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endothelial cell depletion corresponds to

VEGF pathway methylation, proposing a

link between iMES, angiogenesis, and
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15Senior author
16These authors contributed equally
17These authors contributed equally
18Lead contact

*Correspondence: maloufg@igbmc.fr
https://doi.org/10.1016/j.xcrm.2023.101287
SUMMARY
The efficacy of immune checkpoint inhibitors varies in clear-cell renal cell carcinoma (ccRCC), with notable
primary resistance among patients. Here, we integrate epigenetic (DNA methylation) and transcriptome data
to identify a ccRCC subtype characterized by cancer-specific promoter hypermethylation and epigenetic
silencing of Polycomb targets. We develop and validate an index of methylation-based epigenetic silencing
(iMES) that predicts primary resistance to immune checkpoint inhibition (ICI) in the BIONIKK trial. High iMES
is associated with VEGF pathway silencing, endothelial cell depletion, immune activation/suppression, EZH2
activation,BAP1/SETD2 deficiency, and resistance to ICI. Combination therapy with hypomethylating agents
or tyrosine kinase inhibitors may benefit patients with high iMES. Intriguingly, tumors with low iMES exhibit
increased endothelial cells and improved ICI response, suggesting the importance of angiogenesis in ICI
treatment. We also develop a transcriptome-based analogous system for extended applicability of iMES.
Our study underscores the interplay between epigenetic alterations and tumor microenvironment in deter-
mining immunotherapy response.
INTRODUCTION

Clear-cell renal cell carcinoma (ccRCC) is the predominant kidney

cancer, responsible for numerous cancer-related deaths.1 So-

maticVHLmutations arewell known,but recent studies have iden-

tified new mutations related to chromatin modification and intra-
Cell Repor
This is an open access article under the CC BY-N
tumor diversity, spurring the development of various Food and

Drug Administration-approved therapies for metastatic RCC.2

Based on recent randomized phase III trials, current guidelines

recommend first-line treatment with dual immune checkpoint inhi-

bition (ICI) or a combination of vascular endothelial growth factor

(VEGF) receptor tyrosine kinase inhibitor (TKI) and anti-PD-1 ICI.3
ts Medicine 4, 101287, November 21, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The CheckMate-214 trial showed a 42% response rate with

ipilimumab plus nivolumab (Ipi/Nivo), but nearly 20% of patients

showed disease progression early on.4 While various methods,

including single-cell RNA sequencing (RNA-seq), have sought

potential biomarkers, bulk RNA profiling has identified distinct

RCC molecular subtypes, which were evaluated in several clin-

ical trials.4–8 However, transcriptomic signatures from trials

such as IMmotion150 and JAVELIN Renal 101 have shown

limited predictive value for Ipi/Nivo and nivolumab monothera-

pies, making biomarker identification for ccRCC immunotherapy

challenging.5,9–11

We recently defined a ccRCC subgroup with an enhancer de-

methylator phenotype (TED+), linked to a distinct transcriptome

program, poor prognosis, and ICI resistance.12 This work has

highlighted the critical role of epigenetic alterations—specif-

ically, alterations in DNA methylation—and their interplay with

the transcriptome landscape in future biomarker studies for

ccRCC.13 DNA methylation in promoter CpG islands (CGIs)

serves as an epigenetic regulator of gene expression. The tech-

nology is advanced enough to diagnose cancer from blood sam-

ples and produce trait-associated methylation profile scores

(MPSs).14 Importantly, MPSs are evolving to stratify disease

risks, including cancer, and are robust across different

ancestries.15–17

Given RNA-based biomarkers’ limited success and DNA

methylation’s potential, we explored integrating epigenetic

(i.e., promoter methylation) and transcriptomic data to identify

reliable ICI response predictors in ccRCC, using the BIONIKK

clinical trial as our basis. The BIONIKK trial, guided by the Des-

cartes classifications, is the first to validate biomarker-driven pa-

tient selection in ccRCC.18,19 In several ccRCC cohorts we

investigated epigenetic silencing through cancer-specific pro-

moter hypermethylation, which we found to be associated with

tumor microenvironment (TME) composition, and we further

developed and validated an index of methylation-based epige-

netic silencing (iMES), an MPS that could help predict Ipi/Nivo

treatment outcomes in ccRCC. Intriguingly, we discovered an in-

verse correlation between iMES and endothelial cell signatures,

suggesting that response to ICI in ccRCC might necessitate

functional vasculatures and that this might be dampened by

hypoxia.

RESULTS

Epigenetic silencing is associated with SETD2

mutations, 9p loss, and tumor aggressiveness
Using the Illumina 450K array, we studied 301 ccRCC tumors

and 160 normal kidney samples from The Cancer Genome Atlas

(TCGA) (Figure 1). We filtered out probes with a median b value

above 0.2 in normal samples, leaving 76,239 probes mapping

to 12,343 genes. Integrative analysis identified 493 genes epige-

netically silenced through cancer-specific DNA hypermethyla-

tion at promoter CGIs (Table S1).

Through unsupervised clustering on 101 frequently methyl-

ated genes (>20%), we identified two ccRCC subtypes: EPI-

C1 (n = 78) and EPI-C2 (n = 223) (Figure 2A). Interestingly,

EPI-C1 had a significantly higher proportion of our previously

identified TED+ phenotype compared to EPI-C2 (38.5% vs.
2 Cell Reports Medicine 4, 101287, November 21, 2023
16.6%, p < 0.001). These two subtypes were tightly associated

with patients’ clinical outcomes (p < 0.001; Figure 2B). Of note,

75 out of the 101 silenced genes (74.3%) were found to be prog-

nostic using univariate analysis, and all were associated with an

increased risk of death (hazard ratio [HR] > 1, false discovery rate

[FDR] < 0.05; Figure S1), suggesting that epigenetic silencing

had broad prognostic relevance in ccRCC.

EPI-C1 was strongly associated with advanced tumor grades

(G1 + G2: 23.4% vs. 52.5%; G3 + G4: 76.7% vs. 47.5%;

p < 0.001) and stage (I + II: 26% vs. 69.4%; III + IV: 74.1% vs.

30.6%; p < 0.001) compared to EPI-C2 (Figures 2C and 2D;

Table S2). Since ccRCCwith sarcomatoid and rhabdoid differen-

tiation (sccRCC/rccRCC) forms themost aggressive clinicopath-

ologic phenotypes, we evaluated those cases with reviewed pa-

thology reports.20,21 We found that among 29 sccRCCs, 13

cases belonged to EPI-C1, indicating that EPI-C1 was signifi-

cantly enriched in sccRCC compared to EPI-C2 (16.7% vs.

7.2%, p = 0.026). No enrichment was observed regarding

rccRCCs (Table S2).

Given the reported correlation between 9p deletion and the

aggressiveness of RCC,22 we investigated the TCGA-KIRC

cohort and revealed more frequent 9p loss in the EPI-C1

compared to EPI-C2 (39 [50.6%] vs. 31 [14.1%], p < 0.0001; Fig-

ure 2A). In addition, SET Domain Containing 2 (SETD2) was iden-

tified as the only gene whose mutations was frequently enriched

in EPI-C1 compared to EPI-C2 (22 [37.3%] vs. 16 [8.7%],

p < 0.001, FDR <0.001; Table S3).

To explore the role of cancer-specific hypermethylation in dis-

tinguishing the malignancy of tumors, we collected an indepen-

dent cohort of ccRCC (PSL cohort, n = 46) that was enriched for

high-grade tumors (G4: n = 27, 58.7%) and tumors with metasta-

tic presentation at baseline (M1: n = 9, 19.6%). Owing to the lack

of adjacent normal controls, we used a second dataset

(GSE61441) to establish a consensus of cancer-specific pro-

moter hypermethylated probes.23 We identified 75,721 probes

(Figure S2A), with 72,110 probes overlapping between TCGA-

KIRC (94.6%) and GSE61441 (95.2%) cohorts (Figure S2B), indi-

cating stable cancer-specific hypermethylation among ccRCC

tumors (representation factor 5.7, p < 0.001).

Gene-level analysis with 72,110 probes confirmed two sub-

types in the PSL cohort (Figure S2C). EPI-C1 showed worse clin-

ical outcomes (p = 0.0001; Figure S2D) and was linked to

advanced stages and grades (Figures S2E and S2F; Table S4).

Consistently, aggressive EPI-C1 harbored all detected 9p loss

as compared to EPI-C2 (7 [28%] vs. 0, p = 0.011; Figure S2C).

Furthermore, higher proportions of sccRCCs (52% vs. 33.3%),

rccRCCs (20% vs. 4.8%), and necrosis (36% vs. 19%) were

observed in EPI-C1 compared to EPI-C2, without statistical sig-

nificance (all p > 0.1).

Epigenetic silencing converged to EZH2

overexpression, PRC2 hypermethylation, and BAP1 loss
We then examined the DNA methylation differences between

two epigenetic subtypes. In the TCGA-KIRC cohort, we revealed

2,363 hypermethylated probes in EPI-C1 and only 14 in EPI-C2

(Table S5). These were primarily located in promoter CGIs (fold

change 1.92, p < 0.001; Figure S3A) and enriched in Polycomb

repressive complex 2 (PRC2) targets (FDR < 0.001; Figure S3B).



Figure 1. Flow diagram of the study

Flow diagram illustrating the study’s logical progression from initial epigenetic silencing to the development of the epigenome-based iMES and transcriptome-

based systems.
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Figure 2. Association between epigenetic silencing by DNA methylation and tumor aggressiveness of ccRCC

(A) Heatmap of methylation and gene expression profiles in TCGA cohort, including annotations for adjacent normal tissues and clinical features.

(B) Kaplan-Meier curves depicting OS rates of epigenetic subtypes.

(C) Bar plots (actual sample size shown within parentheses below the percentage) and pie charts showing the association between two epigenetic subtypes and

tumor grade.

(D) Same as (C) but for tumor stage.
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We identified 1,143 regions that were hypermethylated in EPI-

C1, with only eight in EPI-C2 (Table S6), and these regions

were also enriched in PRC2 targets (FDR < 0.001; Figure S3C).

Notably, hypermethylation of Polycomb targets was reconciled

with overexpression of enhancer of zeste 2 Polycomb repressive

complex 2 subunit (EZH2) in EPI-C1 compared to EPI-C2 (fold

change 1.25, p < 0.001, FDR < 0.001; Figure 3A). EZH2 is a

key component of PRC2 and its overexpression can lead to

increased activity of PRC2, resulting in hypermethylation of

target genes, including PRC2 itself.

Intriguingly, overexpression of EZH2 has been linked to BAP1

loss.24 Although BAP1 mutations were not strongly linked to the

epigenetic subtypes, its role in chromatin accessibility has been

underscored in a recent study.25 To explore this, we identified re-

gions with reduced chromatin accessibility in BAP1-mutant tu-

mors and developed a BAP1-loss-driven chromatin repression

signature (BAP1-LCR). This signature was inversely correlated

with EZH2 expression (r = �0.24, p < 0.0001) and diminished

in EPI-C1 (p < 0.001; Figure 3B), suggesting that BAP1 loss,
4 Cell Reports Medicine 4, 101287, November 21, 2023
potentially encompassing more than mere mutation, may

contribute to the epigenetic silencing observed in ccRCC.

Epigenetic silencing contributed to potential ICI
resistance
Our gene set enrichment analysis (GSEA) showed that the EPI-

C1 in the TCGA-KIRC cohort was associated with increased in-

flammatory response, epithelial-mesenchymal transition (EMT),

and the IL-6/JAK/STAT3 Hallmark pathways (all, normalized

enrichment score [NES] > 1.5, FDR < 0.05; Figure 3C). The

enrichment of sarcomatoid in EPI-C1 was consistent with the

role of EMT in sarcomatoid and rhabdoid changes. Activation

of the IL-6/JAK/STAT3 pathway suggests a higher likelihood of

immune evasion in EPI-C1,26 backed by higher Tumor Immune

Dysfunction and Exclusion (TIDE) scores (p = 0.028; Figure 3D)

and more predicted non-responders (p = 0.022; Figure 3E).27

Previous studies have reviewed the association between alter-

ations in PRC2 function, including overexpression of EZH2, hy-

permethylation of PRC2, and exhausted T cells that cause ICI



Figure 3. Epigenetic silencing by DNA methylation and its role in primary resistance to ICI treatment of ccRCC

(A) Violin plot of EZH2 expression between epigenetic subtypes of TCGA cohort.

(B) Violin plot of BAP1-LCR levels between epigenetic subtypes of TCGA cohort.

(C) GSEA of activated pathways in EPI-C1 of TCGA cohort.

(D) Violin plot of TIDE scores between epigenetic subtypes of TCGA cohort.

(E) Stacked bar plot of TIDE-predicted ICI responder fractions in two epigenetic subtypes of TCGA cohort.

(F) Venn diagram of the intersection of epigenetically silenced genes between TCGA-KIRC and BIONIKK’s ICI arms.

(G) DNA methylation landscape of epigenetically silenced genes in two epigenetic subtypes in BIONIKK’s ICI arms.

(H) Kaplan-Meier curves depicting OS rates of epigenetic subtypes in BIONIKK’s ICI arms.
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resistance.28 Based on these findings, we proposed that epige-

netic silencing may contribute to ICI resistance in ccRCC.

Using BIONIKK trial data,19 we conducted Illumina EPIC

profiling for 65 samples from patients who received treatment

with either nivolumab (arm A: n = 19) or a combination of Ipi/

Nivo (arm B: n = 46), as well as 17 samples from patients treated

with sunitinib (arm C). We also profiled methylomes of six adja-

cent normal kidneys to assess cancer-specific hypermethyla-

tion. Additionally, we performed RNA-seq on 95 samples with

good RNA quality, including 28 from the nivolumab arm, 48

from the Ipi/Nivo arm, and 19 from the sunitinib arm. Among

these samples, 48 samples had both DNA methylation and

expression data, including 12 from the nivolumab arm, 27 from

the Ipi/Nivo arm, and 9 from the sunitinib arm.

Our integrative analysis identified 341 silenced genes, with

101 frequently methylated (Table S7). Among these genes, 21

(20.8%) overlapped with those identified in the TCGA-KIRC
cohort (representation factor 40.4, p < 0.001; Figure 3F). Notably,

we observed a significant enrichment of the cytogenetic region

19q13.43 for these genes (FDR < 0.0001), which includes zinc-

finger proteins such as ZNF135, ZNF154, ZNF471, ZNF835,

and ZIK1. Through supervised clustering, we identified two

epigenetic subtypes (EPI-C1, n = 24; EPI-C2, n = 41) among pa-

tients receiving ICI treatment (Figure 3G). Patients with EPI-C1

were associated with significantly poorer overall survival (OS)

(p = 0.006; Figure 3H). The median survival for progression-

free survival (PFS) (13.1 vs. 7.3months) and time to second treat-

ment (TST) (20.8 vs. 10.9 months) was nearly double in EPI-C2

compared to EPI-C1, although no statistical significance was

reached (both p > 0.1; not shown). Of note, EPI-C1 (16, 69.6%;

one had no record for PFS) showed a slightly higher proportion

of ICI non-responders compared to EPI-C2 (19, 46.3%) (pro-

gressive disease, stable disease, or partial response with PFS

time of less than 12months; p = 0.062). No statistical association
Cell Reports Medicine 4, 101287, November 21, 2023 5
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was observed between epigenetic subtypes and other clinical

features (all p > 0.1; Table S8) but marginally associated with

Descartes classifications (p = 0.076). Interestingly, EPI-C2 was

highly enriched for the pro-angiogenic ccrcc2 group (14

[34.1%] vs. 3 [12.5%], p = 0.079). We also observed a marginal

enrichment of 9p loss, specifically at the focal-level region of

9p21.3, in the EPI-C1 subgroup compared to EPI-C2 (11

[45.8%] vs. 9 [22%], p = 0.055; Figure 3G).

In the BIONIKK cohort, we discovered 320 hypermethylated

probes and 662 regions for EPI-C1, but none for EPI-C2

(Tables S9 and S10). These were enriched in promoter CGIs

(fold change 3.93, p < 0.001; Figure S4A) and PRC2 targets

(FDR < 0.001; Figures S4B and S4C), similar to findings in the

TCGA-KIRC cohort. Consistently, we found an inverse correla-

tion between the BAP1-LCR signature and EZH2 expression

(r = �0.29, p = 0.071) as well as lower signature score in EPI-

C1 compared to EPI-C2 (p = 0.003; Figure 3G). Supervised clus-

tering identified two epigenetic subtypes in patients who

received TKI treatment (Figure S5A); however, no prognostic

relevance was observed (all p > 0.6; Figure S5B). Despite the

small sample size of the BIONIKK TKI arm, we investigated a

larger cohort, the ccRCC-Descartes cohort, which included

102 patients with metastatic ccRCC who were treated with the

first-line TKI sunitinib.18 Likewise, statistical significance was

not reached for survival analyses in the two epigenetic subtypes

(p > 0.05; Figures S6A and S6B). These results suggested that

epigenetic silencing may play a role in shaping aggressiveness

and resistance to ICI in ccRCC.

Development and validation of an iMES that was
relevant to ICI resistance
To identify potential prognostic factors and predict the outcomes

of patients receiving ICI treatment, we analyzed promoter CGI

probes corresponding to genes that were silenced in the

TCGA-KIRC cohort. Probes that had a constant methylation sta-

tus were filtered out and those methylated in at least 5% of the

samples were kept, resulting in a total of 1,029 probes. To pre-

vent overfitting, the TCGA discovery cohort was split into a

training set (n = 240) with 80% of the samples and an internal

testing set (n = 61) with 20% of the remaining samples. Using

a multivariate Cox regression model with the adaptive least ab-

solute shrinkage and selection operator (adaLASSO) penalty,

we determined the optimal l value when the partial likelihood

deviance reached the minimum value based on 10-fold cross-

validation (Figure 4A). Fifty-eight probes with non-zero ada-

LASSO coefficients were selected and used to develop amethyl-

ation-based epigenetic silencing index, referred to as iMES

(Figure 4B and S7). We calculated an iMES for each sample via

a linear combination of these probes, weighted by their coeffi-

cients (Table S11).

The patients were divided into iMES-high and iMES-low

groups based on the upper tertile of the iMES in the training

set of the TCGA-KIRC cohort. In this set, a higher iMES was

significantly associated with worse OS (HR = 3.86, 95% confi-

dence interval [CI] 3.06–4.87, p < 0.001; log rank p < 0.001; Fig-

ure S8A). The iMES was then evaluated on the internal testing

set, which comprised unseen data that came from the same dis-

tribution as the training set. In this set, higher iMES was also
6 Cell Reports Medicine 4, 101287, November 21, 2023
significantly associated with worse OS (HR = 2.79, 95% CI

1.97–3.95, p < 0.001; log rank p < 0.001; Figure S8B), indicating

less likelihood of overfitting and a good ability to generalize to

new situations. We then applied iMES to the entire TCGA-KIRC

cohort, whereby it showed a significant association with OS

(HR = 3.51, 95%CI 2.91–4.24, p < 0.001; log rank p < 0.001; Fig-

ure 4C). The time-dependent receiver-operating characteristic

(ROC) analysis indicated that iMES had a good discriminative

ability, with time-dependent area under the curve (AUC) values

of 0.86 at 1 year, 0.86 at 3 years, 0.87 at 5 years, and 0.91 at

10 years (Figure 4D).

To assess the potential of iMES as a prognostic indicator for

patients receiving ICI treatment, iMES was calculated for each

sample in the BIONIKK cohort. We found that a higher iMES

was strongly associated with an increased risk of poor PFS

(HR = 1.45, 95% CI 1.07–1.97, p = 0.018), TST (HR = 1.56,

95% CI 1.12–2.17, p = 0.008), and OS (HR = 2.35, 95% CI

1.18–4.66, p = 0.015) for patients in the nivolumab and Ipi/Nivo

arms. Furthermore, iMES was able to stratify patients into

iMES-high (n = 22) and iMES-low (n = 43) groups with signifi-

cantly different prognoses for PFS (p = 0.001; Figure 4E), TST

(p < 0.001; Figure 4F), and OS (p = 0.019; Figure 4G). The

iMES-high group significantly enriched in ICI non-responders

(18, 85.7%) compared to the iMES-low group (17, 39.5%)

(p < 0.001). Consistently, non-responders had significantly

higher iMES compared to responders (p = 0.007). Time-depen-

dent ROC analysis revealed that iMES had good discriminative

ability for both short-term and long-term OS prediction (average

AUC: 0.91), but its performance in predicting TST was limited to

the short term (average AUC: 0.83 within 3 months) (Figure 4H).

While the overall effectiveness of the treatmentmay be difficult to

evaluate due to low AUC for long-term TST prediction (average

AUC: 0.68), iMES may be useful to identify patients at high risk

for experiencing TST early, which could be valuable in making

treatment decisions to consider alternative treatment options

or closer monitoring.

No statistical association was observed between iMES and

patient outcomes in both the BIONIKK and ccRCC-Descartes

TKI cohorts (all p > 0.05; Figures S9A and S9B), suggesting

that iMES may be most useful in predicting resistance to ICI in

ccRCC patients treated in first line.

iMES was an independent prognostic factor
We then investigated whether iMES could serve as an indepen-

dent prognostic factor in localized and metastatic ccRCCs (Fig-

ure 4I). We found that iMES remained a significant independent

prognostic factor after adjusting for other major clinical prog-

nostic features in the TCGA-KIRC cohort (p < 0.001). In the

PSL cohort, iMES was not significant (p = 0.561), possibly due

to the limited sample size. Despite this, the data reinforced the

evidence that iMES was closely associated with aggressive tu-

mor features. Additionally, iMES remained an independent prog-

nostic factor in the ICI arms of the BIONIKK cohort (p < 0.05 for all

events of interest). These findings suggest a potential for iMES to

augment the International Metastatic RCCDatabase Consortium

risk score in prognostication, particularly for patients receiving

immunotherapy. However, this preliminary observation requires

further validation in larger cohorts.



Figure 4. Development and validation of an iMES

(A) Flow chart.

(B) Selection of l in the adaLASSOmodel. The partial likelihood deviance was plotted vs. log(l) (top panel), and a coefficient parole plot was produced against the

log(l) sequence (bottom panel).

(C) Kaplan-Meier survival curve depicting OS rates of two iMES groups in TCGA cohort.

(D) Time-dependent ROC curves of iMES in TCGA cohort. TPR, true positive rate; FPR, false positive rate.

(E) Kaplan-Meier curves of PFS for patients stratified by iMES in BIONIKK’s ICI arms.

(F) Same as (E) but for TST.

(G) Same as (E) but for OS.

(H) Time-dependent ROC curves of iMES within 6 months after treatment in BIONIKK’s ICI arms.

(I) Forest plot displaying hazard ratios in univariate (above the dashed line) andmultivariate (below the dashed line) analyses. CS, complete separation—outcome

variable completely separates a predictor variable with inaccurate estimation.
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iMES was associated with high immune infiltration and
epithelial depletion
To decipher iMES’s biological underpinings, we performed

GSEA on samples with high and low iMES in the TCGA-KIRC

cohort and BIONIKK’s ICI arms. High-iMES samples were signif-

icantly enriched in pathways related to inflammatory response,

interferon-g response, EMT, and the IL-6/JAK/STAT3 signaling

(NES > 1.5, p < 0.05, FDR <0.05). Similar trends were found in

the Cancer Cell Line Encyclopedia (CCLE) dataset (Figure 5A).

Given the activation of the interferon-g pathway in patients

with high iMES, we surveyed the ccRCC samples for the expres-

sion of immune checkpoint genes, and we investigated the spe-

cific immune cell infiltration status and the functional orientation

of TME for both cohorts (Figures 5B and 5C). Elevated iMES

correlated with increased expression of immune checkpoint

genes, including PDCD1, CTLA4, and LAG3, indicating potential

immune exhaustion. Additionally, higher iMES was positively

correlated with immune activation, such as T cells and CD8+

T cells, and also with suppressive populations, including regula-

tory T cells (Tregs), tumor-infiltrating Tregs, cancer-associated

extracellular matrix (C-ECM), and Wnt/TGF-b. Of note, iMES

was inversely correlated with endothelial cells (Figures 5B and

5C), and iMES was significantly lower in Motzer’s angiogenic/

stromal and angiogenic subtypes as compared to other sub-

types (both p < 0.01; Figures S10A and S10B). Further deconvo-

lution using TR4 (Figure 5D), a signature matrix consisting of

epithelial, endothelial, fibroblast, and bulk immune cell popula-

tions, revealed a positive correlation between iMES and immune

cells (both r > 0.25, p < 0.05), while there was an inverse correla-

tion with epithelial cells in both cohorts (both r <�0.35, p < 0.05).

Likewise, patients with high iMES had higher proportions of im-

mune and lower endothelial cells compared to those with low

iMES in both cohorts (all p < 0.05; Figure 5D).

Considering the tight association between iMES and the TME

landscape, we investigated the potential influence of tumor pu-

rity, which often correlated with immune infiltration. Our analyses

revealed no statistical association between iMES and tumor pu-

rity in either the TCGA-KIRC cohort (r = 0.09, p = 0.13) or ICI arms

of the BIONIKK cohort (r = 0.12, p = 0.49). Furthermore, we found

no prognostic relevance of tumor purity in relation to clinical out-

comes in both cohorts (all pR 0.4). Multivariate analysis adjust-

ing for tumor purity demonstrated the independent prognostic

value of iMES in both the TCGA-KIRC cohort (OS: HR = 3.57,

95% CI 2.94–4.33, p < 0.0001) and the ICI arms of the

BIONIKK cohort (TST: HR = 1.58, 95% CI 1.14–2.19,

p = 0.006; PFS: HR = 1.47, 95% CI 1.08–2.0, p = 0.013; OS:

HR = 2.32, 95% CI 1.17–4.59, p = 0.016). This suggests that

iMES reflects epigenetic changes directly impacting the TME

and immunotherapy response.

Endothelial depletion convergedwithmethylation of the
VEGF pathway
The decrease in the endothelial cell signature in ccRCC patients

with high iMES highlights the importance of exploring VEGF

pathways in angiogenesis and tumor progression. We discov-

ered four VEGF-related genes—FLT4 (36.9%), PRKCB

(29.6%), FLT1 (14.9%), and KDR (10.3%)—that were frequently

methylated (b value >0.2) and co-occurred in their methylation
8 Cell Reports Medicine 4, 101287, November 21, 2023
patterns (all, log2 odds ratio [log2OR] > 3, FDR < 0.001; Figure 6A

and Table S12). The permutation test demonstrated a positive

association between iMES and methylation of these genes (all

r > 0.3, p < 0.001; Table S13). Consistent with our previous

report,29 the FLT4 gene had the highest inverse correlation be-

tween DNAmethylation and expression (r =�0.4, p < 0.001; Fig-

ure 6B and Table S13).

In the BIONIK’s ICI arms, the same VEGF genes were

frequently co-methylated (all except KDR-PRKCB, log2OR > 1.5,

FDR < 0.05; Figure 6A and Table S12), including FLT4 (32.3%),

PRKCB (72.3%), FLT1 (41.5%), and KDR (38.5%). Of these,

FLT4 (r = 0.18), PRKCB (r = 0.17), and KDR (r = 0.24) were posi-

tively associated with iMES (all p < 0.1; Table S13). We also

noted inverse correlations between DNA methylation and

expression for FLT4 and PRKCB (Figure 6B and Table S13).

iMES was associated with alterations of chromatin
remodeling
Expanding on our previous findings on chromatin alteration in

ccRCC, we conducted a thorough regulon analysis to identify

new key regulators. We identified six regulators that showed

strong and positive correlation with iMES in the TCGA-KIRC

cohort (all p < 0.001) including EZH2 (r = 0.38), KAT2A

(r = 0.20), KDM5D (r = 0.33), KMT5A (r = 0.31), PRDM14

(r = 0.28), and SIRT7 (r = 0.32) (Figure 6C and Table S14). Of

note, KMT5A (r = 0.26, p = 0.053) and EZH2 (r = 0.21,

p = 0.098) were positively correlated with iMES in the BIONIKK

ICI arms (Figure 6C and Table S14), consistent with the overex-

pression of EZH2 in ccRCC tumors with epigenetic silencing. In

addition, we found that iMES was inversely correlated with the

regulon activity of SETD2 (r = �0.24, p < 0.001) in the TCGA-

KIRC cohort, indicating loss of SETD2 for patients with high

iMES, but there was no association in the BIONIKK cohort

(Table S14). Nevertheless, we found that a SETD2 loss signature

was positively correlated with iMES (r = 0.26, p = 0.054) in the

BIONIKK cohort as well as in the TCGA-KIRC cohort (r = 0.26,

p < 0.001) (Figure 6C).

Moreover, BAP1-LCR signature was inversely correlated with

iMES in both cohorts (r = �0.36, p < 0.0001 in TCGA-KIRC;

r =�0.22, p = 0.084 in BIONIKK’s ICI arms). We further explored

the genes linked to the BAP1-loss-driven accessible chromatin

regions, identifying a subset of these genes that were strongly

and inversely correlated with iMES in both cohorts (Figure S11).

These genes showed an enrichment in the hypoxia pathway

(p = 0.021, FDR = 0.103), aligning with the observed endothelial

cell depletion in tumors with low iMES. Conversely, a smaller set

of genes displayed a positive correlation with iMES (Figure S11)

and were enriched in proliferative pathways, including the G2/M

checkpoint and E2F targets (both p = 0.034, FDR = 0.135). These

findings further substantiate the intricate interplay between

epigenetic silencing, chromatin remodeling, and TME in shaping

immunotherapy resistance in ccRCC.

iMES outperformed other transcriptomic signatures in
predicting clinical resistance for Ipi/Nivo or nivolumab
monotherapy
We then evaluated the prognostic relevance of published tran-

scriptomic signatures in the BIONIKK and CheckMate cohorts,



Figure 5. Biological relevance of iMES

(A) GSEA panels displaying activated Hallmark pathways in patients/cell lines with high iMES.

(B) TME landscape of TCGA cohort, with samples sorted in ascending order based on iMES. Dot plots, positioned alongside the heatmaps, display the correlation

between iMES and the expression or enrichment levels of immune-related factors.

(C) Same as (B) but for BIONIKK’s ICI arms.

(D) Association between iMES and cell fractions.
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Figure 6. iMES association with VEGF and

chromatin remodeling

(A) Network illustrating the association between

iMES (blue dot) and methylation status of VEGF

pathway genes (green pie chart), and regulon ac-

tivity of cancerous chromatin remodelers (purple

dots), as well as internal correlation among chro-

matin remodels, mutual exclusivity status of VEGF

pathway genes (green lines connecting VEGF

genes), and their self-correlation between gene-

level DNA methylation and gene expression

(directed bended lines around pie charts).

(B) Correlation between gene-level methylation

and expression of the four VEGF pathway genes.

(C) Correlation between iMES and regulon activity

of two chromatin remodelers (EZH2 and KMT5A),

and between iMES and single-sample GSEA

score of STED2 loss signature.
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respectively. Four transcriptomic signatures that had previously

been reported to be linkedwith ICI responsewere examined first:

Teff, myeloid inflammation (Myeloid), Immuno, and tumor inflam-

mation signature.5,9,30 Of note, there was no statistical associa-

tion between scores of these signatures with prognosis of pa-

tients receiving Ipi/Nivo or nivolumab monotherapy treatment

(all p > 0.05; Table S15). As iMES was tightly associated with

endothelial cells, which is essential for angiogenesis, we there-

fore investigated Angio, a transcriptomic angiogenesis signature

previously reported to be linked with sunitinib response.9 How-

ever, we found no statistical association between the Angio

signature and clinical outcomes of patients receiving sunitinib
10 Cell Reports Medicine 4, 101287, November 21, 2023
in the BIONIKK or ccRCC-Descartes co-

horts and also the patients who received

everolimus in the CheckMate cohort (all

p > 0.2; Table S15). Interestingly, we

found a higher score of Angio signature

was tightly associated with improved

PFS (HR = 0.64, 95% CI 0.44–0.94,

p = 0.022), TST (HR = 0.69, 95%

CI 0.48–1.01, p = 0.055), and OS

(HR = 0.31, 95% CI 0.17–0.57,

p < 0.001) for patients in BIONIKK’s ICI

arms, and improved OS (HR = 0.80,

95% CI 0.69–0.92, p = 0.002) for patients

in CheckMate’s ICI arm (Table S15).

These findings align with our earlier

observation that silenced VEGF pathway

genes and decreased endothelial cells

correlate with ICI resistance.

In addition, for those 39 samples from

the ICI arms that had both epigenetic

and transcriptomic profiles, multivariate

analyses demonstrated that iMES

was an independent prognostic value

when adjusting Angio signature scores

with respect to PFS (HR = 1.76, 95%

CI 1.14–2.72, p = 0.011) and TST

(HR = 1.89, 95% CI 1.19–3.02,
p = 0.007) (Table S16). This suggests that iMES offered insights

beyond angiogenesis and also reflected other biological pro-

cesses that could be important for tumor progression, as the

endothelial cell enrichment and angiogenesis signature are

related but not identical processes.

Translating epigenome-based iMES into a
transcriptome-based analogous system
DNA methylation at the level of regulatory genes is associated

with changes in the activity of the regulons they control, lead-

ing to a coordinated silencing of the genes within the regulon.

Recognizing the limitation that some cohorts lack DNA



Figure 7. Regulon phenotypes and prognostic relevance in ccRCC

(A) K-mode clustering of genes corresponding to model-selected probes based on their regulon activity status in TCGA cohort.

(B) Violin plot of iMES between two regulon subtypes.

(C) Kaplan-Meier survival curves depicting OS rates of regulon subtypes in TCGA cohort.

(D) K-mode clustering using regulon activity status in BIONIKK’s ICI arms.

(E) Kaplan-Meier curves differentiate TST of regulon subtypes in BIONIKK’s ICI arms.

(F) Same as (E) but for PFS.

(G) K-mode clustering using regulon activity status (top panel), the TME landscape (middle panel) with deconvolution of cell fractions, and the regulon activity

distribution of EZH2, KMT5A, and SETD2 as well as the single-sample GSEA score of SETD2 loss signature (bottom panel) in CheckMate’s ICI arm.

(H) Kaplan-Meier survival curves depicting OS rates of regulon subtypes in CheckMate’s ICI arm.

(I) Characterization of regulon phenotypes in JAVELIN’s ICI/TKI arm.

(J) Kaplan-Meier survival curves depicting PFS rates of regulon subtypes in JAVELIN’s ICI/TKI arm.
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methylation data but possess RNA-seq profiles, we translated

the epigenome-based iMES into a parallel system. This anal-

ogous system can utilize solely transcriptomic data for prog-

nostic predictions in ccRCC patients undergoing ICI

treatment.

The iMES is formulated on the promoter hypermethylation sta-

tus of certain probes, a condition believed to induce gene

silencing. However, the direct expression levels of these genes,

as measured by RNA-seq, may not allow for an unambiguous

determination of their functional activity within the transcriptional

regulatory network. Instead it is the network-wide context, rather

than individual gene expression, that yields a more precise rep-

resentation of a gene’s operational status within the cell (i.e.,

active or silenced). Therefore, we inferred the regulon activity

status of the 54 genes corresponding to the probes constituting

the iMES, reasoning that their collective activity status could

mirror the iMES groups.
In the TCGA-KIRC cohort, we uncovered two distinct pheno-

types exhibiting distinct regulon activity patterns (Figure 7A).

The regulon-suppressed phenotype demonstrated a signifi-

cantly higher iMES and was over-represented in patients in the

iMES-high group compared to the regulon-activated phenotype

(both p < 0.001; Figure 7B). As per the analogous system, a

phenotype displaying a downregulated regulon pattern would

signify a silenced state, similar to an iMES-high group.

Conversely, a phenotype with an upregulated regulon pattern

would suggest an active, non-silenced state, mirroring the

iMES-low group. Survival analyses demonstrated significant

prognostic relevance for OS, with the median survival being

63.7 months for the regulon-suppressed phenotype and not

yet reached for the regulon-activated phenotype (p < 0.001;

Figure 7C).

To further explore the prognostic capabilities of the analogous

system in ccRCC patients undergoing ICI treatment, we
Cell Reports Medicine 4, 101287, November 21, 2023 11
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extended our analysis to the BIONIKK and CheckMate

cohorts within which patients received Ipi/Nivo or nivolumab

monotherapy. In these cohorts, two regulon phenotypes were

triumphantly reproduced, with patients demonstrating the regu-

lon-suppressed phenotype exhibiting significantly inferior prog-

noses compared to those within the regulon-activated

phenotype.

In the BIONIKK ICI arms (Figure 7D), patients with the regulon-

suppressed phenotype showed significantly shorter TST (median

survival: regulon-suppressed = 12.2 months, regulon-activated =

20.8 months, p = 0.005) and PFS (median survival: regulon-sup-

pressed = 7.8 months, regulon-activated = 23.2 months,

p = 0.005) (Figures 7E and 7F) and a marginal enrichment of

iMES-high patients (p = 0.076), while no statistical association

was observed between regulon phenotype and iMES (p = 0.2).

In the CheckMate ICI arm (Figure 7G), the regulon-suppressed

phenotype showed significantly poorer outcomes concerning

OS (median survival: regulon-suppressed = 19.6 months, regu-

lon-activated = 38.6 months, p = 0.007) (Figure 7H), and this

phenotype was highly infiltrated by immune activation/suppres-

sive populations but depleted for endothelial cells, which was

consistent with the enrichment of angiogenic/stromal and angio-

genic subtypes compared to the regulon-activated phenotype

(62 [65%] vs. 10 [11.6%], p < 0.0001) (Figure 7G). Deconvolution

analysis disclosed a higher proportion of immune cells but lower

proportion of endothelial cells in the regulon-suppressed pheno-

type compared to the regulon-activated phenotype (both

p < 0.001; Figure 7G). Likewise, the regulon phenotype in the

CheckMate cohort tended to be an independent prognostic

factor regarding OS when adjusting Angio signature scores

(HR = 1.42, 95% CI 0.98–2.06, p = 0.067) (Table S16). The regu-

lon-suppressed phenotype revealed significantly higher regulon

activity of EZH2 andKMT5A (both p < 0.001) and lower activity of

SETD2 (p = 0.017) (Table S17), which is consistent with a signif-

icantly higher level of SETD2 loss signature (p < 0.001) compared

to the regulon-activated phenotype (Figure 7G). Moreover, the

regulon-suppressed phenotype was characterized by a signifi-

cantly reduced level of the BAP1-LCR signature (p < 0.001), indi-

cating BAP1 loss in this phenotype.

In our exploration of the JAVELIN cohort within which patients

were treated with a combination of ICI and TKI (avelumab + ax-

itinib) that deviates from those in the BIONIKK and CheckMate

cohorts, the two regulon phenotypes demonstrated a pattern

similar to those previously observed (Figure 7I). The regulon-

suppressed phenotype was characterized by increased immune

infiltration, endothelial cell depletion, heightened activity ofEZH2

and KMT5A, and deficiency in SETD2 and BAP1 (Table S17).

Similarly, we noted a significant enrichment of the angiogenic/

stromal and angiogenic clusters within the regulon-activated

phenotype (125 [74%] vs. 19 [10.3%], p < 0.0001). However,

no statistical significance was discerned in terms of PFS be-

tween the phenotypes (p = 0.901; Figure 7J). This finding might

introduce the possibility that these patients may respond to the

ICI plus TKI treatment.

To evaluate the biological potential of the regulons, we con-

ducted ameta-analysis across four ccRCCcohorts that identified

38 regulons with consistently inactive status in the regulon-sup-

pressed phenotype in at least three cohorts, and no active regu-
12 Cell Reports Medicine 4, 101287, November 21, 2023
lons were identified for this phenotype (Table S18). Correlation

analysis revealed enrichment of genes within these regulons in

IL-6/JAK/STAT3 signaling (p = 0.032, FDR = 0.2) and inflamma-

tory response pathways (p = 0.022, FDR = 0.17), highlighting their

biological relevance in immune evasion (Table S19).

In subsequent investigations, we examined the potential prog-

nostic and predictive value of regulon phenotypes. This involved

an unsupervised analysis of transcriptome data from patients

receiving sunitinib treatment in the BIONIKK (n = 9) and

ccRCC-Descartes (n = 50) cohorts, along with patients under

everolimus therapy in the CheckMate cohort (n = 130). Although

two regulon phenotypes were identified in each cohort, no statis-

tical significance was observed regarding prognosis for patients

receiving sunitinib treatment in the BIONIKK (Figures S12A—

S12C) and ccRCC-Descartes (Figures S12D—S12F) cohorts.

Additionally, no prognostic association was inferred between

regulon phenotypes and clinical outcomes for patients receiving

everolimus therapy in the CheckMate cohort (Figures S12G and

S12H). These findings suggested the potential prognostic and

predictive value of the transcriptome-based regulon system

that parallels the iMES.

DISCUSSION

Monoclonal antibodies targeting immune checkpoints have

greatly improved outcomes for patients with advanced cancer,

but a substantial proportion fail to respond, resulting in potential

adverse reactions without positive response to the patients and

poor cost-effectiveness to the healthcare system.31 Discovery of

reliable biomarkers that enable prediction of outcomes of ICI is

therefore crucial, and emerging efforts have been made to

achieve this, including the investigation of tumor mutation

burden, PD-L1 expression, and transcriptome signatures. How-

ever, none of these have been validated across different cohorts

or have shown benefit for front-line therapy in clinical settings.32

Our investigation delves into the synergistic potential of inte-

grating DNAmethylation and gene expression analysis, uncover-

ing an epigenetically silenced ccRCC subgroup that exhibited

primary resistance to immunotherapy in the BIONIKK trial.

Notably, nearly a quarter of the silenced genes enriched in the

chromosomal region 19q13.43 encode zinc-finger proteins, inte-

gral players in ccRCC progression and therapy resistance. This

includes KRAB zinc-finger proteins (KRAB-ZFPs) such as

ZNF844 and ZNF433, located on chromosome 19, whose down-

regulation is associated with poor outcomes and immune

evasion mechanisms exploited by aggressive tumors.33–35

Furthermore, we introduced iMES as the only biomarker predic-

tive of resistance to ICI in this trial. Patients with high iMES had

specific TME features, including Treg enrichment and endothe-

lial cell depletion, as well as activation of EMT and IL-6/JAK/

STAT3 pathways, suggesting crosstalk between cancer cells

and their associated immune and stromal ecosystems.

Differential methylation analyses revealed PRC2 hypermethy-

lation and EZH2 overexpression in patients with high iMES.

Intriguingly, these epigenetic alterations converge on BAP1

loss, given the established link between BAP1 loss and EZH2

overexpression.24 In uveal melanoma, BAP1 loss is linked to

the regulation or exclusion of T effector lymphocytes and the
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polarization of macrophages toward a tolerogenic phenotype in

the TME, thereby suppressing the immune system’s ability to

combat cancer cells.36 In multiple cancers, elevated EZH2 levels

silence antigen presentation genes and tumor suppressors while

driving Treg differentiation and immune suppression.37,38 Accu-

mulating evidence highlights EZH2 as a pivotal factor in tumor

immune resistance, advocating for its targeting in immuno-

therapy protocols.28

The close association between SETD2 mutation or loss and

epigenetic silencing in ccRCC did not emerge through abiogen-

esis, as SETD2 mutation was significantly enriched in a clear-cell

CpG island methylator phenotype that we identified previously

based solely on the DNA methylation profile.29 SETD2 encodes

for a histone methyltransferase that specifically targets histone 3,

lysine 36 (H3K36), and SETD2 is responsible for the trimethylation

of H3K36 (H3K36me3), which is an epigenetic marker associated

with active transcription and correct splicing. The loss of SETD2

function in ccRCC leads to a decrease inH3K36me3 levels, result-

ing in mislocalization of DNA methyltransferases and further

causing hypermethylation at normally unmethylated regions,

such as gene promoters. This hypermethylation can trigger the

transcriptional silencing of tumor-suppressor genes and the acti-

vation of oncogenes, ultimately contributing to tumor progres-

sion.39,40 Here, we observed consistent SETD2 loss in patients

with high iMES or regulon-suppressed phenotypes, which might

explain the aggressive phenotype characterized by cancer-spe-

cific hypermethylation-induced silencing. A recent study showed

thatSETD2 deficiency in ccRCCmay represent an attractive ther-

apeutic vulnerability for DNAhypomethylating agents (HMAs), and

further provided preclinical and in vivo evidence that SETD2-defi-

cient tumorswere extremely sensitive to combination treatment of

HMAs and ICI.41 Therefore, our convergent findings of PRC2 hy-

permethylation, EZH2 overexpression, and BAP1 and SETD2

lossprovidevaluable insights into the interplaybetweenepigenetic

alterations, immune modulation, and therapeutic implications in

ccRCC patients who showed primary resistance to ICI treatment.

The BIONIKK trial yielded unexpected results in the pro-angio-

genic ccrcc2 group, with a notably higher objective response

rate of 51% among patients who received Ipi/Nivo. Moreover,

the complete response rate was over 5-fold greater in this group

for patients receiving Ipi/Nivo compared to those who received

sunitinib, with rates of 16%and 3%, respectively.19 Interestingly,

patients with high iMES and primary resistance to ICI were also

associated with epigenetic silencing of VEGF receptor genes. In

addition, the Angio transcriptome signature was found to be

effective in predicting clinical benefit of ccRCC patients from

different cohorts receiving ICI. A successful active tumor immu-

notherapy requires not only activated tumor-antigen-specific

T cells but also the access of T cells to malignant cells and an im-

mune-supportive environment to sustain T cell function. In addi-

tion, sustained exposure to hypoxia has been shown to accel-

erate differentiation of CD8+ T cells to terminal differentiation

and dampens effective antitumor immunity.42 These data are

concordant with the results of the IMmotion 150 trial suggesting

that angiogenesis signature is associated with improved

response to sunitinib and atezolizumab plus bevacizumab.5,9

Furthermore, a recent study indicated that patients with

advanced melanoma who received anti-CTLA-4 therapy and
experienced clinical benefit (i.e., achieved complete response

or partial response) had a higher number of blood vessels

compared to patients who did not respond to the therapy (i.e.,

had progressive disease).43 As RNA-based biomarker studies

have had limited success in identifying reliable biomarkers for

immunotherapy response in ccRCC,10,11 our findings provide

additional evidence that a future model integrating iMES and

the angiogenesis process or endothelial component might

improve the prediction of response and prognosis of patients

receiving immune checkpoint inhibitors in clinical settings.

Our exploration of the JAVELIN cohort brings forth intriguing

possibilities. The high-iMES-paralleled regulon-suppressed pa-

tients with endothelial cell depletion responded to a treatment

regimen involving a combination of ICI and TKI. This response

occurred despite the presumed dependence of TKIs on endothe-

lial cells for their anti-angiogenic effects, suggesting an alternative

anti-proliferative mechanism.44,45 Such nuanced findings under-

score the importance of understanding tumor biology in shaping

therapeutic strategies, especiallywhen combining diverse agents.

Traditional RNA-based gene signatures face challenges in

clinical application due to heterogeneity and technical biases

across databases.46–48 In contrast, iMES, grounded in binary

methylation status, eliminates the need for intricate data normal-

ization. This facilitates its clinical translation as an individualized

survival estimator for ccRCC patients undergoing ICI therapy.

High iMES could guide ICI-HMA/TKI combination treatments,

while low iMES might favor Ipi/Nivo combination.

Despite facing challenges inherent in early-stage research, our

study marks an important step toward understanding the role of

epigenetic silencing in determining tumor aggressiveness and im-

mune evasion in patients with ccRCC. In summary, the iMES of-

fers a promising avenue for predicting primary resistance to ICI

in ccRCC. Further investigations are warranted to corroborate

these findings and determine their practicality in clinical contexts.

Limitations of the study
Limitations of the current study include the small sample size of

the BIONIKK cohort, the limited cases with matched RNA-seq

data, the need for studies at the single-cell level to confirm the

association with an exhausted TME, and the paucity of materials

available to see the changes of histone modifications (i.e.,

H3K36me3). Further limitation pertains to the use of univariate

correlation analyses, which provide valuable insights into the

direct relationships between variables of interest but do not ac-

count for potential confounding factors or interactions among

variables. In addition, BIONIKK is currently the only clinical trial

for immunotherapy with profiled DNA methylation data, which

limits our ability to establish a universal iMES cutoff. As more

diverse cohorts share methylation data, we will be able to refine

and validate the iMES system for broader use.
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ayo, P., and Mesirov, J.P. (2011). Molecular signatures database

(MSigDB) 3.0. Bioinformatics 27, 1739–1740. https://doi.org/10.1093/bio-

informatics/btr260.

70. Nishimura, D. (2001). BioCarta. Biotech Software & Internet Report. The

Computer Software Journal for Scient 2, 117–120.

71. Luca, B.A., Steen, C.B., Matusiak, M., Azizi, A., Varma, S., Zhu, C.,
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Lead contact
Further information and request for resources should be directed to and will be fulfilled by the lead contact, Gabriel G. Malouf

(maloufg@igbmc.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The raw data specific to the BIONIKK trial are not publicly available due to patient privacy requirements and lack of authorization

for distribution. Other data supporting the findings of this study are available from the lead contact, G.M. (maloufg@igbmc.fr),

upon request. Special inquiries or requests concerning the BIONIKK trial data should also be directed to the lead contact, who

will coordinate these requests in accordance with the study sponsor’s guidelines.

d The public data analyzed in this study were obtained from TCGA at TCGA-KIRC, from GEO at GSE61441 and GSE68379, from

ArrayExpress at E-MTAB-3267 and E-MTAB-3274, from the supplementary data files at https://doi.org/10.1038/

s41591-020-0839-y for CheckMate cohort, and at https://doi.org/10.1038/s41591-020-1044-8 for JAVELIN cohort.

d The iMES R package is fully documented and freely accessible at https://github.com/xlucpu/iMES. This package offers

comprehensive functions for calculating the iMES score based on the binary DNAmethylation status of ccRCC patients. Addi-

tionally, it enables the classification of patients into specific regulon phenotypes. Supplementary analytic code supporting the

findings of this study can be obtained from the lead contact (G.M.) upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample collection and ethical approval
For the patients’ samples collected from Pitié-Salpêtrière Hospital (PSL), all patients included in the PSL cohort underwent primary

nephrectomy and samples with a confirmed diagnosis of ccRCC were obtained from the pathology department. The study was

approved by the ethical committee of the Pitié-Salpêtrière Hospital (CPP, IDF-6, Ile de France). For the BIONIKK cohort, the study

was registered with the clinical trial registry under the identification number NCT02960906. BIONIKK is a biomarker-driven trial that

uses the Descartes classifications.19 These classifications identify four tumor types (ccrcc1 to ccrcc4) based on their molecular char-

acteristics, which are determined from transcriptomic data. These types have different responses to the drug sunitinib and show

different levels of immune and angiogenic activity in the tumor environment. Specifically, tumors that respond less to sunitinib are

either highly immune and inflammatory with high checkpoint expression (ccrcc4), or they have low immune activity (ccrcc1). Almost

half of the tumors that respond well to sunitinib show high angiogenic and immune activity (ccrcc2). The smallest group, which also

responds well to sunitinib, has features similar to normal kidney tissue (ccrcc3).18 All patients had previously provided informed con-

sent for tumor collection and analysis. The collection and use of tissues followed procedures in accordancewith the ethical standards

formulated in the Declaration of Helsinki.
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METHOD DETAILS

DNA methylation and RNA-sequencing profiling
Genomic DNA and RNAwere extracted from frozen samples, as previously described.12,72 Following bisulfite conversion of genomic

DNA, profiling of DNA methylation was done using the Illumina EPIC BeadArrays, as previously described.12 Details regarding RNA-

seq library preparation and sequencing were reported previously.72

RNA sequencing
To process the RNA-seq FASTQ files obtained from the BIONIKK clinical trial, we conducted a quality control assessment using

FastQC at both the base and read levels. Samples that passed the quality control assessment were used in the subsequent analysis.

The STAR aligner was then used with default parameters to generate RNA-seq BAM files with GRCh38.51 Gene-level annotation was

carried out using the GENCODE (Release 27) annotation, which was downloaded from the GENCODE project.68 Aligned reads were

summarized at the gene level using STAR. Initially, the number of fragments per kilobase of non-overlapping exon per million frag-

ments mapped was calculated, which was then transformed into transcripts per kilobase million (TPM) values.

Public DNA methylation 450K-array cohorts
The DNA methylation profile quantified by the Illumina HumanMethylation 450K-array platform was obtained from public datasets.

Specifically, 301 ccRCC samples and 160 adjacent normal tissues with available RNA-seq data were downloaded from TCGA data

portal (project TCGA-KIRC), following the removal of 23 cases with molecular pathological features of MiTF/TFE translocation RCC,

chromophobe RCC, and clear-cell papillary RCC.49,73 Raw count data were downloaded using the R package TCGAbiolinks and

converted to TPM.52 Somatic mutations, clinicopathological features and OS rate data were obtained from the cBioPortal

(https://www.cbioportal.org/), while copy number segment data were collected from FireBrowse (http://firebrowse.org/).

In addition, we collected raw *.IDAT files of DNA methylation 450K-array from 46 ccRCC samples with matched normal kidney

tissues from the Gene Expression Omnibus (GEO) dataset GSE61441.23 We also retrieved DNA methylation 450K-array data from

the ccRCC-Descartes cohort (E-MTAB-3274), which included 102 patients with metastatic ccRCC treated with sunitinib, of which

50 patients had matched transcriptome expression profiles quantified by microarray (E-MTAB-3267).18 The methylation profile of

this cohort was pre-processed with 292,317 probes available.

DNA methylation and expression profiles for human renal cancer cell line
DNAmethylation 450K-array data for human cancer cell lines were obtained fromCCLE by accessing the GEO dataset GSE68379.50

Of the 28 cell lines with the "KIRC" tumor barcode, 12 cases with available gene expression data quantified by TPM value were

retrieved from the DepMap portal (https://depmap.org/portal/download/).74

External RNA sequencing profile from clinical trials
The transcriptome profiles for the CheckMate cohort used in this study were obtained from a previous study, which collected and

combined a total of 311 tumors from patients with advanced ccRCC who were enrolled in prospective clinical trials including

CheckMate-009, -010, and �025.11 Of these patients, 181 were treated with anti-PD1 (nivolumab) and 130 with mTOR inhibition

(everolimus). The correspondingOS rate data were also retrieved for these cases. In addition, transcriptome profiles and correspond-

ing PFS data for the phase 3 JAVELIN Renal 101 trial were collected for 354 patients receiving ICI plus TKI therapy (avelumab +

axitinib) from the literature.5

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and filtering of DNA methylation profiles
For cohorts with available raw *.IDAT files, we used the R package ChAMP to extract the raw signal intensities and calculate the b

value for each probe.53 The b value was calculated as M/(M + U), where M and U respectively refer to the pre-processed meanmeth-

ylated and unmethylated probe signal intensities. Comprehensive filtering procedures were performed using ChAMP, with the

following filtering criteria applied for both 450K and EPIC arrays: removal of probes with detection of p value >0.01, probes with

less than three beads in at least 5% of samples per probe, all non-CpG probes, all SNP-related probes, all multi-hit probes, and

probes located in chromosomes X and Y.75

Definition of promoters and cancer-specific hypermethylation
The Illumina 450K and EPIC arrays share a total of 452,453 probes. Promoters were defined as regions located between �1,000

and +1,000 base pairs from the transcription start site. We investigated all CGIs loci assayed on both the Illumina 450K and EPIC

platforms and determined that 96,727 (21.4%) of the promoter CGI probes for the 450K-array and 116,861 (13.5%) probes for the

EPIC-array were located in promoter regions. Cancer-specific hypermethylation was further investigated for probes located in

promoter CGIs that are unmethylated in normal adjacent kidney tissue, with a median DNA methylation b value of less than 0.2.
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Epigenetic silencing calls
Integrative analysis proposed in our previous study was used to investigate genes that are repressed through cancer-specific DNA

hypermethylation at promoter CGIs.29 For multiple promoter CGI probes that mapped to one gene, the median b value of expression

was used to represent the gene-level DNA methylation. Samples were classified as either methylated or unmethylated based on a b

value cutoff of 0.3. A gene is called epigenetic silencing if, upon using the Mann-Whitney U test, it was found that the overall gene

expression in methylated samples was less than or equal to that in unmethylated samples.

Identification of tumor-associated enhancer demethylator
As detailed in our recent study,12 we selected CpG probes found in more than 50% of normal samples with a b value of at least 0.7 or

probes with a median b value of at least 0.7 for both the DNA methylation 450K and EPIC arrays, in order to enrich for sites that lose

enhancermethylation in cancer. For the TCGA-KIRC cohort, we reproduced the TED phenotype using consensus partitioning around

medoids based on a total of 1,170 enhancer probes that showed high methylation levels in normal samples. For the BIONIKK cohort,

we identified 12,186 enhancer probes from the EPIC platform that were highly methylated in six normal samples. Unsupervised clus-

tering was used to identify the TED phenotype in ICI arms using the top 10% enhancer probes with high variability.

Copy number variation analysis
For DNA methylation EPIC-array, we used the ChAMP package to infer copy number segments from intensity values.76 To identify

recurrent focal somatic copy number alterations (CNAs), we employed GISTIC2.0 through GenePattern (https://www.genepattern.

org/). Our analysis employed stringent thresholds for copy number amplifications/deletions, defined as ±0.2, with a confidence level

of 0.95, and a q value threshold set at 0.05.63

Clustering analyses
For continuous data, such as the DNA methylation b matrix and transcription expression profiles, hierarchical clustering was per-

formed using a Euclidean distance measurement with Ward’s clustering method, which was implemented in the R package

ClassDiscovery. For categorical data, such as regulon activity status, theK-modes algorithmwas used to calculate the dissimilarities

(total mismatches) between the data points; this was performed using the R package klaR with the default parameters.

Estimation of TME cell abundance and tumor purity
To assess the TME composition of each ccRCC case, we used the R package MCPcounter, which provides abundance scores for

eight immune populations (T cells, CD8+ T cells, cytotoxic lymphocytes, natural killer cells, B cell lineage, monocytic lineage, myeloid

dendritic cells, and neutrophils) and two stromal populations (endothelial cells and fibroblasts).54 To determine the functional orien-

tation of TME, we used signatures derived from the literature,18 including T cell activation (CXCL9, CXCL10, CXCL16, IFNG, and

IL15), T cell survival (CD70 and CD27), Tregs (FOXP3 and TNFRSF18), major histocompatibility complex class I (HLA-A, HLA-B,

HLA-C, HLA-E, HLA-F, HLA-G, and B2M), myeloid cell chemotaxis (CCL2), and tertiary lymphoid structures (TLSs) (CXCL13). We

also collected four immune suppression-associated signatures,77 including tumor-infiltrating Tregs, myeloid-derived suppressor

cell (MDSC), C-ECM, and Wnt/TGF-b. Scores for each signature were calculated as the geometric mean of signature expression.

The clinical response to immune checkpoint inhibitors was predicted by using TIDE, a computational framework developed to eval-

uate the potential of tumor immune escape from the gene expression profiles of cancer samples.27 We appliedMEpurity, a b-mixture

model-based algorithm, to estimate the tumor purity based on tumor-only DNA methylation microarray data.62

Chromatin remodeling and vascular endothelial growth factor signatures
The SETD2 loss signature was collected from a list of genes that are upregulated in H3K36me3-compared to H3K36me3+

(SETD2DN-transduced) JHRCC12 cells as well as in SETD2-mutant compared to SETD2-wildtype ccRCC from the TCGA.40 We

examined differentially accessible chromatin regions in BAP1-mutant tumors versus tumors without BAP1 mutations, using data

from the literature,25 and further generated a BAP1-loss driven chromatin repression signature based on those genes associated

with regions of reduced chromatin accessibility. The corresponding enrichment score was calculated using a single-sample

GSEA (ssGSEA) approach.55 In addition, we collected a total of 22 candidate regulators that were relevant to cancerous chromatin

remodeling for regulon analysis.78,79 Genes associated with VEGF were extracted from the Biocarta Pathways Dataset.70

Differential and enrichment analysis
Differentially methylated probes (DMPs) were identified using the standard process of ChAMP, considering a probe as significantly

hypermethylated or hypomethylated if the average b value was respectively larger or smaller than other samples (Db > 0.2, p < 0.05,

FDR <0.05). Differentially methylated regions (DMRs) were identified using the R package DMRcate, considering a DMR as hyper-

methylated or hypomethylated if it had maxdiff >0.1 and meandiff >0.1.56

To perform functional enrichment analysis, we used the R package missMethyl with the MSigDB through generalized gene set

testing (GGST) for both CpG and region levels of DNA methylation.57,69 For differential expression analyses, we used the R package

MOVICS with the limma approach, and for GSEA based on transcriptome expression data, we prepared a pre-ranked gene list ac-

cording to the descending ordered log2FoldChange value derived from differential expression analysis, and used the R package
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clusterProfiler to determine functional enrichment based on the Hallmark pathway.59,60,80 Cytogenetic location enrichment was per-

formed by DAVID (v2023q1).64 Functional enrichment analysis based on the gene list was performed by Enrichr (https://maayanlab.

cloud/Enrichr/).65

Regulon analysis
We used the R package RTN to reconstruct transcriptional regulatory networks (regulons), following the method described in a pre-

vious study.61 Specifically, mutual information analysis and Spearman rank-order correlation deduced the possible associations be-

tween a regulator and all potential target from the transcriptome expression profile. Permutation analysis (nPermutations = 1000) was

used to erase associations with an FDR>0.05. Bootstrapping strategy removed unstable associations through one thousand times of

resampling with a consensus bootstrap of greater than 95%. Data processing inequality filtering eliminated the weakest associations

in the triangles of two regulators and common targets. As a result, two genes, namely ZNF280B and FAM19A5, were filtered out from

the initial set of 56 genes that constitute the iMES. To estimate the activity of individual regulons, a two-sided GSEAwas used and the

differential enrichment scores were discretized into three statuses (active = 1, wild = 0, and inactive = �1). This RTN analysis was

particularly applied to the genes that correspond to the probes constituting the iMES, enabling the mirror of the iMES groups based

on their collective regulon activity status. To comprehensively analyze regulon activity patterns acrossmultiple cohorts, we employed

ameta-analysis framework using a vote-counting approach, as previously described.12 In this approach, each regulon was assigned

an activity status (active, wild, or inactive), and we considered a regulon to have a specific activity status if it consistently maintained

that status in regulon-suppressed phenotype versus regulon-activated phenotype in more than three out of four cohorts included in

this study (TCGA-KIRC, BIONIKK, CheckMate, and JAVELIN), which had available transcriptomic expression profiles.

Development of a DNA methylation-based epigenetic silencing index
We developed an iMES using binary DNAmethylation status (b value >0.2 as cutoff: 1 for methylated and 0 for unmethylated) instead

of as a continuous form as it can be more easily interpretable in clinical settings and more robust to technical variation. Probes pre-

senting with constant methylation status in a particular dataset might be attributable to platform-dependent preferential measure-

ment, which can cause biases and may not be reproducible across datasets, or to biological bias, which failed to provide discrim-

inative information for prognosis. Therefore, probes with constant methylation status in any datasets were removed, and probes

methylated in at least 5% of the samples in a specific dataset were considered.

To minimize the risk of overfitting, we randomized the discovery TCGA-KIRC cohort into two subsets based on 5-fold sampling

without replacement. The training set included 4-folds of ccRCC samples (n = 261), and the internal testing set included the rest

(n = 61). We then used the glmnet R package and applied a multivariate Cox proportional hazards regression model with the ada-

LASSO. This method adds weights to the traditional LASSO to counteract the known issue of bias in LASSO estimates.81,82

10-fold cross-validation was conducted in the training set to tune the optimal value of the penalty parameter l that gives theminimum

partial likelihood deviance—a l of 0.599 with log(l) of �0.513 was chosen.

Finally, a set of promoter CGI probes that were associated with silenced genes were identified, and we calculated iMES for each

sample via a linear combination of the selected features, weighted by the corresponding non-zero coefficients as follows:

iMESi =
Xn

j

bb j 3CpGij

where bb j is the estimated effect size (coefficient) for probe j and CpGij is the binary DNA methylation status of the probe j in the ith

individual. iMESi is the ith individual’s computed score for iMES. Patients were dichotomized into iMES-high and iMES-low groups

using the dataset-specific upper tertile as the general cutoff to achieve a comparable proportion of patients across epigenetic

silencing subtypes (i.e., EPI-C1/C2 in the TCGA-KIRC and BIONIKK cohorts).

Assessment of transcriptomic signatures
For samples with available RNA-seq profiles, scores were derived for three IMmotion150 signatures, including Angio: VEGFA, KDR,

ESM1, PECAM1, ANGPTL4, and CD34; Teff: CD8A, EOMES, PRF1, IFNG, and CD274; Myeloid: IL-6, CXCL1, CXCL2, CXCL3,

CXCL8, and PTGS2.9 The 26-gene JAVELIN Renal 101 Immuno signature includes CD3G, CD3E, CD8B, THEMIS, TRAT1,

GRAP2, CD247, CD2, CD96, PRF1, CD6, IL7R, ITK, GPR18, EOMES, SIT1, NLRC3, CD244, KLRD1, SH2D1A, CCL5, XCL2,

CST7, GFI1, KCNA3, and PSTPIP1.5 The tumor inflammation signature includes PSMB10, HLA-DQA1, HLA-DRB1, CMKLR1,

HLA-E, NKG7, CD8A, CCL5, CXCL9, CD27, CXCR6, IDO1, STAT1, TIGIT, LAG3, CD274, PDCD1LG2, and CD276.30 Signature

scores were calculated as themedian value of Z-scored expression for the constituent transcripts. For CheckMate cohort, pre-calcu-

lated scores of Angio, Teff, Myeloid, and Immuno were collected directly from the supplementary material of the literature.11

Classification of Motzer’s seven molecular subtypes of ccRCC
To reproduce the sevenmolecular subtypes previously identified in the literature, we generated a template based on genes that were

specifically upregulated in each subtype (log2FoldChange >1 and adjusted p < 0.05). The gene signature used for this classification

was derived from Genentech’s profiling performed on tumors from patients enrolled in the IMmotion151 study.6 To assign each
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ccRCC case to one of the seven subtypes, we employed the nearest template prediction (NTP) approach, as previously

described.66,83 This method uses the gene expression profiles of the samples and compares them to predefined templates corre-

sponding to each subtype, enabling accurate classification.

Cell type fraction estimation
Major cellular compartments for epithelial tumors were deconvolved using TR4, a signature matrix consisting of epithelial (EPCAM+),

endothelial (CD31+), fibroblast (CD10+), and bulk immune cell (CD45+) populations.71 To impute cell type proportions, CIBERSORTx

was applied independently to each ccRCC cohort as previously described with default parameters.67

Statistical analyses
All statistical analyses were conducted using R version 4.2.2. TheMann-Whitney U test was used for analyzing continuous data, while

Fisher’s exact test was used for analyzing categorical data. Spearman’s coefficient was used for evaluating correlations between two

continuous variables, and a permutation test was used to assess the significance of a correlation between a continuous and a binary

variable. The permutation test involves randomly reassigning the values of the binary variable to the data points, and then calculating

the correlation coefficient between the continuous and the shuffled binary variable. This processwas repeated 10,000 times to create

a null distribution of correlation coefficients under the assumption that there is no true association between the two variables. The

observed correlation coefficient was compared to the null distribution to determine its significance, which was defined as the pro-

portion of permuted correlation coefficients that were equal to or more extreme than the observed correlation coefficient.

Mutual exclusivity analysis was conducted using a one-sided Fisher’s exact test. The statistical significance of the overlap between

two groups of genes was estimated by calculating the representation factor and associated probability. The representation factor is

calculated as the ratio of the number of overlapping genes to the expected number of overlapping genes based on the number of

genes in each group and the total number of genes in the genome (19,620 genes annotated by GENCODE); we used the same strat-

egy for overlapping of probes (452,453 probes shared by 450K and EPIC platforms). Representation factors of >1, <1, and 1 respec-

tively indicate more overlap than expected from two independent groups, less overlap than expected, and that the two groups have

the number of genes expected for independent groups of genes. The probability of overlapping was estimated by exact hypergeo-

metric probability or normal approximation when the exact hypergeometric probability was difficult to calculate.

Survival rates were analyzed using Kaplan-Meier curves, with differences determined using a log rank test. Hazard ratios and 95%

CI were calculated using Cox proportional hazard regression. The performance of the model was evaluated using time-dependent

ROC analysis with the calculation of AUC values, using the R package survivalROC, to assess its discriminative ability in predicting

the event of interest at different time points. A p-value less than 0.05 was considered statistically significant for all unadjusted

analyses.
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