness of the solution of the Fokker–Planck equation satisfied by the relative density
dmε

t/dµ
ε
0 and a Feynman–Kac argument similar to that of Proposition B.1, we obtain that

uεt := − ln dmε
t/dµ

ε
0 is C2 in space and its derivatives ∇uεt , ∇2uεt grow at most linearly in

space (locally in time). As a consequence, uεt is a classical solution to the HJB equation

∂tu
ε
t = ∆uεt − |∇uεt |2 + b̃εt · ∇uεt + ϕεt ,

where b̃εt , ϕ
ε
t are given by

b̃εt = −∇Uε −Kε ? mε
t ,

ϕεt = −∇ · (Kε ? mε
t )− (Kε ? mε

t ) · ∇Uε .

Step 2: Uniform bound on K ?mt and ∇ut, and uniform LSI. We verify that the drift b̃εt
satisfies the semi-monotonicity condition of Theorem 4.5, as the contribution from the
interaction Kε ? mε

t is controlled by Proposition 4.2:

‖Kε ? mε
t‖L∞ 6 ‖K ?mε

t‖L∞ . ‖mε
t‖

1−(s+1)/d
L1 ‖mε

t‖
(s+1)/d
L∞ ,

and U (along with its approximation Uε) is already weakly convex. Now we focus on
proving the uniform L∞ bound on ϕεt . For the first term in ϕεt , we find that in the
Coulombic and the super-Coulombic cases, due to the anti-symmetry of M , we have

∇ · (Kε ? mε
t ) = ∇ · (M∇g ? mε

t ? η
ε) = M : g ?∇2(mε

t ? η
ε) = 0 ;

for the sub-Coulombic case where s < d− 2, applying Proposition 4.2 with p =∞, we get

‖∇ · (Kε ? mε
t )‖L∞ . ‖mε

t‖
1−(s+2)/d
L1 ‖mε

t‖
(s+2)/d
L∞ ,
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Time-uniform LSI and applications to PoC

so the first term is uniformly bounded in L∞ in both cases. To treat the second term, we
note that

|Kε ? mε(x)| 6 sup
x′∈B(x,ε)

|K ?mε(x′)| ,

so it suffices to prove the bound uniformly:

|K ?mε(x′)| . (1 + |x|)−1 .

Decompose the kernel in the following way:

K(x) = K(x)1|x|<R +K(x)1|x|>R =: K1(x) +K2(x) .

For the exploding part K1, we have

|K1 ? m
ε
t (x)| =

∣∣∣∣∫
B(x,R)

K(x− y)mε
t (y) dy

∣∣∣∣
.
∫
B(x,R)

|x− y|−s−1mε
t (y) dy

6

(∫
B(x,R)

|x− y|−p(s+1) dy

)1/p
‖mε

t1B(x,R)‖Lq

. Rd/p−s−1‖mε
t1B(x,R)‖Lq ,

where p ∈
(
1, d

s+1

)
and p−1 + q−1 = 1. For |x| > R, we observe∫

B(x,R)

(mε
t )
q 6 ‖mε

t‖
q−1
L∞

∫
B(x,R)

mε
t 6 ‖mε

t‖
q−1
L∞ (|x| −R)−q

∫
Rd
|x|qmε

t (x) dx .

For the non-exploding part K2, we have

|K2 ? m
ε
t (x)| =

∣∣∣∣∫
Rd\B(x,R)

K(x− y)mε
t (y) dy

∣∣∣∣
.
∫
Rd\B(x,R)

|x− y|−s−1mε
t (y) dy

= |x|−s−1
∫
Rd\B(x,R)

|x|s+1

|x− y|s+1
mε
t (y) dy

. |x|−s−1
∫
Rd\B(x,R)

|x− y|s+1 + |y|s+1

|x− y|s+1
mε
t (y) dy

6 |x|−s−1
∫
Rd

(1 +R−s−1|y|s+1)mε
t (y) dy .

Thanks to Proposition 4.3, the mean field flow (mε
t )t>0 enjoys uniform bounds on its L∞

norm and its moments, as all moments of its initial value mε
0 are finite. Thus, we have,

uniformly in t,

sup
t>0
|K ?mε

t (x)| 6 sup
t>0
|K1 ? m

ε
t (x) +K2 ? m

ε
t (x)| . (1 + |x|)−1 .

So we have obtained supt>0‖ϕεt‖L∞ <∞, and the first claim of Theorem 4.5 implies that
‖∇uεt‖L∞ is uniformly bounded. Taking the limit ε→ 0, we recover the uniform spatial
Lipschitz bound on ut and thus by the perturbation lemma of Aida–Shigekawa, the flow
(mt)t>0 satisfies a uniform LSI.
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Step 3: Uniform bound on ∇2ut. We want to apply the second claim of Theorem 4.5 to
the HJB solution uεt , and it suffices to control uniformly in time the following quantities:

∇b̃εt · ∇uεt = (−∇2Uε −Kε ?∇mε
t ) · ∇uεt ,

∇ϕεt = −∇2 · (Kε ? mε
t )−∇(Kε ? mε

t ) · ∇Uε − (Kε ? mε
t ) · ∇2Uε .

The first quantity can be bounded by

‖∇b̃εt · ∇uεt‖L∞ 6 ‖∇b̃εt‖L∞‖∇uεt‖L∞ 6
(
‖∇2U‖L∞ + ‖Kε ?∇mε

t‖L∞
)
‖∇uεt‖L∞ ,

where ‖Kε ?∇mt‖L∞ is uniformly bounded as

∇mε
t = mε

t (−∇Uε +∇uεt ) =
exp(−Uε − uεt )∫
exp(−Uε − uεt )

(−∇Uε +∇uεt ) ∈ L1 ∩ L∞

uniformly in time, thanks to the uniform bound on ∇uεt . Now consider the second
quantity ∇ϕεt . In the case s ∈ [d− 2, d− 1), we have K = M∇g with an anti-symmetric
M , so the first term ∇2 · (Kε ? mε

t ) vanishes. In the case s < d− 2, we have

‖∇2 · (Kε ? mε
t )‖L∞ 6 ‖∇K ?∇mε

t‖L∞ . ‖∇mε
t‖

1−(s+2)/d
L1 ‖∇mε

t‖
(s+2)/d
L∞ ,

and by the uniform L1 and L∞ bound on ∇mε
t , this term is uniformly bounded. That is

to say, in both cases, the first term ∇2 · (Kε ? mε
t ) is uniformly bounded in L∞. As we

have ‖∇2U‖L∞ <∞, the third term (Kε ? mε
t ) · ∇2U is equally uniformly bounded. So it

remains to obtain a uniform bound on the second term ∇(Kε ?mε
t ) · ∇U . Since ∇Uε is of

linear growth, it suffices to prove

∇(K ?mε
t )(x) = (K ?∇mε

t )(x) . (1 + |x|)−1

uniformly in time. For this, we use again the decomposition K = K1 + K2 in the end
of the previous step, and redoing all the computations, we find that it is sufficient to
uniformly control∫

Rd
|x|q|∇mε

t (x)|dx =

∫
Rd
|x|q|−∇U(x) +∇uεt (x)|mε

t (x) dx

.
∫
Rd
|x|q(1 + |x|)mε

t (x) dx

for some q >
(
1 − s+1

d

)−1
. But from Proposition 4.3 we know that the q and (q + 1)-th

moments of mε
t are uniformly bounded. Hence, ∇ϕεt is uniformly bounded in L∞ and

by the second claim of Theorem 4.5, we get that ‖∇2uεt‖L∞ is uniformly bounded. Thus
∇2 lnmε

t = −∇2Uε −∇2uεt is uniformly bounded as well, and taking the limit ε→ 0, we
get the desired result for ut.

Proof of Theorem 4.11. The proof is similar to that of Theorem 4.6, except that now
the Lipschitz and Hessian bounds converge to zero. Thus, we first show that the mean
field flow mt converges to the invariant measure m∗ and then redo the estimates on the
log-density.

Step 1: Convergence in entropy. For the initial value m0 such that

∇u0 = −∇ lnm0 −∇U ∈ L∞,

we find, as in the beginning of the proof of Theorem 4.6, an approximation mε
0 defined

by the following:

mε
0 =

exp(−u0 ? ηε − U)∫
exp(−u0 ? ηε − U)

.
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Set uεt := − ln dmε
0/dm∗. We also consider the approximative flow (mε

t )t>0 solving the
mean field Fokker–Planck equation (4.5). Notice that, in the case of quadratic potential,
the mollified potential Uε = U ? ηε is nothing but U translated by a constant, due to the
symmetry of ηε. By Feynman–Kac arguments, we get that mε

t is a classical solution to
the Fokker–Planck and ∇iuεt grows at most linearly for i = 0, 1, 2. Thus, we can derive
t 7→ H(mε

t |m∗) and get

dH(mε
t |m∗)

dt
= −I(mε

t |m∗) +

∫
Rd
∇ ln

mε
t (x)

m∗(x)
·Kε ? (mε

t −m∗)(x)mε
t (dx)

= −I(mε
t |m∗)−

∫
Rd
∇ lnm∗(x) ·Kε ? (mε

t −m∗)(x)mε
t (dx)

= −I(mε
t |m∗)−

∫
Rd
∇ lnm∗(x) ·Kε ? mε

t (x)mε
t (dx)

= −I(mε
t |m∗) + κU

∫
x ·Kε ? mε

t (x)mt(dx)

= −I(mε
t |m∗) + κU

∫∫
Rd×Rd

x ·Kε(x− y)mε
t (dx)mε

t (dy)

= −I(mε
t |m∗) +

κU
2

∫∫
Rd×Rd

(x− y) ·Kε(x− y)mε
t (dx)mε

t (dy)

= −I(mε
t |m∗) 6 −2κUH(mε

t |m∗) .

Here the second inequality is due to the integration by parts and the fact that ∇ ·Kε = 0;
the third to the fact that ∇ lnm∗(x) is parallel to x and Kε ? m∗(x) = K ? (m∗ ? η

ε)(x) is
always orthogonal to x, as m∗ ? ηε is invariant by rotation; the sixth due to the oddness
of Kε; and the last due to

x ·Kε(x) = x>M∇gε(x)

and ∇gε(x) is parallel to x. Then applying Grönwall’s lemma and the log-Sobolev
inequality for m∗, we get

H(mε
t |m∗) 6 H(mε

0|m∗) exp(−2κU t) ,

and taking the limit ε→ 0 and using the lower semi-continuity of relative entropy, we
recover the first claim.

Step 2: Decaying bound on x·K?mt(x) and∇ut. In the following, C, c will denote positive
reals that has the same dependency as stated in the theorem and may change from line
to line. Working again with the approximation mε

t , we get by Pinsker’s inequality,

‖mε
t −m∗‖L1 6 exp(−κU t)

√
2H(mε

0|m∗)

6 exp(−κU t)
√

2κ−1U I(mε
0|m∗)

6 exp(−κU t)
√

2κ−1U ‖∇uε0‖2L∞ = C exp(−κU t) .

Then, applying Proposition 4.2, we get

‖Kε ? (mε
t −m∗)‖L∞ 6 C‖mε

t −m∗‖
1−(s+1)/d
L1 ‖mε

t −m∗‖
(s+1)/d
L∞ 6 Ce−ct .

We know that uεt = − ln dmε
t/dm∗ solves the HJB equation

∂tu
ε
t = ∆uεt − |∇uεt |2 + b̃εt · ∇ut + ϕεt

for b̃εt (x) = −κUx−Kε ? mε
t (x) and ϕεt (x) = −κUx ·Kε ? mε

t (x). Note that ϕt satisfies

ϕεt (x) = −κUx ·Kε ? (mε
t −m∗)(x) ,
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since x ·Kε ? m∗(x) = 0 according to the argument in Step 1. Thus, we have

ϕεt (x) = −κU
∫
Rd
x>M∇gε(x− y)(mε

t −m∗)(dy)

= −κU
∫
Rd
y>M∇gε(x− y)(mε

t −m∗)(dy) ,

as x>M∇gε(x) = 0 for all x ∈ Rd. So ϕεt satisfies the bound

‖ϕεt‖L∞ =

∣∣∣∣∫
Rd
y>Kε(x− y)(mε

t −m∗)(dy)

∣∣∣∣
.
∫
B(0,1)

|y|
|x− y|s+1

|mε
t −m∗|(dy) + sup

y:|y−x|>1

|y>Kε(x− y)| ‖mε
t −m∗‖L1

. ‖(mε
t −m∗)1B(x,1)‖Lq + ‖mε

t −m∗‖L1

for q >
(
1− s+1

d

)−1
, according to the argument in the proof of Theorem 4.6. For the Lq

norm we have, by interpolation,

‖(mε
t −m∗)1B(x,1)‖Lq 6 ‖mε

t −m∗‖Lq 6 ‖mε
t −m∗‖

1/q
L1 ‖mε

t −m∗‖
1/p
L∞ . ‖mε

t −m∗‖
1/q
L1

for p−1 + q−1 = 1. Thus, ‖ϕεt‖L∞ 6 Ce−ct, and applying the first claim of Theorem 4.5,
we get ‖∇uεt‖L∞ 6 Ce−ct. The first claim is then proved by taking the limit ε→ 0.

Step 3: Decaying bound on ∇2ut. First, we have

‖∇b̃εt · ∇uεt‖L∞ 6 ‖∇b̃εt‖L∞ · Ce−ct 6
(
‖∇2U‖L∞ + ‖Kε ?∇mε

t‖L∞
)
· Ce−ct ,

where
‖Kε ?∇mε

t‖L∞ . ‖∇mε
t‖

1−(s+1)/d
L1 ‖∇mε

t‖
(s+1)/d
L∞ .

As we have

∇mε
t = −(∇U +∇uεt )mε

t = −∇U exp(−U − uεt )∫
exp(−U − uεt )

−∇uεt mε
t

with ∇U of linear growth and ∇uεt being uniformly bounded, we find that ∇mε
t ∈ L1∩L∞

uniformly. Thus,
‖∇b̃εt · ∇uεt‖L∞ 6 Ce−ct .

The gradient of ϕεt reads

∇ϕεt (x) = −∇
(
κUx ·Kε ? (mε

t −m∗)(x)
)

= −κUKε ? (mε
t −m∗)(x)− κUx ·Kε ?∇(mε

t −m∗)(x) .

The first term on the right hand side is already controlled:

|Kε ? (mt −m∗)(x)| . ‖mt −m∗‖1−(s+1)/d
L1 ‖mt −m∗‖(s+1)/d

L∞ 6 Ce−ct ,

and in the following we show that the same is true for the second term. Again, using the
fact that x ·Kε(x) = 0, we get

x ·Kε ?∇(mε
t −m∗)(x) =

∫
Rd
x>M∇gε(x− y)∇(mε

t −m∗)(dy)

=

∫
Rd
y>M∇gε(x− y)∇(mε

t −m∗)(dy) .

Following the argument in Step 2, we separate the two cases |y−x| < 1 and > 1, and get

sup
x∈Rd

|x ·Kε ?∇(mε
t −m∗)(x)| . ‖∇(mε

t −m∗)‖Lq + ‖∇(mε
t −m∗)‖L1
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for q >
(
1− s+1

d

)−1
. Using the explicit density of mε

t , we get

∇mε
t −∇m∗ = −∇uεt mε

t −∇U(mε
t −m∗) .

The first term satisfies

‖∇uεt mε
t‖L1 6 ‖∇uεt‖L∞‖mε

t‖L1 6 Ce−ct ,

and the second satisfies

‖∇U(mε
t −m∗)‖L1 6 ‖∇2U‖L∞W1(mε

t ,m∗) .
√
H(mε

t |m∗) 6 Ce−ct .

Finally, their densities have the L∞ bounds:

‖∇uεt mε
t‖L∞ 6 ‖∇uεt‖L∞‖mε

t‖L∞ 6 C ,

‖∇U(mε
t −m∗)‖L∞ . sup

x∈Rd
(1 + |x|)

(
exp
(
−U(x)

)∫
exp(−U)

+
exp
(
−uεt (x)− U(x)

)∫
exp(−uεt − U)

)
6 C .

Then, by the same interpolation as in Step 2, we get ‖∇ϕεt‖L∞ 6 Ce−ct. Applying the
second claim of Theorem 4.5, we get

‖∇2uεt‖L∞ 6
Ce−ct√
t ∧ 1

+

∫ t

0

Ce−cv√
v ∧ 1

· Ce−c(t−v) dv 6
Ce−ct√
t ∧ 1

.

Taking the limit ε→ 0, we recover the second claim and this concludes the proof.

4.5.2 Proofs of propagation of chaos

Proof of Theorem 4.9. According to Propositions 4.3 and 4.4, given the initial values
m0, mN

0 , we find respectively approximating sequences mε
0, m

ε,N
0 such that lnmε

0 +

Uε ∈ C∞b and x 7→ lnmε,N
0 (x) +

∑N
i=1 U

ε(xi) ∈ C∞b . The solutions of (4.5) and of the
forward Kolmogorov equation associated to (4.6) being unique, we can use the Feynman–
Kac representation of Proposition B.1 to find that the densities and their classically
derivatives

∇i
(
lnmε

t + Uε
)
, ∇i

(
lnmε,N

t (x) +

N∑
i=1

Uε(xi)

)
, i > 1

exist and grow at most linearly in space (locally in time). Then in the following we can
justify all the exchanges between limit and integration, and all the integrations by parts.
Taking the derivative of the relative entropy Hεt = H

(
mε,N
t

∣∣(mε
t )
⊗N), and denoting the

relative Fisher information by

Iεt = I
(
mε,N
t

∣∣(mε
t )
⊗N) =

∫
RdN

∣∣∣∣∇ ln
mε,N
t (x)

(mε
t )
⊗N (x)

∣∣∣∣2mε,N
t (dx) ,

we get

dHεt
dt

= −Iεt +
1

N − 1

∑
i 6=j

∫
RdN
∇i ln

mε,N
t (x)

mε
t (x

i)

·
(
Kε(xi − xj)−Kε ? mε

t (x
i)
)
mε,N
t (dx)

= −Iεt −
1

N − 1

∑
i 6=j

∫
RdN
∇ lnmε

t (x
i)

·
(
Kε(xi − xj)−Kε ? mε

t (x
i)
)
mε,N
t (dx) ,
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where i, j are summed over J1, NK and the second equality is due to integration by parts
and the fact that ∇ ·Kε = 0. Noting that the regularized N -particle measure mε,N

t has
density and has no mass on the sets {x : xi = xj} for i 6= j, we find that the second term
is equal to, by symmetrization,

− 1

N − 1

N∑
i,j=1

∫
RdN

φt(x
i, xj)mε,N

t (dx) ,

where the function φt(·, ·) is given by

φt(x, y) =
1

2
Kε(x− y) ·

(
∇ lnmε

t (x)−∇ lnmε
t (y)

)
1x6=y

− 1

2
Kε ? mε

t (x) · ∇ lnmε
t (x)− 1

2
Kε ? mε

t (y) · ∇ lnmε
t (y) . (4.12)

The function φt satisfies ∫
Rd
φt(x, y)mε

t (dy) = 0 ,∫
Rd
φt(y, x)mε

t (dy) = 0

for all x ∈ Rd. From now on, the symbols Ci, i ∈ N denote a positive number that has
the same dependency as C, ρ have in the statement of the theorem. For the first term
in (4.12), we have by Theorem 4.6,

sup
x,y : x 6=y

∣∣Kε(x− y) ·
(
∇ lnmε

t (x)−∇ lnmε
t (y)

)∣∣ 6 C1|M |‖∇2 lnmt‖L∞ 6
C2|M |√
t ∧ 1

.

For the last two terms in the definition (4.12) of φt, we have by the same theorem,

|K ?mε
t (x)| 6 C3|M |(1 + |x|)−1 ,

|∇ lnmε
t (x)| = |∇uεt (x)|+ |∇U(x)| 6 C4(1 + |x|) .

Thus,
|K ?mε

t (x) · ∇ lnmε
t (x)| 6 C6|M | .

So the functions φt satisfies

‖φt‖L∞ 6
C7|M |√
t ∧ 1

.

Therefore, using the convex duality for relative entropy, we get

dHεt
dt

= −Iεt + δtHεt + δt ln

∫
RdN

exp

(
1

δt(N − 1)

N∑
i,j=1

φt(x
i, xj)

)
(mε

t )
⊗N (dx) ,

where we set

δt =
3(16002 + 36e4)C7|M |√

t ∧ 1
.

Then, applying the “concentration” estimate [20, Theorem 4] (whose constant is given
explicitly in [16, Theorem 5]), we obtain

dHεt
dt

6 −Iεt +
C8|M |√
t ∧ 1

Hεt +
C8|M |√
t ∧ 1

6 −C9Hεt +
C8|M |√
t ∧ 1

Hεt +
C8|M |√
t ∧ 1

.

We conclude by applying Grönwall’s lemma and taking the limit ε→ 0.
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Proof of Theorem 4.12. The argument is largely the same as the proof above, i.e. the
proof of Theorem 4.9. So here we only indicate the differences. Defining the same φt
function as in (4.12), we find that in the quadratic case, we have the following bounds by
Theorem 4.11: ∥∥∥∥∇ ln

mε
t

m∗

∥∥∥∥
L∞

6 C1e
−ct ,∥∥∥∥∇2 ln

mε
t

m∗

∥∥∥∥
L∞

6
C1e

−ct
√
t ∧ 1

,

sup
x
|x ·Kε ? (mε

t −m∗)(x)| 6 C1e
−ct .

So for the first term in the definition (4.12) of φ, we have, for all x 6= y,∣∣Kε(x− y) ·
(
∇ lnmε

t (x)−∇ lnmε
t (y)

)∣∣
=

∣∣∣∣Kε(x− y) ·
(
∇ ln

mε
t (x)

m∗(x)
−∇ ln

mε
t (y)

m∗(y)

)∣∣∣∣
.

∥∥∥∥∇2 ln
mε
t

m∗

∥∥∥∥
L∞

6
C1e

−ct
√
t ∧ 1

.

For the second term, we have

Kε ? mε
t (x) · ∇ lnmε

t (x) = Kε ? (mε −m∗)(x) · ∇ lnm∗ +Kε ? mε
t (x) · ∇ ln

mε
t (x)

m∗(x)
,

therefore,

‖Kε ? mε
t · ∇ lnmε

t‖L∞ 6 κU sup
x
|x ·Kε ? (mε

t −m∗)(x)|+ ‖Kε ? mε
t‖L∞

∥∥∥∥∇ ln
mε
t

m∗

∥∥∥∥
L∞

6 C2e
−ct .

Combining the two results above, we derive the decaying L∞ bound for φt:

‖φt‖L∞ 6
C3e

−ct
√
t ∧ 1

.

Thus, taking the alternative

δt =
3(16002 + 36e4)C3e

−ct
√
t ∧ 1

,

we get
dHεt
dt

6 −Iεt +
C4e

−ct
√
t ∧ 1

Hεt +
C4e

−ct
√
t ∧ 1

.

Finally, we note that, as the Lipschitz constant of lnmε
t/m∗ tends to zero exponentially,

the perturbed measure mε
t satisfies a kt-LSI with

kt = 2κU exp(−C5e
−c′t) .

Thus, for all t > 0, we have

Iεt > 2κU exp(−C5e
−c′t)Hεt .

We conclude by applying Grönwall’s lemma and taking the limit ε→ 0.
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A Well-posedness of singular dynamics

The mean field well-posedness proof will mainly be based on the estimates on the
convolution with the kernel K in Proposition 4.2 and the following elementary result.

Proposition A.1 (Growth and stability estimates). Let T > 0 and β : [0, T ]×Rd → Rd be
a vector field that is the sum of a Lipschitz and a bounded part, that is, β = βLip + βb

with ∇βLip, βb ∈ L∞. Suppose its divergence is lower bounded: (∇ · β)− ∈ L∞. Let
m : [0, T ]→ P(Rd) be a probability solution to the parabolic equation

∂tmt = ∆mt −∇ · (βtmt) .

Then, for all p ∈ [2,∞], we have

‖mt‖Lp 6 Cp
(
‖m0‖Lp + 1

)
for some Cp depending only on p, d and ‖(∇ · β)−‖L∞ (notably independent of t and T ).

Moreover, let β′ be another vector field satisfying the same conditions as β, and let m′

be a probability solution to the equation corresponding to β′. Then, for all p ∈ {1}∪ [2,∞),
we have

‖mt −m′t‖Lp 6 eC
′
pt‖m0 −m′0‖Lp + C ′p

(
(eC

′
pt − 1)1p>2 +

√
t1p=1

)
sup
v∈[0,t]

‖βv − β′v‖L∞

for some C ′p depending only on p, d, ‖(∇ · β)−‖L∞ , ‖(∇ · β′)−‖L∞ , ‖m0‖Lp and ‖m′0‖Lp .

Proof. First, consider the SDE

dXt = βt(Xt) dt+
√

2 dBt .

Since its drift is the sum of a bounded and a Lipschitz part, we have the existence of
the strong solution and we find that if Law(X0) = m0, then we have the correspondence
Law(Xt) = mt, by the uniqueness of the PDE. Moreover, it is known (see e.g. [6]) that
if we take a mollified sequence approaching towards β, the SDE solution will also tend
to the original one, i.e. X, and we have the continuous dependency on the initial value
as well. So without loss of generality, we can suppose that ∇β ∈ C∞b and m0 belongs to
the Schwartz class. By a Feynman–Kac argument similar to that of Proposition B.1, we
know that mt belongs also to the Schwartz class. Thus, in the following we perform only
formal calculations.

Step 1: Growth estimates. Let p > 2. The Lp norm of mt satisfies

d

dt

∫
Rd
mp
t = p

∫
Rd
mp−1
t ∂tmt

= p

∫
Rd
mp−1
t

(
∆mt −∇ · (βtmt)

)
=

∫
Rd

(
−p(p− 1)mp−2

t |∇mt|2 − (p− 1)(∇ · βt)mt

)
6 −p(p− 1)

∫
Rd
mp−2
t |∇mt|2 + (p− 1)‖(∇ · β)−‖L∞

∫
Rd
mp
t

6 (p− 1)‖(∇ · β)−‖L∞
∫
Rd
mp
t ,

where here and in the following Cp denotes a constant having the same dependencies
as in the statement, and may change from line to line. We would also denote by C
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a constant that does not depend on p, but having the same other dependencies. By
Grönwall’s lemma, we get

‖mt‖Lp 6 exp

(
p− 1

p
(∇ · β)−‖L∞t

)
‖m0‖Lp , (A.1)

and taking p→∞, we get

‖mt‖L∞ 6 exp
(
‖(∇ · β)−‖L∞t

)
‖m0‖L∞ . (A.2)

Now we show that the two estimates above can be improved into time-uniform ones.
To this end, define the operator Lt = ∆ + βt · ∇ and its dual L∗t = ∆−∇ · (βt·). Denote
by (Pu,t)06u6t6T the time-dependent semi-group generated. Specializing to p = 2 in the
Lp computations above, we get

d

dt

∫
Rd
m2
t 6 −2

∫
Rd
|∇mt|2 + ‖(∇ · β)−‖L∞

∫
Rd
m2
t .

The Nash inequality indicates

‖mt‖1+2/d
L2 6 Cd‖mt‖2/dL1 ‖∇mt‖L2 ,

where Cd depends only on d. So by Grönwall’s lemma, we get the uniform-in-time bound
over ‖mt‖L2 :

‖mt‖2L2 6

(
C2
d‖(∇ · β)−‖L∞

2

)d/2
(1− e−κt)−d/2‖mt‖2L1 ,

for κ = 2‖(∇ · β)−‖L∞/d. Note that this bound is independent of ‖m0‖L∞ . Now we take
an arbitrary h0 : Rd → [0,∞) of the Schwartz class and consider the dual evolution
∂uhu = Lt−uhu, that is,

∂uhu = ∆hu + βt−u · ∇hu ,

for u ∈ [0, t], where t ∈ [0, T ]. Deriving the L1 norm of hs and integrating by parts, we get

‖hu‖L1 6 exp
(
‖(∇ · β)−‖L∞u

)
‖h0‖L1 .

Doing the same for the L2 norm, we get

d

du

∫
Rd
h2u = 2

∫
Rd
huLT−uhu

= 2

∫
Rd
hu
(
∆hu + βt−u · ∇hu

)
= −2

∫
Rd
|∇hu|2 −

∫
Rd
h2u∇ · βt−u

6 −2

∫
Rd
|∇hu|2 + ‖(∇ · β)−‖L∞

∫
Rd
h2u .

Again, using the Nash inequality:

‖hu‖1+2/d
L2 6 Cd‖hu‖2/dL1 ‖∇hu‖L2 6 Cd exp

(
2‖(∇ · β)−‖L∞u/d

)
‖h0‖2/dL1 ‖∇hu‖L2 ,

we derive the bound over ‖ht‖L2 :

‖Pt−u,th0‖2L2 = ‖hu‖2L2 6

(
C2
d‖(∇ · β)−‖L∞

2

)d/2
(e−κu − e−2κu)−d/2‖h0‖2L1 ,
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from which follows the bound on ‖Pt−u,t‖L1→L2 . So, taking u = max(t/2, t− κ−1), we get

‖mt‖L∞ = ‖P ∗u,tmu‖L∞ 6 ‖mu‖L2‖P ∗u,t‖L2→L∞

= ‖mu‖L2‖Pu,t‖L1→L2 6 C(t ∧ 1)−d/2‖m0‖L1 . (A.3)

So, combining (A.2) and (A.3) , we get a uniform-in-time bound over ‖mt‖L∞ :

sup
t∈[0,T ]

‖mt‖L∞ 6 C
(
‖m0‖L1 + ‖m0‖L∞

)
. (A.4)

Finally, by differentiating
∫
mt and integrating by parts, we get

‖mt‖L1 = ‖m0‖L1 . (A.5)

Similarly, interpolating between (A.3) and (A.5), we get

‖mt‖Lp 6 C(p−1)/p(t ∧ 1)−(p−1)d/2p‖m0‖L1 ,

and combing with (A.1), we get

sup
t∈[0,T ]

‖mt‖Lp 6 Cp
(
‖m0‖L1 + ‖m0‖Lp

)
. (A.6)

Step 2: Stability estimates. Now let β′, m′ be the other vector field and the probability
solution. Recall that m, m′ correspond respectively to the SDE

dXt = βt(Xt) dt+
√

2 dWt , Law(X0) = m0 ,

dX ′t = β′t(X
′
t) dt+

√
2 dWt , Law(X ′0) = m′0 .

Now introduce the third SDE, whose drift term is identical to the first, but initial condition
identical to the second:

dX ′′t = βt(X
′′
t ) dt+

√
2 dWt , Law(X ′′0 ) = m′0 .

such that P[X0 6= X ′′0 ] = 1
2‖m0 −m′0‖L1 . Denote m′′t = Law(X ′′t ). Thus, conditioning on

the initial condition, we get

‖mt −m′′t ‖L1 6 2P[Xt 6= X ′′t ] 6 2P[X0 6= X ′′0 ] = ‖m0 −m′0‖L1 .

On the other hand, by Pinsker’s inequality and Girsanov’s theorem, we have

‖m′t −m′′t ‖2L1 6 2H(m′t|m′′t ) 6
1

2

∫ t

0

‖βv − β′v‖2L∞ dv .

Combining the two inequalities above yields the L1-stability estimate. Now, let p > 2 and
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let us calculate:

d

dt

∫
Rd
|mt −m′t|p

= p

∫
Rd
|mt −m′t|p−2(mt −m′t)

(
∆(mt −m′t)−∇ · (mtβt) +∇ · (m′tβ′t)

)
= −p(p− 1)

∫
Rd
|mt −m′t|p−2|∇(mt −m′t)|2

+ p

∫
Rd
|mt −m′t|p−2(mt −m′t)

(
−∇ · (mtβt) +∇ · (m′tβ′t)

)
= −p(p− 1)

∫
Rd
|mt −m′t|p−2|∇(mt −m′t)|2

+ p

∫
Rd
|mt −m′t|p−2(mt −m′t)

(
−∇ ·

(
(mt −m′t)β′t

)
+∇ ·

(
mt(β

′
t − βt)

))
6 (p− 1)

∫
Rd
|mt −m′t|p · (−∇ · β′t) +

p(p− 1)

4

∫
Rd
|mt −m′t|p−2m2

t |βt − β′t|2

6
(p− 1)

2
‖(∇ · β′)−‖L∞

∫
Rd
|mt −m′t|p +

(p− 1)(p− 2)

4

∫
Rd
|mt −m′t|p

+
p− 1

2
‖mt‖pLp‖βt − β

′
t‖
p
L∞ .

Then, using the uniform Lp estimate in the first step, applying Grönwall’s lemma and
taking the p-th root, we get the desired result.

Now we are ready to prove the well-posedness of the mean field dynamics.

Proof of Proposition 4.3. Take a p ∈ (1,∞) such that p−1 < 1 − s+1
d and let q be its

conjugate: p−1 + q−1 = 1. We also take a θ ∈ (0, d− s− 1).

Step 1: Well-posedness. Let T ∈ (0,∞). We define the functional space:

X := C([0, T ];L1 ∩ Lp ∩ P) .

The space X is a complete metric space. Given m ∈ X, we let T [m] be the uniqueness
probability solution to the Cauchy problem

∂tT [m]t = ∆T [m]t −∇ ·
(
(K ?mt −∇U)T [m]t

)
, T [m]0 = m0 .

According to Proposition A.1 we know that T [m] ∈ X , where the continuity in L1 ∩ Lp
follows from a density argument. Moreover, by the stability estimate in the proposition,
for all m, m′ ∈ X, we have

‖T [m]t − T [m′]t‖Lr 6 eC
′
rt‖m0 −m′0‖Lr

+ C ′r

(
(eC

′
rt − 1)1r=p +

√
t1r=1

)
sup
v∈[0,t]

‖K ? (mv −m′v)‖L∞

for r = 1, p. But by Proposition 4.2, we have

‖K ? (mv −m′v)‖L∞ . ‖mv −m′v‖
1−q(s+1)/d
L1 ‖mv −m′v‖

q(s+1)/d
Lp .

Thus, restricting to the subspace of X of common initial value and letting T be small
enough, we get that the mapping T is a contraction in X . So a time-local solution exists
and is unique. Thanks to the uniform growth estimates, this short time interval can be
extended infinitely by iteration. So a unique global solution is recovered and it satisfies
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the uniform L∞ bound thanks to Proposition A.1. For the continuous dependency on the
initial value, we use the stability estimates on a small time interval without restricting
the initial values to be the same and iterate infinitely as well.

Step 2: Control of moments. Given the uniform L∞ bound obtained above, we have,
according to Proposition 4.2,

‖K ?mt‖L∞ . ‖mt‖1−(s+1)/d
L1 ‖mt‖(s+1)/d

L∞ .

So the contribution from the interaction kernel is bounded. Then we construct, for k > 0,
the Lyapunov function

Vk(x) =
√

1 + |x|2k ,

and we can easily verify(
∆−∇U · ∇+ (K ?mt) · ∇

)
Vk 6 −ckVk + Ck ,

for some ck > 0, Ck > 0. This implies the uniform bound on the k-th moment.

Step 3: Approximation. Let (mε
t )t>0 be the flow corresponding to the mollified kernel Kε

and potential Uε. Applying the stability estimates in Proposition A.1, we get

‖mt −mε
t‖Lr 6 eC

′
rt‖m0 −mε

0‖Lr

+ C ′r

(
(eC

′
rt − 1)1r=p +

√
t1r=1

)
sup
v∈[0,t]

(
‖K ?mv −Kε ? mε

v‖L∞+‖∇U −∇Uε‖L∞
)
.

Note that the initial Lp error ‖mt −mε
t‖Lp → 0 by interpolation between L1 and L∞. For

the first term in the supremem, we have

‖K ?mv −Kε ? mε
v‖L∞ 6 ‖K ? (mv −mε

v)‖L∞ + ‖K ?mε
v −K ?mε

v ? η
ε‖L∞

6 ‖K ? (mv −mε
v)‖L∞ + εθ[K ?mε

v]Cθ .

By the L∞ and Hölder estimates in Proposition 4.2, we have the following controls:

‖K ? (mv −mε
v)‖L∞ . ‖mv −mε

v‖
1−q(s+1)/d
L1 ‖mv −mε

v‖
q(s+1)/d
Lp ,

[K ?mε
v]Cθ . ‖mε

v‖
1−(s+1+θ)/d
L1 ‖mε

v‖
(s+1+θ)/d
L∞ .

For the second term we simply bound ‖∇U −∇Uε‖L∞ 6 ‖∇2U‖L∞ε. Since mε is again
uniformly bounded in L1 ∩ L∞, we get an error bound between mt and mε

t for small t
and we iterate infinitely.

Finally, we prove the well-posedness of the particle system in the non-attractive
sub-Coulombic and Coulombic cases.

Proof of Proposition 4.4. Define for n ∈ N the sequence of stopping times:

τn := inf
{
t > 0 :

∣∣Xi
t −X

j
t

∣∣ 6 1/n for some i 6= j
}
.

Then the original SDE system (4.2) stopped at τn is well defined according to Cauchy–
Lipschitz theory. Consider the “energy” functional

E(x) = E(x1, . . . , xN ) =
1

2

∑
i,j∈J1,NK

i6=j

gs(x
i − xj) +

N1s=0

2

N∑
i=1

|xi|2 .

EJP 29 (2024), paper 154.
Page 34/38

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1217
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Time-uniform LSI and applications to PoC

The energy functional is always lower bounded, and by Itō calculus, we find that
E
[
E
(
Xt∧τn

)]
is upper bounded uniformly in n. Then using the Markov inequality for

the energy, we show that P[τn 6 t]→ 0 when n→∞. This implies that limn→∞ τn =∞
almost surely, thus the local well-posedness of the SDE extends to the half line [0,∞).
That is to say the first claim is proved.

Now prove the second claim. For each n ∈ N, we construct a Lipschitz kernel
K̃n : Rd → R such that K̃n(x) = K(x) for x ∈ Rd with |x| > 1/n. Define the convolution
K̃ε
n = K̃n ? η

ε and consider the SDE system

dX̃ε,i
n,t = −∇Uε

(
X̃ε,i
n,t

)
dt+

1

N − 1

∑
j∈J1,NK\{i}

K̃ε
n

(
X̃ε,i
n,t − X̃

ε,j
n,t

)
dt+

√
2 dW i

t ,

for i ∈ J1, NK, with initial condition X̃ε
n,0 = X0. Define the stopping time

τεn := inf
{
t > 0 :

∣∣X̃ε,i
n,t − X̃

ε,j
n,t

∣∣ 6 1/n+ ε for some i 6= j
}
.

By construction, we know
X̃ε
n,t∧τεn = Xε

t∧τεn a.s.

On the other hand, by Cauchy–Lipschitz theory, we know

sup
t∈[0,T ]

∣∣X̃ε
n,t∧τn −Xt∧τn

∣∣ 6 C(n,N,K,U, T )ε a.s.

Thus, for each n ∈ N, there exists ε0(n,N,K,U, T ) > 0 such that for all ε 6 ε0, we have

sup
t∈[0,T ]

∣∣X̃ε
n,t∧τn −Xt∧τn

∣∣ 6 1

3n
a.s.

In particular, we get for all ε 6 ε0, t 6 T ∧ τn and i 6= j,∣∣X̃ε,i
n,t − X̃

ε,j
n,t

∣∣ > 1

3n
a.s.

Consequently, for ε 6 ε1(n,N,K,U, T ) := ε0 ∧ 1/(13n), we have T ∧ τn 6 τε4n, and
therefore,

sup
t6T∧τn

∣∣Xε
t −Xt

∣∣ = sup
t6T∧τn

∣∣Xε
t∧τε4n −Xt

∣∣ = sup
t6T∧τn

∣∣X̃ε
4n,t −Xt

∣∣
6 C(4n,N,K,U, T )ε a.s.

Thus, taking ε → 0, we get Xε
t∧τn → Xt∧τn a.s. for all t 6 T . We recover the second

claim by using the arbitrariness of T and the fact that limn→∞ τn =∞ a.s.

B Feynman–Kac formula

Proposition B.1. Let T > 0. Suppose β : [0, T ] ×Rd → Rd and ϕ : [0, T ] ×Rd → R are
measurable functions and suppose that there exists C > 0 such that for all t ∈ [0, T ] and
x ∈ Rd, we have

|β(t, x)| 6 C(1 + |x|) ,
|ϕ(t, x)| 6 C(1 + |x|) ,∣∣∇kxβ(t, x)

∣∣ 6 C , for k ∈ J1, 3K ,∣∣∇kxϕ(t, x)
∣∣ 6 C , for k ∈ J1, 2K .
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Suppose in addition that f0 : Rd → R is measurable and satisfies, for the same constant
C, and for all x ∈ Rd,

|∇kf0(x)| 6 C exp
(
C(1 + |x|)

)
, for k ∈ J0, 2K .

Then, the function f : [0, T ]×Rd → R defined by

f(t, x) = E

[
exp

(∫ t

0

ϕ
(
t− u,Xt,x

u

)
du

)
f0
(
Xt,x
t

)]
,

where Xt,x
· solves

dXt,x
u = β

(
t− s,Xt,x

u

)
du+

√
2 dBt , u ∈ [0, t] , Xt,x

0 = x ,

is a strong solution to the Cauchy problem

∂tf = ∆f + β · ∇f + ϕf , f |t=0 = f0

with the following bound: there exists C ′ > 0 such that for all t ∈ [0, T ] and x ∈ Rd, we
have

|∇kf0(t, x)| 6 C ′ exp
(
C ′(1 + |x|)

)
, for k ∈ J0, 2K .

The result can be easily obtained by differentiating the defining SDE of the process
Xt,x
· . We refer readers to e.g. the appendix of [8] for details.
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