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ABSTRACT

The precise segmentation of cortical and trabecular bone
compartments in high-resolution micro-computed
tomography (µCT) scans is crucial for evaluating bone
structure and understanding how different medical
treatments and mechanical loadings affect bone morphology,
offering valuable insights into osteoporosis. In this work, we
propose a novel hybrid neural network architecture named
Dual-Branch Attention-based Hybrid Network (DBAHNet)
for 3D µCT segmentation. DBAHNet combines both trans-
formers and convolution neural networks in a dual-branch
fashion and fuses their respective information at each
hierarchical level, to better capture long-range dependencies
and local features, and for a better understanding of the
contextual representation. We train and evaluate DBAHNet
on three datasets of high-resolution (<5µm) µCT scans of
mouse tibiae. The results show that the proposed DBAHNet
achieves state-of-the-art performance by surpassing several
popular architectures. Our model also achieves a precise
segmentation of the cortical and trabecular bone
compartments along different regions of the bone,
demonstrating a comprehensive understanding of the bone.
Models and code are available at GitHub.

Index Terms— High-Resolution, Micro-Computed
Tomography (µCT), 3D Segmentation, Hybrid Network,
Attention Mechanism

1. INTRODUCTION

Osteoporosis represents a significant healthcare challenge,
arising from an imbalance in the natural processes of bone
remodeling, where bone resorption surpasses bone
formation. Imaging techniques measure a variety of bone
characteristics, and tracking them over time helps
researchers understand disease progression and the efficacy

of drug treatments.
Manual segmentation of high-resolution µCT bone scans

is labor-intensive, often requiring several hours for a single
scan due to image size and precision demands, especially in
the metaphysis or when delineating regions with increased
bone porosity or treatment-induced variations.

Recently, deep learning has revolutionized medical
segmentation extending across various imaging modalities.
This success is largely attributed to the use of architectures
based on Convolutional Neural Networks (CNNs), such as
U-Net [1], that excel at capturing local features and
dependencies between pixels.

The attention mechanism is also widely used for medical
image segmentation, particularly due to its ability to filter the
feature maps. For instance, the Squeeze-and-Excitation
block was introduced in [2], which emphasized relevant
channels in feature maps by investigating their
inter-dependencies channel-wise, while ignoring irrelevant
ones. Similarly, SA-UNet [3] used a spatial attention that
filters the spatial context of relevant features in the
three-dimensional space. Alternatively, [4] presented the
attention gates that filter the feature maps generated in the
encoder and transmitted through skip connections to the
decoder.

Furthermore, transformers are increasingly popular for
use in computer vision tasks, due to their ability to
understand long-range dependencies within a 3D scan. The
Vision Transformer (ViT) was introduced in [5], marking the
first fully transformer-based architecture to achieve
state-of-the-art performance. To improve efficiency, Swin
Transformers [6] employ shifted windows for enhanced
global attention by applying self-attention to
non-overlapping windows and enabling cross-window
connections in subsequent layers.

There is growing interest in hybrid architectures that
combine transformers and CNNs, such as UNETR [7] and
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SwinUNETR [8]. The hybrid architectures excel at capturing
both global and local context within a 3D scan, providing a
more comprehensive data representation. Similarly,
TransUNet [9] integrated transformers into the bottleneck of
a U-Net architecture, focusing on capturing the long-range
dependencies of high-level features.

Despite the effective application of hybrid networks in
various studies for medical imaging segmentation,
challenges persist when dealing with high-resolution µCT
scans characterized by detailed anatomical structures. In
such scenarios, the delineation of classes is complicated due
to the complex topological features, further increased by the
substantial computational resources required to process the
large scan sizes.

In this paper, we propose a novel architecture called
Dual-Branch Attention-based Hybrid Network (DBAHNet)
for high-resolution 3D µCT scan segmentation, which
consists of an hybrid combination of transformers and
CNNs, fusing both their respective feature maps in each
hierarchical layer, and integrating channel and spatial
attention within the convolution blocks. Our contributions
can be summarized as follows: (1) We employ a dual-branch
setup in the encoder and decoder, integrating convolutional
and transformer architectures for local and global context,
which is further enhanced with channel-wise attention in the
encoder and spatial-wise attention in the decoder. (2) We
combine both branches feature maps using a feature fusion
module (TCFFM) that merges and encodes their information,
before setting them to the next hierarchical level. (3)
State-of-the-art results on high-resolution (<5µm) 3D µCT
bone scans of mouse tibia segmentation dataset, along with
publicly available implementation source code via GitHub.

2. PROPOSED APPROACH

2.1. Overall architecture

Our proposed architecture Dual-Branch Attention-based
Hybrid Network (DBAHNet, see Fig . 1) features a
dual-branch hybrid design that incorporates both CNNs and
transformers in both the encoder and decoder pathways.

Initially, a Patch Embedding block project the 3D scan
into an embedding space C = 96, using successive
convolutions and resulting in a lower-dimensional patch
embedding (C, H

4 × W
4 × D

4 ), where H, W, and D are the
height, width and depth of the input 3D scan. This
embedding serve as the input in parallel to the transformer
and convolutions branches consisting of three hierarchical
levels. Each level comprises of two sequential Swin
transformer blocks in the transformer branch, and a Channel
Attention-based Convolution Module (CACM, see Fig. 2.a)
in the convolution branch. The output of each level in both
branches are fused and further encoded with the
Transformer-Convolution Feature Fusion Module (TCFFM,

Bottleneck

TCFF Attention Gates

SACMTransformer Block    CACM

Encoder Decoder

Patch
Embedding

Patch
Expanding

Fig. 1. Global Architecture of the Dual-Branch Attention-
based Hybrid Network (DBAHNet)

see Fig. 2.c), where down-sampling is performed for
subsequent use in the next layer.

The resulting feature maps from the encoder of size
(8C, H

32 × W
32 × D

32 ) are sufficiently down-scaled and are
forwarded to the bottleneck. The bottleneck performs global
attention and aggregate information from the entire encoded
feature maps for the decoder.

Similarly, the decoder is symmetrically mirroring the
encoder, with the Spatial Attention-based Convolution
Module (SACM, see Fig. 2.b) instead of the CACM, which
enhances the relevant spatial features. The feature maps from
both branches are fused and encoded using the TCFFM
module, which performs up-sampling in the decoder to
restore the original volume size. Along the decoder, feature
maps from all the layers are filtered using attention gates and
the residual skip connections from the encoder. Finally, the
feature maps are further decoded with the Patch Expanding
block to reconstruct the segmentation masks. In the
following sections, each component of the DBAHNet will be
described in details.

2.2. Transformer block

We utilize 3D-adapted SWIN Transformers for feature map
processing at multiple scales, which aims to capture global
long-range dependencies within the volume. Each
transformer block consists of two transformers. The first
transformer is the Local Volume Multi-Head Self-Attention
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Fig. 2. a) CACM: Channel Attention-based Convolution
Module, b) SACM: Spatial Attention-based Convolution
Module, and c) TCFFM: Transformer-Convolution Feature
Fusion Module.

block (LV-MHSA) that employs regular volume partitioning.
The second transformer is a Shifted version of LV-MHSA,
denoted as SLV-MHSA, which uses shifted partitioning for
enhanced layer-to-layer connectivity. The Transformer block
for a layer l can be expressed as

x̂l = LV-MHSA(LN(xl−1)) + xl−1

xl = MLP(LN(x̂l)) + x̂l

x̂l+1 = SLV-MHSA(LN(xl)) + xl

xl+1 = MLP(LN(x̂l+1)) + x̂l+1

(1)

Where LN stands for Layer Normalization, and MLP stands
for a GeLU-activated Multi Layer Perceptron.

The self-attention is computed as follows

Attention(Q,K, V ) = Softmax(
QKT

√
K

)V (2)

Where Q, K, and V represent queries, keys, and values
respectively, and K represents the dimension of the key and
query.

2.3. Channel Attention-based Convolution Module

In the encoder, we employ a Channel Attention-based
Convolution Module (CACM, see Fig. 2.a) that enhances
cross-channel interaction. We first apply global average
pooling, followed by two GeLU-activated 3D convolutions
to create an attention map. This map modulates the initial

feature map through element-wise multiplication. A final 3D
convolution further encodes the output for use in subsequent
layers.

2.4. Spatial Attention-based Convolution Module

In the decoder, we employ the Spatial Attention-based
Convolution Module (SACM, see Fig. 2.b) for focused
reconstruction of the segmentation mask, enhancing the
salient features and aiding in the preservation of detailed
structures. We first apply max-pooling and average-pooling,
concatenate the results, and use a 1 × 1 × 1 convolution to
create an attention map. The input feature map is modulated
by the attention map, and further processed by a final 3D
convolution.

2.5. Transformer Convolution Feature Fusion Module

In the Transformer Convolution Feature Fusion Module
(TCFFM, see Fig. 2.c), the feature maps obtained from both
the transformer and convolution branches, denoted as xTr
and xC, are fused at each hierarchical level. Initially, a
channel-wise average pooling is applied to xTr and xC to
extract a representative value for each channel of the feature
maps followed by a sigmoid function, generating an
attention mask that filters the channels. Subsequently, the
results are concatenated and encoded through a 3D
convolution layer. The resulting feature maps are then either
down-sampled in the encoder, or up-sampled in the decoder.

2.6. Bottleneck

Having reduced the dimensionality of the resulting feature
maps with the encoder, we employ a series of four Global 3D
transformer blocks in the bottleneck. Global 3D transformer
blocks perform global attention over all the downsampled
feature maps. They excel at aggregating information from
the entire feature map, which allows an understanding of the
global context and offers a comprehensive representation to
the decoder.

3. EXPERIMENTS AND RESULTS

Table 1. Performance comparison of the proposed method on
the tibia µCT test dataset (C : Cortical, T: Trabecular).

Methods Dice score HD95 (mm)
Avg C T

3D-UNet 0.901 0.905 0.896 0.412
Att-UNet 0.951 0.963 0.938 0.193
UNETR 0.966 0.983 0.949 0.113

Swin-UNet 0.973 0.990 0.957 0.050
DBAHNet 0.984 0.991 0.977 0.019
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Table 2. Performance evaluation of the proposed method at different bone regions: Middle (50%), Proximal-75% (75%), and
Proximal-85% (85%).

Methods Avg DSC DSC Cortical DSC Trabecular
50% 75% 85% 50% 75% 85% 50% 75% 85%

3D-UNet 0.909 0.901 0.882 0.923 0.889 0.885 0.896 0.914 0.878
Attention 3D-UNet 0.958 0.966 0.914 0.977 0.969 0.932 0.939 0.965 0.895

UNETR 0.971 0.973 0.953 0.989 0.985 0.980 0.953 0.962 0.926
Swin-UNet 0.976 0.975 0.972 0.993 0.990 0.990 0.958 0.960 0.953

DBAHNet (Ours) 0.986 0.983 0.983 0.993 0.990 0.992 0.979 0.977 0.974

3.1. Dataset

The 3D µCT tibia dataset is based on three separate studies
[10, 11, 12]. All samples feature tibiae obtained from
C57BL/6 virgin female mice. For the scope of this research,
we focused solely on the 74 control tibiae that were not
subjected to any treatments in the referenced medical
experiments. High-resolution µCT scans of these tibiae were
performed using the SkyScan 1172 (SkyScan, Kontich, Bel-
gium) with a resolution of 4.8 µm - 5 µm. These scans were
manually segmented following standard guidelines [13].

3.2. Implementation Details

All training and experiments were conducted with 4
NVIDIA V100 32GB GPUs. We employed the Stochastic
Gradient Descent (SGD) optimizer with a momentum of
0.99, a batch size of 2, and a cosine annealing learning rate
scheduler starting at 10−4. The input scans are randomly
cropped into (320, 320, 32) subvolumes and subjected to
data augmentation, including flipping on all axes, random
contrast adjustments, noise removal, and normalization. We
evaluated the performances of our model using Sørensen-
Dice score coefficient (DSC) and the 95th percentile of the
Hausdorff distance (HD95). We used a Dice Cross Entropy
loss function for the training.

Fig. 3. Segmentation results at different bone regions.
Middle-50% at the top, Proximal-75% at the middle, and
Proximal-85% at the bottom.

3.3. Quantitative and qualitatives results

The model achieved state-of-the-art performances with an
average DSC of 98.40%, a DSC of 99.12% for the cortical
bone and a DSC of 97.68% for the trabecular bone prior to
any post-processing. To further analyse the model’s capabil-
ity, we investigate the performance of the model in different
bone regions within all the test dataset. Our model achieves
an average DSC of 99.30 % on the Middle-50% region, an
average DSC of 98.33% on the Proximal-75% region, and an
average DSC of 98.28% on the Proximal-85% region.

We trained several popular architectures on our dataset
and showed that our method surpasses CNNs and
Transformer-based architectures, including 3D-UNet,
Attention 3D-UNet, UNETR, and Swin-UNet. We surpass
the state-of-the-art models on both cortical and trabecular
compartment, as presented in Table 1. We also obtained an
increase of the performance of the model over multiple
regions of the bone (see Table. 2), proving the global under-
standing of the high-resolution 3D scan. We showcased the
robustness of our model with a qualitative visualization of
the µCT tibia segmentation results in Fig. 3, at different bone
regions (Middle (50%), Proximal-75% and Proximal-85%).

4. CONCLUSION AND FUTURE WORK

We proposed a novel architecture, DBAHNet, which merges
convolution and transformer outputs throughout all stages,
harnessing their respective strengths in capturing short-range
and long-range dependencies, for a robust contextual
representation. The integrated channel and spatial attention
mechanisms refine the model’s performance by emphasizing
relevant features. Our model demonstrated its proficiency by
setting state-of-the-art results on 3D high resolution µCT
tibia scans.

In future work, we intend to assess the architecture’s
robustness in segmenting tibiae subjected to varying medical
treatments. Our goal is to develop a versatile model applica-
ble to diverse studies for bone structure and morphology
analysis. Additionally, we aim to evaluate DBAHNet’s
adaptability across different medical imaging modalities, to
build a robust architecture for general purposes.

Authorized licensed use limited to: University of Queensland. Downloaded on October 30,2024 at 23:10:03 UTC from IEEE Xplore.  Restrictions apply. 



Acknowledgments

Mr Lagzouli acknowledges the support of a PhD scholarship
from Queensland University of Technology. Profs Pivonka
and Cooper gratefully acknowledge funding support from
the Canadian New Frontiers in Research Fund Exploration
(NFRFE). Prof. Pivonka also acknowledges funding support
from the Australian Research Council (IC190100020,
DP230101404).

Compliance with Ethical Standards

This research study was conducted retrospectively using
animal data collected by the University of Bristol, Bristol,
UK. All procedures complied with the UK Animals
(Scientific Procedures) Act 1986 and were reviewed and
passed by the ethics committee of The Royal Veterinary
College (London, UK).

5. REFERENCES

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical im-
age segmentation,” in Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp.
234–241.

[2] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-
excitation networks,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2018, pp. 7132–7141.

[3] Changlu Guo, Márton Szemenyei, Yugen Yi, Wenle
Wang, Buer Chen, and Changqi Fan, “Sa-unet: Spa-
tial attention u-net for retinal vessel segmentation,” in
2020 25th international conference on pattern recogni-
tion (ICPR). IEEE, 2021, pp. 1236–1242.

[4] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew
Lee, Mattias Heinrich, Kazunari Misawa, Kensaku
Mori, Steven McDonagh, Nils Y Hammerla, Bernhard
Kainz, et al., “Attention u-net: Learning where to look
for the pancreas,” arXiv preprint arXiv:1804.03999,
2018.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al., “An image is
worth 16x16 words: Transformers for image recog-
nition at scale,” arXiv preprint arXiv:2010.11929,
2020.

[6] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan
Wei, Zheng Zhang, Stephen Lin, and Baining Guo,
“Swin transformer: Hierarchical vision transformer us-
ing shifted windows,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp.
10012–10022.

[7] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong
Yang, Andriy Myronenko, Bennett Landman, Holger R
Roth, and Daguang Xu, “Unetr: Transformers for 3d
medical image segmentation,” in Proceedings of the
IEEE/CVF winter conference on applications of com-
puter vision, 2022, pp. 574–584.

[8] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong
Yang, Holger R Roth, and Daguang Xu, “Swin unetr:
Swin transformers for semantic segmentation of brain
tumors in mri images,” in International MICCAI Brain-
lesion Workshop. Springer, 2021, pp. 272–284.

[9] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo,
Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille, and
Yuyin Zhou, “Transunet: Transformers make strong en-
coders for medical image segmentation,” arXiv preprint
arXiv:2102.04306, 2021.

[10] Toshihiro Sugiyama, Leanne K Saxon, Gul Zaman, Alaa
Moustafa, Andrew Sunters, Joanna S Price, and Lance E
Lanyon, “Mechanical loading enhances the anabolic ef-
fects of intermittent parathyroid hormone (1–34) on tra-
becular and cortical bone in mice,” Bone, vol. 43, no. 2,
pp. 238–248, 2008.

[11] Toshihiro Sugiyama, Lee B Meakin, Gabriel L Galea,
Brendan F Jackson, Lance E Lanyon, Frank H Ebetino,
R Graham G Russell, and Joanna S Price, “Risedronate
does not reduce mechanical loading-related increases in
cortical and trabecular bone mass in mice,” Bone, vol.
49, no. 1, pp. 133–139, 2011.

[12] Toshihiro Sugiyama, Lee B Meakin, William J Browne,
Gabriel L Galea, Joanna S Price, and Lance E Lanyon,
“Bones’ adaptive response to mechanical loading is es-
sentially linear between the low strains associated with
disuse and the high strains associated with the lamel-
lar/woven bone transition,” Journal of bone and mineral
research, vol. 27, no. 8, pp. 1784–1793, 2012.

[13] Mary L Bouxsein, Stephen K Boyd, Blaine A Chris-
tiansen, Robert E Guldberg, Karl J Jepsen, and Ralph
Müller, “Guidelines for assessment of bone microstruc-
ture in rodents using micro–computed tomography,”
Journal of bone and mineral research, vol. 25, no. 7,
pp. 1468–1486, 2010.

Authorized licensed use limited to: University of Queensland. Downloaded on October 30,2024 at 23:10:03 UTC from IEEE Xplore.  Restrictions apply. 


