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Abstract

Installation noise is a dominant source associated with aircraft jet
engines. Recent studies show that linear wavepacket models can be
employed for prediction of installation noise, which suggests that linear
control strategies can also be adopted for mitigation of it. We present
here a simple model to test different control approaches and highlight
the potential restrictions on a successful noise control in an actual jet.
The model contains all the essential elements for a realistic representa-
tion of the actual control problem: a stochastic wavepacket is obtained
via a linear Ginzburg-Landau model; the effect of the wing trailing
edge is accounted for by introducing a semi-infinite half plane near the
wavepacket; and the actuation is achieved by placing a dipolar point
source at the trailing edge, which models a piezoelectric actuator. An
optimal causal resolvent-based control method is compared against the
classical wave-cancellation method. The effect of the causality constraint
on the control performance is tested by placing the sensor at different
positions. We demonstrate that when the sensor is not positioned suffi-
ciently upstream of the trailing edge, which can be the case for the actual
control problem due to geometric restrictions, causality reduces the con-
trol performance. We also show that this limitation can be moderated
using the optimal causal control together with modelling of the forcing.
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1 Introduction

Jet noise is becoming an increasingly important issue for the aviation industry.
The reduced exit velocity in modern ultra-high-by-pass-ratio (UHBR) turbofan
engines helped significantly reduce the direct noise emitted by jet engines.
However, the increased nozzle diameter in these engines resulted in a smaller
distance between the jet lip line and the wing structure, which caused an
increase in the noise due to the interaction between the jet and the flaps on
the wing, called the installation noise. In this study, we focus on modelling
and control of the installation noise problem.

The noise generation mechanisms associated with installed jets, i.e., jets in
the vicinity of a wing, are known to be different from that in free jets. In both
cases, however, wavepackets constitute a key element. For free jets at subsonic
speed, the jitter of wavepackets are shown to be an important noise source, as
it causes a coherence decay in wavepackets, increasing their acoustic efficiency
(Cavalieri et al, 2011; Cavalieri and Agarwal, 2014; Cavalieri et al, 2019). For
a wavepacket model to accurately predict jet noise, it should exhibit similar
coherence decay as in a real jet. This implies that a rank-1 wavepacket model,
which has unit coherence across the domain by construction, cannot yield an
accurate noise prediction even if it decently captures the turbulent fluctuations
in the shear layer. This is the case for installed jets as well if the distance
between the nozzle exit and the trailing edge (TE) of the flap is large. It was
shown in Nogueira et al (2016) that a model for coherence decay was necessary
for accurate noise prediction with four diameters separation between the nozzle
and the TE. Contrary to their result, Faranosov et al (2019) showed that using
a wavepacket model obtained by solving linear parabolised stability equations,
which is rank-1 by construction, it was possible to predict the installation noise
with good accuracy when the TE is located about three diameters downstream
the nozzle. This suggests that, as the separation between the TE and the
nozzle exit becomes shorter, a rank-1 wavepacket model may be sufficient for
noise prediction. A distance shorter than three diameters constitutes a more
relevant case as in many published scaled-model tests with UHBR turbofan
engines (Davy et al, 2019), the distance between the nozzle exit and flap TE
is about two-to-three diameters.

Once an appropriate source model is available, noise generation in installed
jets can be modelled using aeroacoustic analogies. The direct noise emitted by
the source, which is called incident noise, can be predicted using Lighthill’s
acoustic analogy (Lighthill, 1952). Ffowcs Williams and Hall (1970) introduced
a tailored Green’s function (TGF), which can account for the scattered acoustic
field due to a source near a semi-infinite plate using Curle’s analogy (Curle,
1955). There exist many studies (Cavalieri et al, 2014; Nogueira et al, 2016;
Piantanida et al, 2016; da Silva et al, 2019) showing that the TGF for semi-
infinite plates can be used for accurate prediction of the acoustic field in an
installed jet configuration.

All these developments reported in the literature point to the hypothesis
that installation noise can be modelled as a linear mechanism involving a linear
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source model and a TGF for noise generation and propagation, respectively.
This opens the possibility of applying a linear control for installation noise via
real-time measurement of turbulent fluctuations at a single station around the
nozzle exit, to predict the wavepacket which is to be formed downstream by
convection and amplification of these measured fluctuations. Once an estimate
of the wavepacket is available, the noise emitted by this wavepacket can be
predicted using a TGF. One, of course, needs a proper actuator capable of
producing an acoustic field similar to that of the installed jet configuration, to
be able to control the installation noise. The acoustic directivity of installed
jets is known to be of the dipolar type, due to the strong amplification of sound
by the TE, acting as a point dipole.

Installation noise control is a growing research topic. There exist a number
of studies which investigate passive control strategies for installation noise.
Rego et al (2021) and later Jente et al (2022) investigated the potential of
using permeable surfaces to reduce installation noise. In a similar approach,
Kamliya Jawahar et al (2023) studied porous plates to achieve installation
noise reduction. Mancinelli et al (2022) investigated using flexible surfaces at
the TE of a solid plate, rendering the TE permeable to the pressure fluctuations
induced by the wavepacket.

Studies on active control of installation noise, on the other hand, are more
scarce. To the best of the authors’ knowledge, the literature is limited to two
studies (Bychkov et al, 2019; Kopiev et al, 2020), where they investigate the
use of plasma actuators for controlling instabilities in jets, leading to a reduc-
tion in the installation noise. In this study, we explore the potential of an
alternative active control strategy based on actuation at the TE of a solid sur-
face. We adopt a closed-loop control strategy similar to the ones used in Maia
et al (2020) and Maia et al (2021) for control of free jets. We use an ideal
model problem, which contains a linear wavepacket near a semi-infinite plate
and a point dipole attached to the TE of the plate. The linear wavepacket is
obtained by solving the Ginzburg-Landau equation with stochastic external
forcing. The forcing, the parameters of the G-L problem and the position of
the semi-infinite plate are configured such that the resulting acoustic field is
reminiscent of that in an actual low subsonic jet. The stochastic fluctuations
in the wavepacket are measured using a point sensor to determine the control
input. We investigate the effect of causality constraint on the control perfor-
mance in a realistic configuration where the distance between the sensor and
the TE is similar to that between the nozzle exit and the TE of the flap in an
actual aircraft. We aim at finding the optimal sensor position for control and
investigate the feasibility of such a control action given the geometric restric-
tions in an actual set-up on aircraft even if one has a perfectly linear noise
generation mechanism and an ideal actuator for control.

We implement two different control strategies: the wave-cancellation
method and the optimal causal resolvent-based control. Both are frequency-
domain approaches. The former is a classical linear control method that
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involves computing linear transfer functions between the three elements of lin-
ear control: sensors, observers and actuators, and finding a control law to cancel
the fluctuations at the observer. It has been used for flow control in many
studies (Thomas, 1983; Laurien and Kleiser, 1989; Li and Gaster, 2006; Sasaki
et al, 2018b,a; Maia et al, 2021). As the control law is, in general, non-causal,
it is often necessary to truncate it to its causal part. The latter approach has
been proposed by Martini et al (2022), where causality is imposed as a con-
straint while calculating the optimal control kernel. This approach was seen to
provide significantly better performance than the wave-cancellation approach
when the distance between sensors and actuators is small. Enforcing causality
in the frequency domain is achieved via Wiener-Hopf decomposition (Youla
et al, 1976). The method was tested in Martini et al (2022) to control turbu-
lent fluctuations in an amplifier flow, similar to the case of a jet. We compare
the two methods at varying sensor positions to verify the above-mentioned
hypothesis.

The outline of the paper is as follows: we revisit the two control meth-
ods in section 2. We give the details of the Ginzburg-Landau model and the
TGF function for semi-infinite plate in section 3. We present the results of
implementing the control methods on the model problem in section 4. And,
we conclude the paper in section 5 with some final remarks.

2 Control methods

The model used in this study contains two parts: (i) the wavepacket model,
which can be represented as a 1D linear time-domain system as

∂tq(x, t)−Aq(x, t) = f(x, t), (1)

where q and f denote the state and the external forcing and A denotes
the linear time-invariant operator; and (ii) the acoustic propagation problem
solved by the tailored Green’s function (TGF) used for calculating the sound
generated by the wavepacket q(x, t).

Optimal causal control for spatially distributed systems can be achieved
by a linear quadratic regulator (LQR) (Motee and Jadbabaie, 2008). Such a
controller requires a state-space representation of the system, including the
acoustic field. Contrary to the wavepacket model, the TGF, which takes into
account the acoustic scattering due to the semi-infinite plane, is only avail-
able in the frequency domain. Obtaining a dynamic time-domain model for the
acoustic propagation problem then becomes a non-trivial task. Besides, formu-
lating a state-space representation including the acoustic field renders the cost
of the LQR problem dependent on the observer position. It is customary to
place the observers far from the source domain, which can make the problem
too large for LQR-based methods. Given these limitations, we focus on con-
trol methods which are based on transfer functions between sensors, actuators
and targets.
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2.1 Wave-cancellation method

The control problem is depicted via the schematic presented in figure 1, where
y, u and z denote the sensor, actuator and observe locations and n denotes
the uncorrelated measurement noise. We adopt a reactive feed-forward loop
similar to the one used in Maia et al (2021). The block diagram of the feed-
forward loop is also given in figure 1. The relation between the sensor and the
observer can be written as

ẑc(ω) =
(
Ĥyz(ω) + Γ̂(ω)Ĥaz(ω)

)
(ŷ(ω) + n̂(ω)) , (2)

where the hat denotes a Fourier transformed quantity, ẑc denotes the observer
when controller is active and Ĥyz and Ĥaz denote the linear transfer functions
between y-z, and a-z, respectively, which satisfy

ẑy(ω) = Ĥyz(ω) (ŷ(ω) + n̂(ω)) , (3)

ẑa(ω) = Ĥaz(ω)â(ω), (4)

where ẑy and ẑa denote the noise generated by the wavepacket and the actu-
ator, respectively, when there is no loop connecting the measurement and
actuation. In the case of stochastic forcing in (1), ŷ(ω) and â(ω) becomes
stochastic quantities as well. Calculating the cross-spectral densities (CSD)
defined by P̂yy ≜ ⟨ŷŷ∗⟩, P̂nn ≜ ⟨n̂n̂∗⟩, and P̂zy ≜ ⟨ẑy ŷ∗⟩ for (3) and P̂aa ≜ ⟨ââ∗⟩
and P̂za ≜ ⟨ẑaâ∗⟩ for (4), the transfer functions can be calculated as

Ĥyz(ω) = P̂zy(ω)
(
P̂yy + P̂nn

)−1

(ω), (5)

Ĥaz(ω) = P̂za(ω)P̂
−1
aa (ω), (6)

where ⟨·⟩ denotes the expectation operator and the superscript ∗ denotes com-
plex conjugation. The CSD between two stochastic signal û1(ω) and û2(ω) is
predicted using the Welch algorithm (Welch, 1967)

⟨û1(ω)û
∗
2(ω)⟩ =

1

Nb

Nb∑
k=1

û
(k)
1 (ω)û∗

2
(k)(ω), (7)

where Nb denotes the number of realisations.
Note that a feedback loop between the actuator and the measurement is

not necessary to model the actual control problem. The piezoelectric actuator
is expected to generate acoustic actuation without causing a hydrodynamic
change on the wavepacket, and hence, on the sensor, which is meant to measure
hydrodynamic fluctuations in the jet. When the actuation has no effect on the
measurement, feedback control reduces to feed-forward control as discussed in
Sasaki et al (2018b). Setting the output at the observer ẑ as zero in (2), the
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y(ω)ŷ(ω)^ a(ω)â(ω)^ z(ω)ẑ(ω)^
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Fig. 1 Schematic representation of the control problem (top) and the corresponding flow
chart (bottom).

control law associated with the feed-forward loop described above is given by

Γ̂(ω) = −Ĥyz(ω)Ĥ
−1
az (ω). (8)

The control kernel in the wave cancellation method is obtained in the fre-
quency domain. This implies that causality is not ensured. Depending on the
positions of the sensor, observer and actuator, one can obtain a causal or non-
causal control loop. A causal control can be implemented by computing the
control kernel in the time domain by inverse Fourier transforming and then
trimming the non-causal part of the kernel. The kernel however is no longer
optimal once it is trimmed. We discuss the use of optimal causal control in the
next subsection to mitigate this effect.

2.2 Optimal causal control

An optimal frequency-domain control approach where causality is imposed as
a constraint was proposed in Martini et al (2022). Optimality is ensured via
a resolvent-based estimation which was introduced earlier in another study
(Martini et al, 2020). The method was extended to include causality in the form
of a Lagrange multiplier which is computed via Wiener-Hopf decomposition.
The method is briefly revisited here. For a complete description, we refer the
reader to Martini et al (2022).

For modelling the wavepacket, we consider the linear system given in (1).
Discretising in space and taking the Fourier transform, we obtain

−iωq̂(ω)−Aq̂(ω) = f̂(ω), (9)

which can be reorganised as

(−iωI−A)q̂(ω) = f̂(ω), (10)
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where here and in what follows bold letters denote the discretised vectors of
the corresponding variables denoted with the same letter and I denotes the
identity matrix. In what follows, the dependencies on ω will be dropped for
brevity. Defining the resolvent operator as R = (−iωI−A)−1, one can obtain
a linear relation between the external forcing and the state as

q̂ = Rf̂ . (11)

A sensor reading can be represented as

ŷ = Cq̂+ n̂, (12)

where C and n̂ denote the measurement matrix and the measurement noise,
respectively.

For the acoustic propagation problem, we consider a Green’s function,
Ĝ(x, x′, ω) calculating the acoustic pressure at the observer at x′ generated by
the source at x and scattered by the semi-infinite plate. This relation is given
in discrete form as

ẑ = Ĝq̂. (13)

Similarly, the effect of the actuation, â, on the observer is modelled with
another Green’s function,

ẑa = Ĝaâ. (14)

The details of the linear system and Green’s functions will be given in section
4. Defining the control gain between the measurement and the actuation as

â = Γ̂ŷ, (15)

and the controlled observer as

ẑc = ẑ+ ẑa = ẑ+ ĜaΓ̂ŷ, (16)

the cost function for non-causal control, minimizing both the acoustic pressure
at the observer and the actuation is given as

J =

∫ ∞

−∞

〈
Tr
(
ẑHc ẑc

)
+ Tr

(
âHQâ

)〉
dω, (17)

where Q is the penalty for actuation and the superscript H denotes the Her-
mitian transpose. Using the distributive property of expectation operator and
the identity Tr(EF) = Tr(FE) for any two matrices E and F of appropriate
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size, the cost function can be expanded as

J =

∫ ∞

−∞
⟨Tr(ẑẑH) + Tr(ẑaẑ

H
a ) + Tr(ẑẑHa ) + Tr(ẑaẑ

H) + Tr(QââH)⟩dω.

(18)

Defining the CSD matrices P̂zz ≜ ⟨ẑẑH⟩, P̂yy ≜ ⟨ŷŷH⟩ and P̂zy ≜ ⟨ẑŷH⟩, the
terms appearing in (18) can be written as

Tr(⟨ẑaẑHa ⟩) = Tr(ĜH
a ĜaΓ̂P̂yyΓ̂

H), (19)

Tr(⟨ẑẑHa ⟩) = Tr(ĜH
a P̂zyΓ̂

H), (20)

Tr(Q⟨ââH⟩) = Tr(QΓ̂P̂yyΓ̂
H). (21)

The cost function J can be minimized by treating Γ̂ and Γ̂H as independent
variables (Ahlfors, 1979) and setting the derivative of (18) with respect to Γ̂H

to zero. Substituting This leads to

(ĜH
a Ĝa +Q)Γ̂P̂yy + ĜH

a P̂zy = 0, (22)

which leads to the optimal gain matrix given as

Γ̂ = −(ĜH
a Ĝa +Q)−1ĜH

a P̂zyP̂
−1
yy . (23)

Up to this point, no causality constraint is imposed while deriving (23), and
therefore, the resulting control matrix can contain a non-causal part depend-
ing on the positions of the sensors, actuators and observers. A causal control
designed in the frequency domain is achieved by constructing a Wiener-Hopf
problem. The cost function in this case is given as

J ′ = J +

∫ ∞

−∞
Tr(Λ̂−Γ̂+ + Γ̂H

+ Λ̂H
− )dω, (24)

where Γ̂+ denotes the causal gain matrix and Λ̂− is a matrix required for the
problem to be well-posed in the entire complex plane (see Martini et al (2022)
for details). The updated cost function given in (24) leads to the final equation

(ĜH
a Ĝa +Q)Γ̂+P̂yy + Λ̂− + ĜH

a P̂zy = 0 (25)

to be solved for Γ̂+. The methodology proposed by Martini et al (2022) to
solve the Wiener-Hopf problem in (25) is summarized in Appendix A. The
resulting control kernel is given as

Γ̂+ = D̂−1
+

(
D̂−1

− F̂Ê−1
−
)
+
Ê−1

+ , (26)

where D̂ ≜ ĜH
a Ĝa +Q, Ê ≜ P̂yy and F̂ ≜ −ĜH

a P̂zy.
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Fig. 2 Schematic of the model problem that consists of a wavepacket, semi-infinite plate
and a point dipole with the sensor y and the observer z is positioned on the wavepacket and
in the acoustic field, respectively.

3 Linear model for installation noise

We model in this study the installation noise in two parts: The wavepackets
that populate the jet turbulence and interact with flaps yielding a dominant
noise source are modelled using the linear Ginzburg-Landau (G-L) equation
forced with external stochastic forcing. The G-L equation in linear form con-
stitutes a linear advection-diffusion-dissipation system. A similar methodology
was used in the by Ewert (2016) for source modelling. The acoustic interaction
between the wavepacket and the flap is modelled by placing a semi-infinite
half plane near the wavepacket and using a tailored Green’s function which
accounts for the scattering due to the plane. A schematic is illustrated in figure
2. The details of each part are given in the following subsections.

3.1 Ginzburg-Landau model

The linear G-L equation is given as,

∂tq + U∂xq − γ∂xxq − µq = f, (27)

where U = 1 is the convection coefficient, γ = 1/120 denotes the viscosity-
like parameter, µ = µ0(1 − 2x/L) with L = 20 determines the growth of the
response over the domain x = [0, L], and f is the external forcing term. The
global stability of the homogeneous part is determined by µ0. The critical limit
for stability is reached at µ0 = 2.29. For values of µ0 less than the critical limit,
the G-L equation behaves like an amplifier flow, while for values higher than
the critical limit, it represents an oscillatory system. As jets are of amplifier
type, we set µ0 = 1.5 in this study to obtain a convectively unstable system.
The boundary conditions at x = 0 and x = L are set to 0. The domain
is discretised using Chebyshev discretisation with the number of grid points,
N = 100. The implicit Crank-Nicholson method was used for time marching
with a time step ∆t = 0.125. The fast Fourier transform (FFT) was used with
1024 FFT points when transforming the time-domain data into the frequency
domain. For taking the Fourier transform (FT) of stochastic data, we used an
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exponential windowing function (Martini et al, 2019) given as

w = e4−
T2

t(T−t) , (28)

where t and T denote the time and the period, respectively.
Equation (27) can be rewritten in discretised form as

∂tq+Aq = f , (29)

where f and q denote the discretised forcing and state, respectively, and A
denotes the discretised linear operator.

The external forcing was generated as a random signal which was then
band-pass filtered in time to limit the frequency content to the interval
0.1 < f < 0.5. This frequency range was selected since the sound generated
by the wavepacket-semi-infinite plate configuration is of dipolar type in this
range as will be seen in section 3.2, similar to the actual case of a jet-flap-
interaction noise (Piantanida et al, 2016). The spatial support and correlation
are controlled via multiplication by a two-point correlation tensor given as

M(x1, x2) = e−(x2
1+x2

2)/L
2
xe−(x1−x2)

2/L2
c , (30)

where Lx = L/40 and Lc = L/10 denote the spatial support and correla-
tion lengths, respectively. Discretising M and the filtered forcing, the external
forcing used in (29) is given as

f = Mf̃ , (31)

where M denotes the discretised correlation tensor and f̃ denotes filtered-
in-time white-in-space forcing described above. The power spectral densities
(PSD) of the external forcing and the state are shown in figure 3. The forcing
is limited to the initial part of the domain within x/L < 1 and is limited to
the frequency range 0.1 < St < 0.6 outside of which is filtered. Here, and in
what follows, we present frequencies in terms of Strouhal number, St ≜ fU/D,
where f denotes the frequency, and U and D denote the characteristic velocity
and length, respectively, where both are set as unity. The forcing PSD peaks
around St = 0.3. The disturbances caused by this external forcing in the inlet
section are amplified due to the convective instability of the G-L system and
peak around the mid-domain, where µ becomes zero. Beyond this point, µ < 0
causes damping of the perturbations before reaching the end of the domain.
The PSD distribution of the state in the frequency axis is similar to that of
the forcing, limited to the range 0.1 < St < 0.6 and peaking around 0.3.

3.2 Tailored Green’s function for semi-infinite plate

The tailored Green’s function (TGF) to compute the sound generated by
a point source positioned near a semi-infinite plate was introduced by
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Fig. 3 PSD map of the external forcing fext (top) and state q (bottom).
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Fig. 4 Schematic to illustrate the geometric definitions related to the tailored Green’s
function.

Ffowcs Williams and Hall (1970) and is given as,

Gt(x,y, ω) =
e

iπ
4

√
π

(
e−ikR

R

∫ uR

−∞
e−iu2

du+
e−ikR′

R′

∫ uR′

−∞
e−iu2

du

)
, (32)

where

uR = 2

√
krr0
B +R

cos
θ − θ0

2
, (33)

uR′ = 2

√
krr0

B +R′ cos
θ + θ0

2
. (34)

In the above equations, y = [r0, θ0, z0]
⊤ and x = [r, θ, z]⊤ denote the

source and observer positions, respectively, ω is the angular frequency, and
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k = ωc0 is the acoustic wavenumber, where the speed of sound, c0 is set as 2.5
for this study yielding a Mach number of M ≜ U/c0 = 0.4. R and R′ denote
the distance between the source and the observer, and between the source
image and the observer, respectively. B denotes the shortest distance between
the source and the observer passing through the trailing edge. A schematic
is provided in figure 4 to illustrate the corresponding geometry and the axis
definitions. With the centre of the cylindrical coordinate system located at the
TE of the semi-infinite plate, the terms R, R′ and B can be calculated as,

R =
√

r2 + r20 − 2rr0 cos(θ − θ0) + (z − z0)2, (35)

R′ =
√

r2 + r20 − 2rr0 cos(θ + θ0) + (z − z0)2, (36)

B =
√

(r + r0)2 + (z − z0)2. (37)

The Fresnel integrals in (32) are computed using a series expansion as in Chang
and Jin (1996). Note that in case the distance between the source and the
semi-infinite plate tends to infinity, the Green’s function given in (32) reduces
to the free-field Green’s function as

G(x,y, ω) =
e−ikR

R
. (38)

The acoustic field generated by the line source obtained from the G-L model
can be calculated via the following integration,

p̂(x, ω) =

∫
S

q̂(y, ω)Gt(x,y, ω)dy, (39)

where S denotes the domain where the line source is computed. The line source
in the present case is stochastic. To visualise the expected acoustic field, we
perform spectral proper orthogonal decomposition (SPOD) (Towne et al, 2018)
and calculate the optimal SPOD mode of the line source. We then compute the
integral given in (39). Details about how to perform SPOD using the discrete
system are given in Appendix B.

Similar to the case investigated in Nogueira et al (2017), the relative
position in Cartesian coordinates of the source with respect to TE of the semi-
infinite plane is given as (x0, y0) = ([−10, 10],−1) corresponding to a source
domain of length 20 as denoted in section 3.1. The resulting acoustic pressure
for the total, incident and scattered fields are shown in figure 5. Note that the
TGF is only valid for the far-field pressure. Therefore the pressure field close
to the origin where the TE is located should be disregarded. It is seen that the
scattered field is anti-symmetric in the y-direction and is similar to a dipole,
particularly in the downstream region. This provides a supporting argument
for our control approach as we try to cancel this pressure field with a dipole
located at the TE of the semi-infinite plane.
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Fig. 5 Top: The optimal SPOD mode ψ of the state q at St = 0.3. Bottom: total (left),
incident (centre) and scattered (right) pressure fields obtained using the line source in the
top plot positioned near a semi-infinite plane.

The directivity of the acoustic field with or without the semi-infinite plane
is shown in figure 6 at a number of frequencies. The directivity angle, θ is
defined as shown in figure 4. The line source itself has a strong directivity with
peak radiation in the aft-angle region reminiscent of subsonic jets (Cavalieri
et al, 2012). Installing the plane significantly enhances the sound field in the
upstream region (large |θ|) while its effect is negligible in the downstream
regions (small |θ|). This is expected as the infinite plane does not scatter any
sound field in the θ = 0 direction.

3.3 Green’s function for the actuator

To obtain a transfer function between the actuator and the observer, we need
another Green’s function. The directivity of a dipole aligned with the surface
normal is given by sin θ, where θ is defined according to the coordinate axis
shown in figure 4. Given a time-variant function Γ(t) to define the oscilla-
tion amplitude of the actuator, the acoustic pressure at the observer can be
calculated by

p(x, t) =
1

rc0
Γ

(
t− r

c0

)
sin θ, (40)

which is the retarded Green’s function for a point dipole located at the TE of
the surface. Note that there exists no scattering due to the plate itself as the
dipole does not emit sound along the surface direction θ = π.
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Fig. 6 PSD of the acoustic field due to the line source with (solid) or without (dashed) the
semi-infinite plane at three frequencies: St = 0.1 (blue), 0.2 (orange), 0.3 (yellow).

4 Control methods applied to model problem

We present the details of the implementation of the control approaches
described in section 2 to the model problem. We choose the test cases to high-
light the importance of imposing causality while calculating the control kernel,
as in optimal causal control, for improved control performance in the actual
installation noise problem.

A schematic was given in figure 2. The coordinate axis is the same as the
one shown in figure 4, where the semi-infinite plate lies on the x-axis with its
TE at x = 0. The line source is placed at (x0, y0) = ([−10, 10],−1). For all the
cases, we fix the observer position to (r, θ) = (20,−π/2). Note that θ = −π/2
indicates the direction of the ground, which is the relevant direction for the
installation noise problem. The position of the sensor directly affects control
performance as it determines whether the control problem is causal or not. A
detailed analysis is given below.

4.1 Causality of the control problem

As described earlier, we consider a reactive feedforward control: the sensor
measures the fluctuations in the wavepacket. The actuator then uses this infor-
mation to reduce the noise of the wavepacket by generating an anti-sound.
Placing the sensor upstream of the wavepacket leaves time for the actuator to
generate the anti-sound to cancel the wavepacket noise. When the sensor is
placed downstream of the beginning of the wavepacket, on the other hand, by
the time of the sensor measurement, the wavepacket already generates some
noise, which implies non-causal information is necessary in order to fully cancel
this noise.

This issue is visualised in figure 7 where the time kernel of the tailored
Green’s function given in (32) multiplied by the root-mean-square (RMS) of
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Fig. 7 Kernel of the TGF multiplied with the RMS of the line source for an observer at
(r, θ) = (20,−π/2. The red dashed line indicates the time delay between the actuator located
at the TE and the observer. The blue dashed lines indicate convective time delay between
the sensor and the source downstream of it.

q(t) is shown as a function of position on the source domain. The map shows all
the information in the past, required for calculating the sound at the observer
at t = 0. The kernel has two dominant peaks up to x = 10, which corresponds
to the line source and its image due to the presence of the semi-infinite plate.
Beyond x = 10, the image source disappears since the plate ends at this
point. We observe an increasing delay in the peak location towards both ends
of the domain. This is because the observer is located at x = 10, and thus
the acoustic waves generated at the borders of the domain have to travel a
longer distance to reach the observer compared to those generated at the centre
of the domain. The red dashed line indicates the time delay in the control
action, given by the distance between the actuator and the observer, divided
by the speed of sound. Each blue dashed line corresponds to a different source
position, which is indicated by the intersection point of the line with the red
dashed line. The slope of the blue dashed lines indicates the inverse of the
convection velocity of the wavepacket. For a given sensor position, the part of
the kernel below the corresponding blue dashed line is causal, and hence, can
be predicted using the past information from the sensor readings. Contrary
to that, the part of the kernel that is above the blue dashed line indicates
future information, and therefore, is not available. We see that placing the
sensor to x = −8 yields a system that is causal, while a significant portion
of the kernel of the TGF remains on the non-causal side when the sensor is
placed at x = −2. The latter position is more relevant regarding the actual
installation noise problem since it approximately corresponds to the nozzle
exit (see the discussion in the introduction). The sensor can be placed at the
nozzle exit with minimum structural complexity, and one may expect a decent
characterisation of the wavepacket using the velocity data at this position
(Cavalieri et al, 2013; Nogueira et al, 2016). Also the coherence, and thus the
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transfer function, between the sensor and the observer improves as the sensor
is placed further downstream again exacerbating the causality problem. All
these issues suggest that it is inevitable to suffer from causality constraint in
the actual problem. In the following, we will investigate how the two control
approaches perform in this configuration.

4.2 Identifying the transfer functions

The wave cancellation method requires identification of transfer functions
between the sensor and the observer, Hyz, and similarly the actuator and the
observer, Huz. The latter is also required in the optimal causal control as dis-
cussed in section 2.2, while the former is modelled using the governing equation
of the G-L system.

Identification of the transfer functions requires computing the CSD matri-
ces as discussed in section 2.1. The CSD matrices are predicted using the Welch
algorithm, which involves chopping a long time-domain signal into shorter
blocks, taking the FT of each block, and averaging the resulting Fourier reali-
sations. In case there exists a delayed correlation between the sensor and the
observer, or similarly the actuator and the observer, one can account for this
by choosing the length of the time block much larger than the time delay such
that the effect of the time delay on the correlation level becomes negligible.
For stochastic processes, given the length of the time block, T and the time
delay, τ , the convergence of the correlation level between two signals is pro-
portional to T/τ . This solution can be feasible for experimental studies, while
for numerical studies, increasing the length of the time block to reach a con-
vergence at the correlation level can significantly increase the simulation cost.
It also renders the overall cost a function of the observer position, which is not
preferable.

Alternatively, given two signals a(t) and b(t) with maximal correlation
achieved between a(t) and b(t−τ), the converged CSD matrix can be computed
by taking the FTs

â = F(a(t)), (41)

b̂ = eiωτF(b(t− τ)), (42)

and using (7). The exponential term in (42) is added to correct the phase of
the FT of the retarded signal b(t−τ). With this approach, a converged transfer
function can be computed with smaller time blocks in the Welch averaging
(Blanco et al, 2022), allowing better statistical convergence. In figure 8, we
show the effect of this correction on the coherence level defined as

γyz = P̂yz(P̂yyP̂zz)
−1/2. (43)

The coherence level is an indicator of the linearity between two signals, where
a unit coherence signifies a linear relation and zero coherence signifies no lin-
earity. Since we use a linear model for the source, the expected coherence is 1,
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Fig. 8 The coherence value γyz with (solid) and without (dashed) the phase correction.

Fig. 9 The kernel Hyz (top) for sensor positions at x = −8 (blue) and −2 (orange) and
Huz (bottom). Hyz at x = −2 is multiplied by 10 for better visual comparison.

which is seen to be nearly the case when the phase correction described above
is implemented.

The resulting time-domain transfer functions Hyz for two sensor positions
at x = −8 and −2 and Huz are shown in figure 9. The negative and positive
parts of the time axis show the future and the past, i.e., the non-causal and
causal parts, respectively. The transfer function between the actuator and the
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observer is a delta function with time delay, which is consistent with the defi-
nition given in section 3.3. The time instant of this peak defines the causality
threshold for the actuator: any event before the peak cannot be canceled by
the actuator. The transfer function between the sensor and the observer is seen
to peak at a later time when the sensor is at x = −8, while the peak shifts to
an earlier time when the sensor is moved to −2, roughly corresponding to the
peak in Huz.

4.3 Control performance

The control kernels calculated using equations (8), (23) and (26), which we
will hereafter refer to as wave-cancellation, non-causal and optimal causal,
respectively, for the two sensor positions are compared in figure 10. Once again,
the negative and positive halves of the time axis denote the non-causal and
causal parts, respectively. We see that the non-causal kernels given by (8)
and (23) are identical at both positions, and hence, regardless of the causality
of the configuration. When the sensor is positioned at x = −8, the optimal
causal kernel given by (26) mainly has the same structure as the two other
kernels except for a small peak at t = 0. Note that the non-causal kernel
almost entirely lies in the causal part except for a small part contained in the
non-causal half. This is thanks to the almost causal nature of the problem
at this sensor position, as discussed earlier in this section. The peak in the
causal kernel at t = 0 is to compensate for the small bit of information that
lies in the non-causal half. The existence of such sharp peaks in the time-
domain kernel implies an increase in the energy of the high-frequency content
of the kernel, which might be an issue in an actual actuator, which would have
nonzero damping inertia to limit response beyond a certain frequency. Such a
limitation, on the other hand, can be accounted for by defining a frequency-
dependent actuation penalty, Q. We set a constant actuation penalty of Q = I
in all the cases investigated in this study, as the aim is to find the maximum
control performance that can be achieved in the case of an ideal actuator.

The result of the noise control at (r, θ) = (20,−π/2) with sensor position
at x = −8 is shown at three frequencies St = 0.1, 0.2 and 0.3 in figure 11
for both control methods. We set the measurement noise P̂nn = cI with c =
1 × 10−3 which applies to both methods. A discussion about the effect of
these parameters on the control performance will be provided later. When
calculating the control signal, the non-causal part of the kernel is truncated
to zero to ensure causality in the real-time control. For the sensor positioned
at x = −8, both methods yield a similar performance at all three frequencies.
The vertical dashed line indicates the observer position. Noise reduction is
negligible at St = 0.1 while it increases up to 8 dB at St = 0.3. Thanks to the
dipolar nature of the scattered noise, controlling the noise at −π/2 causes a
global reduction at all angles except a small range of −15◦ < θ < 5◦.

In figure 12, we present the same results as in figure 11, but with the sensor
positioned at x = −5. The wave-cancellation approach yields a noise reduction
at the control point of around 5 dB at the peak frequencies St = 0.1 and 0.2
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Fig. 10 Kernels for the wave-cancellation (yellow dashed), non-causal (orange) and optimal
causal (blue) control with sensor positions at x = −8 (top) and −2 (bottom).

while it causes a slight increase in noise generation at St = 0.3. The optimal
causal control on the other hand provides a 10 dB reduction at St = 0.1 and
an over 20 dB reduction at St = 0.2 and 0.3. At St = 0.2, the directivity
matches that of the incident source within −90◦ < θ < 70◦, indicating that
the scattered sound, i.e., the effect of the infinite plate, is entirely cancelled in
this directivity range. The increase in the control performance compared to the
previous source position case can be explained by increased signal quality at
x = −5. It was shown in figure 5 that the wavepacket envelope peaks at x = 0
and extends up to x = ±6. The exponential growth mechanism that exists in
this region suggests that the disturbances at x = −5 have significantly larger
amplitude compared to the disturbances at x = −8, leading to an improved
signal-to-noise ratio given that we assume a constant-level measurement noise
in the entire domain.

The difference in the performance of the control methods with sensor
position at x = −5 can be investigated by comparing the FTs of the two cor-
responding kernels against that of the non-causal kernel. The amplitude and
phase comparisons are given in figure 13. The amplitude spectrum of the kernel
obtained from the WC method is similar to the non-causal kernel, where the
difference is within ∼ 30% for the frequency range 0.05 < St < 0.4. Its phase
on the other hand starts significantly deviating from that of the non-causal
kernel beyond St = 0.3, which causes the control to be suboptimal at high
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Fig. 11 Acoustic directivity for installed case with control compared against the installed
(black) and free (red) cases without control at St = 0.1 (top), 0.2 (middle) and 0.3 (bottom)
when the sensor is positioned at x = −8. Blue solid and blue dashed lines correspond to
the WC and OCC methods, respectively. The vertical red dashed line indicates the observer
position.

frequencies leading to the increase in noise as seen in figure 12. Contrarily, the
amplitude and phase spectra of the kernel obtained from optimal causal con-
trol match with good accuracy the non-causal kernel, yielding optimal noise
reduction.

We now consider the more realistic sensor position at x = −2. The direc-
tivity plots for this case are shown in figure 14. We see that the WC method
yields a 3 dB noise reduction at St = 0.1 while causing more increase on the
shielded side. Beyond this frequency, the method performs significantly worse
than the uncontrolled case, causing an increase in noise up to 12 dB. The
optimal causal control, once again, provides considerable noise reduction at
the observer and also at the rest of the domain. However, the noise reduction
achieved is about 5 dB less compared to the previous sensor position, despite
the improved signal-to-noise ratio thanks to further amplified perturbations at
this position. These results suggest that there exists an optimal sensor posi-
tion leading to maximum noise reduction, and beyond this point, we expect a
worsening of the control performance. This can be investigated by calculating
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Fig. 12 The same plot as figure 11 with sensor position at x = −5.

the noise reduction given by the energy ratio at the observer point as

NR =

∫∞
0

⟨|ẑc|2⟩dω∫∞
0

⟨|ẑ|2⟩dω
, (44)

where ẑc denotes the acoustic pressure at the observer in the controlled case.
We calculate the noise reduction using both approaches for different sensor
positions in the range x ∈ [−8, 1] and compare the results against that of the
non-causal control in the top plot of figure 15. We see that causality starts
affecting the performance of the wave-cancellation method for sensor positions
downstream of x = −6.5, while the decay in the performance starts at sensor
positions downstream of x = −4.5 for the optimal causal control. In the more
realistic case of sensor position around x = −2, noise reduction is 8 dB. The
non-causal control, which uses the kernel given by (23) without truncating the
non-causal part, performs the best when the sensor is positioned at x = 0,
where the wavepacket reaches its maximum amplitude yielding the highest
signal-to-noise ratio.

We evaluate the performance of the control strategy we adopted in this
study, which consists of using a dipolar actuator at the TE of the semi-infinite
plate, by calculating the overall noise reduction ratio in the entire domain
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Fig. 13 Phase (top) and amplitude (bottom) of the control kernels obtained using wave-
cancellation (yellow), non-causal (orange) and optimal causal (blue) approaches with sensor
position at x = −5. Top: phase, bottom: amplitude

given by

OANR =

∫ π

−π

∫∞
0

⟨|ẑc|2⟩dωdθ∫ π

−π

∫∞
0

⟨|ẑ|2⟩dωdθ
. (45)

The results are illustrated in the bottom plot of figure 15. Once again, OANR
reaches its minimum for the WC method when the sensor is positioned at
x = −6.5, leading to a 1.4 dB reduction in the overall noise. The minimum
OANR is achieved with sensor position at x = −1.5 for the optimal causal
control, leading to an overall noise reduction of 1.5 dB. Given these results,
we can conclude that the optimal causal control can provide substantial noise
reduction in a realistic sensor configuration, assuming that an ideal dipolar
actuator is available.

5 Conclusions

We presented a proof of concept for controlling installation noise in aircraft
using a model problem. The model is based on the idea that the installation
noise, which has a dipolar directivity (Piantanida et al, 2016) can be controlled
using an actuator at the trailing edge (TE) that can vibrate in the vertical
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Fig. 14 The same plot as figure 11 with sensor position at x = −2.

Fig. 15 The overall noise reduction obtained using (8) (yellow), (23) (orange) and (26)
(blue) at the observer (top) and globally (bottom).
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direction, and thus, act as a dipolar source to cancel the installation noise.
Assuming that such a control is possible, the problem of feeding the controller
with real-time data that would cancel the stochastic noise generated by jet-
flap interaction is based on the following hypothesis: the dominant cause of
installation noise is the interaction between the wavepackets that appear in
the shear layer due to the convective instability of jets, and the trailing edge of
the flaps. It was shown by Cavalieri et al (2013) that these wavepackets can be
modelled using linear solutions of parabolised stability equations (PSE), which
yields a rank-1 model, and an accurate prediction of installation noise is then
possible using the PSE model (Faranosov et al, 2019). As the model is rank-1,
the wavepacket can be predicted in real-time via a single-point measurement of
the fluctuations in the shear layer, which then opens the possibility of providing
input to the controller in real-time. We tested in this study the limits of such
a control strategy in a realistic configuration in terms of causality constraints.

We designed a model that involved a stochastic wavepacket model that is
based on the Ginzburg-Landau (G-L) equation and to represent the jet dynam-
ics, a semi-infinite plate to replace the wing flap, and a point dipole placed at
the TE of the semi-infinite plate to mimic the actuator. The acoustic propa-
gation is calculated using a tailored Green’s function for a semi-infinite plate
(Ffowcs Williams and Hall, 1970). The observer is located beneath the plate
at 90◦ with respect to the TE of the plate, which corresponds to an observer in
the ground direction in the actual installation noise problem. The parameters
of the G-L problem are set such that the noise generated by the wavepacket
has similar characteristics to that of an actual jet at low Mach number, hav-
ing a dipolar directivity and peaking at Strouhal number St ≈ 0.2 assuming
a characteristic length, which is the nozzle diameter in the real problem, of
1. The effect of the sensor position on the causality of the problem is demon-
strated. A realistic sensor position that is ∼ 2D upstream of the flap TE is
shown to yield a non-causal control problem. We adopted two control meth-
ods: the wave-cancellation (WC) method and optimal causal (OC) control. In
the WC method, causal control is achieved by truncating the non-causal part
of the kernel. This truncation, however, causes the resulting control kernel to
be sub-optimal. In optimal causal control, causality is enforced as a constraint.
The two methods yielded similar performance when the sensor is positioned
sufficiently upstream of the TE, yielding a causal control problem, albeit not
practical considering an actual jet-flap configuration. At the more realistic sen-
sor position of x = −2 with the TE at x = 0, the WC method caused the
noise level at the observer to increase by 6 dB, and hence, has proven useless.
The OC control on the other hand yielded nearly 8 dB noise reduction at the
observer for the same configuration. The global noise reduction was 1.5 dB,
which demonstrated that with the control concept adopted, it is possible to
achieve significant noise control at a target point without globally generating
extra noise.

The control performance achieved in the model problem is dependent on
several factors. The net amount of noise reduction is inversely proportional to
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the level of measurement noise, which is expected to be different in the actual
implementation than the value we assigned in this study. Nonlinearities in an
actual jet can also have a negative impact on the noise control approach we
adopt, which is linear. Another important factor can be the performance of a
real actuator, which might have a limited frequency response or a directivity
differing from that of a dipole. We consider here an ideal control problem, and
therefore, the control performance achieved in this study demonstrates the
upper bound of what one can achieve in a real implementation.

Appendix A Solution of the Wiener-Hopf
problem

To solve the Wiener-Hopf problem defined in (25), we define two Wiener-Hopf
factorisations

D̂ = D̂−D̂+, (A1)

D̂ = (D̂)− + (D̂)+, (A2)

that are multiplicative and additive, respectively, for a given matrix D̂. Here,
the subscripts − and + denote being regular in the lower and upper complex
plane, i.e., being entirely causal and non-causal, respectively. For a Wiener-
Hopf problem given in the form

D̂K̂+Ê = Λ̂− + F̂, (A3)

the solution for the causal part is given by

Γ̂+ = D̂−1
+

(
D̂−1

− F̂Ê−1
−
)
+
Ê−1

+ . (A4)

Then, the causal gain matrix in (25) can be obtained by setting D̂ ≜ ĜH
a Ĝa+

Q, Ê ≜ P̂yy and F̂ ≜ −ĜH
a P̂zy and substituting these into (A3). We refer the

reader to Martini et al (2022) for details about how to achieve the Wiener-Hopf
factorisations given in (A1) and (A2), where an efficient matrix-free method
based on Hilbert transform is described to perform the multiplicative factori-
sation. The additive factorisation can be achieved by taking the inverse Fourier
transform of D̂ in (A2), splitting the resulting time-domain kernel D into two
parts such that D−(t < 0) = 0 and D+(t > 0) = 0, and finally taking the
Fourier transforms of D− and D+ to obtain D̂− and D̂+, respectively.

Appendix B Spectral proper orthogonal
decomposition

SPOD (Towne et al, 2018) of a discrete-in-space stochastic variable q̂ can be
achieved by calculating the CSD matrix P̂qq = ⟨q̂q̂H⟩ as in (7) and then
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solving the eigenvalue problem

P̂qqWψ = λψ, (B5)

where ψ and λ denote the eigenvector and the eigenvalue, respectively, and
W is a matrix to compute the energy norm, such that the energy of a given
stochastic variable ξ̂(x) is calculated using the discretised vector ξ̂ as

⟨ξ̂HWξ̂H⟩ = ⟨
∫
S

ξ̂∗(x)Wξ̂(x)dS⟩, (B6)

where S denotes the domain ξ̂ is defined, and W denotes the energy norm,
which is chosen as 1 for this study. The SPOD modes are then obtained via
the eigendecomposition

W1/2P̂qqW
1/2H = Ψ̃ΛΨ̃H , (B7)

where Λ is a diagonal matrix containing the eigenvalues and Ψ̃ ≜
[ψ̃(1) ψ̃(2) · · · ] denotes the matrix containing the eigenvectors. The eigenvec-
tors given in (B5) that are orthogonal with respect to the norm defined in (B6)
are then calculated as

ψ(i) = W−1/2ψ̃(i), (B8)

where the superscript (i) denotes the ith eigenvector. The optimal SPOD mode
is defined as the eigenvector corresponding to the largest eigenvalue.
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