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Significance  Statement:  In  this  synthesis  paper,  we  stress  the  importance  of
incorporating causal relationships for the modelling of species distribution. Here, we
propose the modelling relation as a conceptual framework for modelling complex and
hierarchical processes underlying the distribution of living organisms. We provide an
application of the modelling relation using a virtual species example and a structural
equation modelling approach. The modelling relation allows setting the boundaries of
the modelling exercise, increasing model robustness in depicting natural patterns,
eventually resulting in clear practical applications tightly linked to the ecology of the
target species.
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Abstract

1. Understanding the processes underlying the distribution of species through
space and time is  fundamental  in  several  research fields spanning from
ecology  to  spatial  epidemiology.  Correlative  species  distribution  models
(SDMs)  involve  popular  statistical  tools  to  infer  species  geographical
distribution  thanks  to  spatiotemporally  explicit  observations  of  species
occurrences coupled with a set of environmental predictors.

2. So-called SDMs rely on the niche concept to infer or explain the distribution
of species, though often focusing only on the abiotic component of the niche
(e.g., temperature, precipitation), without clear causal links to the biology of
species under investigation. This might result in an over-simplification of the
complex  niche  hypervolume,  resulting  in  a  single  model  formula  whose
estimates and predictions lack ecological realism. 

3. We believe that a causal perspective associated with a finer definition of the
modelling target is necessary to develop ecologically more realistic outputs.
Here,  we propose  to  infer  the  geographical  distribution  of  a  species  by
applying the modelling relation approach, a  causal conceptual framework
developed  by  the  theoretical  biologist  Robert  Rosen,  which  can  be
formalized through structural equation modelling (SEM).

4. Implementing the modelling relation into SDMs would improve the inclusion
of the causal processes underlying the spatial distribution of species into an
inferential formal system, potentially highlighting the methodological steps
where uncertainty arises and eventually resulting in model outputs which
are tightly linked to the ecology of the target species. 

Keywords: Directed Acyclic Graph; Environmental Niche Models; Habitat
Suitability Models; Path Analyses; Process-based Models; Robert Rosen;
Statistical models; Virtual Species.
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1 Introduction 
Understanding the processes underlying the distribution of species through space
and  time  is  a  fundamental  topic  in  several  research  fields  including  ecology,
epidemiology,  and  biodiversity  conservation  (Franklin  2023).  The  geographical
distribution of a species is commonly inferred using the so-called species distribution
models  (SDMs).  Here  we  define  SDMs as  correlative  models  (e.g.,  generalized
linear  models,  random  forest,  maxent)  that  establish  a  statistical  relationship
between an observed response variable describing the species distribution in the
geographical space (e.g., presence-absence) and a set of predictors describing the
environmental space occupied by the species over large geographical extents. The
rapid  availability  of  open-access  biodiversity  data  (e.g.,  BIEN,  sPlotOpen,  GBIF;
Enquist et al. 2016; Sabatini et al. 2021; GBIF 2023), environmental predictors (e.g.,
WorldClim, Fick and Hijmans, 2017), and open source statistical languages like R,
contributed to the tremendous diffusion of these correlative approaches over the past
two decades (Araújo et al., 2019; Franklin 2023).

Nevertheless, numerous authors have raised concerns regarding the capacity
of SDMs to accurately infer species distributions (Kearney and Porter, 2009; Araújo
et  al.,  2019;  Lee-Yaw  et  al.,  2022),  expressing  specific  criticisms  about  (i)  the
conceptual background of correlative SDMs (Kearney, 2006; Austin, 2007), (ii) the
quality of the input data used to train the models (e.g., spatial and temporal biases
when sampling distribution data; Hortal et al., 2008; Fourcade et al., 2014, Rocchini
et  al.,  2023),  (iii)  the  mismatch  between  the  environmental  conditions  actually
experienced by the target species and the spatial  and temporal resolution of the
abiotic predictors used in SDMs (Urban et al., 2016; Lembrechts et al., 2020), and
the ecological realism of SDMs outputs (e.g., Lee-Yaw et al., 2022). These pitfalls
have been widely discussed in the scientific literature and several methodological
papers on the best practices were proposed (see for instance Araújo et al., 2019;
Zurell et al.,  2020; Sillero et al., 2021). The correlative aspect of these modelling
exercises  however  remains,  making  SDM  predictions  often  interpreted  and
evaluated mostly from a statistical  perspective (e.g.,  models'  predictive accuracy)
rather than from their ecological realism (Austin et al.,  2006; Merow et al.,  2014;
Hellegers et al., 2020).

In  contrast,  many scientists  have argued for  a  causal  approach to  SDMs,
incorporating  biological  knowledge into  the  models,  and defining  the  hierarchical
structure  among  the  various  factors  influencing  the  geographical  distribution  of
species (e.g., Kearney and Porter, 2009; Austin, 2007; Purse and Golding, 2015;
Urban et al., 2016; Chapman et al., 2019). For instance, models based on species
life  history  traits  (i.e.,  the  characteristics  influencing  individuals'  performance  or
fitness;  Nock  et  al.,  2016;  Dawson  et  al.,  2021),  have  been  proposed  as  an
implementation of classic correlative SDMs, since these life history traits may reflect
the  different  responses  of  a  species  to  processes  that  modulate  its  distribution
(Regos et al., 2019). These models have the advantage of making explicit the causal
links between the biology of the target species and its environment, although their
complexity  and the huge amount  of  information they require  for  parameterisation
make them less tractable.

The use of Bayesian approaches and the tuning of Bayesian priors, which
entail the incorporation of prior knowledge through the use of Bayes' rule, constitutes
another method to include causal mechanisms while remaining within the framework
of  correlative  methods  (van  de  Schoot  et  al.,  2021).  These  approaches  proved
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particularly useful when hierarchical structures had to be incorporated in the models,
as when dealing with complex spatiotemporal dynamics or when sampling efforts
varied (Mäkinen and Vanhatalo, 2018). 

An  alternative  approach  to  account  for  prior  knowledge  and  hierarchical
structure  relies  on  the  use  of  structural  equation  modelling  (SEM).  The  SEM
approach provides a comprehensive framework for modelling and analysing complex
systems  by  incorporating  both  observed  and  unobserved  variables,  allowing
researchers to go beyond simple correlations and examine the underlying structural
relationships among variables (Grace, 2006). A central concept in SEM is the meta-
model,  which  defines  the  hierarchical  structure  among  several  response  and
explanatory variables. This meta-model is essentially a theoretical framework that
represents the researcher's understanding of how the variables are interconnected,
describing  the  relationships  between  the  variables  based  on  prior  knowledge,
theoretical foundations, or empirical evidence. Such a graphical representation of the
links  and interconnections among several  response and  explanatory  variables  is
borrowed  from graph  theory  and  computer  science,  usually  referred  as  directed
acyclic graphs (DAGs) with a set of rules that can be applied for observational causal
inference in ecology (Arif and MacNeil 2022).

Independently  from  the  type  of  algorithm  or  statistical  approach  used  in
SDMs, incorporating causal relationships and drawing a DAG diagram for SDMs’
applications  requires  a  deeper  understanding  of  the  species  biology  and  the
formulation of clear causal hypotheses about the drivers underlying the geographical
distribution of the focal species. Given the widespread use of SDMs and their critical
role in various research fields, we believe that embracing a causal perspective in
SDMs is not only timely but also essential. Therefore, in this paper, we propose a
conceptual and a technical solution, borrowed from the SEM approach and graph
theory relying on DAG representations, to take causal relationships into account in
SDMs exercises. From a pure conceptual-level perspective, we introduce the Robert
Rosen’s  modelling  relation  framework  (Rosen  1978;  1986;  1993)  as  a  causal
scheme to guide the design of species distribution models. Robert Rosen (1934 –
1998), a theoretical biologist, introduced the conceptual framework called "modelling
relation"  as  a  fundamental  principle  in  understanding  and  representing  complex
systems like living organisms, arguing that traditional mathematical models often fall
short  in  capturing  their  complexity  (Rosen,  1978,  1986).  The  modelling  relation
highlights  the  idea  that  a  model  should  capture  the  essential  organizational
relationships and constraints of a system, capturing the underlying organizational
principles  that  guide  the  system's  behaviour  rather  than  merely  describing  its
components and interactions (Rosen 1993). Rosen's emphasis on organization was
a  reaction  against  reductionist  approaches  that  focus  solely  on  the  individual
components of a system without considering a more holistic view of the systemic
interactions and causal constraints that give rise to system’s properties. 

From a more technical viewpoint, we propose to use SEM as the inferential
approach  within  the  modelling  relation  framework  (the  formal  system  in  Robert
Rosen’s modelling relation scheme; Fig. 1), aiming to better integrate the underlying
causal processes behind the distribution of a species. We highlight the importance of
a carefully constructed conceptual model, using SEM approaches or DAGs that are
built upon the hierarchical nature of the relations linking a species distribution with its
environment,  to  implement  meaningful  causal  relationships  and  increase  the
ecological  realism  of  SDMs.  To  illustrate  this,  we  use  a  set  of  virtual  species,
transferring our hypothesized causal diagram or DAG into a SEM framework and
comparing its results with those of a generalized linear model (GLM), a common
method used in correlative SDMs.
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2 Incorporating hypothesized causal 
relationships into SDMs
The niche concept is a fundamental notion in ecology and represent the conceptual
backbone of SDMs. Different definitions of the niche concept have been proposed
(Pocheville et al., 2015; Sales et al., 2021), but, essentially, the niche concept aims
to define the environmental  space in which a species could exist,  allowing us to
identify the geographical area where those environmental conditions are met, and
the species can persist and reproduce. The design and interpretation of correlative
SDMs is usually framed within the niche concept provided by Soberón and Peterson
(2005), the so-called biotic, abiotic, and movement (BAM) framework. According to
the  BAM  framework,  biotic  and  abiotic  factors,  as  well  as  species  dispersal
limitations,  determine the geographical  distribution  of  a  species.  The intersection
between the biotic and abiotic components returns the realized niche of the species
(sensu Hutchinson,  1957).  Consequently,  the  intersection  between  the  realized
niche  and  the  accessible  areas  defines  the  actual  or  realized  geographical
distribution  of  the  species  (Soberón  and  Peterson,  2005).  In  fact,  the  BAM
framework provides a way to operationalize the niche concept in the geographical
space, making it appealing for inferring the distribution of a species through SDMs.
Since  its  introduction  in  2005,  the  BAM  framework  has  become  a  mainstay  in
correlative SDMs exercises and has been applied in multiple scientific fields (e.g.,
Escobar and Craft, 2016; Bible and Peterson, 2018; Franklin 2023).

Correlative SDMs’ outputs depict (and synthesise) the distribution of a species
as  a  detailed  and  spatially  contiguous  map  representing  an  index  of
environmental/habitat suitability (Guisan et al., 2017), with the maximum values of
this  index typically  interpreted as the areas that  are most  suitable for  the target
species.  These  maps  are  often  visually  attractive  and  are  assumed  to  be
straightforward  to  read  and  interpret,  thus  contributing  to  the  promotion  and
dissemination  of  SDMs.  These outputs,  however,  are  primarily  assessed from a
statistical perspective (e.g., the models’ predictive accuracy) rather than in terms of
their  ecological  realism.  Many  efforts  have  been  devoted  to  solve  various
methodological issues of SDMs, mainly dealing with: statistical techniques; spatial
and temporal autocorrelation in the data; spatial and temporal sampling bias of the
response variable; variable selection; model selection; and predictive accuracy. The
scientific literature is very rich in that respect (e.g., Muscarella et al., 2014; Fourcade
et al., 2014; Varela et al., 2014; Aiello-Lammens et al., 2015; Qiao et al., 2015, 2019;
Hallgren et al., 2019; Brun et al., 2020; Simmonds et al., 2020; Bazzichetto et al.,
2023;  see Sillero and Barbosa,  2020 for  a  summary of  common methodological
pitfalls of SDMs and Sillero et al., 2021 for a step by step methodological guide to
SDMs).

However,  the  conceptual  background necessary  for  generating  meaningful
and hypothesis-driven SDMs has been much less discussed (but see Araujo and
Guisan 2006;  Austin  2007;  Thuiller  et  al.  2013).  Interest  in  alternative modelling
approaches looking for  deeper  causal  relationships between the distribution of  a
species and its potential determinants has been growing (Kearney and Porter, 2009;
Hartemink et al., 2011; Urban et al., 2016; Feng., 2017; Staniczenko et al., 2017;
Briscoe  et  al.,  2019;  Kraemer  et  al.,  2019;  Arif  and  MacNeil,  2023).  Indeed,  a
modelling perspective based on the biology of the target organism and associated
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with  a  finer  definition  of  the  objective  of  the  model  might  help  to  develop more
ecologically  realistic  outputs  with  explicit  causal  links.  This  would  help  to  avoid
correlative SDMs outputs biased by spurious correlative spatial structure underlying
both response variable and predictors, especially when the predictors have no direct
causal  links  with  the  response  variable  (Lozier,  Aniello  and  Hickerson,  2009;
Fourcade et al., 2018; Journé et al., 2020), and to foster more meaningful and scale-
appropriate interpretation of the results. 

Incorporating causal relations into a model requires a basic knowledge of the
study  system  or  organism  under  investigation  in  order  to  formulate  specific
hypotheses that  can later  be  translated  into  model  equations.  In  this  paper,  we
define a causal relationship as one for which scientists have a mechanistic basis for
expecting that variations induced in a driver variable can lead to a change in the
distribution  of  a  response  variable.  This  definition  corresponds  to  the  general
scientific definition employed in the natural sciences and is the definition associated
with the enterprise of causal modelling (Grace and Irvine 2020). We recognize that
the alternative enterprise of inferring causal relations from data in the absence of
mechanistic  knowledge,  a  common  situation  in  the  social  sciences,  introduces
additional requirements.

Several authors have proposed practical suggestions or guidelines to clarify
the model assumptions and increase model’s biological realism (e.g., Araujo et al.,
2019;  Chapman  et  al.,  2019;  Zurell  et  al.,  2020;  Srivastava  et  al.,  2021).
Conceptually  speaking,  we  believe  the  so-called  modelling  relation  framework
developed by Robert Rosen in the 1980s (Rosen, 1985) could be especially relevant
to incorporate causal relationships into SDMs.

2.1 Rosen’s modelling relation
Robert Rosen’s modelling relation framework is a conceptual framework designed to
understand how a biological system could be coded into an inferential mathematical
system through causal inference (Mikulecky, 2001). The modelling relation can be
defined as a process of relating two structures, a material one governed by causality,
and a mathematical  one governed by inferential  rules (see Chapt.  2-3 in Rosen,
1986). The former is the  natural system, hence the  causal  system of investigation,
while the latter is the  formal  system  used to infer the  natural  one (Fig.  1A). The
relation  between these two structures is  given by  ’encoding’  the  causality  of  the
natural system into a  formal system of inference and by ’decoding’ such inference
back to the causal phenomenon. The encoding arrow drawn from left to right of Fig.
1A, represents the observations and measurements of the natural systems aiming to
capture its causality, while the arrow from the formal system toward the natural one
represents the decoding operation of the prediction into the natural system made by
the mathematical formal system.
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[double column] Figure 1: (A) Robert Rosen’s modelling relation. (B) Example of application of the modelling relation to model
the distribution of a species (natural system, depicted in green within the Biotic Abioti Movement (BAM; conceptual framework)
by means of a Structural Equation Model (SEM; formal system).

Though the  view of  an  inferential  model  in  Rosen’s  modelling  relation  is  not
completely  new  (Pattee,  2007)  and  shares  the  same  rationale  of  the  backdoor
criteria used when building DAGs (i.e., it uses domain knowledge, above all else, to
determine the best causal model for a given causal query; see Arif and MacNeil,
2022), the modelling relation framework represents a valid epistemological tool to
guide (and refine) the incorporation of ecological knowledge into more biologically
realistic  SDMs.  To  design  the  inferential  model  structure,  the  encoding  section
requires that the user summarizes the main assumptions and the uncertainties about
the natural system (e.g., the main determinants of the distribution of a given species
following the niche theory, such as the BAM diagram; Fig. 1A), and to define them as
mathematical  equations  and  relations  (e.g.,  translating  the  BAM  diagram  into  a
causal and mathematical diagram; Fig. 1B). Clearly, if these assumptions are wrong
or imprecise, we would obtain biased predictions, eventually resulting in a lack of
ecological  realism.  In  this  view,  Siekmann  (2018)  proposes  Rosen’s  modelling
relation as a type of process-based model where the model outputs from the formal
system  can  be  compared  to  the  natural  system  and  used  to  validate  the
assumptions. Similarly, an ecological process-based model generally focuses on a
particular aspect of the natural system such as a given life history trait of the target
species,  thus  providing  a  possible  explanation  according  to  the  underlying
assumptions of the formal system (Siekmann, 2018). It follows that various models
can  be  built  under  different  assumptions  (e.g.,  different  and  competing  causal
diagrams), and their results compared and interpreted in the light of the ecological
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assumptions they respectively made on the natural system (Fudge and Turko, 2020).
Rosen’s  modelling  relation  can  thus  be  used  to  design  and  compare  different
competitive  hypotheses  about  the  investigated  natural  system,  therefore  treating
modelling as an experimental exercise (Siekmann, 2018; Metcalf, 2019).

2.2 Applying Rosen’s modelling relation
To date, few attempts have been made to include the modelling relations into SDMs
exercises. For instance, Kineman (2007, 2009) as well as Kineman and Wessman
(2021) applied a correlative approach where response curves between the predicted
habitat  suitability  and  the  environmental  factors  were  mostly  tuned  by  visual
interpretation  and  expert-based  assessment.  In  particular,  Kineman  (2007)
highlighted how his approach was mainly designed as an exploratory tool to learn
about ecological relationships and test ecological hypotheses. However, we could
not  find  a  broader  application  of  Rosen’s  modelling  relation  aiming  at  modelling
species  distribution.  As  a  conceptual  framework,  the  modelling  relation  is
independent from the statistical method used (Siekmann, 2018; Metcalf, 2019), but
we suggest that the rationale behind the SEM approach (Grace, 2006) fits well within
the modelling relation formal system.

The  SEM  approach  provides  a  comprehensive  framework  for  analysing
complex  relationships  (both  direct  and  indirect)  among  variables  by  combining
elements of factor analysis, regression analysis, and path analysis (Grace, 2006). A
structural equation model begins with a causal diagram, a graphical representation
of the hypothesized causal structure of the studied system (Fan et al., 2016; Garrido
et al.,  2022).  One effective approach is the utilization of DAGs (Greenland et al.,
1999;  Pearl  et  al.,  2016),  which  are  constructed  to  represent  researchers'
hypotheses regarding how explanatory variables influence the response variable(s).
Each variable can be defined as exogenous, endogenous or mediator. Exogenous
variables are only independent variables (i.e., only pointed towards other variables).
Endogenous variables are dependent variables (i.e., pointed at by other variables),
but can also be used as independent variables pointing towards other endogenous
variables in more complex structures, playing a mediating effect (i.e., mediators). For
instance, variable A may affect variable C either directly or indirectly via a mediating
effect from variable B, which means that variable A is exogenous while B and C are
endogenous.  Through  SEM,  DAGs  can  unveil  confounding  factors  that  must  be
considered in regression analysis to obtain unbiased coefficients.  Moreover,  they
can reveal mediation pathways or situations involving multiple response variables
(Grace, 2006).

The strength of SEM relies on testing different hypotheses (i.e., different causal
diagrams that can be used as candidates and competing “meta-models”) about the
causal relationships between the variables considered in the studied system. Recent
advances in SEM allow us to deal  with a wide range of error distributions (e.g.,
Poisson and binomial families) and data structures (e.g., hierarchical or longitudinal
dataset), thanks to the piecewiseSEM R package (Lefcheck, 2016; Lefcheck, Byrnes
and Grace 2020). Indeed, the hypothesized set of causal pathways can be validated
only if the proposed model is consistent with the observations. In other words, if the
model-estimated  variance-covariance  matrix  can  predict  the  variance-covariance
matrix of the observational dataset:

Σ = Σ(Φ) (1) 

where Σ is the observed variance-covariance matrix, and Σ(Φ) is the model-
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estimated covariance matrix expressed in terms of Φ, the matrix of model-estimated
parameters  (i.e.,  coefficients).  Austin  (2007)  was  one  of  the  very  first  scientists
proposing the application of SEM to SDMs, advocating the importance of including
and  evaluating  a  causal  structure  into  the  modelling  exercise.  However,  due  to
technical limitations such as the application of SEM to data not fitting a Gaussian
error distribution and the estimate of only linear relationships prevented a broader
application of this methodology to data types commonly found in ecological studies
(Lefcheck, 2016; Grace, 2022). Recent technical developments overcome some of
these limitations (e.g., Chu et al., 2019; Carvalho-Rocha et al., 2021; Cerqueira et
al., 2021; Quiroga et al., 2021), but their application into SDMs remains surprisingly
low.

3 Case study
To illustrate the potential of using SEM directly embedded into Rosen’s modelling
relation (cf. the formal system) and rooted in the BAM framework of the niche theory
used  in  most  SDM  studies  (cf.  the  natural  system),  we  used  a  virtual  species
approach  (Leroy  et  al.,  2016;  Meynard  et  al.,  2019).  We  first  simulated  the
geographical distribution of two virtual species. The first one is fully dependent on
the  abiotic  conditions  while  the  second  one  is  influenced  by  both  the  abiotic
conditions and the presence of the first species. Then, we provided a causal diagram
or DAG aiming to explain the spatial  distribution of the second virtual species by
means of both direct and indirect (mediating) effects from both abiotic and biotic (the
first virtual species) constraints.

3.1 Virtual species
The virtual species approach provides the great advantage of knowing exactly the
species’ ecological niche and its predicted distribution into the geographical space
(Meynard et  al.,  2019).  Here,  for  the sake of  simplicity,  we considered only  two
bioclimatic variables retrieved from the WorldClim2 database (BIO1 for mean annual
temperature and BIO12 for mean annual precipitation; Fick and Hijmans, 2017). The
spatial extent of the area of interest (AOI; spatial resolution of ~10 minutes, ~18.6
km at the Equator) was cropped to match that of Central and Southern Europe to
reduce the computational effort of this illustrative application (Fig. 2A-B).

Specifically, we created a virtual tree species whose geographical distribution
depends  on  its  response  to  both  BIO1  (thermal  range:  5-13°C)  and  BIO12
(precipitation range:  526-1257 mm; Fig.  S1.1A-B).  This  results  in  a  tree species
mostly  distributed  in  the  mountainous  area  of  Europe  (Fig.  2D),  displaying  a
continentality  gradient  (East-West  macroclimatic  gradient)  coupled  with  higher
suitability at the cold end of the BIO1 gradient. The geographical distribution of the
second virtual species, a shade-tolerant herbaceous species, is driven by the same
abiotic variables as the virtual tree species, but favoured by a warmer range of mean
annual temperature conditions (thermal range: 11-20°C) and a drier range of mean
annual precipitations (precipitation range: 255-739 mm; Fig. S1.1AB), resulting in a
wider potential geographical distribution compared to the three species if considering
abiotic component only. The true species habitat suitability (p) across the AOI was
generated using binomial generalised linear models (GLMs), or logistic regressions,
assuming sigmoid (i.e., non-quadratic) response curves between the occurrence of
the species and the chosen predictors (Eq. 2), and following the approach described
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in Bazzichetto et al. (2023).

logit(pi) = α + βpr x precipitations + βtm x temperature (2)

where logit(pi) is the natural logarithm of the odd ratio p i /(1-pi ), α is the model
intercept, βpr is the regression parameter for the linear term (i.e., sigmoid shape) of
precipitation, βtm is the regression parameter for the linear term (i.e., sigmoid shape )
of temperature. Regression parameters for the tree species were set to 1 (α), 0.01
(βpr), and -1 (βtm), whilst for the herb species, they were set to 1 (α), 0.015 (βpr), and -
0.85 (βtm). Logit-transformed probabilities were turned to the unit interval [0,1] using
the logistic function available through the plogis function in the stats R package (R
Core Team, 2023).

We decided to constrain the geographical distribution of the herb species by
the occurrence of the virtual tree species, to simulate an obligate biotic interaction
(i.e., the herbaceous species benefits from growing in the shade of the virtual tree
species). To simulate this biotic constraint, we computed the germination rate of the
virtual herbaceous species as a function of the habitat suitability of the virtual tree
species: namely, the germination rate of the virtual herbaceous species increased
logarithmically with the habitat suitability provided by the virtual tree species (Fig.
S1.1C).

Eventually,  the resulting geographical  distribution of  the virtual  herbaceous
species (Fig. 2E) was defined by the intersection between its climatic niche and the
biotic constraint  of  its germination rate depending on the habitat  suitability of  the
virtual  tree  species  (Fig.  2A-C).  The obtained habitat  suitability  maps of  the two
virtual species (Fig. 2D-E) were then converted into presence-absence maps using
the function convertToPA of the virtualspecies R package.

To  add  stochasticity  in  this  simulation  exercise,  we  generated  three  different
scenarios  for  the  dispersal  capacity  of  the  virtual  herb  species,  by  varying  its
geographical prevalence (the number of pixels actually occupied by the species out of
the total number of pixels available in the geographical space), while keeping fixed the
virtual  tree  species  geographical  prevalence.  As  a  result,  we  assigned  a  fixed
geographical  prevalence  equals  to  0.4  to  the  virtual  tree  species,  while  for  the
herbaceous species we simulated three dispersal scenarios (low, medium, high) whose
underlying geographical prevalence was set to 0.25, 0.50, and 0.75, respectively (Fig.
S1.2).  We then randomly sampled 500 locations across the AOI  to extract information
on the presence-absence of each of the two virtual species, the value of the germination
rate of the virtual herbaceous species, as well as the values of BIO1 and BIO12 (Fig.
2F). We  repeated this operation 10 times, the predictive accuracy of each simulation
was estimated using a spatial cross-validation with 15 spatial folds retaining 80% of the
observations for training and 20% for testing. This allowed us to generate a toy dataset
to  calibrate  our  SEM models  built  within  the Rosen’s  modelling  relation. A detailed
description of the virtual species simulation, the sampling methodology and the R codes
used  to  generate  this  modelling  exercise are  available  on  GitHub
https://github.com/danddr/SEM_SDMs  .    
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[double column] Figure 2: (A-B) The set of abiotic variables (BIO1 and BIO1) used to create the two virtual species. (C) The
germination rate of the virtual herb species computed as a function of the habitat suitability of the virtual tree species. (D) The
habitat suitability of the virtual tree species. (E) The habitat suitability of the virtual herb species.( F) Sampling locations. The
geographic projection used is the WGS84 - World Geodetic System 1984, EPSG: 4326.

3.2 Statistical analysis
The main goal of this modelling exercise is to demonstrate the applicability of the
SEM  approach  (cf.  causal  diagrams)  within  Rosen’s  modelling  relation  and  to
compare its predictive accuracy along with the stability of model’s coefficients  with
respect to a traditional SDM algorithm not relying on causal diagrams such as GLMs.
By presenting the modelling relation as a hypothesis testing conceptual exercise, we
hypothesized a causal diagram aiming to describe the distribution of the target forest
herb  species  (Fig.  3),  whereby  the  geographical  distribution  of  the  forest  herba
species  represents  the  natural  system  and  the  causal  diagram  from  the  SEM
approach represents the formal system. In the causal diagram or DAG (Fig. 3):

 BIO1 and BIO12 (abiotic components) have a direct effect on both the virtual tree
and the virtual herb species distribution (Eq. 3, 5);

Tree ~  BIO1 + BIO12 (3)
 the occurrence of the virtual tree species has a direct effect on the germination

rate of the herb species and an indirect (via the germination rate) effect on the
actual distribution of the virtual herb species (Eq. 4);

Germination rate ~  Tree (4)
 the germination rate (biotic component) of the virtual herb species has a direct

effect on the actual distribution of the virtual herb species (Eq. 5).
Herb ~  BIO1 + BIO12 + Germination rate (5)
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[single column]  Figure 3: Hypothesized causal diagram explaining the distribution of the virtual herb species. Purple boxes
indicate abiotic variables, orange boxes indicate biotic variables while green box displays the response variable.

The causal diagram was then converted into a set of candidate models (Eq. 3-
5)  using  the  piecewiseSEM  and  semEff  R  packages  (Lefcheck,  2016;  Murphy,
2020). The congruence of the estimated variance-covariance matrix hypothesized in
the SEM with the observed variance-covariance matrix in the data was evaluated for
each geographic prevalence and cross-validation iterations using a Fisher’s C test,
whose null hypothesis (H0) is that the model variance-covariance matrix can predict
the observed variance-covariance matrix. Hence, a p-value > 0.05 for the Fisher’s C
test implies that the estimated variance-covariance matrix from the causal diagram
mirrors the observed one in the data, therefore validating it (Lefcheck, 2016).

Finally,  for  comparison  purposes  and  as  an  example  of  a  classic  non-
hierarchical SDM, we computed a binomial GLM, where the presence-absence of
the virtual herb species (cf. the only response variable) was modelled as a function
of  three  predictor  variables:  BIO1,  BIO12,  and  the  germination  rate.  We  also
computed a set of metrics routinely used to assess the predictive performance of
SDMs: (i) the area under the ROC curve (AUC); (ii) sensitivity; (iii) specificity; (iv) the
true skill statistic (TSS); (v) the coefficient of determination (R2, here to be intended
as a pseudo-R2  computed using the Nagelkerke approach) ; (vi) and the root mean
squared error (RMSE). The R2 and the RMSE were computed by comparing the true
(i.e., simulated) habitat suitability of the virtual herb species with the one predicted by
each combination of models and geographical  prevalence (Meynard and Kaplan,
2012). A detailed description of the validation metrics is available in Guisan et al.
(2017).

3.3 Results
The Fisher’s C test  did not  support the causal diagram proposed in Fig. 3 as the
hypothetical causal structure representing the variance-covariance matrix observed
in the training dataset (p  < 0.05),  suggesting the inclusion of direct effects for both
BIO1 and BIO12 on the germination rate of the herb species (Eq. 4). Once these two
additional direct effects were integrated, the Fischer’s C test supported the updated
causal diagram (p > 0.05).

The predictive accuracy metrics computed for the models of the virtual herb
species on the testing dataset  showed comparable outcomes for  both SEM and
GLM, whose variation  was mainly  related  to  the  geographical  prevalence of  the
virtual herb species rather than to the modelling technique used (Fig. S1.3).  The
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RMSE values of the SEM, in particular, showed a rather stable behaviour across the
different geographical prevalence values, whereas in the GLM these RMSE values
tended to increase with the geographical prevalence. Furthermore, the SEM showed
more stable coefficient estimates with different geographic prevalences compared to
the  GLM:  whilst  the  coefficients  estimated  by  the  SEM  are  stable  and  always
significant,  coefficients  estimated  by  the  GLM  varied  greatly  across  the  cross-
validation iterations and geographical prevalences (Fig. S1.4). The variation in the
estimated coefficients affected the spatial predictions: the inclusion of a mediating
effect  may lead to  more  stable  spatial  predictions  of  the  SEM across the  three
dispersal scenarios compared to the spatial predictions of the GLM (Fig. 4). As a
consequence,  also  the  spatial  variability  of  the  RMSE  computed  between  the
observed (i.e., simulated) herb suitability and the median of predicted cross-validated
iterations  for  each  geographical  prevalence  and  models  showed  similar  spatial
pattern,  but  the magnitude of  the RMSE tended to  increase across the different
geographical prevalences more for the GLM than for the SEM (Tab. S1.5).

[double column] Figure 4: The observed (A) and predicted (B) habitat suitability values for the virtual herb species in a subset
of the study area under different combinations of geographic prevalences and models. The geographic projection used is the
WGS84 - World Geodetic System 1984, EPSG: 4326.

4 Discussion
In  this  paper,  we  introduced  the  Rosen’s  modelling  relation  and  proposed  its
application for SDMs by means of causal diagrams or DAGs borrowed from the SEM
approach. Based on the results of our virtual species exercise, the modelling relation
and SEM approach are valuable tools to incorporate biological knowledge and the
hierarchical  structure  of  the  links  between  variables  into  correlative  SDMs,  by
encoding the assumptions related to the distribution of a species (natural system)
into  the  formal  system  of  Rosen’s  modelling  relation.  Our  findings  suggest  that
building a model relying on a strong conceptual basis improves the stability of the
estimated  model’s  coefficients,  without  necessarily  increasing  the  predictive
accuracy metrics of the model. We speculate that the hierarchical structure of the
causal diagram helped to reveal the relationships between the virtual herb species
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and its determinant, independently of the sampling (cross-validation iteration) and
the geographic prevalence of the species. Despite the generally favourable results in
terms  of  predictive  performance  for  both  modelling  approaches,  we  argue  that
comparing predictive accuracy metrics may not be the most effective way to assess
how appropriate different models are. In fact, prior studies demonstrated that these
metrics are influenced by a variety of factors, such as sample prevalence (Guisan et
al., 2017; Leroy et al., 2018; Marchetto et al., 2023), sample location bias (Fourcade
et al., 2018, Jiménez-Valverde, 2021 Dubos et al., 2022; Rocchini et al., 2023) and
the size of the study region (Lobo et al., 2008).

Essentially, predictive models and causal inference are two different tools, the
former attempting to find the best model predicting the response variable and the
latter attempting to disentangle the effects of the predictors on the response variable
(Arif and MacNeil, 2022). Therefore, our SEM application for SDMs might be used to
assess  causal  relationships  between  variables  affecting  the  geographical
distributions of species (i.e. attribution) but may not always be the most appropriate
tool for generating accurate predictions on the actual species distribution. In other
words, model prediction and model attribution are two different applications that may
prove complementary but one cannot replace the other.

In our view, one of the most interesting aspect of SEM application to SDMs is
the  capacity  of  discovering  unanticipated  mechanisms  through  conditional
independence testing, e.g., that there are direct effects between species that were
not considered before, or revealing the effect of a latent variable not yet measured or
discovered (Lefcheck, 2016; Lefcheck, Byrnes and Grace 2020; Arif and MacNeil,
2022).

Whilst  the  natural-to-formal  systems  relationships  presented  in  Rosen’s
modelling  relation  is  made  explicit  in  the  SEM  rationale  (causal  diagrams),  the
modelling relation can be applied in any correlative method to introduce causality into
ecological  modelling.  Rosen’s  modelling  relation  can  help  modellers  in  their
conceptual definition of a causal model, which can then be put into practice using
different  modelling  approaches  (correlative  and  process-based).  However,  other
methodological  approaches aiming to  include biological  realism or  accounting for
causality  in  correlative  models  exist,  even  though  their  application  in  ecology  is
extremely limited. For instance, the parametric g-formula proposed by Robins and
Hernán (2009) employs a causal diagram to account for time-varying factors and
time-varying confounder effects. Specifically, the g-formula allows for estimating the
causal effects of sustained treatment strategies from observational data with time-
varying treatments and has been applied prevalently in epidemiological studies (Keil
et al., 2014; Naimi et al., 2017; Meisner et al., 2022). Bayesian SDMs are another
way  of  introducing  hypothesized  causality  by  adding  ecological  or  physiological
knowledge in the model using informative priors, representing a prior belief regarding
the probability distribution of an unknown parameter. For instance, Feng et al. (2019)
gathered  thermal  limits  and  survival  information  for  the  zebra  mussel  Dreissena
polymorpha  from the  literature  and  used  these  to  calibrate  correlative  Bayesian
models.

Unlike correlative models, process-based models are usually independent of
geographical observations of the taxa under investigation. These typically express
biological (or other) processes by a mathematical equation (e.g., ordinal differential
equation or matrix population models) relating an indicator of the process (e.g., a life
history  trait  such  as  the  number  of  offsprings)  to  different  factors  affecting  its
performance (e.g., environmental conditions) (Kearney et al.,  2010; Da Re et al.,
2022). For instance, Larter et al. (2017) showed how a single plant functional trait
(xylem resistance to  cavitation)  displayed a  strong statistical  relationship  with  its
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species distribution in relation to aridity across the climatic range of the species.
Process-based  SDMs  have  also  been  successfully  used  in  invasion  ecology  to
simulate and forecast invasion risk under different global change scenarios (Carboni
et al., 2018; Strubbe et al., 2023). Within the family of process-based models, Agent
based models (ABMs) aim to predict species population or community dynamics by
modelling  multiple  individuals  (agents)  that  interact  with  their  environment  and
among each other. For each agent, ABMs require the specification of state variables,
which  can  include  age,  size,  and  spatial  location,  as  well  as  physiological  and
behavioural traits (Zhang and DeAngelis, 2020). 

Rosen’s  modelling  relation  coupled with  the  SEM approach,  as advocated
here, is one of the methods allowing to design and refine ecological hypotheses,
thus treating modelling as an experimental exercise. Within the field of SDMs, the
modelling  relation  can  represent  a  wider  conceptual  tool  to  model  species
distribution  based  on  causal  and  ecologically-based  assumptions,  potentially
resulting  in  an  increase  of  the  ecological  realism of  SDMs.  Inferring  the  spatial
distribution of a species of high interest (e.g., a vector-borne species, a species of
conservation concern, an invasive alien species) using a correlative approach and
bioclimatic variables only, not accounting for uncertainty in the data and without a
solid  causal  approach,  may  ultimately  lead  to  ecological  inconsistencies  and
subsequently  to  inaccurate  estimates,  with  strong  ecological  and  even  socio-
economic  repercussions  (Escobar  and  Craft,  2016;  Hellegers  et  al.,  2020).
Furthermore, such inconsistencies in the outcomes generated by ecological models
may undermine the trust in ecological research (Currie, 2019; O’Grady, 2020; Lee-
Yaw et al., 2021). Certainly, when knowledge on the target organism is scarce, a
correlative  approach  may  be  the  only  option  available,  but  a  causal-oriented
definition of the modelling exercise is crucial to enhance the ecological realism of the
models  (Getz  et  al.,  2018)  and  to  ensure  the  models’  transferability  to  novel
conditions.

Ecologists  aspire  to  foster  knowledge  on  global  environmental  changes
induced  by  human  activities,  such  as  climate  change,  biological  invasions  and
habitat  loss.  To efficiently tackle  such challenges,  clear,  robust,  and well-defined
epistemological premises about the main determinants of species distribution and
species distribution change are needed to  design realistic  experiments (Pigliucci,
2002; Currie, 2019). Epistemological premises are not just philosophical murmuring
but  allow  us  to  set  the  boundaries  of  the  modelling  exercise,  increasing  model
robustness in depicting natural patterns and resulting in clear practical applications
(Currie,  2019;  Dawson  et  al.,  2023).  Rosen’s  modelling  relation  and  its
implementation by means of the SEM approach requires to clearly define the natural
system (the key response variable of interest), such as the niche,  habitat  or biome
(see Box 1), which inherently define different biological entities and cannot be used
interchangeably. It may also help to identify when model assumptions are causal or
not and to develop a suite of model comparisons (hypothesis-driven modelling) that
can  robustly  explain  the  variation  in  the  data  while  accounting  for  ecological
observations.

15

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

15



Box 1

Biotic Abiotic Movement (BAM): heuristic framework which defines the species
population distribution as those areas where abiotic, biotic and accessible areas
intersect. 

Biome:  a  large  cluster  of  plant  species  that  are  defined  in  terms  of  the
recognizable  physiognomy  of  the  dominant  species  (e.g.  savanna,  sensu
Pennington et al., 2004) 

Ecophysiology: a branch of biology studying how the environment surrounding an
organism (both abiotic and biotic component) interacts with its physiology. 

Fitness: individual reproductive success. 

Functional trait: those characteristics influencing performance or fitness of an 
individual (sensu Nock et al., 2016) 

Fundamental  niche:  the  region  of  the  n-dimensional  space  (Hutchinsonian
hypervolume) where the biotic interactions are excluded, and thus only the abiotic
conditions affect the fitness.. 

Habitat:  the  actual  spatio-temporal  configuration  of  environmental  conditions
where an organism either actually or potentially lives (sensu Kearney, 2006) 

Hutchinsonian niche concept:  n-dimensional  space (hypervolume),  where each
dimension is an abiotic or biotic condition and the relations among them allow the
species to exist in a self-maintained population without immigra tion. 

Mechanistic niche: those sets of environmental conditions that allow an organism
to complete its life cycle and successfully reproduce (sensu Kearney, 2006) 

Realized niche: a smaller fraction of the fundamental niche constrained by biotic 
interactions. 
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Supplementary Materials 1

Figure S1.1 Simulated response curves for the tree (orange) and herb (green) virtual species
along the temperature (A) and precipitation (B) gradients. Herb virtual species germination rate
along a gradient of the virtual tree species suitability (c).



Figure  S1.2  Tree  and  herb  virtual  species  presence-absence  distribution  along  different
geographical prevalences.



Figure S1.3  Violin plots reporting the distribution of the values of the metrics of predictive
performance for the virtual herb species habitat suitability modeled as a function of the tree
virtual species presence-absence and virtual herb species germination rate,  and varying the
geographical prevalence of the herb species (x axis). Dots represent median values of the
metrics of predictive accuracy, while columns indicate the different performance metrics: R2 =
coefficient of determination; RMSE = root mean squared error; AUC = area under the curve;
TSS = true skill statistic.  Colours are associated with the three modeling approaches tested
(structural equation modelling, SEM, in blue; generalised linear models, GLM, in yellow).



Figure S1.4  Boxplots reporting the distribution of the values of coefficients estimates of the
virtual herb species habitat suitability modeled as a function of BIO1, BIO12 and virtual herb
species  germination  rate,  and  varying  the  geographical  prevalence  of  the  herb  species.
Colours  are  associated  with  the  three  modeling  approaches  tested  (structural  equation
modelling, SEM, in blue; generalised linear models, GLM, in yellow).

Table S1.5  RMSE computed between the median of predicted cross-validated iterations for
each geographical prevalence and models and the observed (i.e., simulated) herb suitability.

Model geog.prev RMSE
SEM 0.25 0.35
SEM 0.5 0.38
SEM 0.75 0.39
GLM 0.25 0.26
GLM 0.5 0.29
GLM 0.75 0.37


