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ABSTRACT1
Shared Mobility Services (SMSs) have reshaped urban transportation systems, providing effective2
and flexible mobility options. As these services can reduce traffic congestion and emissions by3
reducing the number of cars, they are likely to become an essential part of the urban transportation4
landscape, which emphasizes the importance of analyzing and understanding their impacts on5
the system and users’ travel choices, especially when integrated with public transport (PT). Most6
existing works do not consider interactions between SMSs and PT, leading to inaccurate PT and7
SMS estimates, as in most cases, PT does not cover the first and last mile of journeys. In this study,8
we first provide a comprehensive literature review on modeling SMSs in multi-modal systems.9
Then, we present an analytical traffic assignment model formulated as a Mixed-Integer Quadratic10
Problem, which can be solved with existing solvers. In particular, the proposed model can represent11
various travel options and any logical combination. We adapt the Beckmann formulation with a12
link-wise objective function, including time and monetary costs. We perform an in-depth analysis13
of commuter behavior on two test cases and investigate the difference between user equilibrium14
and system optimum in such a complex system.15

16
Keywords: Shared Mobility Services, Multi-Modal Transportation Network, Intermodality, User17
Equilibrium, System Optimum.18
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INTRODUCTION1
With the rapid growth of demand for urban transportation systems, addressing the population’s2
travel needs has become challenging. Because expanding the physical transportation network is3
not always feasible and beneficial, new mobility services have emerged, transforming and revolu-4
tionizing how people move within cities (1). In particular, shared mobility services (SMSs) have5
gained popularity due to their convenience and cost-effectiveness. By promoting shared mobil-6
ity and reducing the number of cars in the network, these services have the potential to reduce7
traffic congestion, minimize emissions, and alleviate parking space demands. Furthermore, SMSs8
can radically improve mobility, especially in low-demand and low-density regions where public9
transport (PT) is unable to provide first and last-mile transportation (e.g., from origin to the trans-10
portation hub or from the hub to destination) (2).11

Shared mobility describes various mobility options. For instance, carpooling is an SMS12
where commuters with overlapping itineraries and similar schedules share a privately owned car13
for the trip. In this context, taxi services can be redefined as an on-demand service, called e-hailing,14
where one commuter requests a driver to travel from his origin to his destination without sharing15
the car with other passengers. When the sharing is allowed, the service is called ridesharing (3).16

Integrating SMSs with PT has shifted traveling behavior and created a more complex multi-17
modal transportation system (4). On the one hand, commuters face mode and route choices, aiming18
to reduce travel expenses, while on the other hand, the system owners or traffic engineers strive to19
optimize mobility services and meet demand with minimized overall costs. This needs a complete20
understanding of the various transportation services accessible and their associated costs.21

Numerous studies have focused on modeling multi-modal transportation systems. Re-22
cently, many works have incorporated SMSs into their models. However, a less explored aspect23
concerns modeling and evaluating combinations of multiple mobility options to accomplish one24
trip (intermodality). Particularly, using SMSs for first and last mile transportation is often not ex-25
plored. This lack of integration results in inaccurate traffic predictions and planning. Consequently,26
individuals may not be able to fully optimize their travel choices, leading to potential inefficiencies27
and higher expenses (5).28

Addressing this issue requires the development of comprehensive transportation models29
that consider all travel options available to commuters. By integrating SMSs and PT into a unified30
framework and providing accurate information on costs and travel times, commuters can make31
more optimal decisions, optimizing individual and system travel expenses.32

We first conduct a literature review on multi-modal traffic models in this paper. Second, we33
formulate an analytical model for multi-modal urban transportation networks, considering SMSs34
and intermodality. For model tractability, we consider a time-independent setting, leading to a35
non-convex Mixed-Integer Quadratic Program (MIQP) formulation. In this model, commuters can36
travel with a single mode or use any combination of the travel options. We formulate commuters’37
travel decisions using two traffic assignment principles: User equilibrium (UE) and system op-38
timum (SO), to represent the two baseline scenarios for the network. In UE, known as the first39
Wardrop principle (6), every commuter tries to minimize his own cost, and equilibrium is reached40
when no one is willing to change his choices to achieve lower costs. The second principle of41
Wardrop is system-oriented and assumes that the system’s total cost is minimized (6). We ad-42
dress the equilibrium problem with the Beckmann transformation and prove that the solution is43
equivalent to the UE. Therefore, formulating other types of equilibria, such as stochastic user equi-44
librium (SUE), in which commuters are assumed to minimize their perceived travel costs, will be45
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straightforward (1).1
The proposed model enables the investigation of different planning scenarios by providing2

network traffic distribution. In this study, we perform a comparative analysis of the two equilibria3
to investigate the impact of intermodality on the transportation system performance. In particular,4
we compare the system, including PT and SMSs, competing with the cooperative scenario wherein5
intermodality is allowed.6

LITERATURE REVIEW7
Most of the studies in the literature addressed the modeling of SMSs, including background traffic,8
but they mostly did not consider PT (5). (7) proposed a UE framework to analyze congestion9
effects arising from carpooling and e-hailing services. Similarly, (8) analyzed the efficiency of10
e-hailing and ridesharing services in reducing traffic congestion. They showed that fleet size is an11
important factor for ridesharing efficiency due to the congestion effects of empty fleet vehicles. (9)12
studied the carpooling demand, with the same origin and destination for riders and drivers, under13
the SUE principle. They showed that carpooling is preferred for long trips.14

Some recent works have included both SMSs and PT in their modeling. For example, (10)15
analyzed the e-hailing and ridesharing pricing strategies in a multi-modal network, considering16
PT. (11) proposed a UE framework, under time uncertainties, to analyze the commuters’ mode and17
departure time choices. (12) studied the impacts of e-hailing service on the PT demand and usage18
of personal cars for the city of Amsterdam. They showed that e-hailing could potentially replace19
private cars and attract PT demand with a larger fleet. (13) modeled the carpooling service in a20
multi-modal single-region network and proposed two pricing schemes to alleviate traffic conges-21
tion. (14) investigated the use of underutilized bus lanes for ridesharing service and its impacts on22
the solo-pooled rides split. (15) investigated the integration of shared autonomous vehicles into23
the multi-modal network, considering PT and parking space constraints. All these studies have24
not considered interactions between SMSs and PT, referred to as intermodality in this paper. This25
means that, with these models, commuters have single-mode trips and cannot switch modes be-26
tween their origin and destination. This results in the use of PT and SMSs being under-estimated27
or over-estimated, as in most cases, PT does not cover the first and last mile of the journey.28

Multiple studies have considered intermodality exclusively in the form of Park-and-Ride29
mode ((16), (17), (18) and (19)). The use of bikes to complete first-mile and last-mile has also30
been intensively investigated (See e.g., (20) and (21)). However, only a few recent works have31
targeted intermodality with SMSs and PT. (22) analyzed the competitiveness and complementarity32
of e-hailing with PT. They showed that fleet size and trip fares impact using e-hailing services as33
a first-mile/last-mile option. Similarly, (5) investigated the impacts of e-hailing and ridesharing34
services on PT ridership and showed that ridesharing can be a competitor of PT when low fares35
are applied. In (1), the authors proposed an SUE multi-modal framework where commuters access36
metro stations via bus, car, or e-hailing. The mode and path choices are handled by discrete37
choice models. In (4), commuters can choose inter-modes with solo driving (park-and-ride mode),38
carpooling, and e-hailing. Travel behavior is modeled via a multi-layer nested logit model. To our39
knowledge, these two last-mentioned works present the most comprehensive and highly relevant40
models related to our research. However, the ridesharing service, biking and walking are not41
modeled. Additionally, to the best of our knowledge, no work has compared and investigated the42
difference between UE and SO in such a multi-modal complex system.43

One of the goals of this study is to fill this research gap by proposing a comprehensive44
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analytical model for multi-modal transportation systems, integrating SMSs with PT. We propose a1
combined framework for carpooling, e-hailing and ridesharing, as well as intermodality. We aim2
to address UE and SO principles in a tractable (analytical) framework. Insights are provided to3
understand better the impacts of SMSs on PT and commuters’ behavior when these latter act for4
their benefit or the good of the system.5

To help position our work and its contribution, we present a characterization of the existing6
models in the literature in Table 1. The traffic assignment column categorizes the works based7
on equilibrium principles. Generalized cost presents the terms included in the travel costs: travel8
time states for in-vehicle time, waiting time for the time spent before the vehicle arrives at the9
passenger’s position, the service time is the time to be matched, to get in and out of the vehicle and10
the time spent at PT stops, the monetary cost is the cost of fuel and trip fares. Finally, the travel11
options column denotes the categories of travel modes and their travel options considered in each12
model. There are four categories: Personal means, Public transport, Shared mobility services, and13
Intermodality which includes park-and-ride, walking and/or biking combined with PT (W/B), and14
using SMSs with PT.15

We characterized 22 studies in the literature and compared them with our study (the last16
row in Table 1) to highlight the research gap we are addressing. Hence, the contributions of this17
paper can be summarized as follows:18

• It establishes a comprehensive Mixed-Integer Quadratic Program for multi-modal trans-19
portation networks considering personal transportation means (car, walking, and bik-20
ing), public transport (bus and metro), as well as shared mobility services (carpooling,21
ridesharing, and e-hailing)22

• It explicitly formulates interactions between shared mobility services and public transport23
regarding congestion effects and intermodality. It also considers park-and-ride mode and24
the use of walking and biking for first-mile and last-mile transportation.25

• It solves the UE and SO problems when the model simultaneously handles mode choice26
and path choice, and passenger-driver matching.27

• The proposed model is used to analyze the behavior of commuters within a transportation28
network encompassing multiple travel modes.29

MODEL FORMULATION30
This section presents the analytical model for multi-modal urban transportation networks consid-31
ering SMSs integrated with PT. To clearly present the model, we first present a simplified version32
without intermodality. Then, we reformulate the model to consider intermodality. The list of33
notations used in this paper is presented in Table 2.34

Multi-Modal Transportation Network without Intermodality35
Let us consider an urban transportation network represented as a directed graph G(E,A), wherein36
links (A) represent physical routes, and nodes (E) can represent intersections or zones, depending37
on the level of network aggregation. Let q(i, j) be the travel demand between Origin-Destination38
(OD) pair (i, j), ∀i, j ∈ E. This study assumes the demand for each OD pair is given. Commuters39
traveling between (i, j) must simultaneously choose the mode and path. For travel modes, as il-40
lustrated in Figure 1, commuters can take their car and be solo drivers, be a bus or metro (M)41
passenger, carpooling driver (CD), or carpooling passenger (CP) as long as the matching happens,42
e-hailing passenger (EH) or ridesharing passenger (RS) and thus, be matched with a service vehi-43
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TABLE 2: List of notations.

Network Structure
E Set of nodes.
O Set of origin nodes.
D Set of destination nodes.
TR Set of transfer nodes.
N Set of networks ; N = {Road(RN), Metro(MN), Bike(BN), Walk(WN)}.
An Set of links in network n.
A Set of links: A = ∪n∈NAn.
Ψ Set of all travel modes ; Ψ = { car, bus, M, CP, CD, EH, RS, W, B, Im1,m2 } where Im1,m2 is a

combination of mode m1 and m2.
V Set of fleet vehicles for ridesharing and e-hailing services.
Pm

i j Set of paths for origin-destination (OD) pair (i, j) with mode m.
oa Binary coefficient equals to 1 if link a is an origin link ; 0 Otherwise.
da Binary coefficient equals to 1 if link a is a destination link ; 0 Otherwise.
δ
(i, j)
a,p,m Binary coefficient equals to 1 if path p of mode m traverse link a between OD pair (i, j) ; 0 Otherwise.

q(i, j) Travel demand for OD pair (i, j).

Indices
i, j,r,s Index of node, i, j,r,s ∈ E.
a Index of link (edge), a ∈ A.
m Index of mode, m ∈ Ψ.
p Index of path, p ∈ Pm

i j .
n Index of network, n ∈ N.

Input Parameters - [Value for the experiments]
La Length of link a (Km).
Spn Mean speed in network n (Km/h) - [M: 60 , B: 10 , W: 3].
f reqm,a Frequency of travel mode m on link a (units/h) - [Bus: 3 , M: 6].
Rm Meeting rate of travel mode m (service/h) - [CP: {Toy network: 100 , Sioux Falls: 500}, RS: {Toy

network: 200 , Sioux Falls: 1000}, EH: {Toy network: 100 , Sioux Falls: 1000}].
Sm Average service time for mode m (h) - [Bus: 0.04 , M: 0.02 , CP: 0.04 , RS: 0.05, EH: 0.03].
Pm Average parking time for mode m (h) - [car: 0.17, B: 0.08].
T Fm,a Trip fare of travel mode m on link a ($) - [Bus: 0.3 , M: 0.3 , CP: 0.7 , CD: 0.7 , RS: 0.9 , EH: 1.1].
PFm Parking fare for travel mode m ($) - [car: 1].
CAPm Maximum passenger capacity for the travel mode m - [CP: 1 , RS: 2].
Pk_caps Parking capacity for transfer node s - [Toy network: 100 , Sioux Falls: 800].
|V | Fleet size for the ridesharing and e-hailing services - [Toy network: 1000 , Sioux Falls: 3500].
α Monetary cost per unit of time ($/h) - [Toy network: 5 , Sioux Falls: 20].
β Monetary cost per unit of distance ($/Km) - [0.25].

Variables
ta,n Travel time on link a belonging to network n.
WTm,a Waiting time for travel mode m on link a .
STm,a Service time for travel mode m on link a.
Cm,a Monetary cost of using travel mode m on link a.
xa Aggregated traffic flow on link a.
xa,m Aggregated traffic flow on link a with travel mode m.
qm Travel demand for mode m.
q(i, j)m Travel demand for mode m and OD pair (i, j).
q(i, j)t Number of empty or occupied service vehicles between OD pair (i, j) ; t ∈ {e,o}.
q(i, j) r

o Number of occupied service vehicles between OD pair (i, j) stopping at node r.
c(i, j)p,m Generalized cost of path p with travel mode m between OD pair (i, j).
f (i, j)p,m Traffic flow of mode m on path p between OD pair (i, j).
f (i, j)r,sp,CD Traffic flow of carpooling drivers on path p between (i, j) stopping at nodes r and s.

y(i, j)p,t Flow of empty or occupied service vehicles on path p between OD pair (i, j) ; t ∈ {e,EH,RS}.
yi,r,s, j

p,RS Flow of ridesharing occupied vehicles on path p stopping at nodes i,r,s and j.
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cle. Additionally, they can go to their destination by walking (W) or biking (B). Accordingly, we1
define Ψ as the set of travel modes (Ψ = {car,bus,M,W,B,CD,CP,EH,RS}).2

Total
demand

Car WBus M B CD CP EH RS

Matching

Matching

M : M e tro
W : Walking
B : Biking
CD : Carpooling Driver

CP : Carpooling Passenger

EH : E-hailing Passenger
RS : Ridesharing Passenger

FIGURE 1: Available travel options for multi-modal networks, without intermodality.

To consider interactions between the modes in terms of congestion effects, we represent the3
physical network by four subnetworks: road (RN), walking (WN), biking (BN), and metro (MN)4
network. Buses and cars both use the road network and contribute to traffic congestion. N denotes5
the set of networks, N = {RN,WN,BN,MN} ∀ RN,WN,BN,MN ⊂ A. The model is formulated6
for a given time period to represent the state of the network, following two well-known principles:7
UE and SO. Thus, the model is presented in a time-independent context, which keeps it tractable8
and analytically solvable.9

UE and SO Objective Function10
This subsection presents the objective functions of UE and SO and how each component of these11
functions is calculated. In particular, we present the cost functions for commuters at the link level12
for all the modes mentioned in Figure 1.13

The generalized cost is the normalized sum of travel, waiting, service, and monetary costs
(4). Every one of these terms is defined separately for each mode. This leads to a piece-wise
objective function and, thus, a non-convex MIQP program. To assign traffic based on the UE prin-
ciple and calculate the equilibrium through Beckmann transformation (26), we define the objective
function as follows:

min ZUE = ∑
n∈N

∑
a∈An

∫ xa

0
α · ta,n(ω) dω + ∑

a∈A
∑

m∈Ψ

[α(WTm,a +STm,a)+Cm,a] · xa,m (1)
14

where, α denotes the value of time (27), xa,m is the flow of mode m on link a and xa denotes the15
total flow of link a. ta,n denotes the travel time on the link a (i.e., the in-vehicle time), which is16
calculated by Equation (2) based on the network to which the link belongs. For the road network17
(RN), the link travel time increases with the flow. In this study, we use the well-known Bureau of18
Public Roads (BPR) function (26). For the other networks, the link travel time depends on the link19
length (La) and the average speed (Spn) of walking, biking, and metro, respectively.20
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ta,n(x) =

{
BPR(x) i f n = RN
La

Spn
i f n ∈ {MN,WN,BN}

(2)

Equation (3) defines WTm,a as the waiting time of mode m on link a. A commuter has1
a waiting time at the start of the trip, so it is only counted for links attached to an origin node2
(ensured by oa). For PT, the waiting time is assumed to be half of the headway ( inspired by (4)3
and (20)). For SMSs, based on (25), we assume that the waiting time depends on the number of4
passengers in the system (qm) and the meeting rate (Rm). Rm expresses the rate of pickups in the5
network and can be estimated by the cobb-douglas function (13). Here, we set an average constant6
rate that should be estimated from real-world SMSs data.7

WTm,a =


0 i f m ∈ {car,CD,W,B}

1
2 f reqm,a

·oa i f m ∈ {Bus,M}
qm
Rm

·oa i f m ∈ {CP,RS,EH}
(3)

STm,a in Equation (4) is the service time of mode m on link a. For PT, it denotes the average time
spent at each stop (SBus, SM for bus and metro). For car or bike users, it represents the parking
time (Pcar and PB) and is only counted for destination links (represented by da). STm,a for SMSs
represent the time to be matched with a driver/passenger and the boarding and drop-off times (Sm;
m ∈ {CP,RS,EH}) on origin and destination links. Additionally, a CD experiences parking time
at his destination. Walking does not have a service time.

STm,a =



0 i f m =W
Sm i f m ∈ {Bus,M}
Sm · (oa +da) i f m ∈ {CP,RS,EH}
Sm · (oa +da)+P1 ·da i f m =CD
Pm ·da i f m ∈ {car,B}

(4)

8
Equation (5) denotes the monetary cost of mode m on link a. Based on (1), for solo drivers, it9
includes the cost of using the car (i.e., fuel cost) for the traveled distance and the parking fare10
(PFcar) at the destination. For all other passengers (PT and SMSs passengers), Cm,a represents11
the trip fare to be paid (T Fm,a). For carpooling drivers, the trip fare received from passengers is12
retrieved from the cost of using their car. For walking and biking, we assume no monetary cost.13

Cm,a =


γ ·La +PFm ·da i f m = car
T Fm,a i f m ∈ {Bus,M,CP,EH,RS}
γ ·La +PFm ·da −T Fm,a i f m =CD
0 i f m ∈ {W,B}

(5)

Using these same definitions, we define the SO objective function as:14
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min ZSO = ∑
n∈N

∑
a∈An

α · ta,n(xa) · xa + ∑
a∈A

∑
m∈Ψ

[α(WTm,a +STm,a)+Cm,a] · xa,m (6)

This objective function, ZSO, minimizes the system’s total cost. Before introducing inter-1
modality, we present the model’s constraints for a multi-modal network without intermodality.2

Model’s Linear Constraints for Mode and Path Choice3
The objective functions previously described are formulated in terms of link flow and cost. How-4

ever, commuters are confronted with mode and path choices. Thus, let f (i, j)p,m be the path flow5
variable. Equation (7) presents the link-path flow conversion, and Equation (8) represents the6
demand conservation constraint.7

xa,m = ∑
i, j∈E

∑
p∈Pm

i j

f (i, j)p,m ·δ (i, j)
a,p,m ∀a ∈ A ; ∀m ∈ Ψ (7)

q(i, j) = ∑
m∈Ψ

∑
p∈Pm

i j

f (i, j)p,m ∀i, j ∈ E (8)

8
Here, we present the construction for every considered mobility option. Equations (9)-(11) are9

for the carpooling service. Based on (1), we define f (i, j) r,s
p,CD as the number of carpooling drivers10

traveling between (i, j), with path p and stopping at nodes r and s to pick up or drop off their11

passengers. Note that a CD can have more than one passenger onboard. Thus, f (i, j) i, j
p,CD expresses12

the number of CD having passengers with the same OD pair (i, j). Constraint (9) ensures that the13
total number of CD between (i, j) is the sum of the drivers stopping at the different passengers’14
OD pairs on path p. To formulate the correspondence between the drivers’ and passengers’ paths,15
let us define the following sets:16

• Q(r,s)
p : Set of paths l between (r,s), where the path p is a sub-path of l.17

• R(r,s)
p : Set of paths l (r,s), where l is a sub-path of p.18

Constraint (10) ensures that drivers can pick up all carpooling passengers. Recall that the
drivers can have the same OD pair as the passengers or not. Figure 2 illustrates the correspondence
between the carpooling passenger and driver paths, expressed by these constraints. Constraint (11)
ensures that all CD stopping at nodes r and s have enough passengers between (r,s). We formu-
lated these constraints regarding path flow variables to ensure the passenger-driver conservation
over the path p.

f (i, j)p,CD = ∑
r∈E

f (i, j) r
p,CD ∀i, j ∈ E ; ∀p ∈ PCD

i j (9)

f (i, j)p,CP ≤CAPCP · [ ∑
r,s∈E

∑
l∈Q(r,s)

p

f (r,s) i, j
l,CD ] ∀i, j ∈ E ; ∀p ∈ PCP

i j (10)

f (i, j) r,s
l,CD ≤ f (r,s)p,CP ∀r,s, i, j ∈ E ; ∀l ∈ PCD

i j ; ∀p ∈ R(r,s)
l (11)
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r

i

Path l

s

j
( r , s ) i, j

( i , j )

Driver 1

( i , j ) i, j

Driver 2

Path p

Passenger

FIGURE 2: Correspondence between the carpooling passenger’s and drivers’ path.

For the e-hailing, y(i, j)p,EH denotes the number of fleet vehicles having an e-hailing passenger1
between (i, j) with path p. Constraint (12) ensures that this variable equals the corresponding2
e-hailing path flow variable.3

f (i, j)p,EH = y(i, j)p,EH ∀i, j ∈ E ; ∀p ∈ PEH
i j (12)

Inspired by the formulation of carpooling in (1) and (4), we propose a ride-sharing service4
formulation. Let yi,r,s, j

p,RS represents the number of fleet vehicles participating in a ridesharing service5
and stopping at nodes i, j,r and s to pick up or drop off passengers. The ordering of the nodes in6
this variable is whether a First In First Out (FIFO) or Last In First Out (LIFO) service, as illustrated7
in Figure 3.8

i

r

s

j

( i , j )
Passenger 2

( r ,s )

(A) : FIFO

Passenger 1

i

r

s

j

Passenger 1

( i , j )
Passenger 2

( r ,s )

(B) : LIFO

FIGURE 3: Order of ridesharing service. (A): The first picked-up passenger is the first dropped-
off; (B): The first picked-up passenger is the last dropped-off.

Equation (13) defines the number of ridesharing vehicles traveling between (i, j) with path9
p. Similar to the carpooling service, Constraint (14) ensures enough seats for the passengers, and10
Constraint (15) ensures enough passengers for the ridesharing cars. CAPRS denotes the ridesharing11
passenger capacity, which is the same for all RS vehicles.12
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y(i, j)p,RS = ∑
r,s∈E

yi,r,s, j
p,RS ∀i, j ∈ E ; ∀p ∈ PRS

i j (13)

f (i, j)p,RS ≤CAPRS · [ ∑
r,s∈E

∑
l∈Q(r,s)

p

(yr,i, j,s
l,RS + yr,i,s, j

l,RS ) ] ∀i, j ∈ E ; ∀p ∈ PRS
i j (14)

yi,r,s, j
l,RS + yi,r, j,s

l,RS ≤ f (r,s)p,RS ∀r,s, i, j ∈ E ; ∀l ∈ PRS
i j ; ∀p ∈ R(r,s)

p (15)

Constraint (16) ensures that the ridesharing passengers are sharing the trip with another1
passenger (not an e-hailing service). Note that yi,i, j, j

p,RS represents the ridesharing vehicles on path2
p having passengers with the same OD pair (i, j). This is different from carpooling, as the driver3
providing the service is not a commuter himself.4

f (i, j)p,RS ≥ 2 · yi,i, j, j
p,RS + ∑

r,s∈E
∑

l∈Q(r,s)
p

(yr,i, j,s
l,RS + yr,i,s, j

l,RS ) ∀i, j ∈ E ; ∀p ∈ PRS
i j (16)

5
Constraints (17) and (18) define the number of occupied fleet cars as the sum of cars participating6
in the e-hailing and ridesharing services.7

q(i, j) r
o = ∑

p∈PRS
i j

yi,r,s, j
p,RS + yi,s,r, j

p,RS ∀i, j,r ∈ E (17)

q(i, j)o = ∑
r∈E

q(i, j) r
o + ∑

p∈PEH
i j

y(i, j)p,EH ∀i, j ∈ E (18)

Based on the formulation of the SMSs, we need to conserve the passengers and drivers flow8

over the paths. y(i, j)p,e denotes the number of empty fleet vehicles traveling between (i, j) with path9
p. Constraint (20) ensures, for every destination node, the number of entering vehicles equals the10
number of exiting vehicles. Constraint (21) ensures, for every origin node, there are enough empty11
cars to pick up the e-hailing and ridesharing passengers. Constraint (22) ensures the fleet size (|V |)12
conservation. Constraints (23)-(25) are integrality conditions on the decision variables.13

q(i, j)e = ∑
p∈PEH

i j

y(i, j)p,e ∀i, j ∈ E (19)

∑
i, j∈E

q(i, j) s
o + ∑

j∈E
q( j,s)

e = ∑
j∈E

q(s, j)o + ∑
j∈E

q(s, j)e ∀s ∈ D (20)

∑
i∈E

q(i, j)e ≥ ∑
s∈E

q( j,s)
o ∀ j ∈ O (21)

∑
i, j∈E

q(i, j)o +q(i, j)e = |V | (22)

f (i, j)p,m , f (i, j)r,sp,CD ≥ 0 ∀p ∈ Pm
i j ; ∀i, j,r,s ∈ E ; ∀m ∈ Ψ (23)

y(i, j)p,m ≥ 0 ∀p ∈ Pm
i j ; ∀i, j ∈ E ; ∀m ∈ {EH,RS,e} (24)

yi,r,s, j
p,RS ≥ 0 ∀p ∈ PRS

i j ; ∀i, j,r,s ∈ E (25)
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Link Flow and Path Flow Correspondence1
The UE and SO objective functions, formulated in section 4.1.1, require the calculation of xa and2
xa,m. Following Beckmann’s formulation, xa,m is defined by Equation (7). However, to calculate3
the xa variable used in links travel time, we consider the travel modes that contribute to traffic4
congestion, occupied and empty fleet vehicles, and PT flow. Considering PT flow means that we5
need to count PT units independently of the passenger flow. This is consistent with reality since PT6
adheres to a well-defined schedule and operates even with no passengers. It is worth mentioning7
that multiple studies (e.g., (7), (1) and (28)) formulate only non-empty PT for links, which is not8
the case in our study. To do so, we use the frequency of PT on every link to count the units, as9
described by Equation (26).10

xa = ∑
m∈Ψ′

xa,m + ∑
l∈PT

f reql,a + ∑
i, j∈E

∑
p∈PRS

i j

y(i, j)p,RS·δ
(i, j)
a,p,RS + ∑

i, j∈E
∑

p∈PEH
i j

(y(i, j)p,EH + y(i, j)p,e ) ·δ (i, j)
a,p,EH (26)

∀a ∈ A ; Ψ
′ = {car,CD,W,B} ; PT = {bus,M}

11
Regarding the carpooling service, we only count the driver flow. For the ridesharing service, we are12
adding the number of cars instead of the passenger flow since a vehicle may carry multiple passen-13
gers. With this, we keep the link and path flows as the number of vehicles. At this point, all modes14
are defined, and their travel cost functions are formulated. Now we can introduce intermodality.15

Multi-Modal Transportation Network with Intermodality16
This section introduces the transformation of the model’s constraints and variables to consider17
intermodality. In this study, an inter-mode is any combination of the previously enumerated modes18
(Figure 1) and is considered as a separate mode. For example, Park-and-Ride as a travel option is19
the commuter who uses his car to a transfer node and then takes the metro (3).20

The proposed model can consider any logical combination of modes as a travel option21
without further modifications. However, we are mainly interested in inter-modes, including PT22
and SMSs. We will focus on intermodality, as represented in Figure 4. Thus, the set of modes Ψ is23
extended to include all modes in the form of Im1,m2 where m1 and m2 ∈ Ψ.24

As we are considering every inter-mode as a separate mode, commuters between (i, j) with25
an inter-mode m = Im1,m2 on path p (p = p1⊕ p2, where ⊕ is the concatenation of two paths), use26
mode m1 with path p1, up to a transfer node. Then, they use m2 with path p2 to their destination.27
The number of commuters between (i, j) with an inter-mode m using path p is represented by the28

path flow variable f (i, j)p,m . Note that the model can consider a combination of more than two modes29
Im1,m2, where m1 is a ’simple’ mode and m2 is an inter-mode (and vice-versa).30

Let PI((i, j),s) be the set of all inter-modal paths between (i, j) in which the node s is31
the transfer node. Constraint (27) ensures the number of commuters using their car as part of an32
inter-mode and transferring at node s does not exceed the parking capacity at node s, represented33
by Pk_caps.34

∑
i, j∈E

∑
p∈PI((i, j),s)

f (i, j)p,Icar,M
+ f (i, j)p,ICD,M

≤ Pk_caps ∀s ∈ T R (27)
35

To clearly represent intermodality, let I(m) denotes an inter-mode including the simple mode m36
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Total demand

Car WBus M B CD CP EH RS

P&R
W↔M

B↔M
CD↔M

CP↔M

EH↔M

RS↔M

Matching

M : M e tro
W : Walking
B : Biking
CD : Carpooling Driver

CP : Carpooling Passenger

EH : E-hailing Passenger
RS : Ridesharing Passenger
P&R : Park-and-Ride Mode

: Simple mode

: Inter-mode

↔ : Bi - directional definition
  of inter-mode

FIGURE 4: Available travel options for multi-modal networks, with intermodality.

(either as the first part or the second part of the inter-mode). m(p) denotes the part of path p where1
the mode m is used, and TR(p) denotes the transfer node of the inter-modal path p. To consider2
intermodality with carpooling, we add Constraints (28) and (29) to the model. Constraint (28)3
ensures that drivers can pick up the passengers participating in carpooling as part of an inter-mode.4
The right-hand side of the constraint considers drivers participating in carpooling as part of an5
inter-modal trip, as well as carpooling drivers between any OD pair (u,v) passing by the transfer6
node t of the passengers. This is illustrated by Figure 5. In other words, a passenger can be picked7
up by a driver going from his origin to his destination or by a driver going from his origin to the8
transfer node t.9

u

i

v

t

( u , v ) i, t

Passenger

( i , j )

Driver 2

jr

s

Driver 1

( r , s )

CD :

I (CD) :

FIGURE 5: Correspondence between a carpooling passenger and drivers paths with intermodality.
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f (i, j)p,I(CP) ≤CAPCP · ( ∑
I(CD)∈Ψ

∑
r,s∈E

∑
k∈{x∈PI(CD)

rs ; CP(x)=CP(p)}

f (r,s)k,I(CD)
+ ∑

u,v∈E
∑

l∈PCD
uv

f (u,v)i,tl,CD + f (u,v)t, jl,CD ) (28)

∀i, j ∈ E ; ∀p ∈ PI(CP)
i j ; t = T R(p)

Constraint (29) ensures all carpooling drivers between (i, j) have enough carpooling pas-1
sengers to pick. This means that no CD is driving without a passenger on board, either for the full2
trip (i.e., same OD pair as passenger), or a part of the trip.3

f (i, j)p,I(CD)
≤ ∑

I(CP)∈Ψ

∑
r,s∈E

∑
p′∈{x∈PI(CP)

rs ; CP(x)=CP(p)}

f (r,s)p′,I(CP)+ ∑
u,v∈E

∑
k∈{x∈PCP

uv ; x=CP(p)}
f (u,v)k,CP ∀i, j ∈ E ; ∀p ∈ PI(CD)

i j (29)

Thus, we need to reformulate Constraints (10) and (11) to include intermodality.4

f (i, j)p,CP ≤CAPCP · ( ∑
r,s∈E

∑
k∈Q(r,s)

p

f (r,s) i, j
k,CD + ∑

I(CD)∈Ψ

∑
u,v∈E

∑
k∈{x∈PI(CD)

uv ; CP(x)=p}

f (u,v)k,I(CD)
) ∀i, j ∈ E ; ∀p ∈ PCP

i j (30)

f (i, j) r,s
p,CD ≤ f (r,s)k,CP + ∑

I(CP)∈Ψ

∑
u,v∈E

∑
k∈{x∈PI(CP)

uv ; CP(x)=p}

f (u,v)k,I(CP)) ∀r,s, i, j ∈ E ; ∀p ∈ PCD
i j ; ∀k ∈ R(r,s)

p (31)

Similarly, for e-hailing and ridesharing, Constraint (32) is added to the model, and Constraints (12)5
and (15) are updated accordingly.6

f (i, j)p,I(RS) ≤CAPRS · ∑
r,s∈E

∑
k∈Q(r,s)

p

(yr,i,T R(p),s
k,RS + yr,i,s,T R(p)

k,RS +yr,T R(p), j,s
k,RS + yr,T R(p),s, j

k,RS ) ∀i, j ∈ E ; ∀p ∈ PI(RS)
i j (32)

f (i, j)p,EH + ∑
I(EH)∈Ψ

∑
u,v∈E

∑
k∈{x∈PI(EH)

uv ; EH(x)=p}

f (u,v)k,I(EH)
= y(i, j)p,EH ∀i, j ∈ E ; ∀p ∈ PEH

i j (33)

yi,r,s, j
p,RS + yi,r, j,s

p,RS ≤ f (r,s)k,RS + ∑
I(RS)∈Ψ

∑
u,v∈E

∑
k∈{x∈PI(RS)

uv ; RS(x)=p}

f (u,v)k,I(RS) ∀r,s, i, j ∈ E ; ∀p ∈ PRS
i j ; ∀k ∈ R(r,s)

p (34)

To have the link-path flow correspondence, we update the xa,m variable as described by Equation7
(35).8

xa,m = ∑
i, j∈E

∑
p∈Pm

i j

f (i, j)p,m ·δ (i, j)
a,p,m + ∑

I(m)∈Ψ

∑
u,v∈E

∑
k∈PI(m)

uv

f (u,v)k,I(m)
·δ (u,T R(k))

a,m(k),m ∀a ∈ A ; ∀m ∈ Ψ (35)

9
Thus, the final comprehensive multi-modal mathematical formulation of UE (UE-CMF) is:10
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min ZUE = ∑
n∈N

∑
a∈An

∫ xa

0
α · ta,n(ω) dω + ∑

a∈A
∑

m∈Ψ

[α(WTm,a +STm,a)+Cm,a] · xa,m (UE-CMF)

s.t.

Cost functions (2)− (5)
xa,m = ∑i, j∈E ∑p∈Pm

i j
f (i, j)p,m ·δ (i, j)

a,p,m ∀a ∈ A; ∀m ∈ Ψ (7)

q(i, j) = ∑m∈Ψ ∑p∈Pm
i j

f (i, j)p,m ∀i, j ∈ E (8)

f (i, j)p,CD = ∑r∈E f (i, j) r
p,CD ∀i, j ∈ E; ∀p ∈ PCD

i j (9)

y(i, j)p,RS = ∑r∈E y(i, j) r
p,RS ∀i, j ∈ E; ∀p ∈ PRS

i j (13)

f (i, j)p,RS ≤CAPRS · [∑r,s∈E ∑l∈Q(r,s)
p

(yr,i, j,s
l,RS + yr,i,s, j

l,RS ) ] ∀i, j ∈ E; ∀p ∈ PRS
i j (14)

yi,r,s, j
l,RS + yi,r, j,s

l,RS ≤ f (r,s)p,RS ∀r,s, i, j ∈ E; ∀l ∈ PRS
i j ; ∀p ∈ R(r,s)

p (15)

f (i, j)p,RS ≥ 2 · yi,i, j, j
p,RS +∑r,s∈E ∑l∈Q(r,s)

p
(yr,i, j,s

l,RS + yr,i,s, j
l,RS ) ∀i, j ∈ E; ∀p ∈ PRS

i j (16)

q(i, j) r
o = ∑p∈PRS

i j
yi,r,s, j

p,RS + yi,s,r, j
p,RS ∀i, j,r ∈ E (17)

q(i, j)o = ∑r∈E q(i, j) r
o +∑p∈PEH

i j
y(i, j)p,EH ∀i, j ∈ E (18)

q(i, j)e = ∑p∈Pe
i j

y(i, j)p,e ∀i, j ∈ E (19)

∑i, j∈E q(i, j) s
o +∑ j∈E q( j,s)

e = ∑ j∈E q(s, j)o +∑ j∈E q(s, j)e ∀s ∈ D (20)

∑i∈E q(i, j)e ≥ ∑s∈E q( j,s)
o ∀ j ∈ O (21)

∑i, j∈E q(i, j)o +q(i, j)e = |V | (22)
f (i, j)p,m , f (i, j)r,sp,m ≥ 0 ∀p ∈ Pm

i j ; ∀i, j,r,s ∈ E; ∀m ∈ Ψ (23)

y(i, j)p,m ≥ 0 ∀p ∈ Pm
i j ; ∀i, j ∈ E; ∀m ∈ {EH,RS,e} (24)

yi,r,s, j
p,RS ≥ 0 ∀p ∈ PRS

i j ; ∀i, j,r,s ∈ E (25)
Intermodality Constraints (26)− (35)

To address the SO principle, only the objective function in UE-CMF needs to be replaced by1
Equation (6) and the problem can be treated as any minimization problem and solved by common2
(open-source or commercial) solvers. Our model’s formulation allowed the use of these solvers3
for UE as well. In what follows, we provide the proof that the MIQP UE-CMF follows Beckmann4
transformation, and thus, the solutions satisfy UE conditions.5

Proposition 1. Solution of optimization problem UE-CMF satisfies user equilibrium conditions.6

Proof. Following (26) and (24) procedures, let µrs (r,s ∈ E) denote the dual variable7
associated with the flow conservation constraint in Equation (8). Thus, the Lagrangian can be8
given by:9

L( f ,µ) = Z + ∑
r,s∈E

µr,s(q(r,s)− ∑
m∈Ψ

∑
p∈Pm

rs

f (r,s)p,m ) (36)

We compute the derivatives of the Lagrangian, w.r.t the path flow and the dual variables, to10
express the KKT conditions. To simplify the equations, we assume in what is next that α = 1.11
Derivatives w.r.t path flow variable:12

1. If m /∈ {CP,RS,EH}: the terms WT, ST, and C in the objective function are constants13
w.r.t the path flow. Thus, we obtain the following derivatives:14
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∂Z

∂ f (i, j)p,m

= ∑
b∈A

∂

∂xb
{∑

n∈N
∑

a∈An

∫ xa

0
ta,n(ω) dω}× ∂xb

∂ f (i, j)p,m

+ ∑
b∈A

∑
m′∈Ψ

∂

∂xb,m′
{∑

a∈A
∑

m∈Ψ

[WTm,a +STm,a +Cm,a] · xa,m}×
∂xb,m′

∂ f (i, j)p,m

(37)

= ∑
b∈A

tb,n(xb) ·δ
(i, j)
b,p,m + ∑

b∈A
[WTm,b +STm,b +Cm,b]×δ

(i, j)
b,p,m (38)

= ∑
b∈A

[tb,n(xb)+WTm,b +STm,b +Cm,b]×δ
(i, j)
b,p,m (39)

= c(i, j)p,m ∀i, j ∈ E ; ∀p ∈ Pm
i j (40)

2. If m ∈ {CP,RS,EH}: the terms ST and C in the objective function are constants w.r.t the path
flow, while WT is not. Let us define Gb (∀b ∈ N) as bellow:

Gb,m =
∂WTm,b

∂xb,m
(41)

=
∂WTm,b

∂ f (i, j)p,m

×
∂ f (i, j)p,m

∂xb,m
(42)

=
1

Rm
× 1

δ
(i, j)
b,p,m

(43)

The transition from Equation (41) to Equation (42) is by applying the chain rule of dif-1
ferentiation. The transition from Equation (42) to Equation (43) is explained by the fact that the2
waiting time for a passenger using an SMS depends only on the number of passengers using that3

same service. Also, the incidence matrix [(δ (i, j)
a,p,m)i, j∈E ;a∈A ;m∈Ψ ;p∈Pm

i j
] is predefined and fixed for4

every network, and depends on neither the flow variables nor the OD demand. Then, as we are5
working with the same boundaries for functions f and x, we can use the property of derivatives,6
which states that: if ∂x

∂ f = g, then ∂ f
∂x = 1

g . With this, we calculate the derivative of the objective7
function w.r.t the flow variable.8
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∂Z

∂ f (i, j)p,m

= ∑
b∈A

∂

∂xb
{∑

n∈N
∑

a∈An

∫ xa

0
ta,n(ω) dω}× ∂xb

∂ f (i, j)p,m

+ ∑
b∈A

∑
m′∈Ψ

∂

∂xb,m′
{∑

a∈A
∑

m∈Ψ

[WTm,a +STm,a +Cm,a] · xa,m}×
∂xb,m′

∂ f (i, j)p,m

(44)

= ∑
b∈A

tb,n(xb) ·δ
(i, j)
b,p,m + ∑

b∈A
[WTm,b +STm,b +Cm,b +

∂WTm,b

∂xb,m
· xb,m]×δ

(i, j)
b,p,m (45)

= ∑
b∈A

[ tb,n(xb)+WTm,b +STm,b +Cm,b +Gb,m · xb,m ]×δ
(i, j)
b,p,m (46)

= c(i, j)p,m ∀i, j ∈ E ; ∀p ∈ Pm
i j (47)

In conclusion, the derivative of the Lagrangian is calculated as follows:1

∂L( f ,u)

∂ f (i, j)p,m

=
∂Z

∂ f (i, j)p,m

+
∂

∂ f (i, j)p,m

{ ∑
r,s∈E

µr,s(q(r,s)− ∑
m∈Ψ

∑
p∈Pm

rs

f (r,s)p,m )} (48)

= c(i, j)p,m − µi j ∀i, j ∈ E ; ∀m ∈ Ψ ; ∀p ∈ Pm
i j (49)

Using these derivatives, we can explicitly formulate the minimization problem in UE-CMF with2
the following UE conditions, which complete our proof.3

f (i, j)p,m (c(i, j)p,m − µi j) = 0 ∀i, j ∈ E ∀m ∈ Ψ ∀p ∈ Pm
i j (50)

c(i, j)p,m − µi j ≥ 0 ∀i, j ∈ E ∀m ∈ Ψ ∀p ∈ Pm
i j (51)

∑
m∈Ψ

∑
p∈Pm

i j

f (i, j)p,m = q(i, j) ∀i, j ∈ E (52)

f (i, j)p,m ≥ 0 ∀i, j ∈ E ∀m ∈ Ψ ∀p ∈ Pm
i j (53)

Since the objective function in program UE-CMF is non-convex, the uniqueness of equilibrium so-4
lutions can be proven at the link level if all cost functions remain strictly monotone (29). However,5
the uniqueness w.r.t path flows is not straightforward. In other words, there could exist an infinite6
number of path flow solutions leading to the same unique link flow solution (30).7

NUMERICAL RESULTS8
In this section, we present the numerical results obtained from our study, which aims to analyze the9
commuter’s behavior under different scenarios. We first evaluate the proposed framework for a toy10
network and perform an analysis to validate the model. Second, we apply the model for a larger11
multi-modal test case, the Sioux Falls network (31). By conducting this analysis, we also aim to12
offer valuable insights into the decision-making process of commuters when selecting their mode13
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FIGURE 6: A multi-modal network with four nodes and twelve OD pairs.

of transportation and the influential factors contributing to their choices. We solve the UE and SO1
models using the Gurobi optimizer. Table 2 displays the experiment settings, with explicit mention2
of differing values for the two test cases. Experiments were conducted on a 64-bit computer with3
Intel i7 CPU 2.90GHz and 16GB RAM.4

Validation and Analysis on a Toy Network5
The proposed model is implemented for the network illustrated by Figure 6. The network has four6
nodes, serving as both origins and destinations. Nodes 3 and 4 are transfer nodes to the metro7
system. We assume a 100 commuter as demand for every OD pair.8

We consider three scenarios, illustrated by Figure 7, and analyze the commuters’ behavior9
under UE and SO principles. In Scenario (1), we only consider personal means of transport (car,10
walking, and biking) and PT (bus and metro). In Scenario (2), we allow SMSs as door-to-door11
services (without intermodality). Scenario (3) includes all possible travel options, i.e., SMSs and12
inter-modes are available. For this scenario, the model’s solving time is 12 seconds.13

Figure 8 presents the modes usage: the proportion of commuters using the travel mode.14
Additionally, Table 3 presents the traffic assignment regarding mode and path choices for the UE15
solution.16

In Figure 8, Scenario (1), 66.67% of commuters choose PT. The bus mode is more used17
(with 50%) due to its accessibility. Since intermodality is not allowed, only commuters between18
OD pairs (3,4) and (4,3) can access the metro. This demonstrates that using PT when accessible19
is always preferable to personal means under both UE and SO principles. Let us take the bus20
service as an example. Bus units operate in the system independently of their passenger flow,21
contributing simultaneously to traffic congestion in the road network. Besides, a bus can hold22
more passengers than a simple car, and since we consider BPR as our travel time function, having23
as many commuters as possible going with PT is the best option. However, it is essential to24
acknowledge that PT has inherent limitations, like limited capacity and frequency, restricting its25
availability to all commuters. Consequently, some commuters will use private cars when PT is26
not viable. Consider the OD pair (2,3) as an example. This pair has no metro links between27
the origin and the destination. However, there are bus connections between Node 2 and Node 3.28
The commuters cannot use the bus mode because it has reached capacity due to hanging onboard29
passengers between OD pair (2,4).30

Moreover, since the network is simple and uncongested, solutions under UE and SO are31
identical, following the observations in (32). None of the commuters in this scenario have opted32
for walking or biking due to the higher travel time associated with these modes than other options.33

In Scenario (2), commuters can choose all modes without intermodality. Similar to the pre-34
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FIGURE 7: Available travel options for three scenarios.

vious scenario, bus mode is used to its full capacity. The metro is also preferred when accessible.1
For SMSs, 16.66% choose carpooling (both as passengers and drivers), and 16.67% used rideshar-2
ing. Table 3 shows that ridesharing is used for short-distance trips (OD pairs (2,3) and (3,2)) while3
carpooling is chosen for long-distance trips. This can be explained by the fact that ridesharing4
has a high trip fare, increasing with the length of the trip (traversed links). In this scenario, no5
commuter is willing to use his car or the e-hailing service because, without considering personal6
preferences, it is always beneficial to share the cost of the trip with a passenger through carpooling7
or ridesharing.8

Note that under the UE conditions and for the same OD pair, the cost of carpooling pas-9
sengers is not the same as that of drivers. For example, consider the OD pair (1,3). For these10
commuters, the bus is the option with minimum cost. Nevertheless, it reaches full capacity be-11
cause of commuters between (1,2). The second best option is carpooling as a passenger. However,12
this can only be feasible if there are enough drivers, so only half of these commuters can choose13
CP mode. The cost for a carpooling driver is high due to the cost of using his car, but since this14
cost is less than driving alone or ridesharing, this option is used by the other half of commuters,15
described by Table 3.16

When traffic is assigned under SO, the ridesharing service is not used. Our SO objective17
function does not consider the ridesharing service provider’s profits. Thus, from a system point of18
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FIGURE 8: Modes usage in the small network, for three scenarios.

view, the goal is to reduce both the passengers’ and drivers’ costs. If the number of CP increases,1
the number of CD also increases accordingly, which will attract the demand to switch from the2
ridesharing service to the carpooling service.3

In the third scenario, where the intermodality is available, we observed that, with the same4
model configuration as the two previous scenarios, more than 80% of commuters will use PT due5
to its accessibility, while the rest of the commuters will use carpooling. However, to present a more6
realistic and complete analysis, we reduce the bus frequency ( f reqBus = 2) and provide the traffic7
assignment information in Table 3. In this case, when traffic is assigned based on UE, 36.67% of8
commuters use PT, 10.83% carpool as passengers for door-to-door trips and not for intermodality,9
and 10.08% participate in ridesharing, while 15.75% of commuters use CD mode. These drivers10
benefit from the possibility of having a passenger on board (CP or I(CP)), for part or the entire trip11
to compensate for the high cost of using their car. Intermodality is used with SMSs, representing12
26.66% of the trips (neither P&R mode nor walking and biking for the first/last mile). Similar to13
the previous scenario, ridesharing is mainly used for short trips (either as a door-to-door service or14
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TABLE 3: Traffic distribution for three scenarios.

OD pair Mode Path Flow Gen. Cost* OD pair Mode Path Flow Gen. Cost*
Scenario 1: Baseline Network

(1,2) Bus 1-2 100 6.487 (1,3) car 1-2-3 100 64.158
(1,4) Bus 1-4 100 16.346 (2,1) Bus 2-1 100 6.487
(2,3) car 2-3 100 32.154 (2,4) Bus 2-3-4 100 12.975
(3,1) car 3-2-1 100 64.158 (3,2) car 3-2 100 32.154
(3,4) M 3-4 100 17.483 (4,1) Bus 4-1 100 16.346
(4,2) Bus 4-3-2 100 12.975 (4,3) M 4-3 100 17.483

Scenario 2: Multi-modal Network with SMSs
(1,2) Bus 1-2 100 1.522 (1,3) CP 1-2-3 50 5.406
(1,3) CD 1-2-3 50 10.446 (1,4) Bus 1-4 100 3.509
(2,1) Bus 2-1 100 1.522 (2,3) RS 2-3 100 11.06
(2,4) Bus 2-3-4 100 3.045 (3,1) CP 3-2-1 50 5.406
(3,1) CD 3-2-1 50 10.446 (3,2) RS 3-2 100 11.060
(3,4) M 3-4 100 3.736 (4,1) Bus 4-1 100 3.509
(4,2) Bus 4-3-2 100 3.045 (4,3) M 4-3 100 3.736

Scenario 3: Multi-modal Network with Intermodality (with f reqBus = 2)
(1,2) Bus 1-2 40 1.623 (1,2) RS 1-2 60 11.063
(1,3) CP 1-2-3 80 7.342 (1,3) CD 1-2-3 20 10.482
(1,4) Bus 1-4 40 3.591 (1,4) CD&M 1-2-3-4 60 14.218
(2,1) Bus 2-1 40 1.629 (2,1) RS 2-1 60 11.069
(2,3) Bus 2-3 40 1.638 (2,3) CD 2-3 60 5.248
(2,4) CD&M 2-3-4 20 8.985 (2,4) CP&M 2-3-4 80 7.415
(3,1) CD 3-2-1 100 10.494 (3,2) Bus 3-2 40 1.644
(3,2) CP 3-2 30 3.684 (3,2) CD 3-2 30 5.254
(3,4) M 3-4 100 3.736 (4,1) Bus 4-1 40 3.591
(4,1) M&CP 4-1 60 11.090 (4,2) M&RS 4-3-2 100 14.821
(4,3) M 4-3 100 3.736

*: Generalized cost for using the corresponding mode and path between OD pairs.

combined with the metro for a short distance). In this case, ridesharing is used instead of carpooling1
due to the high demand for the carpooling service and, thus, a high waiting time. The trip with2
intermodality at the UE showed that our model could capture these complex trips. Recall that the3
model with inter-mode method can represent any trip, including multiple modes.4

Under the SO principle, the ridesharing demand is directed toward carpooling. Here, many5
commuters use M&CP because increasing PT usage improves the system’s overall objectives. This6
increase in the M&CP mode attracts more drivers to participate in carpooling (CD mode) to reduce7
their costs since they can transport passengers from the transfer node to their destination.8

We show in Figure 9(A) the total cost evolution under both UE and SO, when the total9
demand increases. The total cost under UE is approximately 1.2 times higher than SO when the10
demand is increased by a factor of 10. This means when the network is congested, commuters’11
personal decisions decrease the overall performance level of the transport system. It is expected12
due to the UE objective function. In such a case, increasing the capacity of PT, or promoting more13
carpooling through subsidies, for example, may help bring the solution under UE to that under SO.14
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(A) (B)

FIGURE 9: (A): Price of Anarchy - Evolution of the total cost in the small network; (B): Evolution
of ridesharing usage for the small network, w.r.t the total demand.

Moreover, we investigate the variation in ridesharing usage when the total demand in-1
creases. Figure 9(B) illustrates, under UE, the use of ridesharing services increases which can2
be explained by the fact that, for carpooling drivers, ridesharing becomes more attractive since3
the travel time is high and the difference in terms of monetary cost between using their car and4
ridesharing becomes comparable. Besides, under SO, since the PT reaches its total capacity, de-5
mand is directed to carpooling and ridesharing. However, the ridesharing service is more present6
due to the high waiting time for carpooling passengers.7

Application: Travel Behavior in Sioux Falls Network8
This section analyzes travel behavior in the multi-modal Sioux Falls network, with PT infrastruc-9
ture extracted from (31) and illustrated by Figure 10. The network comprises 24 nodes, with nodes10
4, 6, 15, and 19 as transfer nodes. We execute our model on 30 randomly selected OD pairs among11
552 in total. The solving time is 61 seconds.12

Figure 11 illustrates the proportion of commuters using each available mode. We can ob-13
serve similar travel behavior as described in section 5.1. PT is widely used under both UE and SO14
principles. For UE, 26.65% of commuters choose intermodality with SMSs, which is higher than15
the SO mode choice distribution (16%). Similar to the previous case study, ridesharing is used16
for short-distance trips (OD pair (23,12) as door-to-door service, and (4,6), (6,4), (15,12), (19,12)17
combined with metro). For SO, the demand for the door-to-door ridesharing service and some of18
the metro and M&RS demand was directed towards the door-to-door carpooling service. As pre-19
viously explained, reducing the carpooling drivers’ cost (by satisfying more passengers) improve20
the system’s objectives. In addition, 4.67% of commuters used the M&RS mode because of the21
high waiting time for the carpooling service, induced by the high number of passengers.22
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FIGURE 10: Sioux Falls Network with PT infrastructure.

CONCLUSION1
This research proposed a comprehensive mathematical assignment model for multi-modal urban2
transportation networks, including shared mobility services (SMSs) and public transport (PT). The3
model is able to address the impacts of SMSs on transportation systems and travelers’ choices4
when integrated with PT. Existing studies have shown shortcomings in providing an integrated5
framework for evaluating, combining, and optimizing available travel options effectively, leading6
to potential inefficiencies in planning and higher expenses. In response, our proposed model,7
where commuters can seamlessly select and combine various travel modes, including SMSs and8
PT, allows for optimized travel choices.9

Two fundamental assignment principles, user equilibrium (UE) and system optimum (SO),10
are considered for the model formulation (Program UE-CMF). The model not only includes tran-11
sit, personal, and shared transportation modes but also captures the intermodality in which users12
can combine more than one travel mode. To the best of our knowledge, this is the most complete13
assignment model for the multi-modal network (refer to Table 1). We examined commuters’ travel14
decisions under UE and SO. Our findings reveal carpooling is preferred over ridesharing when PT15
is not directly accessible. However, in situations of high demand and network congestion, rideshar-16
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FIGURE 11: Modes usage in the multi-modal Sioux Falls network, with intermodality.

ing becomes more attractive due to increased waiting times for carpooling passengers and reduced1
costs between cars and ridesharing services. The proposed framework can provide valuable in-2
sights into travel behavior under different scenarios, contributing to a better understanding of the3
integrated transportation system.4

As an initial step toward a unified framework incorporating SMSs and PT, our proposed5
model offers a baseline for analyzing commuters’ behavior within a multi-modal transportation6
network. It facilitates the investigation of planning scenarios by providing insightful analyses of7
mode usage and traffic assignment in the network.8

Future research should focus on integrating personal preferences and social criteria into9
commuters’ decision-making processes, incorporating service providers’ objectives, and consid-10
ering market equilibrium in the model’s formulation. In addition, including traffic dynamics11
can enhance the model while increasing the system’s complexity and solution calculation. The12
simulation-based approach can be applied while they make the system intractable for large-scale13
applications.14
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