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Battery health evaluation and management are vital for the long-term reliability and optimal perfor-
mance of lithium-ion batteries in electric vehicles. Electrochemical impedance spectroscopy (EIS) offers
valuable insights into battery degradation analysis and modeling. However, previous studies have not
adequately addressed the impedance uncertainties, particularly during battery operating conditions,
which can substantially impact the robustness and accuracy of state of health (SOH) estimation.
Motivated by this, this paper proposes a comprehensive feature optimization scheme that integrates
impedance validity assessment with correlation analysis. By utilizing metrics such as impedance residu-
als and correlation coefficients, the proposed method effectively filters out invalid and insignificant impe-
dance data, thereby enhancing the reliability of the input features. Subsequently, the extreme gradient
boosting (XGBoost) modeling framework is constructed for estimating the battery degradation trajecto-
ries. The XGBoost model incorporates a diverse range of hyperparameters, optimized by a genetic algo-
rithm to improve its adaptability and generalization performance. Experimental validation confirms the
effectiveness of the proposed feature optimization scheme, demonstrating the superior estimation per-
formance of the proposed method in comparison with four baseline techniques.
� 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published
by Elsevier B.V. and Science Press. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).
1. Introduction

The rapid development of battery technology has deeply
impacted numerous sectors, including electric vehicles (EVs),
energy storage systems (ESSs), and portable electronics. Lithium-
ion batteries (LIBs), serving as the primary power source in these
domains, are characterized by their high energy and power density,
extended lifespan, and absence of memory effects [1]. Nonetheless,
LIBs are prone to performance degradation with battery aging,
resulting in unforeseen malfunctions and diminished operational
efficiency. To mitigate such risks and ensure consistent perfor-
mance, battery management systems (BMSs) have been widely
implemented. A crucial aspect of effective BMS implementation
lies in accurately assessing the battery’s state of health (SOH),
enabling proactive maintenance, optimizing energy utilization,
and preventing potential safety risks [2].
1.1. Literature review

Battery SOH estimation methods prevailing in the literature can
be broadly classified into model-based and data-driven methods,
detailed as follows.

Model-based methods for estimating battery SOH mainly
include empirical models [3], electrochemical models [4], and
equivalent circuit models (ECMs) [5]. Empirical models use math-
ematical functions, such as polynomials or exponential equations,
to describe the quantitative relationship between various stress
factors and the battery aging trajectories. These models can offer
straightforward predictions of battery lifetime and performance,
making them useful for initial assessments. However, their predic-
tions are highly specific to the battery’s chemistry and operating
conditions, leading to poor accuracy when applied to different bat-
tery types and testing scenarios [6]. Consequently, empirical mod-
els cannot generalize well across diverse battery systems, limiting
their broader applicability. Electrochemical models utilize partial
differential equations (PDEs) to capture the complex dynamics
within a battery, encompassing electrode reactions, lithium-ion
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transport, and the formation and decomposition of the solid elec-
trolyte interphase (SEI) film. These models offer profound physical
insights into battery behavior and degradation mechanisms. How-
ever, they demand comprehensive information on microscopic
parameters and substantial computational resources to simulate
these processes accurately. This high level of detail and computa-
tional intensity can be a significant barrier, making it challenging
to apply these models practically in real-time BMSs [7]. ECMs, on
the other hand, represent the battery with an electrical circuit
composed of resistors, capacitors, and voltage sources to character-
ize the battery’s dynamic behavior. These models use state-space
equations to estimate internal resistance and battery states, bal-
ancing complexity and computational efficiency. However, ECM-
based methods are sensitive to noise disturbances and require
prior knowledge of the battery’s state of charge (SOC), limiting
their accuracy and reliability [8].

In recent studies, data-driven approaches utilizing machine
learning algorithms have significantly progressed and found
extensive applications in battery health evaluation. Numerous
estimation models have been developed using historical data to
characterize battery degradation patterns and predict aging sta-
tus. Techniques such as Gaussian process regression (GPR) [9],
support vector regression (SVR) [10], random forest (RF) [11],
extreme learning machine (ELM) [12], long short-term memory
(LSTM) networks [13,14], and deep neural networks (DNN) [15]
have been employed for battery health assessment. These meth-
ods rely heavily on well-extracted features that correlate
strongly with battery health to ensure accurate modeling [16].
Depending on the types of features selected, prevalent data-
driven estimation approaches can be classified into three
subgroups.

� Operational data-based feature: Features derived from opera-
tional data, such as charging and discharging curves, have been
widely utilized as inputs for battery SOH estimation. Wang et al.
[17] propose the use of LSTM networks combined with an adap-
tive state parameter feedback correction strategy to predict the
battery remaining useful life (RUL), which accounts for varia-
tions in current rates and ambient temperature changes,
thereby improving prediction accuracy. Furthermore, identify-
ing peak shifts and intensities in incremental capacity (IC) and
differential voltage (DV) curves facilitates pinpointing battery
degradation mechanisms and estimating the battery’s capacity
loss. For instance, Li et al. [18] utilize a grey forecasting model
to extract health indicators from IC analysis and propose an
iterative and probabilistic prediction method combined with
GPR for battery health prognosis. Xia et al. [19] combine IC
and DV analysis with a second-order ECM to enhance the accu-
racy of battery SOH and RUL predictions. However, gathering
reliable IC and DV curves necessitates charging or discharging
at very low current rates, which limits their practical applica-
tion at higher current rates.
� Statistical characteristics-based feature: These methods generally
involve extracting statistical metrics from operational data and
using these metrics to model and predict battery degradation.
They are particularly effective at capturing the nonlinear rela-
tionships between statistical features and battery capacity loss,
providing a nuanced understanding of battery degradation
mechanisms. For example, Deng et al. [20] utilize the average
and standard deviation of the random capacity increment
sequence extracted from partial charging processes as inputs
to improve the modeling accuracy and reduce uncertainties.
Similarly, Hu et al. [21] use the sample entropy of short voltage
sequences to reflect the capacity loss and employ sparse Baye-
sian predictive modeling to develop a comprehensive data-
driven battery SOH estimator.
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� Impedance-based feature: Compared to features obtained
directly from voltage and current measurements, electrochem-
ical impedance spectroscopy (EIS) offers comprehensive
insights into electrochemical processes and material properties
over a wide range of frequencies, thereby uncovering the bat-
tery aging mechanisms [22,23]. To illustrate, Zhang et al. [9] uti-
lize impedance spectra collected at various temperatures as
input features for a GPR model to characterize battery degrada-
tion patterns. Likewise, Xia et al. [24] extract geometric impe-
dance health indicators from the Nyquist plot of EIS data
collected in the high- and medium-frequency ranges and
develop a recurrent GPR method to estimate the battery SOH.
An analytical calculation model is proposed in [25] to convert
the charge transfer resistance at various SOC and temperatures
to a standard state, making it more comparable and reliable for
SOH estimation.

To construct a comprehensive degradation model, extracting
features from impedance spectra is highly desirable. Extensive
research has been conducted on designing perturbation signal
injection devices that facilitate impedance measurements in
onboard applications [26,27], with significant progress made in
enhancing the efficacy of impedance acquisition [22,28]. These
advancements have streamlined the process of impedance feature
extraction, making it more practical for real-time implementation.
However, employing EIS data for battery SOH estimation presents
significant challenges due to the spectrum’s high dimensionality,
capturing both real and imaginary impedance parts over a broad
frequency range. This necessitates advanced data-processing tech-
niques to effectively distill meaningful information. Zhang et al.
[29] and Messing et al. [30] convert the impedance spectrum into
lower-dimensional features by fitting through ECMs. However,
ECMs are often tailored to specific battery chemistries, which can
limit their applicability across diverse types of batteries. Addition-
ally, the fitting processes for ECMs frequently yield non-unique
results, introducing uncertainties that affect the SOH estimation
reliability. Obregon et al. [31] propose the use of a convolutional
autoencoder to extract features from EIS data, and a DNN is further
developed for battery SOH estimation. Despite their effectiveness,
DNNs are susceptible to overfitting, potentially compromising
their reliability in practical applications. Xiong et al. [32] propose
a convolutional neural network (CNN) method for battery capacity
estimation by taking raw impedance measurements. An input
reconstruction module is developed to exploit unlabeled impe-
dance spectra, thus reducing the costs associated with training
data collection. However, it is crucial to ensure that EIS data is val-
idated before interpretation and application. Without proper vali-
dation, the reliability of battery health evaluations remains
questionable, as inaccuracies in impedance data can lead to erro-
neous assessments and decisions [33].

1.2. Research gaps and contributions

It can be deduced from preceding studies that EIS contains valu-
able information reflecting battery aging dynamics over various
time scales. Extensive research efforts have been dedicated to
interpreting battery impedance spectra and extracting informative
features to identify battery degradation patterns. However, current
studies inadequately address the uncertainties inherent in impe-
dance measurements. Factors such as temperature fluctuations,
noise disturbances, and variations in operating conditions intro-
duce significant variability in impedance data [22], compromising
the reliability of battery health assessments. Currently, there is a
notable research gap in the development of effective methods to
counteract these uncertainties and construct a robust SOH
estimator.
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Motivated by this, this paper proposes an innovative and com-
prehensive feature optimization scheme integrating impedance
validity and correlation analysis. Subsequently, the battery SOH
estimation framework is constructed by proposing a genetic
algorithm-based extreme gradient boosting (GA-XGBoost). The
main contributions of this paper are as follows:

1. The feature optimization scheme effectively addresses impe-
dance measurement uncertainties. By applying metrics such
as impedance residuals and correlation coefficients, invalid
and insignificant impedance data are systematically filtered
out of the training dataset. This selective process not only ele-
vates the quality of the input data but also substantially
increases the robustness of the overall modeling framework,
leading to more accurate and reliable SOH estimation results.

2. To capture the intricate battery degradation dynamics across
various operating conditions, the XGBoost modeling framework
is developed for battery SOH estimation. The genetic algorithm
is applied to iteratively search for optimal hyperparameters
with five-fold cross-validation, significantly improving the
model’s adaptability and generalization performance.

The remainder of this paper is organized as follows: The impe-
dance dependencies and uncertainties are analyzed in Section 2.
Section 3 details the feature optimization and SOH estimation
framework. Section 4 presents the experimental studies. Section 5
summarizes this paper.

2. Electrochemical impedance spectroscopy

EIS encompasses valuable information that can be used for ana-
lyzing and interpreting complex battery degradation patterns. To
establish a comprehensive and reliable battery degradation model
using impedance measurements, it is essential to examine impe-
dance dependencies and uncertainties.

2.1. Impedance dependencies analysis

The schematic of impedance dependencies on battery degrada-
tion is presented in Fig. 1. In the kilohertz region, the battery impe-
dance variation is correlated with electrolyte decomposition and
solid electrolyte interface (SEI) film formation. The impedance
spectrum measured in the Hertz region reflects the deterioration
of the active material in the cathode. Furthermore, structural irreg-
ularities in the electrode are typically observed in the millihertz
region [34].

As shown in Fig. 1, during the battery degradation process, the
impedance spectrum exhibits a rightward shift due to the decrease
in electrolyte conductivity. As charge-transfer reactions slow
Fig. 1. Schematic of impedance dependencies on battery degradation.
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down, the medium-frequency semicircle enlarges, with the War-
burg straight line moving upward and to the right. The impedance
data measured in different frequency regions exhibit distinctive
variation trends with the deterioration of battery capacity. By ana-
lyzing the frequency response characteristics, it is feasible to gain
valuable insights into the underlying degradation mechanisms
for batteries.

2.2. Impedance uncertainties analysis

The effectiveness of utilizing impedance data for analyzing bat-
tery degradation heavily relies on the accuracy and reliability of
impedance measurements. Therefore, it is crucial to evaluate and
address uncertainties associated with impedance measurement
data thoroughly. Suppose a sinusoidal perturbation signal, denoted
as i(t), is superimposed onto the load current during the battery
charging or discharging. The corresponding voltage response sig-
nal, expressed as u(t), can be obtained. i(t) and u(t) are expressed
as:

i tð Þ ¼ I xkð Þj j sin xkt þ wð Þ
u tð Þ ¼ U xkð Þj j sin xkt þuð Þ

�
ð1Þ

where xk represents the angular frequency; I xkð Þj j and w represent
the magnitude and phase angle of the current perturbation signal,
respectively; U xkð Þj j and u are the magnitude and phase angle of
the voltage response signal, respectively.

By applying Ohm’s law, the actual impedance Z xkð Þ and mea-

sured one Ẑ xkð Þ are calculated as:

Z xkð Þ ¼ U
I ¼ U xkð Þj jeju

I xkð Þj jejw

Ẑ xkð Þ ¼ UþUpþUn
IþIpþIn

8<
: ð2Þ

where I and U represent the complex perturbation current and
response voltage signals, respectively; Ip and Up represent the load
current and polarization voltage signals; In and Un represent the
noise current and voltage signals.

To quantify impedance uncertainties, the normalized impe-

dance deviation (NID) between Z xkð Þ and Ẑ xkð Þ is calculated by:

DZj j ¼ Ẑ xkð Þ � Z xkð Þ
��� ���= Z xkð Þj j ð3Þ

Suppose the battery is operated in the constant current (CC)
charging or discharging mode, Ip can be removed from Eq. (2). By
substituting Eq. (2) into Eq. (3), the calculation of DZj j is reorga-
nized as follows:

DZj j ¼
I
In
� U

Un

U
Un

I
In
þ 1

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Noise - induced

þ Up

U
I

I þ In|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Polarization - induced

�����������

�����������
ð4Þ

As seen in Eq. (4), the impedance deviation is segmented into
two components. The noise-induced impedance deviation is con-
tingent upon the signal-to-noise ratio (SNR) of the perturbation
and response signals, denoted as I=In and U=Un, respectively. The
polarization effects, on the other hand, are positively correlated
to the ratio between Up and U. Specifically, the polarization voltage
hysteresis components are pronounced in the low-frequency
region [35], which inevitably introduces uncertainties in impe-
dance measurement results. To ensure an accurate representation
of battery degradation, it is crucial to address impedance uncer-
tainties before establishing the estimation model.
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3. Proposed SOH estimation method

The schematic framework of the proposed method is presented
in Fig. 2. Initially, impedance data across various frequency ranges
are collected during the battery degradation processes. Subse-
quently, a feature optimization scheme is implemented by inte-
grating impedance validity and correlation analysis. Metrics such
as impedance residuals and correlation coefficients are utilized to
identify and exclude invalid and insignificant impedance features.
Finally, the XGBoost modeling framework is constructed for bat-
tery SOH estimation to capture the intricate battery degradation
dynamics across diverse operating conditions. The hyperparame-
ters are optimized using a genetic algorithm with five-fold cross-
validation to enhance the modeling performance. Details regarding
the feature optimization scheme and the SOH estimator will be
introduced subsequently.

3.1. Impedance data optimization

To enhance the impedance modeling performance and train-
ing efficiency, the optimization of impedance data is detailed as
follows. Defining D ¼ X;Yð Þf g as the training dataset, where X de-
notes the fully observed impedance features and Y denotes the
battery SOH, which is defined as the ratio between the battery’s
present capacity and its nominal capacity. In this study, the nom-
inal capacity is the battery capacity measured during the first
charge–discharge cycle, as in [31]. The input vector Xl;: is
expressed as:
Fig. 2. Schematic framework

90
Xl;: ¼ Ẑ0 l;x1ð Þ; :::; Ẑ0 l;xKð Þ; Ẑ00 l;x1ð Þ; :::; Ẑ00 l;xKð Þ
h i

ð5Þ

where l represents the row index of the input vector. Ẑ0 l;xkð Þ and
Ẑ00 l;xkð Þ (k = 1, 2, . . ., K) represent the real and imaginary impe-
dance data measured at frequency xk. K represents the number
of impedance measurement data.

3.1.1. Impedance validity analysis
The impedance validity analysis is conducted by analyzing the

linear Kramers-Kronig (K-K) relations [33], which quantitively
evaluates the relationship between the real and imaginary compo-
nents of the impedance data. In this work, the impedance data are
fitted with a Voigt circuit model (VCM) consisting of n serially con-
nected RC circuits, expressed as Ri//Ci, an inductance L, and a resis-
tance Rs, as presented in Fig. 2. The real and imaginary parts of the
VCM impedance are calculated by:

Z
�0
xkð Þ ¼ Rs þ

Pn
i

Ri
1þ xksið Þ2

Z
�00

xkð Þ ¼Pn
i

�xkRisi
1þ xksið Þ2 þxkL0

8>>><
>>>: ð6Þ

wherexk denotes the angular frequencies of the experimental impe-

dance measurement data; Z
�0
xkð Þ and Z

�00
xkð Þ denote the real and

imaginary parts of the fitted impedance, respectively; si (i = 1, 2,
. . ., n) denotes the time-constants of the i-th RC circuit, which are log-
of the proposed method.
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arithmically distributed over the inverse range of angular frequencies
of the impedance measurements. si is calculated by:

si ¼ exp ln smin þ i� 1
n� 1

ln smax=sminð Þ
� �

ð7Þ

where smin and smax denote the minimum and maximum time-
constants calculated by,

smax ¼ 1=min xkð Þ
smin ¼ 1=max xkð Þ

�
ð8Þ

In this work, we employ the Nelder-Mead algorithm [36] to
minimize the objective function presented in Eq. (9) and thereby
determine the optimal parameter vector. The Nelder-Mead algo-
rithm is a robust and well-established optimization technique, par-
ticularly advantageous for addressing complex, non-linear
problems. The objective function is expressed as the normalized

square deviation between the measured impedance Ẑ l;xkð Þ and
the fitted one Z

�
xkð Þ as follows:

J hlð Þ ¼
PK

k¼1 Ẑ l;xkð Þ � Z
�
xkð Þ

� �
=Ẑ l;xkð Þ

��� ���2
hl ¼ L;C0;Rs;R1; :::;Rn½ �

8<
: ð9Þ

It should be noted that the parameter identification process of
the VCM often leads to non-unique solutions, where multiple sets
of parameters can adequately describe the same impedance spec-
trum. To effectively analyze the reproductivity and validity of the
impedance measurement data, the residuals between the mea-
sured and fitted impedance are calculated as follows:

DRe l; kð Þ ¼ Ẑ0 l;xkð Þ � Z
�0
xkð Þ

� �
=Ẑ l;xkð Þ

DIm l; kð Þ ¼ Ẑ00 l;xkð Þ � Z
�00

xkð Þ
� �

=Ẑ l;xkð Þ

8>>><
>>>: ð10Þ

where DRe l;xkð Þ and DIm l;xkð Þ represent the real and imaginary
impedance residuals, respectively. The root mean square (RMS)
residuals, serving as the primary metric for impedance feature
selection, are determined as follows:

nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM
l¼1

DRe l; k½ �ð Þ2
s

n60þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM
l¼1

DIm l; k½ �ð Þ2
s

8>>>>><
>>>>>:

ð11Þ

where M represents the number of samples. It is important to note
that conventional K-K validation tests rely on the assumptions of
stationarity and linearity in the system under test [33]. However,
these assumptions would not hold under the dynamic conditions
typically encountered in battery systems, potentially resulting in
the exclusion of valuable data. In contrast, our proposed method
focuses on the statistical analysis of impedance residuals across dif-
ferent frequencies, offering a more comprehensive and practical
assessment of EIS measurements.

3.1.2. Correlation analysis
The Pearson correlation analysis has been widely recognized as

a promising tool for quantifying the intensity of the linear relation-
ship between variables and aiding in feature selection by identify-
ing which features have a strong linear relationship with the
objective variable [37]. To select the impedance feature with a
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strong linear correlation with battery degradation, the Pearson cor-
relation coefficient is calculated as follows:

qk ¼
P

Xl:;k � X :;k

�� �
Yl � Y

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Xl:;k � X :;k

�� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Yl � Y
�� �2

r ð12Þ

where X:;k

�
and Y

�
denote the average value of Xl:;k and Yl, respec-

tively. When qk approaches 1 or �1, it indicates a significant posi-
tive or negative correlation between the impedance data and
battery SOH. To filter out the insignificant data and improve the
training efficiency, qk serves as the secondary metric for impedance
feature selection.

The proposed impedance feature selection scheme is summa-
rized in Algorithm 1, where n0 and q0 are predefined thresholds
for impedance data dropout. As a first step, the real and imaginary
impedance residuals are calculated by fitting the impedance mea-
surement data with the VCM. Further, nk and qk are calculated by
applying Eqs. (11) and (12), respectively. The invalid or insignifi-
cant data are filtered out of the training dataset. The remaining
impedance data are then selected as the final inputs to construct
the battery degradation model.

Algorithm 1 (The proposed impedance feature selection scheme.).
Input: Training dataset D ¼ X;Yð Þf g

1:
 Initialization: n0,q0

2:
 for l  1 to M do

3:
 Compute si using Eqs. (7) and (8)

4:
 Compute hl by solving Eq. (9)

5:
Compute Z
�0

xkð Þ and Z
�00

xkð Þ using Eq. (6)

6:
 Compute DRe l; kð Þ and DIm l; kð Þ using Eq. (10)

7:
 end for

8:
 for k  1 to K do

9:
 Compute nk using Eq. (11)

10:
 Compute qk using Eq. (12)� �

11:
 if nk > n0 or qk

� � < q0 then

12:
 X ¼ XleftfX:;kg

14:
 end if

15:
 end for
3.2. SOH estimation

3.2.1. XGBoost algorithm
Upon obtaining the designated impedance features, a data-

driven model can be constructed for estimating the battery
degradation trajectories. Decision tree methods are particularly
well-suited for this task due to their transparent interpretations
and effective handling of non-linear relationships within the data
[38]. Among these methods, XGBoost is selected for its superior
precision and reduced risk of overfitting. Meanwhile, XGBoost
stands out due to its capability to incorporate a second-order Tay-
lor expansion of the target function, resulting in a more accurate
loss-function [39]. This capability enhances the modeling perfor-
mance by capturing the complex patterns of battery degradation.
The specifications and configuration of the XGBoost algorithm
are described in the following.

Given that X and Y are expressed as the input and target data,
respectively, an XGBoost regression model with N trees is
expressed as follows:
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Ŷ ¼
XN
i¼n

f n Xð Þ; f n 2F ð13Þ

where Ŷ denotes the model output, f n denotes a scoring function to
estimate output from a regression tree, and F denotes a set of all
possible regression trees.

The XGBoost algorithm runs iterative steps, updating the model
outputs. The model output at the t-th iteration is expressed as
follows:

Ŷ
t ¼ Ŷ

t�1 þ f t Xð Þ ð14Þ

where Ŷ
t
and Ŷ

t�1
represent the updated model output and the

model output from the previous iteration, respectively. f t is the
scoring function from the present regression tree.

The objective function of XGBoost is expressed as:

J f tð Þ ¼
XL

l¼1
L yl; ŷ

t�1
l þ f t Xlð Þ

� �
þ
Xt

n¼1
X f nð Þ

¼
XL

l¼1
L yl; ŷ

t�1
l þ f t Xlð Þ

� �
þX f tð Þ þ Const

ð15Þ

where Const denotes the constant term; L denotes the loss-
function, which is expressed as mean square error (MSE) in a
regression model; X denotes the regularization term.

By using the second-order Taylor expansion on the loss-
function in XGBoost, Eq. (15) can be rewritten as:

J f tð Þ �
XL

l¼1
L yl; ŷ

t�1
l

� �
þ glf t Xlð Þ þ 1

2
hlf

2
t Xlð Þ

� �
þX f tð Þ

þ Const ð16Þ
where gl and hl are the first and second derivatives, which are cal-
culated by:

gl ¼ @L yl; ŷ
t�1
l

� �
=@ ŷt�1l

� �
hl ¼ @2L yl; ŷ

t�1
l

� �
=@ ŷt�1l

� �2

8><
>: ð17Þ

After removing all the constant terms, the cost-function in
XGBoost at the t-th step can be simplified as:

J f tð Þ �
XL

l¼1
glf t Xlð Þ þ 1

2
hlf

2
t Xlð Þ

� �
þX f tð Þ ð18Þ

3.2.2. Proposed GA-XGBoost method
XGBoost offers a diverse set of hyperparameters that signifi-

cantly influence modeling performance. For instance, fine-tuning
the maximum tree depth and subsample ratio can mitigate overfit-
ting while accelerating training speed. Adjusting the learning rate
enhances the model’s resilience to noisy data and improves overall
Table 1
Specifications of the hyperparameters in XGBoost modeling.

Hyperparameter Description Range

p1 Number of trees [10,
1000]

p2 Maximum depth of trees [1,30]
p3 Minimum sum of the instance weight in a

child
[1,10]

p4 Subsample ratio of the training instance [0.8, 1]
p5 Column sampling ratio by tree [0.8, 1]
p6 Learning rate [0, 0.3]
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robustness, ensuring more accurate predictions in complex scenar-
ios [40]. This study investigates six key hyperparameters, detailed
in Table 1, aiming to optimize their settings for improving model-
ing performance.

Optimizing hyperparameters in XGBoost is a complex and com-
putationally intensive process, often requiring navigation through
a vast, non-linear search space filled with numerous local minima.
To address this, the study employs a genetic algorithm chosen for
its fast convergence speed and exceptional capability in dealing
with complex and high-dimensional search spaces. Furthermore,
the genetic algorithm’s excellent ability to balance exploration
and exploitation ensures a more comprehensive search across
the solution space, making it particularly advantageous for hyper-
parameter optimization [41,42].

In constructing the GA-XGBoost modeling approach, several key
steps are followed:

Step 1: Obtain objective function values. Firstly, the population
of the hyperparameters is initialized within the specified ranges
listed in Table I. The XGBoost models are then constructed by the
population using Eqs. (13)–(18). For each individual, the objective
function is determined via a five-fold cross-validation process on
the XGBoost model for battery SOH estimation. Specifically, the
objective function is as follows:

f GA ¼MSE5�foldðXGBoostÞ ð19Þ

where MSE5�fold denotes the mean square error (MSE) of XGBoost
under five-fold cross-validation.

Step 2: Hyperparameter optimization. In the genetic algorithm,
favorable individuals are selected for crossover and mutation oper-
ations. Crossover entails merging genetic information from parents
to generate offspring individuals, while mutation introduces ran-
dom alterations, fostering population diversity. Throughout itera-
tions, the optimized hyperparameters and the objective function
values are stored. The optimization concludes when the maximum
iteration limit is attained, and the hyperparameters corresponding
to the lowest objective function value are utilized to train the
XGBoost model for battery SOH estimation.
3.3. Performance metrics

To quantitatively assess the battery SOH estimation perfor-
mance, several metrics such as the root mean squared error
(RMSE), mean absolute percentage error (MAPE), and R-square
are introduced as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL

l¼1
Yl � Ŷ l

� �2

vuut RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
l¼1

Yl � Ŷ l

� �2

vuut ð20Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL

l¼1
Yl � Ŷ l

� �2

vuut MAPE ¼ 1
M

XM
l¼1

Yl � Ŷ l

Yl

�����
������ 100% ð21Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL

l¼1
Yl � Ŷ l

� �2

vuut R2 ¼ 1�
PM

l¼1 Yl � Ŷ l

� �2

PM
l¼1 Yl � Y

�� �2 ð22Þ

where Yl and Ŷ l are the measured and estimated SOH values,
respectively; M is the number of samples.
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4. Results and discussions

In this section, the proposed impedance feature optimization
scheme and GA-XGBoost model for battery SOH estimation are
verified. For starters, the impedance validity and correlation anal-
ysis are presented. Further, the proposed SOH estimator is vali-
dated using different testing datasets.

4.1. Impedance validity and correlation analysis

The impedance data investigated in this work are available from
the public dataset as detailed in [9], where 12 LIBs are cycled at
25 �C (25C01-25C08), 35 �C (35C01 and 35C02), and 45 �C
(45C01 and 45C02), respectively. Each cycle comprises a 1C-rate
constant current–constant voltage (CC-CV) charge followed by a
2C-rate discharge process. The impedance measurements were
taken at nine different stages during the battery cycling process,
spanning a frequency range of 20 mHz to 20 kHz. These measure-
ments were performed using an electrochemical workstation that
generated an excitation current of 5 mA to perturb the system
and record the corresponding impedance responses.

In this study, the training dataset comprises four batteries:
25C01, 25C02, 35C01, and 45C01. By adapting the model to data
from multiple temperature environments during the training
phase, it can learn to identify the specific impedance characteris-
tics associated with different temperature conditions. The features
extracted from the EIS data are the real and imaginary parts of the
impedance collected at 60 different frequencies, logarithmically
ranging from 20 mHz to 20 kHz. The input dataset has a dimen-
sionality of 1,027 rows (corresponding to the cycle numbers) and
120 columns (corresponding to the impedance features). The out-
put dataset, which contains the SOH values, has a dimensionality
of 1,027 rows and 1 column. The testing dataset includes two bat-
teries: 35C02 and 45C02. The impedance data collected at Stage III
(charging after 20 min) and Stage IV (end of charging) are specifi-
cally examined in this study due to the practical convenience of
obtaining impedance data during the battery charging process
[43]. During Stage III, impedance measurements are conducted
while the batteries are actively charging, which introduces signifi-
cant polarization effects and changes in electrochemical behaviors,
contributing to measurement uncertainties. Similarly, in Stage IV,
the batteries have not yet fully relaxed after charging, leading to
residual polarization effects that can influence the accuracy of
the impedance measurements. The evolution of battery impedance
spectra during the degradation process is illustrated in Fig. 3,
showing that the impedance spectrum expands and shifts to the
right as the battery SOH decreases.

The validity of impedance measurements is analyzed using Eq.
(6)–Eq. (12). As shown in Fig. 4, the presence of impedance mea-
surement uncertainties is the most pronounced in the millihertz
region, where the fitted impedance significantly deviates from
Fig. 3. Nyquist plot of impedance spectra for cell 35C01 at Stage IV during the
degradation process.
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the actual impedance measurements. The gradual increase in
impedance residuals with decreasing frequency is attributed to
the low-frequency polarization voltage components during battery
charging, according to Eq. (4). It should be noted that the unreliable
impedance measurements caused by polarization effects are less
pronounced under higher SOC conditions, as shown in Fig. 4(b).
As battery charging progresses, fluctuations in ionic concentration
diminish, resulting in reduced interference with impedance mea-
surements [44]. Additionally, the impedance uncertainties persist
regardless of the testing temperature and battery aging status.
These factors can exacerbate the challenges in achieving accurate
assessments of battery degradation, highlighting the necessity of
performing the impedance validity analysis before constructing
the SOH estimation model. To prove the effectiveness of the pro-
posed method in addressing and mitigating impedance uncertain-
ties, the impedance data measured at Stage III are utilized to train
the SOH estimation model.

The RMS residuals between the measured and fitted impedance
across different frequency ranges, denoted as nk, are depicted in
Fig. 5(a). The analysis indicates that the maximum nk is limited to
1% in the kilohertz region. The high accuracy in this frequency range
can be attributed to the high-frequency measurements primarily
reflecting the intrinsic properties of the electrolyte and the electrode
surfaces, which are less variable and more stable over time. In the
hertz range, impedance residuals can still peak at 2.33%, as the
medium-frequency impedance measurements are particularly sensi-
tive to the charge-transfer processes and the double-layer capaci-
tance effects. Despite higher impedance residuals, the information
gathered from this range is crucial for understanding electrochemical
dynamics and aging processes. These measurements often reflect
changes in the electrochemical interfaces, which are directly related
to the battery’s aging and degradation mechanisms [34]. The low-
frequency impedancemeasurements are dominated by diffusion pro-
cesses and are more susceptible to noise and external disturbances.
These factors contribute to higher variability and less reliable data,
which is evident from the higher residuals observed. According to
[33,45], impedance data is deemed valid and reliable when the devi-
ation between measured and fitted impedance is well below 1%. To
enhance the SOH estimation performance, invalid impedance data
are systematically filtered out from the training dataset when
nk > n0, where n0 is set to 0.5%, ensuring that only the most reliable
impedance data are retained.

The correlation analysis of impedance data and battery SOH for
different batteries is illustrated in Fig. 5(b). The analysis reveals
that the relationship between battery degradation and impedance
data varies significantly across different frequency ranges. Notably,
the medium-frequency impedance measurements exhibit a strong
correlation with battery SOH, suggesting that these frequencies are
particularly sensitive to the electrochemical processes associated
with battery aging. This heightened sensitivity can be attributed
to the charge-transfer resistance and double-layer capacitance
evolving with battery degradation, emphasizing the importance
of medium-frequency impedance measurements for accurate
SOH estimation. By contrast, the imaginary impedance measured
at low frequencies shows a weak correlation with battery health,
indicating that these measurements are less reliable for evaluating
battery degradation. To reduce computational complexity and
optimize the training process, the insignificant impedance data
are removed from the training dataset once qkj j is lower than q0,
which is set to 0.6 in this study. The final input variables are
selected from the remaining impedance data, distinguished by
their high validity and importance, as listed in Table 2.

Before implementing the XGBoost method for battery SOH esti-
mation, the genetic algorithm is employed to optimize the XGBoost
hyperparameters, aiming to enhance the modeling accuracy and



Fig. 4. Impedance validity analysis results: (a) 25C01-III, 100% SOH; (b) 25C01-IV, 100% SOH; (c) 35C01-III, 80% SOH; (d) 45C01-III, 80% SOH.
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improve generalization ability. The maximum iteration for the
genetic algorithm is set to 50, with a population size of 10. Using
five-fold cross-validation on the training set, the optimization pro-
cess yields the fitness values depicted in Fig. 6. The results show
that the MSE of the cross-validation results decreases from
1.38 � 10�4 and converges to 1.24 � 10�4 from the 33-rd iteration.
Finally, the values of the optimized hyperparameters are 338 for
the number of trees, 30 for the maximum depth, 7 for the mini-
mum child weight, 0.86 for the column sample ratio by tree, 0.99
for the subsample ratio, and 0.05 for the learning rate.

4.2. Estimation model verification

To evaluate the performance of the proposed method, four data-
sets from two individual cells (35C02 and 45C02), with impedance
94
data collected at different SOCs (Stages III and IV), are utilized to
test the SOH estimation model. The estimation performance of
the proposed method is compared using raw EIS data as inputs
to the GA-XGBoost and CNN models, with the CNN’s hyperparam-
eters obtained from [31,46]. The SOH estimation results, depicted
in Fig. 7, demonstrate that the model incorporating optimized fea-
tures delivers significantly more reliable performance and higher
accuracy. The estimation results are closely aligned with the base-
line across various aging conditions and testing scenarios, achiev-
ing an average MAPE of merely 1.29%. In contrast, the use of raw
impedance data, which includes numerous invalid and irrelevant
features, proves unsuitable for direct model input and often results
in unreliable estimation performance. Specifically, the GA-XGBoost
and CNN models, which utilize raw EIS data as model inputs, yield
considerably higher average MAPEs of 2.80% and 3.95%, respec-



Fig. 5. (a, b) RMS residuals and correlation coefficients of impedance measurement data collected at Stage III.

Table 2
RMS residuals and correlation coefficients of the selected impedance data.

X:; 80 X:; 86 X:; 88 X:; 89 X:; 90 X:; 95

nk 25C01 0.24% 0.28% 0.34% 0.30% 0.33% 0.34%
25C02 0.26% 0.21% 0.28% 0.33% 0.33% 0.37%
35C01 0.29% 0.41% 0.47% 0.41% 0.46% 0.49%
45C01 0.19% 0.20% 0.27% 0.28% 0.31% 0.31%

qk

�� �� 25C01 0.67 0.63 0.88 0.92 0.95 0.99
25C02 0.85 0.86 0.86 0.85 0.85 0.86
35C01 0.76 0.90 0.96 0.97 0.99 0.99
45C01 0.76 0.96 0.98 0.99 0.99 0.99

Fig. 6. Fitness values during the optimization process.
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Fig. 7. Scatter diagram of SOH estimation results: (a) 35C02-III; (b) 35C02-IV; (c) 45C02-III; (d) 45C02-IV.
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tively. These results highlight the critical importance of feature
optimization in enhancing the accuracy, robustness, and overall
effectiveness of the SOH estimation model, confirming that prop-
erly selected and processed features are essential for reliable bat-
tery health assessment.

Fig. 8 illustrates the GPR, DNN, SVR, and regular XGBoost mod-
els as benchmarks for comparative analysis. These models utilize
optimized impedance data as inputs, known for their superior
modeling performance. The hyperparameters of the GPR model
are obtained from [9], while the DNN architecture comprises four
hidden layers and four dropout layers, as detailed in [31]. The
SVR uses a Gaussian kernel while the normal XGBoost model is
built using default hyperparameters. The estimation results
demonstrate the good generalization of all estimation models for
Fig. 8. SOH estimation results with different data-driven mode
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accurately tracking reference SOH values, validating the reliability
of optimized impedance features. Notably, the proposed method
not only shows consistent SOH estimation performance but also
yields a smooth and precise estimation curve. Conversely, the reg-
ular XGBoost model, with default hyperparameters, exhibits pro-
nounced fluctuations in estimation results. It is noticed that
while the proposed GA-XGBoost model performs well overall, it
does not outperform the GPR model in certain instances as in
Fig. 8(c). This can be attributed to the strengths of the GPR model
in identifying underlying trends and managing uncertainties in
datasets characterized by gradual changes and less complexity
[39]. On the other hand, the GA-XGBoost model is a robust and
highly adaptable approach specifically designed to capture com-
plex, non-linear relationships. Consequently, in cases where the
ls: (a) 35C02-III; (b) 35C02-IV; (c) 45C02-III; (d) 45C02-IV.



Fig. 9. Numerical evaluation of SOH estimation results.
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data does not exhibit strong non-linearities, GPR’s effectiveness in
minimizing errors can lead to superior performance compared to
GA-XGBoost.

The numerical assessment of the estimation outcomes is graph-
ically outlined in Fig. 9. It is shown that the proposed method
demonstrates good generalization ability and robustness, where
R2 is higher than 0.92 in all testing datasets. In contrast, the base-
line methods exhibit inconsistent performance, with the GPR and
DNN methods exhibiting the lowest R2 values at 0.59 and 0.44,
respectively. To provide a comprehensive perspective on estima-
tion performance, the average metrics of each evaluation index
across diverse testing datasets are presented. The average MAPE
and RMSE of the proposed method are only 1.29% and 1.24%,
respectively, while those of the baseline methods are larger than
1.81% and 1.77%, respectively. The superior performance of the
proposed method highlights the effectiveness of the GA-XGBoost
modeling framework for battery SOH estimation.

5. Conclusion

Evaluating battery health is crucial for ensuring the reliable
operation, effective management, and timely maintenance of LIBs.
This paper introduces an advanced feature optimization scheme in
combination with a GA-XGBoost modeling approach for accurate
and robust SOH estimation. Given the uncertainties in impedance
measurements during battery operation, the study first performs
an impedance validity and correlation analysis to filter out invalid
and insignificant impedance data, ensuring only high-quality data
is used for constructing the estimation model. Following this, an
XGBoost modeling framework is developed to identify battery
degradation patterns and estimate battery SOH values. The genetic
algorithm is employed to optimize the hyperparameters within the
XGBoost model, thereby significantly enhancing its adaptability
and generalization performance across various operating
conditions.

The experimental results demonstrate that the proposed
method can accurately estimate battery degradation trajectories
across various testing datasets, achieving an average MAPE of
1.29% and RMSE of 1.24%, respectively. The GA-XGBoost and CNN
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models utilizing raw EIS data as model inputs yield considerably
higher MAPEs of 2.80% and 3.95%, respectively. Furthermore, all
baseline methods, even when using optimized features, resulted
in an average MAPE and RMSE exceeding 1.81% and 1.77%, respec-
tively. These results highlight the advantages of the proposed fea-
ture optimization scheme and the GA-XGBoost modeling
framework.

Future research will explore the feasibility and effectiveness of
the proposed method under more severe noise conditions. Addi-
tionally, the proposed method can be further refined by integrating
the feature engineering framework with the underlying battery
degradation mechanisms, thereby enhancing the predictive accu-
racy and reliability of SOH estimation.
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Hinds, R. Raccichini, M. Gaberšček, J. Park, J. Power Sources 480 (2020) 228742.
[34] P. Iurilli, C. Brivio, V. Wood, J. Power Sources 505 (2021) 229860.
[35] X. Du, J. Meng, Y. Amirat, F. Gao, M. Benbouzid, IEEE Trans. Transp.

Electrification (2024). https://doi.org/10.1109/TTE.2024.3399051.
[36] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9 (1998) 112–

147.
[37] Y. Zhou, M. Huang, Y. Chen, Y. Tao, J. Power Sources 321 (2016) 1–10.
[38] X. Sui, S. He, S.B. Vilsen, J. Meng, R. Teodorescu, D.I. Stroe, Appl. Energy 300

(2021) 117346.
[39] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

[40] R. Shi, X. Xu, J. Li, Y. Li, Appl. Soft Comput. 109 (2021) 107538.
[41] C. Chang, Q. Wang, J. Jiang, T. Wu, J. Energy Storage 38 (2021) 102570.
[42] H. Alibrahim, S.A. Ludwig, Hyperparameter optimization: Comparing genetic

algorithm against grid search and bayesian optimization, 2021 IEEE Congress
on Evolutionary Computation (CEC), 2021.

[43] X. Huang, J. Meng, W. Liu, F. Ru, C. Duan, X. Xu, D.I. Stroe, R. Teodorescu, IEEE
Trans. Ind. Electron. 71 (2024) 484–492.

[44] Q. Li, D. Yi, G. Dang, H. Zhao, T. Lu, Q. Wang, C. Lai, J. Xie, World Electr. Veh. J. 14
(2023) 321.

[45] M. Hahn, S. Schindler, L.C. Triebs, M.A. Danzer, Batteries 5 (2019) 43.
[46] T.K. Pradyumna, K. Cho, M. Kim, W. Choi, J. Power Electron. 22 (2022) 850–858.

http://refhub.elsevier.com/S2095-4956(24)00656-9/h0030
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0030
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0035
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0035
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0040
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0040
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0045
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0045
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0050
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0055
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0060
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0065
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0070
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0070
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0075
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0075
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0080
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0080
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0085
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0085
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0090
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0095
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0100
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0100
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0105
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0105
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0110
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0110
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0115
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0120
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0125
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0130
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0130
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0130
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0130
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0135
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0140
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0145
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0145
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0150
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0155
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0155
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0160
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0165
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0165
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0170
https://doi.org/10.1109/TTE.2024.3399051
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0180
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0180
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0185
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0190
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0190
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0195
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0195
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0195
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0195
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0200
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0205
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0210
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0210
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0210
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0210
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0215
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0215
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0220
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0220
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0225
http://refhub.elsevier.com/S2095-4956(24)00656-9/h0230

	Feature selection strategy optimization for lithium-ion battery state �of health estimation under impedance uncertainties
	1 Introduction
	1.1 Literature review
	1.2 Research gaps and contributions

	2 Electrochemical impedance spectroscopy
	2.1 Impedance dependencies analysis
	2.2 Impedance uncertainties analysis

	3 Proposed SOH estimation method
	3.1 Impedance data optimization
	3.1.1 Impedance validity analysis
	3.1.2 Correlation analysis

	3.2 SOH estimation
	3.2.1 XGBoost algorithm
	3.2.2 Proposed GA-XGBoost method

	3.3 Performance metrics

	4 Results and discussions
	4.1 Impedance validity and correlation analysis
	4.2 Estimation model verification

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


