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The study of the deformation between two bodies in contact upon application of force can 
reveal  relevant  information  about  the  mechanical  properties  of  the  two objects  and  their 
composition.  This  problem,  first  considered  by Heinrich  Hertz  for  two contacting  sphere 
(Hertz,  1882) and  (Hertz,  1881) ,  is  at  the  base  of  mechanical  tests  employing  suitable 
indenters,  including  those  being  performed  by  atomic  force  microscopy  (AFM)  and 
commercial nanoindenters. To simplify the problem, one of the bodies can be considered as a 
rigid nondeformable probe and the other as an infinite half space, the sample, of which we 
want to study the elastic properties. The underlying formalism to determine the pressure upon 
a  given  deformation  was  generalized  by  Boussinesq,  from  which  it  takes  its  name:  the 
Boussinesq’s problem  (Boussinesq, 1885; Love, 1929). The scientific field that studies the 
properties  of  materials  through  the  force-deformation  interaction  between  two  bodies  in 
contact, is commonly called Contact Mechanics (Johnson, 1985).
In  the  simple  configuration,  relevant  to  mechanical  measurements  exploiting  AFM  or 
nanoindenters, the approaching probe will apply a pressure on the sample and, due to the 
repulsion of atoms, which is basically a consequence of the Pauli exclusion principle, will 
cause its deformation. The ratio between the applied force and the deformation, or the applied 
stress and the resulting strain, is a quantitative description of the mechanical properties of the 
sample. Traditionally, theoretical models from contact mechanics are used to fit experimental 
data and obtain the mechanical properties of materials at macroscopic or mesoscopic scales.

Nowadays, the development of advanced techniques to manipulate rigid probes of nanoscale 
dimensions, such as AFM, nanoindenters and optical and magnetic tweezers, opened a new 
door for mechanics of cells and tissues, from the macroscale to the micro and nanoscale. 
Indeed, while traditionally models of contact mechanics were principally used to describe the 
macroscopic  mechanical  properties  of  materials  in  mechanical  engineering  and  material 
sciences, now contact mechanics has been rediscovered as a powerful tool to investigate the 
local, nanoscale mechanical properties of soft living materials like cells and tissues, making 
contact  mechanics  well  known  also  in  the  field  of  biophysics  and  mechanobiology  )
(Radmacher et al., 1992).

In this chapter, we will describe the most relevant contact models to analyse AFM force-
deformation measurements to determine the mechanics of soft  matter,  including cells  and 
tissues.  We will  illustrate  different  contact  elastic  and viscoelastic  models,  specifying the 
most common tip geometries and sample configurations. We will provide a brief introduction 
to the theoretical tools required to obtain the described models but leave the full development 
by referring to the original texts.

1.1 Elasticity and AFM force-deformation measurements

Contact  mechanics  involves  the  determination  of  the  pressure-deformation  relationship 
between two bodies in contact. In conventional AFM measurements, an external force (F) is 
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exerted  by  the  rigid  probe  in  contact  with  the  sample  and  a  resulting  deformation  or  
indentation (δ) is induced due to the pressure on the sample's surface.
A typical AFM measurement, therefore, is represented by a force-distance curve, where the 
distance is the z position of the probe relative to the sample, as shown in Figure 1-1.
When the probe is far away from the sample the cantilever deflection, and thus the force, is  
zero. After the point of contact between probe and sample, the pressure of the probe starts to 
deform a soft sample and the force increases with the sample indentation. 
The contact region starts from the point of contact between the probe and the sample and ends 
in the point of maximum force and maximum indentation of the sample.
The precise determination of the Contact Point allows the conversion of the force-distance 
curve  in  a  force-indentation  curve  that  can  be  fitted  with  the  expressions  from Contact 
Mechanics models F(δ).
A typical force-curve on a rigid material will be linear, where deflection and distance will be 
identical. On a soft sample, like for example a cell or a biological tissue, the slope will be  
smaller than 1 and often nonlinear, depending on the probe geometry as a consequence of 
increasing contact area between the probe and the sample surface. 
Moreover, in biological samples and soft materials in general, we can have energy dissipation 
or viscous effects,  which will  result  in a difference,  often termed hysteresis,  between the 
approach and the retract curve.
In soft  materials adhesion between the probe and the sample is  often present,  which will 
become visible as negative forces during retract. 

Determining an analytical (or numerical) relation of the local stress and strain distribution in 
the contact region, is the common route to derive a relation between the experimentally 
accessible force-indentation, allowing to deduce the materials` properties. This interplay 
between theoretical derivations and experimental data is the essence of contact mechanics.
The elasticity of a material is its tendency to resist deformation when subjected to an external 
force combined with its  ability to return to its  original  size and shape when the force is 
removed. This property of the material can be described by the Young’s modulus (E), which 
is related the shear modulus (G) and the bulk modulus (K), defined as the ratio between the 

Figure 1-1: Schematic typical AFM measurement (Force-distance curve) on a soft material, for example a cell. 
In blue the Approach curve and in black the Retract. In green is shown the contact region, starting from the 
contact point between the probe and the soft sample and delimited by the point of maximum force and maximum 
indentation. The black and orange dashed lines show the typical difference in slope for a rigid surface (orange) 
and a soft surface (black). In violet the adhesion effect on the retract curve, in grey the hysteresis in the curve 
due to dissipation of energy.
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stress (𝜎) and the strain (𝜀) in uniaxial compression: 𝜎 = 𝐸𝜀, as already explained in detail in 
Chapter 2.1. A material is defined as elastic when its response to the application of an external 
force,  in  terms  of  deformation  and  recovery,  is  instantaneous  and  there  is  no  energy 
dissipated. In the general theory of elasticity, the sample is solid and regarded as a continuous 
material. Therefore, when the body is not deformed, it is in thermal equilibrium. During the 
deformation  of  the  body,  there  is  a  change  in  the  shape  of  the  boundary  surface,  the 
arrangement  of  the  components  of  the  solid  is  modified,  and  internal  small  forces  are 
generated because the system tends to return to the state of equilibrium. These local forces are 
due to the repulsion of the molecules and components within the body and are termed internal  
stresses.  The  total  force  applied  on  the  body is  identical  to  the  continuous  sum,  i.e.  the 
integral, over-all internal stresses developed inside the body upon deformation.

1.2 Contact elastic models

In this section we describe some of the most common contact elastic models according to the 
geometry of the contact. In the context of AFM, contact models have been developed for 
those geometries,  which correspond to commercially  available  probes.  All  models  in  this 
section assume that a nondeformable probe of known geometry indents an infinite purely 
elastic, isotropic, linear half space of known Young´s modulus E and Poisson's ratio 𝜈. The Poisson’s ratio is the amount of transversal elongation divided by the amount of axial compression. When  studying  cells  and  tissues,  the  sample  is  often  assumed  to  be 
incompressible (which is a good approximation for most elastomers and gels, as well as for 
cells and tissues), which leads to 𝜈 = 0.5.
1.2.1 The Hertz Model

The application of mechanics to contact problems first began with Heinrich Hertz in 1881, 
who, in his pioneering paper entitled “On the contact of elastic bodies”, solved the problem of  
the elastic contact between two spheres (two lenses) (Hertz, 1881) (Hertz, 1882) . This model 
can  be  extended  to  a  sphere  in  contact  with  an  infinite  half  space,  which  is  a  common 
configuration of AFM measurements.

Hertz’s approach was based on the following assumptions, which define Hertzian contact:

1) The surfaces are frictionless and perfectly smooth.
2) The surfaces are continuous.
3) The  probe  and  the  sample  are  isotropic,  axisymmetric  and  show  a  linear  elastic 

response.
4) The strains are very small in comparison with any relevant dimension of the body
5) The bodies are considered as infinite half-spaces.
6) The surfaces do not show adhesion

The assumption 1) allows us to state that only a normal pressure acts between the parts in 
contact.  When  the  assumption  2)  is  held,  the  area  of  contact  is  much  smaller  than  the 
characteristic dimensions of the contacting bodies, i.e. the area of contact between the two 
bodies is close to zero, which implies that the pressures are finite. Indeed, even if the forces 
due to the repulsion of the atoms of the two bodies in contact become very large locally, the  
integral of these forces through an infinitely small area is always finite. According to the 
assumption 3), since the two surfaces are isotropic and axisymmetric, their common normal is 
parallel to the direction of the pressure that each body exerts on the other. Thus, the surface of  
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contact, and also the surface of pressure, is lying on the tangent plane xy of the two surfaces 
and the normal is parallel to the z direction. In this condition the distance of any point of 
either surface from the common tangent plane is in the neighbourhood of the point of contact 
and can be described by a homogeneous quadratic function of x and y. This last assumption is  
important,  since  a  sphere  can  only  be  described  as  a  paraboloid  of  revolution  for  small 
deformations relative to the radius of curvature. Assumption 4) allows us to apply the linear 
theory of  elasticity.  Indeed,  when the strains1 are  smaller  than the body dimensions in  a 
continuum body, the displacement gradient is smaller than 1 and the strain tensor can be 
linearized accordingly to the infinitesimal strain theory  (Slaughter, 2002); if the strains are 
instead comparable to the body dimensions, the finite strain theory or the plasticity theory 
should be used .Assumption 5) assures that the influence of the boundaries of the two bodies 
can be ignored. Finally, assumption 6) states that the contact is adhesionless, which allows to 
exclude other forces than the elastic ones are present inside or outside the contact area.
The analysis presented further is based on the approach used by Dimitriadis and Chadwick 
following Landau and Lifshitz (Dimitriadis et al., 2002; Landau and Lifshitz, 1986), as it will 
become useful later on. In analogy to AFM measurements, a spherical probe of radius  R is 
assumed to apply a total force F in the z direction to a half-space, making contact at z = 0, as 

shown in Figure 1-2. The force is distributed over the contact circle of radius a centred at r = 
0 (Figure 1-2), where  r is the in-plane radial distance in the  z plane. The axial deformation 
field  uz can be obtained by integrating the product of the displacement profile for a point 
concentrated  force,  i.e.  the  Green’s  function  G,  and  the  pressure  distribution  Pz  over  the 
contact area A:

uz (r , z )=∬
A

❑

P z (r s)G (s )dA, (1.1)
where the Green's function is given by:

G (s )=−1+ν
2 πEs ( z2s2+2 (1−ν )) (1.2)

The distribution of pressure applied by the sphere was obtained by Hertz as

Pz (r s )=p0√a2−r s
2 (1.3)

1 The strain in general is a tensor and it is defined as the change in an element of length when the body is 
deformed, that is the gradient of the displacement vector ∇u. The displacement u of a point in a body due to the 

deformation is the distance between the coordinate of the point before and after the deformation: u = xi
'−xi , 

more details are described in (L.D. Landau and E;M. Lifshitz, 1986))

Figure 1-2 Schematic parabolic probe indenting an elastic infinite half space.
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where  s=|r|=(r2+r s2−2 r rscos ϕ+ z2)1/ 2is  the  distance  between the  source  (r s ,0 ,0 ) and  the 

observation point  (r ,ϕ , z );  being  𝜙 the azimuthal angle of the cylindrical coordinates, and 

p0=
2E
πR

1

(1−ν 2)
.

If the deformation field in Eq. 1.1 is assumed to conform with a paraboloid of revolution

uz=δ− 1
2R

r 2 (1.4)
the contact radius depends only on the indentation of the sample (δ) and on the radius of 
curvature of the probe and can be written in terms of the applied force and the mechanical 
parameters of the half-space,

a2=δR=(3 (1−ν2)
4 E

FR)
2/3

(1.5)
Eq.  1.5  can  be  rearranged  in  terms  of  the  normal  applied  force  as  a  function  of  the 
deformation or indentation F(δ).

F=4
3

E

1−ν2
√Rδ

3
2 (1.6)

Thus, according to the Hertz model, the relation between force and indentation depends only 
on the intrinsic properties of the material, the compressibility expressed by the Poisson’s ratio  
ν and the elasticity expressed by the Young’s modulus E, and on the radius of curvature R.
The Hertz model can also be used, and was originally developed, to describe the contact 
between two elastic spheres (with respective radii  R1 and  R2, Poisson’s ratio  ν1  and  ν2 and 
Young’s moduli E1 and E2) compressed by a force F resulting in a contact area of radius a, as 
shown in  Figure 1-2 In that case, an effective Young's modulus  Eeff takes into account the 
elastic properties of both the bodies and can be defined as:

1
E eff

=
1−ν1

2

E1
+
1−ν2

2

E2
(1.7)

The effective radius Reff is defined as:

1
R eff

= 1
R1

+ 1
R 2

(1.8)
Assuming that one of the two bodies has infinite curvature radius R2→∞, the problem of the 
two spheres reduces to the problem of a half infinite elastic space, as shown in Figure 1-3, and 
the only geometrical variable becomes the radius  R of the spherical probe. Moreover, if we 
consider the probe as infinitely rigid, E1 >> E2, so E1→∞, the solution will depend only on 
the Poisson’s ratio and the Young’s modulus of the half infinite space.
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Figure 1-3 Schematic drawing of the Hertz contact problem: the general case of two spheres in contact and the  
particular case of a rigid spherical probe indenting an infinite half-space.

The Hertz model is largely used to measure mechanical properties of materials, but to obtain 
reliable values of elasticity is important to carefully evaluate if the assumptions described 
above are valid. The distribution of stresses transmitted inside the deformed material depends 
on the area of contact between the rigid probe and the sample. Indeed, the normal force is the 
result of the local pressure distributed over the area of contact, which changes during the 
penetration of the probe inside the sample. For that reason, the expression of the function F(δ) 
depends strictly on the geometry of the problem, in particular on the shape of the probe.  It is 
important  to  note  that  the  derivation  of  the  Hertz  model  assumes  that  the  indenter  is  a  
paraboloid of revolution. Thus, its application to spheres and similar geometries is limited in 
principle to small indentations compared to the radius of curvature.

Since the publication of the Hertz solution for the spherical probe contact problem, several 
models have been formulated to obtain a force-indentation relation for probes of different 
geometries. Boussinesq derived a solution of the problem corresponding to the case a solid of 
revolution indenting a half space, whose axis was normal to the original boundary of the 
space (Boussinesq, 1885). Thanks to the Boussinesq solution, it was possible to derivate later 
the model for a flat-ended cylindrical probe (Love, 1929) and a conical probe (Love, 1939). 
Sneddon in 1965 formulated a general solution for a probe of arbitrary profile, from which he 
derived,  as  particular  cases,  other  geometries,  including  a  sphere  not  approximated  by  a 
paraboloid of revolution (Sneddon, 1965), which presents the advantage of not being limited 
by the constraint  << R. 

Sneddon derived the general integrals required to calculate the indentation and the applied 
force as a function of the shape profile function of the punch, as well as the corresponding 
pressure distributions for different geometries.

 For most of them, he showed that the force-indentation relationship can be generally written 
as

F=C Eeff δ
m (1.9)

where F is the normal applied force, C reflects the indenter geometry constants, Eeff  refers to 
the effective modulus of the body, δ is the indentation and m is an exponent that depends on 
how the area of contact changes during the indentation of the probe, in turn depending on the 
shape profile function of the indenter. In the following, we provide a list of solutions for 
different geometries derived by Sneddon, together with more recent contact problem solutions 
for geometries closer to the actual shapes of available AFM probes used in experiments. A 
review of the different models is provided in Table 1.
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1.2.2 Paraboloid of revolution

As solved by Hertz, the solution for a paraboloid of revolution of curvature 1/2R is

F=
4
3

E

(1−ν2)
√Rδ

3
2 (1.10)

This is the well-known Hertz model derived above (Eq. (1.6). The contact radius is a=√Rδ , 
and the force-contact radius relation is

F=4
3

E

(1−ν2)R
a3 (1.11)

1.2.3 Flat ended cylinder

The expression for a flat ended cylinder of radius a is

F=2a E

1−ν2
δ (1.12)

Notice that, unlike the model for the paraboloid of revolution (Eq. 1.14), the relationship is 
linear,  as  the  area  of  contact  does  not  change  with  indentation  (the  contact  radius  a  is 
constant). Cylindrical punches are thus ideal to probe the nonlinearity of the sample.

1.2.4 Sphere

Sneddon provided the exact solution for a spherical probe of radius R in terms of the radius of 
contact a (which is now different from √Rδ)

F=
E s

2(1−νs
2) [ (a2+R

2 ) ln ( R+a
R−a )−2Ra] (1.13)

after correction for a typographical error (Heuberger et al., 1996). Where the indentation is a 
function of the radius of contact

δ=1
2
a ln( R+a

R−a ) (1.14)
The advantage of this solution compared with the Hertz model is that it is valid for any 
applied indentation, provided a ≤ R. The disadvantage is that it requires numerical 
computations (Chyasnavichyus et al., 2016) or polynomial approximations (Kontomaris and 
Malamou, 2021a). The polynomial corrections for the case of large indentations, typically up 
to δ=R obtained by Kontomaris et al. (Kontomaris and Malamou, 2021a, 2021b) and by 
(Müller et al., 2019) are the following:
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ΩKontomaris=c1+∑
k=2

6
3
2k

ck γ
k−3/2 (1.15)

With coefficients:
c1=1.0100000c2=−0.0730300c3=−0.1357000c4=0.0359800c5=−0.0040240c6=0.0001653
and 

ΩMü ller=1−
1
10

γ− 1
840

γ2− 1
15120

γ 3+ 1357
6652800

γ 4 (1.16)

where γ=δ /R is the ratio between the indentation and the radius of the probe and Ω (γ) is the 
polynomial correction factor that can be multiplied for the Hertz equation (eq.  (1.6) in the 
case of large indentation in the following form:

F=FHertzΩ (γ(δ , R)) (1.17)

Even if the formulation of the two correction factors is different (the Müller correction is a 
fourth-order power law expansion, while the Kontomaris correction is not, indeed the second 
term is of power 1/2), the two corrections are equivalent, compared with the Sneddon 
formula.
As expected, the spherical solution by Sneddon approximates the Hertz model for small 
indentations (δ<<R). The general solution for an ellipsoid of revolution was also derived in 
the Sneddon work (see above, Section 1.2.3).

1.2.5 Other geometries

Sneddon provided the general exact solution for a punch with a shape profile described by a 
polynomial  z=∑cnrn. For more complex geometries, approximations are often necessary.  A 
general development that leads to some of the solutions derived by the Sneddon approach was 
proposed for Barber and Billings to derive the approximate solution for a punch of arbitrary 
shape and they applied it to an n-sided regular pyramid with semi-included angle θ (Barber 
and Billings, 1990). This powerful approach is briefly described in the following and has been 
recently used to derive more complex problems that will be listed later.
The pressure distribution P (r ) for a probe of projected area  A can be obtained knowing the 
expression  of  the  work  Fδ for  a  flat  cylinder  probe,  using  the  Betti-Rayleigh  reciprocal 
theorem  (Betti,  1872;  Rayleigh,  1873),  which  relates  the  two  properties  (Gavara  and 
Chadwick, 2012).
Betti’s  reciprocal  theorem states  that,  for  a  linear  elastic  material,  for  two  displacement 
systems at points A and B due to two respective forces F and F

¿, the work done by F applied 
in A through the relative deformation produced by F

¿ in A is equal to the work done by F
¿ 

applied in B through the relative deformation produced by the F in B:

FA d A
¿ =FB

¿
dB (1.18)
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In general, we can write the relative deformation as the integral over all strains of all elements  

of the total surface d = ∫
S

❑

uidS and the total force as F=∫
S

❑

T i dS, thus 

∫
S

❑

T iu
¿
idS=∫

S

❑

T ¿
iuidS (1.19)

Where S is the surface of the projected area of the indenting punch, T i and T
¿
i are the normal 

internal stresses due to respectively the forces F and F
¿, while ui and u

¿
i are the corresponding 

displacements.

In our AFM problem, the force is applied just in the z direction and the area corresponds to 
the projected area of a probe of arbitrary shape.

Accordingly, a probe of flat-ended cylindrical shape can be considered in the point A (left 
part of the eq.  (1.19) and an arbitrary probe shape in the point B (right part of the eq.  (1.19), 
of which we want to obtain the force-indentation expression.

The force F and the corresponding displacements ui are valid only for a frictionless contact, 
since we consider only the component of the stress tensor normal to the surface. The surface 
displacements ui can be described by the shape profile function of the probe f(x,y) or f(r,𝜙), 
while the stress T

¿
 is the pressure distribution P*(r,𝜙). The displacement ui

¿
 corresponding to 

the force  F applied by a flat-ended cylindrical probe is well known and given by the eq. 
 (1.12),  and  corresponds  to  the  uniform deformation,  thus  to  the  uniform indentation  δ * 

induced by F, the force applied by the probe, and since it is a constant, it can be taken outside 
of the integral (left-hand side of eq. 1.17). Thus, the integral of the internal stresses over the 

surface is by definition the total force F=∫
S

❑

T i dS. This leads to the following form of the total 

force

F=∫
A

❑

P¿ (r ,ϕ ) f
(r ,ϕ )
δ ¿ rdrd ϕ (1.20)

The analytical form of P*(r,) is only known for an elliptical contact area and is given by

P¿ (r ,ϕ )= E

π (1−ν
2)

δ
¿

√a2−r 2
(1.21)

Thus, the pressure distribution can be approximated by that of a flat cylindrical punch with an 
area corresponding to the best ellipse approximation to the actual contact area. The radius of 
contact is then determined by imposing that the derivative of the force over the contact radius 

is  maximal (
∂F
∂a

=0)  (Shield,  1967).  More refined approaches for  the flat  punch pressure 

distribution are available in the literature (Barber and Billings, 1990; Fabrikant, 1986).

This approach is thus a valid approximation for an indenter of arbitrary shape, provided the 
shape  profile  function  is  known.  For  example,  in  the  case  of  a  conical  probe,  the 
corresponding displacement under the punch is  u=δ−r cot θ, where  r is the radial distance 
from the vertex. At this point the eq.  (1.20) can be written as:
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F=2 E

1−ν2
∫
0

a
δ−rcotθ

√a2−r 2
rdr=2 E

1−ν2 (δa− π
4
a2cotθ) (1.22)

By imposing 
∂F
∂a

=0, we find the radius of contact a=2 tan θ
π

δ , and eq.  (1.22) can be written 

as

F=2 tanθ
π

E

1−ν2
δ 2 (1.23)

In the case of a cone, the solution is exact as the best ellipse approximation for the flat punch 
is actually a circle of radius a.

1.2.6 Cone

The solution for a conical probe of semi-included angle θ, often called the Sneddon model, as 
obtained in the previous section, is

F=2 tanθ
π

E

1−ν2
δ 2 (1.24)

It is important to note that here the semi-included angle θ is defined from the vertical axis (z) 
to the face of the cone and not from the plane tangent to the face, as some other works do 2. In 

this case, the contact radius is given by a=2 tan θ
π

δ .

1.2.7 n-sided regular pyramid

The approach described above has been used originally by Barbers and Billing to provide a 
solution for a regular n-sided pyramid of semi-included angle θ. The general solution is:

F≈
2 tanθ

n sin
π
n

E

1−ν 2
δ 2

(1.25)
For n⟶∞, we recover the solution for a cone.  For the common 4-sided pyramidal tip 
often used in AFM the expression is:

F≈
tanθ

√2
E

1−ν 2
δ 2 (1.26)

This result is within 6% of the numerical solution provided by Bilodeau  (Bilodeau, 1992). 

The contact radius is given by a=δ tanθ

√2 .

2 We opted for using semi-included angle, instead of semi-open, as it is more explicit the definition we use here.
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1.2.8 Blunted cone and pyramid

While the above equations are satisfactory and provide good approximations to several tip 
shapes and experimental conditions, the ideal geometry of a cone or a pyramid is often not 
found in experimental  AFM probes.  In  particular,  for  small  indentations of  some tens of 
nanometers,  the  ideally  sharp  apex  appears  blunted.  For  this  reason,  solutions  for  more 
realistic probe shape profiles have been proposed. We here provide the general solution for an 

n-sided regular pyramid described above but with a blunt tip of radius  Rc at the apex. The 
solution was found following the above described method using Betti’s reciprocal theorem 
and the Rayleigh-Ritz approximation, which is shown in table 1 (Rico et al., 2005). As shown 
above for the case of a sharp indenter, for n⟶∞ we recover the solution for a blunted cone, 
which was proposed before by Briscoe and co-workers (Briscoe et al., 1994). It is interesting 
to comment on the original definition of the cap width, which considered the case of a sphere 
that emerged tangential with the pyramid faces. The original work defined this parameter as 
b=R c cosθ. Nevertheless,  to solve the problem, the actual integration was performed for a 
paraboloid of radius Rc. This introduced a slight discontinuity in the numerical solutions for 

the contact radius. To avoid this discontinuity, the cap width is better defined by b=
R c

tanθ
, i.e. 

by assuming a paraboloid, and not a sphere, emerging tangential with the pyramidal faces, as 
shown in figure Figure 1-5. This new definition does not invalidate the original approximation 
but makes the solution self-consistent.
The emergence of  new tip  geometries  becoming commercially  available,  such as  blunted 
cylinders or hemispheres, makes the use of these approximate methods proposed above more 
and  more  useful.  Moreover,  the  complexity  of  biological  samples,  requires  often  further 
corrections. In some cases, the Hertzian requirements are not fulfilled on some systems or are 

Figure 1-4 Force-indentation relations for different probe geometries: a cylindrical indenter (Sneddon model), a 
paraboloidal indenter (Hertz model), a conical indenter (Sneddon model) and a pyramidal indenter (Bilodeau 
model). The parameters used for the figures are: E = 1000 Pa, ν = 0.5, R = 700 nm, a = 500 nm, θ = 45.
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too  restrictive  to  describe  the  complex  materials  like,  among  others,  biological  samples. 
Several additional theoretical approaches have been formulated to overcome the limitations of 
Hertzian mechanics in describing more realistic systems and the most relevant to describe 
biological samples are summarise in the following paragraphs.

Table 1 Principal force-indentation equations for different probe geometries

Probe geometry Force-indentation function, F(δ) Reference
Limits of 
validity

Paraboloid of 
curvature 1/2R
(radius R)

F=4 √R
3

E

(1−ν2)
δ
3
2

(Hertz, 1881)
 << R

Sphere
of radius R and 
radius of contact 
a

F={ E s

2(1−νs
2) [ (a2+R2 ) ln ( R+a

R−a )−2 Ra]
δ=1
2
a ln ( R+a

R−a )
(Sneddon, 1965) 

a ≤ R

Flat-ended 
cylinder of radius 
a

F=2a E

1−ν2
δ

(Love, 1929; Rico et 
al., 2007; Sneddon, 

1965)
 << a

Cone of semi-
included angle θ

F=2 tanθ
π

E

1−ν2
δ 2 (Love, 1939; Sneddon, 

1965)

 << 
tanθ

Blunted n-sided
pyramidal probe3

F={ 4 √R
3

E

(1−ν2)
δ
3
2 a<b
sphericalcap

f (n ,δ ,a , b ) E

(1−ν2)

a>b
nsided regular

pyramid
For n = 4

F= tanθ

√2sin( πn )
E

1−ν2
δ 2

(Rico et al., 2005)

h
¿< <<1

F sc
'=F p

'

when
a=b

Needle F={ F sphere (δ ) δ ≤ δc
F sphere (δ c )+Fcylinder (δ−δ c ) δ>δ c

(Garcia and Garcia, 
2018a)  

 << R
 << a

Nanowire F={ F cone (δ )δ ≤ δ c

F cone (δ c )+F cylinder (δ−δc ) δ>δ c

(Garcia and Garcia, 
2018a) 

 << 
tanθ
 << a

3 The  function 

f (n ,δ ,a ,b )=2(δa−
n
π
sin(πn ) a2

2 tan θ ( π2 — arcsin
b
a )− a3

3 R
+(a2−b

2)
1
2 ( nπ sin (πn ) b

2 tan θ
+

+a2−b2

3R ))
,  b=R c cosθ for  an  emerging sphere  or  b=

R c

tanθ
 for  an  emerging paraboloid,  h¿= b2

2R c

,  the  condition 

F sc
' (a=b )=F p

'
 is valid when there is a smooth transition between spherical cap and pyramidal tip shape.
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Sphere
of radius R and 
radius of contact 
a
suitable also for 
large 
deformations

F=FHertzΩ (γ (δ , R ))with
ΩKontomaris=c1+∑

k=2

6
3
2k

ck γ
k−3
2or

ΩMü ller=1−
1
10

γ− 1
840

γ2− 1
15120

γ 3+ 1357
6652800

γ 4

(Kontomaris and 
Malamou, 2021a, 

2021b; Müller et al., 
2019)

also for
 > R

1.3 Models considering finite sample thickness (bottom effect)

One of  the  Hertzian model's  assumptions,  as  previously  explained,  is  the  infinite  sample 
thickness, assumption number 5) in the previous section. In the case of biological samples, 
such  as  a  thin  lipid  layers  or  cells,  this  assumption  not  always  holds.  Indeed,  often  in 
experimental conditions, cells featuring thin sections are grown on rigid substrates. In this 
case, when the indentation δ cannot be considered as much smaller than the sample thickness 
h, the stress distribution is influenced by the presence of a stiffer substrate below the sample4. 
To correct for this bottom effect, advanced force-indentation relationships for different tip 
geometries and sample configurations have been proposed.

1.3.1  Bottom effect correction for a paraboloid

A solution for this problem was proposed by Dimitriadis et al.  (Dimitriadis et al., 2002) in 
2002 for the case of a spherical probe or, more formally, of a paraboloid of revolution. Before 
Dimitriadis' model, other solutions for the bottom effect correction were formulated by Popov 
(Popov and Heß, 2013), Tu and Gazis (Tu and Gazis, 1964), Dhaliwal and Rau (Dhaliwal and 
Rau, 1970), Chen and Engel (Chen and Engel, 1972) and Aleksandrov (Aleksandrov, 1968), 
(Aleksandrov, 1969), but these calculations required extensive numerical computations and 
the Aleksandrov analytic solution is not valid for incompressible materials with Poissson’s 
ratio ν = 0.5. Thus, it is not suitable for biological samples which contain a large amount of 
water. Indeed, the difficulty of formulating a convenient approach for routine use to correct 
the bottom effect is due to the intrinsic nonlinearity of the problem whereby the applied total  
force in the  z direction depends on the distribution of pressure,  thus on the contact  area. 
Dimitriadis et al. solved this issue dividing the problem of integral equations into a hierarchy 
of simplified subproblems, simpler integral equations that can be solved analytically, using 
the method of images.
In Dimitriadis’ work two different cases are studied:

 the sample is not bonded to the supporting substrate
 the sample is bonded to the supporting substrate

In the first case the authors used the method of images to construct an approximate solution,  
while in the second case they first derived the Green’s function and then used it to compute an 
explicit expression of the force versus indentation relationship following the same procedure 
as in the first case.
The method of images is based on the idea that any solution of an integral equation that 
satisfies the appropriate boundary conditions, like the eq   (1.4), is the unique solution. The 
interface between the sample and the rigid substrate is considered as a singularity where the 
solution of the problem is unknown.
The authors assume a sample of thickness h extending in the x-y plane supported on a rigid 
substrate located at z=−h. The force application is the same as in the Hertz model described 
4 As a rule of thumb, to ignore the contribution of the hard substrate, the δ<0.2h (Dimitriadis et al., 2002).
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before,  but  it  is  assumed that  the  rigid  boundary  modifies  the  pressure  distribution.  The 
authors combine multiple images of the probe that apply normal forces on planes located at 
distances corresponding to multiples of  2h from the surface of force application. Thus, an 
infinite  number  of  images  emerges,  each  representing  an  infinite  half-space  with  known 
solution. This procedure is carried out on an infinite sequence of images.
As  in  the  Hertz  model,  s is  the  distance  between  the  source  and  the  observation  point, 
s=|r|=r2+r s

2−2 r rs cosϕ. For a general image at  z=2nh ,n=0 ,1, 2,…, the Green's function 
from eq  (1.2) becomes here:

Gn (s )=¿¿, (1.27)
The total Green’s function of all the images is then:

Gtot (s ) = ∑
n=0 ,±1 ,±2 ,…

Gn (s) (1.28)
If we assume that the sample is not bonded to the supporting substrate, the surface in contact 
with the rigid substrate is free to slide horizontally, i.e. there is no friction and no adhesive 
contact between sample and support.
The region of interest of the original problem is only the probe contact region at the surface of  
the sample, accordingly we can assume that s≤ h, especially if the thickness of the sample is 
larger than the radius of the probe, and that the strain is small. The strain is defined as the 
ratio between deformation and the original height or thickness of the body in the direction 

parallel to the applied force. Thus, in our case we can define the parameter  ε=δ
h

, which is 

small and can be regarded as a strain. At this point, we can expand the Green’s function in a 
Taylor series in terms of ε :

Gtot (s )=G∞ (s ) (1+εα (s )+ε3 β (s ) +ε5 γ (s )+…) (1.29)
, where G∞ (s )=( (1−ν2)

πE )(1s ) is the Green’s function for the surface indentation of an infinite 

half-space and the higher order terms correct for the bottom effect. The coefficients of this  
series depend on the Poisson’s Ratio νaswell:

α (s )=α 0 (ν ) s
δ
, β (s )=β0 (ν )( sδ )

3

, γ (s )=γ 0 (ν ) ( sδ )
5

,… (1.30)
The expressions of the coefficients α 0 (ν ) , β0 (ν )and γ 0 (ν ) can be found in the original work by 
Dimitriadis et al. (Dimitriadis et al., 2002). 
Since  the  probe  is  spherical  and  we  assume  negligible  long-range  interactions,  the 
displacement field will follow the shape of the probe and eq.  (1.4) becomes:

δ− r 2

2 R
=∬

A

❑

P (rs )Gtot (s )dA (1.31)
where the Green’s function Gtot (s ) is given by eq. (1.29) The contact area and accordingly the 
contact radius are assumed to be independent of h, because the radius of the probe is smaller 
than the sample thickness.  Thus, the presence of the rigid substrate modifies the pressure 
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profile  without  affecting  the  contact  area.  It  is  then  reasonable  that  the  pressure  profile 
depends on the small parameter εand expand it in Taylor series as before for Gtot:

P (r s)=P∞ (rs ) (1+εα (s )+ε3 β (s ) +ε5 γ (s )+… ) (1.32)
Through  the  substitution  of  eq.   =   (1.28)  in  eq.  ,  (1.27)  we  obtain  a  series  of  integral 
equations  of  different  order  for  P∞ , P1 , P2 , P3 etc.  Each  order  problem  can  be  solved 
separately. The first order problem solution is exactly the Hertz model of a rigid spherical 
probe indenting an infinite half-space (eq.   (1.10)). Calculating the solutions of the integral 
equations until fourth order the expression of the force in a function for the indentation of a  
spherical probe indenting an infinite half-space multiplied with a series of terms correcting for 
the finite thickness or bottom effect:

F=4 √R
3

E

(1−ν2)
δ
3
2 [1− 2α 0π χ+

4 α0
2

π 2
χ2− 8

π 3 (α 03+ 4 π
2

15
β0) χ3+16π 4 (α 04+ 3π 25 β0α 0) χ 4](1.33)

where χ= a
h

=√Rδ /h.

Eq.   (1.33) is  the  finite  thickness  solution  for  a  parabolic  probe  (which  also  closely 
approximates a spherical probe) valid whether the sample is bonded to the substrate or not.  
The difference between the two cases consists in the parameters  α 0 and  β0, which depend 
differently on the Poisson’s ratio ν in these two cases. 
Noticeably, the bottom effect correction does not depend trivially on the ratio of the vertical 
lengths δ and h, but rather on the ratio of the horizontal dimension of the contact, the contact  
radius a, to the sample height h. The correction therefore considers the propagation of the 
strain and stress fields into the bulk volume of the sample, not only their vertical extension. 
Therefore, we must expect stronger finite-thickness effects for large spherical-parabolic probe 
with respect to sharp ones.
For most biological samples, we can assume ν=0.5. In this case the equations for bonded and 
not bonded samples become:

Sample not bonded:

F=16√R E
9

δ
3
2 [1+0.884 χ+0.781 χ 2+0.386 χ3+0.0048 χ 4 ] , (1.34)

Sample bonded:
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F=16√R E
9

δ
3
2 [1+1.133 χ+1.283 χ2+0.769 χ3+0.0975 χ4 ] . (1.35)

The curves corresponding to these bottom-corrected equations are shown in figure Figure 1-6 
and  compared  with  the  Hertz  model.When  comparing these  two  equations,  the  apparent 
stiffness of the sample is larger for the bonded case, which coincides with intuition since the  
sample is not allowed to slide laterally. 
For the intermediate case, in which only some parts of the sample are bonded, we can replace 
eq.  (1.34) and eq.  (1.35) with a similar equation in which the numerical coefficients are the 
average of the corresponding coefficients in the two cases; this can be appropriate for cells, 
which adhere locally to a substrate through dynamically forming focal adhesion complexes 
(Gavara and Chadwick, 2012). 
Clearly, for any given tip radius, there is a limited range of thickness and indentation for 
which eq.1.30 and eq.1.31 are valid. In order to respect the assumption of linear elasticity of  
the material, the maximum total strain should never exceed 10%, or δ ≤0.1h. We can consider 
that the bottom effect correction is required if the first term of the series adds at least to 10% 
of the force. For the bonded case, this means that 1.133 χ ≥0.1 with χ=√Rδ/h, which implies 
h≤12.83 R. Thus, for sample thickness with h>13 R the infinite half-space assumption can be 
considered a good approximation.
At the same time, to use safely this model,  h cannot be much smaller than  R. Indeed, the 
parameter χ of this series has to be small enough. If χ is too large, the series expansion may 
lose accuracy and could diverge. The series converges if χ ≤1, which implies h≥0.1R.
The previous formulation assumes Hertzian contact area (a=√Rδ), which is not necessarily 

given. Imposing that the contact area at each indentation point follows 
∂F (δ , a )

∂a
=0, Garcia 

and  Garcia  (Garcia  and  Garcia,  2018a) found  that  the  equivalent  of  eq. 

F=16√R E
9

δ
3
2 [1+0.884 χ+0.781 χ 2+0.386 χ3+0.0048 χ 4 ] , (1.34) for  a  bonded  sample 

presents slightly different correction terms:

F=16√R E
9

δ
3
2 [1+1.133 χ+1.497 χ2+1.469 χ3+0.755 χ 4 ] . (1.36)

Figure 1-6 Force-indentation curve of Bottom effect model in the case of sample bonded and unbonded in 
comparison with the Hertz model for a parabolic intender with curvature radius R = 1μm, sample thickness h = 5 
μm and Young’s Modulus E = 1kPa.
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which imposes a stronger correction.

If the sample is very thin, h≤0.1R, these models do not describe the physics of the problem, 
and the following formulas obtained in Chadwick et al. (Chadwick, 2002) should be used.

Sample not bonded:

F=(2π3 )E√Rδ 3 χ (1.37)
Sample bonded:

F=(2π3 )E√Rδ 3 χ3 (1.38)
In conclusion, the bottom effect correction is necessary to avoid an overestimation of the 
Young’s  Modulus  when  the  sample  thickness  is  not  infinite.  If  the  sample  is  too  thin 
compared to the radius, approximately h ≤ 13R (Dimitriadis et al., 2002), the rigid substrate 
blocks the propagation of the stress field induced by the tip in the sample. This phenomenon 
affects the distribution of the pressure and decreases the deformation of the sample, with a  
consequent increase of the apparent Young’s Modulus E.
It should also be noted that the bottom effect correction allows to consider in the analysis also  
those thinner regions of the sample (like the peripheral extensions and lamellipodia in the 
cells) where usually the estimation of the Young’s modulus is poorly accurate.
Besides  the  vertical  spatial  constraint  represented  by  the  substrate  supporting  the  system 
under study, it can be assumed that also lateral confinement and boundaries produce similar 
effects, for which analytical corrections are not available but only FEM simulations (Garcia 
and  Garcia,  2018,  supplement  material).  This  can  be  relevant,  for  example,  for  the 
nanomechanical  characterisation  of  cells  in  a  confluent  layer,  where  strong  cell-cell 
interactions determine lateral boundaries, which can interfere with the strain field induced by 
the indenter, especially when large spherical probes are used. 

1.3.2  Bottom effect correction for other geometries

In case of other tip geometries, like conical and pyramidal, the pressure distribution P (r ) for 
the  bottom  effect  correction  can  be  approximated,  as  explained  before,  knowing  the 
expression of the work Fδ for a flat cylinder probe and using Betti's reciprocal theorem and 
then the Rayleigh-Ritz approximation. Then, the pressure distribution can be computed using 
the integral equation:

δ=∬
A

❑

P (r )Gtot (s )dA (1.39)
Using the Green’s function described above for finally finding the force as a function of the  

contact radius. Finally, the contact radius can be found by imposing again 
∂F
∂a

=0. The full 

development to correct the bottom effect of a bonded sample of finite thickness for a conical 
probe  was  formulated  in  the  work  of  Gavara  and  Chadwick  (Gavara,  2016).  However, 
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according  to  later  works  the  solution  provided  was  not  convergent,  probably  due  to  a 
typographical error (Garcia and Garcia, 2018a; Managuli and Roy, 2018). Following the same 
approach, slightly different factors were found, which lead to a convergent series of the force 
F (more details in the supplementary materials of Garcia and Garcia, 2018). We provide here 
the solution reported by Garcia and Garcia.

F=8 tan θ
3 π

E δ 2[1+0.721 tan θ δ
h

+0.650 tan2θ( δh )
2

+0.491 tan3θ( δh )
3

++0.225 tan 4θ( δh )
4

+O (( δh )
5)](1.40)

Following the same approach, Garcia and Garcia also reported the solutions for a paraboloid, 
extending  the  solution  for  the  case  of  non  Hertzian  contact  radius,  and  for  a  flat-ended 
cylinder of radius a. Interestingly, for a flat ended cylinder, the force-indentation relationship 
remains  linear  for  finite  sample  thicknesses.  The  principal  force-indentation  solutions  for 
bottom effect correction for different geometrical probe models are shown in Table 2. Other 
solutions for the indentation of different probe geometries indenting thin samples, with their 
own limitations, can be found in the literature (Akhremitchev and Walker, 1999; Long et al., 
2011; Yang, 1998).
Recent developments have established the use of soft substrates for cell culture. In that case, a  
bottom  effect  correction  may  be  needed  to  prevent  underestimation  of  cell  mechanics.  
Solutions have been provided for the case of two layered elastic substrates, which might be 
important for accurate estimation of the Young’s modulus of living cells growing on soft 
hydrogels (Doss et al., 2019). In the case of a thin sample with Young’s Modulus E1, placed 
on a softer substrate with Young’s Modulus E2, where E1>E2, the force-indentation relation is 
described by the following equation, obtained by Doss et al.:

F=
16√R E1
9

δ
3
2 ( 0.85 χ+3.36 χ2+1

(0.85 χ+3.36 χ2)( E1E2 )
0.72−0.34 χ+0.51 χ2

+1 ) (1.41)
Recently, Rheinlaender et al. proposed a model for the indentation of a living cell on a soft 
substrate.  The  model  assumes  a  uniform  deformation  of  the  cell  contact  area  and  was 
validated for the case of large spherical tips, which causes not only an indentation of the cell  
but also a coupled indentation of the soft substrate (R >>hcell) (Rheinlaender et al., 2020).

Table 25 Principal force-indentation equations for the bottom effect corrected models for 
different probe geometries

Probe 
geometry

Force-indentation function, F(δ) Reference Limits 
of 

validity
Paraboloid 
of curvature 
1/2R

F=16√R E
9

δ
3
2 [1+0.884 χ+0.781 χ 2+0.386 χ3+0.0048 χ 4 ]

(Dimitriadis 
et al., 2002)

χ=√Rδ
/h << 1

5 The difference of the needle and nanowire models between Table 1 and Table 2 is that in Table 1 F sphere, 

F cylinder and F cone are not bottom effect corrected, while in Table 2 they are corrected for the bottom effect 
thanks to the multiplication with the Taylor series coefficient. Moreover, we added to this table two models for a 
paraboloidal probe by Dimitriadis et al and Garcia et al. because both are valid models, but they present some 
differences: the Gracia et al model is valid when the paraboloid is closer to a sphere and the force values are 
higher vs time than Dimitriadis et al model, if the same parameters are used, this is very well explained in the 
supplementary materials of Garcia and Garcia, 2018.
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(radius R)
 Sample not 
bonded
Paraboloid 
of curvature 
1/2R
(radius R)
 Sample 
bonded

F=16√R E
9

δ
3
2 [1+1.133 χ+1.283 χ2+0.769 χ3+0.0975 χ4 ]

(Dimitriadis 
et al., 2002)

χ=√Rδ
/h << 1

Cone of 
semi-
included 
angle θ or 
pyramid

F=8 tan θ E
3π

δ 2[1+0.721 tan θ χ+0.650 tan2θ χ2+0.491 tan3θ χ 3++0.225 tan4θ χ4+O ( χ 5) ]

(Garcia and 
Garcia, 
2018a; 

Gavara and 
Chadwick, 

2012)

χ=¿
¿δ /h 
<< 1

Sphere
(Paraboloid 
very close to 
a Sphere of 
radius R)

F=16√R E
9

δ
3
2 [1+1.133 χ+1.497 χ2+1.469 χ3+0.755 χ 4 ]

(Garcia and 
Garcia, 
2018a)

χ=¿ √Rδ
h
≪1

δ<< R

Flat-ended 
cylinder of 
radius a

F=8aE
3

δ [1+1.133 χ+1.283 χ2+0.598 χ 3+0.291 χ 4 ]
(Garcia and 

Garcia, 
2018a)

χ= a
h
≪1

Needle F={ F sphere (δ ) δ ≤ δc
F sphere (δ c )+Fcylinder (δ−δ c ) δ>δ c

(Garcia and 
Garcia, 
2018a)

√Rδ
h
≪1

a
h
≪1

δ<< R

Nanowire F={ F cone (δ )δ ≤ δ c

F cone (δ c )+F cylinder (δ−δc ) δ>δ c

(Garcia and 
Garcia, 
2018a)

a
h
≪1

δ /h << 
1

Paraboloid 
of curvature 
1/2R
(radius R)
Layered soft 
elastic 
substrate 

F=
16√R E1
9

δ
3
2 ( 0.85 χ+3.36 χ2+1

(0.85 χ+3.36 χ2)( E1E2 )
0.72−0.34 χ+0.51 χ2

+1 ) (Doss et al., 
2019)

χ=√Rδ
/h << 1
E1>E2

1.4 Viscoelastic models

Living cells have a viscous, liquid-like component, and an elastic, solid-like component, both 
coupled and arising from the complex filament network of the cytoskeleton within the cytosol 
(Fabry et al., 2001; Rigato et al., 2017). Thus, cells are viscoelastic, and such are many other 
systems that can be studied by AFM or other indenters. When a force is applied on a purely 
elastic  material,  there  is  not  dissipation  of  energy  and  the  response  to  the  force  is 
instantaneous.  On the contrary,  when the sample is  viscoelastic,  there is  a loss of energy 
inside  the  material  and  the  response  of  the  sample  to  the  external  stimulus  is  delayed. 
Therefore, viscoelasticity is a time-dependent anelastic behaviour of materials.
The viscoelastic response of complex systems such as cells or tissues, formed of different 
types of polymers, often occurs over a wide range of time scales and comprises a continuum 
of relaxation times. Dissipative stresses inside the material can be due to the structure and 
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mechanical properties of the polymeric network, but may also be an effect of the flow of  
liquid through the porous matrix (Moeendarbary et al., 2013; Kalcioglu et al., 2012).

Unlike purely elastic materials that recover their shape after the applied load is removed and 
unlike purely viscous materials that remain in the deformed state after the applied load is  
removed,  viscoelastic  materials  present  a  superposition  of  these  two  properties.  Such  a 
behaviour  may  be  linear  (stress  and  strain  are  proportional)  or  nonlinear.  We  will  only 
consider the linear viscoelastic regime. Viscoelasticity is observed as a combination of both 
recoverable  elastic  and permanent  viscous  deformation.  Nearly  all  biopolymers  solutions, 
cells and biological tissues, exhibit viscoelasticity.

So far, we have been focusing on the approach curve to fit the contact elastic models. This  
may be partially due to a historical choice motivated by the fact that the retraction curve often 
features adhesion events that may affect the fitting procedure and the final results (Radmacher 
et al., 1996). In addition to the presence of adhesive features, as observed in fig. Figure 1-1, 
the approach and retract curve may not coincide, being the force in the retract trace typically 
lower.  Excluding the  presence  of  plastic  deformations,  which  is  reasonable  for  relatively 
small indentations, this reflects some kind of dissipation during the whole cycle, likely due to 
the viscoelastic nature of cells. Indeed, the opening of the approaching-retracting force curve 
loop typically increases as the ramping frequency increases. Different types of approaches can 
be applied to determine the dynamic response of materials. Mainly, oscillatory experiments 
(an oscillatory strain or stress is applied and the resulting stress or strain, respectively, is 
measured)  at  constant  frequency  or  sweeping  through  a  frequency  range,  and  creep 
experiments (a stress is applied and kept constant, while strain over time is measured) or 
relaxation experiments (a strain is applied and kept constant, while the stress over time is 
measured) (Alcaraz et al., 2003; Mahaffy et al., 2000). In this section, we will focus on recent 
solutions describing the shape of  force-distance curves on a  viscoelastic  material.  Recent 
AFM applications  of  theoretical  developments  have  led  to  a  set  of  equations  that  allow 
complete fit of the loading and unloading force curves (or approach and retract) taking into 
account a viscoelastic response of the sample.

There are various approaches to determine the viscoelastic force-indentation relationship of a 
viscoelastic sample, some using numerical integration and others analytical approximations, 
all based on the seminal works by Lee and Radock, Graham and Ting (Brückner et al., 2017; 
D. Garcia et al., 2020; Efremov et al., 2017, 2020; Graham, 1965; Lee and Radok, 1960; Ting, 
1966).  We will  follow here  the  approach recently  reported by Brückner  and co-workers,  
which provides an analytical solution assuming constant indentation velocity and power law 
rheology. The general approach requires solving two problems, one for the loading part and 
one for the unloading. Brückner and co-workers assume a linear indentation ramp that leads to 
a  maximum in the contact  radius  upon loading,  and then decreases  upon unloading.  The 
solution uses equivalent elastic contact mechanics with the elastic modulus being a function 
of  the loading history.  Thus,  it  requires  the definition of  the viscoelastic  response of  the 
sample.  As  shown before  for  a  number  of  cell  types  and  tissues,  using  AFM and  other 
techniques, the viscoelasticity of living cells and extracellular matrices is well described by a 
power law relaxation function, E (t )=E0Ψ ( t )=E0 (t / t0)-β, both at low and at high frequencies 
(Balland et al., 2006; Fabry et al., 2001; Jorba et al., 2017; Rigato et al., 2017). Thus, we will 
limit our description to the solution of a material exhibiting such a power law response. While 
solutions have been proposed for other viscoelastic relaxation functions Ψ ( t ), such as standard 
linear solid or Kelvin-Voigt models, their application to living cells is limited (Garcia, 2020; 
Garcia and Garcia, 2018; Greenwood et al., 1966).
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All proposed approaches depart from the definition of time dependent force (F(t)) that, in 
turns, depend on the time-dependent Young’s modulus (E(t))

F (t )=~C−1∫
0

t

E (t−τ ) ∂δ (t )n

∂ τ
dτ (1.42)

where  E (t )=E0ψ ( t−τ ),  with  ψ being  the  relaxation  function  describing  the  viscoelastic 
response of the material,  δ is the indentation and the pre-factor  ~C  and the exponent  n are 
constants that depend on the tip geometry as defined below, actually they are given by the 
force and indentation in the equivalent contact elastic model (e.g. n=2 for a cone, n=3/2 for a 
paraboloid of revolution).

To determine the prefactor ~C  and the indentation, Brückner et al. (Brückner et al., 2017), the 
authors use the approach by Popov for an arbitrary axisymmetric punch of profile  f(r), that 
relates the indentation up to a time t=tm (time of maximum contact radius a(tm)=amax) with the 
time depending contact radius (Popov, 2010)

δ ( t )=a (t ) ∫
0

a (t )
f ' (r )dr

√a2 (t )−r2
(1.43)

This assumes a monotonically increasing contact radius, which is achieved for the case of a 
linear indentation ramp δ ( t )=v0 t . Then, the force is given by

F (t )=2 E0∫
0

t

ψ (t− τ ) ∂
∂ τ (∫

0

a ( τ )
f ' (r )r2dr

√a2 ( τ )−r
2 )dτ (1.44)

The indentation profiles for a cone, a paraboloid and a flat cylinder have been defined above.
For a cone

δ ( t )=( π2 )a ( t )cot α ,~Cc=
π (1−ν2)
2 tan α

∧n=2 (1.45)
for a paraboloid of revolution

δ ( t )=(a2 (t )
R ),~C p=

3 (1−ν
2 )

4√R
,∧n=3

2
, (1.46)

and for  a  flat-ended cylinder of  radius  acpthe indentation does not  depend on the contact 

radius and therefore we can simply use 
~C cp=

1−ν2

2acp

.

In principle, the loading trace can be generalized for a non-axisymmetric punch by defining 
the  appropriate  punch  profile  depending  also  on  the  azimuthal  angle  f(r)  and  using  the 
Rayleigh-Ritz  approximation  of  the  contact  area  (see  above).  Although  not  rigorously 
developed, the symmetry of the problem suggests a possible approximation using such an 
approach. Indeed, in the work of Brückner and co-workers, the authors assumed that for a 
regular 4-sided pyramid, the final solution will be the same as for a cone, but with a different  
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geometrical pre-factor  δ ( t )=√2a ( t )cot α,  and  C=1.342 1−ν2

tan α
 obtained from the numerical 

solution by Bilodeau, or  ~C pyr=
√2 (1−ν2)
tan α

from the analytical approximation by Barber and 

Billings (Barber and Billings, 1990; Bilodeau, 1992). 
As mentioned before, the relaxation function is assumed to follow a power law response with 

ψ ( t )=( tt0 )
−β

, i.e. E(t)=E0( tt0 )
−β

. Thus, from eq. 1.41, for the loading or approach trace6 for a 

cone, they obtain

Fa (t )=
v0
2

~Cc

∫
0

t

E0( t−τ
t0 )

−β

τdτ=2
v0
2

~Cc

E0
t0

β

(2−3β+β2)
t2−β=2

v0
2

~C c

E0
t 0

β Γ [2 ] Γ [1−β ]
Γ [3−β ]

t2−β=2
E ( t )

~Cc (2−3 β+β2)
δ 2 (t )(1.47)

For a paraboloid

Fa (t )=
v0

3
2

~
C p

∫
0

t

E0( t− τ
t0 )

−β

τ1/2dτ=
v0

3
2

~
C p

E0
t0

β3√π Γ (1−β )

4 Γ (52−β )
t
3
2

−β

=
3 E (t ) √π Γ (1−β )
~
C p4 Γ (52−β)

δ 3/2 (t )

(1.48)
And for a flat-ended cylinder

Fa (t )=
v0
~C cp

∫
0

t

E0 ( t−τ
t0 )

−β

dτ=
v0
~C cp

E0
t0

β

(1−β )
t1−β=

E ( t )
~Ccp (1−β )

δ ( t ) (1.49)
Calculation of the unloading trace requires knowledge of the time t1 < tm at which a(t)=a(t1) 
for  t >  tm. Again, assuming unloading with a linear indentation ramp at the same rate than 
during loading, going from tm until δ(t)=0. Thus, the indentation follows δ ( t )=v0 (2 tm−t ) and 
the contact radius decreases monotonically for t>tm from the maximum at t=tm. 
With the condition to find t1(t) being

∫
t1 (t )

t

ψ (t−τ ) ∂δ (t )
∂ τ

d τ=0 (1.50)
And substituting the form of δ ( t ) and solving Ψ ( t )=( tt0 )

- β

 leads to 

6 In the loading or approach trace equations the expression 
Γ [2 ]Γ [1−β ]
Γ [3−β ] =1/(2−3 β+β

2), the same also for 

the unloading or retract trace equations.
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t1 (t )=t−2
1
1−β ( t−tm) (1.51)

A relevant assumption of this approach is that the contact area increases monotonically with 
time, which is important for using Lee and Radok’s viscoelastic correspondence principle 
(Lee and Radok, 1960). Thus, as developed by Ting, the retract trace is derived from the 
approach elastic solution with increasing contact area eq 1.44, but with the integration going 
from 0 to t1(t). Thus, for a cone, we obtain

Fr (t )=2
v0
2E0 t0

β

~
C c(2−3 β+β

2)
(2[t (2−β )+2

1
1−β (1−β ) ( t−tm) ] ( t−tm)1−β−t2−β)(1.52)

For a paraboloid, the retract expression would involve ordinary hypergeometric functions (
F12

❑ )

Fr (t )=
3v 0

3
2 E0 t0

β

~C p (3+4 ( β−2 ) β )
t1

−1/2( t−t1)1−β ( (2 β−1 ) t1−t+ F12
❑ (1 , 1

2
−β ,

1
2
,
t1
t

)) (1.53)
And for a flat-ended cylinder

Fr (t )=
v0
~C cp

E0
t0

β

(1−β ) ( t1−β−2 ( t−tm)1−β) (1.54)
As noticed by Ting, the contact radius is given by the indenter shape during loading, but it  
also depends on the material properties during unloading.

The loading and unloading trace equations for the viscoelastic model obtained by Brückner et 
al. are recapitulated in Table 3. In principle, the above approach should be also valid for the  
case  of  different  loading  and  unloading  velocities.  As  mentioned  before,  the  developed 
models assume a linear indentation ramp. This is an important assumption. This condition was 
verified by the authors in AFM measurements on cells, concluding that it will be valid when  
applying a linear piezo ramp using relatively stiff cantilevers to indent a soft sample. More  
practically, the assumption is valid if the deflection of the cantilever is negligible compared to 
the applied indentation. If the linear indentation rate assumption does not hold,  numerical 
approaches have been proposed by Efremov and co-workers including corrections for the 
bottom effect (Efremov et al., 2017, 2020) based on the above equations for F(t) and t1(t) (eq. 
(1.47) and  eq. (1.51)). An  analytical  approximation  for  a  viscoelastic  sample  of  finite 
thickness was also recently reported by Garcia and co-workers (Garcia, 2020) as introduced in 
the next section.

In Table 3,  ~C p=
3 (1−ν2)
4√R

, for a paraboloid,  ~C c=
π (1−ν2)
2 tan α

 for a cone ~C pyr=
√2 (1−ν2 )
tanα

 for a 

pyramid, 
~C cp=

1−ν2

2acp

 for a flat cylinder.
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Table 37 Principal force-time equations for the viscoelastic models for different probe 
geometries, where F (t ) is the approach curve and Fb (t ) the retract

Probe 
geometry

Force-time function, F(t) Reference
Limits of 
validity

Cone of 
semi-
included 
angle θ 
or 
pyramid

Fa (t )= 2
~C c∨

~C pyr

v0
2E0 t0

β

~C c(2−3β+β2)
t2−β

Fr (t )= 2
~
C c∨

~
C pyr

v 0
2 E0 t0

β

(2−3β+β
2)

(2[t (2−β ) +2
1
1−β (1−β ) ( t−tm )] ( t−tm )1−β−t2−β)

(Brückner 
et al., 
2017)

Linear, 
equal 

approach 
and retract 

δ̇ ( t )

Paraboloid 
of 
curvature 
1/2R
(radius R)
 

Fa (t )=
v0
3/2

~C p

E0
t0

β3√π Γ (1−β )

4 Γ (52−β)
t
3
2

−β

Fr (t )=
3v 0

3
2 E0 t0

β

~C p (3+4 ( β−2 ) β )
t1

−1/2( t−t1)1−β ( (2 β−1 ) t1−t+ F12
❑ (1 , 1

2
−β ,

1
2
,
t1
t

))

(Brückner 
et al., 

2017) and 
this 

chapter

Linear, 
equal 

approach 
and retract 

δ̇ ( t )

Flat-ended 
cylinder of 
radius a

Fa (t )=
v0
~C cp

E0
t 0

β

(1−β )
t1−β

Fr (t )=
v0
~C cp

E0
t0

β

(1−β ) ( t1−β−2 ( t−tm)1−β)

(Brückner 
et al., 

2017) and 
this 

chapter

Linear, 
equal 

approach 
and retract 

δ̇ ( t )

1.5  Bottom effect correction for viscoelastic models

In the previous sections we have seen the importance of probe geometry, sample thickness 
and sample viscoelasticity when mechanical properties of soft materials are to be obtained 
from force-distance  curves.  The contact  models  explained above consider  different  probe 
geometries, sample finite thickness and sample viscoelasticity. Both living tissues and cells 
are viscoelastic, as mentioned before, but while tissues are generally thick compared to the  
indentation achieved during nanomechanical measurements, living cells can instead be very 
thin and a bottom effect correction is often needed. Therefore, accurate determination of cell  
mechanics  across  the  whole  cell  surface  requires  combining  a  viscoelastic  model  with  a 
bottom-effect correction for different probe geometries, to consider at the same time the finite  
thickness of the cell and its complex viscoelastic response. Different approaches have been 
proposed before (Darling et al., 2007).
A simple and practical analytical solution was proposed by  (Garcia and Garcia, 2018b). In 
this model, the cell was considered as an incompressible material with a linear viscoelastic 
response described by a Kelvin-Voigt model. The authors later realized that the Kelvin-Voigt 
model lead to an artefactual  jump in the retraction curve,  not observed experimentally in 
living cells and proposed the solution for a power law model (Garcia, 2020). Thus, only the 
model derived from the power law relaxation function is valid in both loading and unloading 
traces  for  living cells.  The universal  power law response observed in  living cells  further  
justifies this choice (Fabry et al., 2001). 

7 We prefer to present in this table the force-time instead of the force-indentation equations, because the 
viscoelastic model depends on time, as explained before, so it is easier to obtain the analytical expression of 
force in function of time from the theory. The conversion from a force-time curve to a force-indentation curve is 
straightforward when it is known the waveform that describe the tip-sample distance δ ( t ).



25
Basic principles of soft matter mechanics

The proposed development is based on:
1) Betti's reciprocal theorem and Rayleigh-Ritz approximation to relate pressures and 

deformations for different geometries
2) The equivalence principle between elastic and viscoelastic deformation
3) Ting’s method to obtain the force as a function of deformation history
4) Boundary conditions involving a cell adherent on a rigid support

The authors provide analytical solutions for a conical indenter and we refer to the original 
article for the specific equations (Garcia, 2020).
We  have  provided  relevant  contact  models  to  quantify  the  mechanics  of  soft,  complex 
systems from AFM force-distance curves focusing on the importance of  probe geometry, 
sample thickness and energy dissipation. One of the parameters that we have ignored and 
might be relevant is adhesion. This will be briefly addressed in the following section.

1.6 Contact models considering adhesion

As mentioned above, the dissipative response of biomaterials, reflected by hysteresis between 
loading  and  unloading  curves,  is  often  due  to  the  viscoelastic  response  of  the  sample.  
However, adhesion between the probe and the sample may also be at the origin. Indeed, when 
working with cells or tissues, adhesion between the AFM tip and the sample is often observed 
and tip passivation strategies can be used to minimize it.
On some occasions, probes are functionalized with adhesion proteins to measure adhesion or 
non-specific adhesion which occur between the tip and the sample. In that case, the force-
distance curves will feature pronounced negative forces upon unloading due to the stretching 
of the sample through the formed bonds. The analysis of this type of curves is generally not 
carried out using continuum contact elastic models considering adhesion and might not be 
convenient for measurements on cells or tissues, as adhesion is often mediated by discrete 
adhesion complexes not well described by the formalism required in continuum mechanics. 
Instead, non-specific adhesion on macroscopic objects is more prone to this type of analysis. 
Nevertheless, it might be useful to know the available models developed in the context of 
classical  non-specific  adhesion  on  macroscopic  objects.  Moreover,  some  commercial 
softwares use such models. We thus briefly describe here the most known JKR and DMT 
contact models, since they may help in better estimating the sample elastic modulus under 
conditions of adhesion.
After  the  initial  work  by  Derjaguin  (Derjaguin,  1934),  the  first  approaches  to  adhesion 
between elastic bodies in contact were developed by Johnson, Kendall and Roberts (the JKR 
model), and by Derjaguin, Muller and Toporov (the DMT model) (Derjaguin, 1934; Johnson, 
1985). Tabor discussed the transition from the DMT to the JKR regime (Tabor, 1977), while 
Maugis developed a generalised multiparametric model (Maugis, 1992; Popov, 2010).
When considering adhesion between two elastic bodies, unlike the developments explained 
before,  in  addition  to  compression  stresses  we  should  consider  tensile  traction,  mainly 
generated both outside or inside the contact area, depending on the adhesive properties of the 
interacting surfaces and on the size of the contact region. Thus, at zero applied force, the 
contact area is not zero, but finite. 
In this section, we will present two of the most used models: JKR and DMT (Derjaguin et al., 
1975; Johnson et al., 1971). In general, JKR is valid for large, flexible spheres and short-range 
adhesive  interactions;  under  these  conditions,  the  leading contribution  to  adhesion  comes 
from inside the contact area, and it therefore depends on the applied load. DMT is typically 
valid  for  small,  rigid  surfaces  in  contact  (or  at  least  one of  the  two)  and/or  long-ranged 
adhesive interactions; under these conditions, the contribution to adhesion from outside the 
contact area is dominating, and nearly constant (Popov et al., 2019a). Both models consider a 



26
Basic principles of soft matter mechanics

spherical indenter of radius R in contact with a planar surface. Often the models are presented 
with the sphere being the elastic body, while the surface is rigid, but the formulation is valid  
for the opposite case, too.
The  JKR assumes  that  the  energy of  the  interaction  is  given by an  elastic,  storage  term 
described by the Young´s modulus (E),  and an attractive, dissipative term described by a 
surface  energy  (𝛾)8 acting  only  within  the  contact  area  (Johnson,  1985).  The  pressure 
distribution in the contact area is then assumed to be a superposition of the Hertzian pressure 
due to compressive stresses of the elastic body around the center and the flat cylinder pressure 
due to tensile stresses (diverging at the rim of contact) given by the presence of adhesion 
forces. By considering the work done in compression by the pressure and minimizing the total 
energy at equilibrium, it was found that in the JKR model, there still exist a formally Hertzian  
relationship between the contact radius  a and an effective force  FJKR, which takes adhesion 
into account:

F JKR=
4
3
E

¿

R
a3 (1.55)

with

F JKR=Fn+6 πγR+√12πγRFn+(6πγR )2 (1.56)
where Fn is the external applied force, E

¿= E

1−ν2
 is the reduced Young’s modulus.

Solving for Fn provides a relation between Fn and the contact radius a 

Fn=E¿(43 a3

R
−4√ πγ a3

E ¿ ) (1.57)
Notice that the first term in eq.  (1.57) reminds of the Hertz model, but with a larger contact 
radius. The second term accounts for the force due to adhesion and depends on the rigidity of 
the sample (the softer the sample, the larger the contact area, the higher the adhesive force). 
Because of adhesion forces, the same contact radius can be obtained with a smaller external 
applied force Fn.
In the limit of zero applied force (Fn = 0), the JKR model predicts a finite contact radius a0:

a0=(9πγ R2E¿ )
1
3 (1.58)

It is possible to apply a negative external force to overcome adhesion. The contact radius 
reduces up to a critical value, after which the contact is broken and the stress is suddenly 
released (pull-off, PO). The critical pull-off force FJKR,PO can be obtained from eq.  (1.56) by 
noticing that the term under the square root must be non-negative, i.e. 12πγR Fn+ (6 πγR )2≥ 0, 
and finding the force for which the equality strictly holds:

8 In the following formulas, the same surface energy 𝛾 is used for both contacting surfaces, surfaces, so that the 
work of adhesion W per unit area required to separate the two surfaces is W = -2𝛾. This definition may vary for different references. In the general case of different surface energies 𝛾1 and 𝛾2, the work of adhesion is W = -(g1+g2-g12), where g12 is the interfacial energy.
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F JKR ,PO=−3πγR (1.59)

Interestingly, the pull-off force is independent on the Young’s modulus of the material.
The pull-off force is typically measured from a force-distance curve recorded with the AFM 
as the depth of the adhesion well in the retracting branch. In principle, measuring the pull-off 
force, knowing the radius of the probe, can provide for both the JKR and the DMT models the 
surface energy g, through eqs  (1.59) and (1.65).

In the JKR model, the contact radius a does not go smoothly to zero, but at pull-off it is still 
finite and equal to:

aPO=(9 πγ R24 E¿ )
1
3 (1.60)

 i.e. aPO ≈ 0.63a0.
The Hertzian formula a=√Rδ  does not hold for the JKR model and the following equation 
replaces the Hertzian one:

δ= a2

R
−2
3 √ 9πγaE

¿ (1.61)

where the contact  radius  for  a  given indentation is  larger  than for  the non-adhesive case 
because of the surface energy.
In the case of the JKR model, it is not possible to obtain a single equation relating the applied 
force Fn and the indentation , as for the Hertz model. Nevertheless, it is possible to obtain a 
system  of  equations,  which  can  be  solved  recursively  to  obtain  the  force-indentation 
relationship,  similarly  to  the  case  of  the  non-adhesive  Sneddon  model  for  the  spherical 
indenter  eq.  ( (1.13).  This  system of  equations consists  of  eqs (1.58),  (1.60),  and (1.62). 
Alternatively,  in this system eq. (1.58) can be replaced by eq.  (1.63),  obtained from eqs.
(1.56),  (1.57) after  specifying the pull-off  force  FJKR,PO using eq.(1.60).  eq.  (1.63) has the 
advantage that it depends on the measurable forces  Fn and  FJKR,PO, and the contact radius  a 
appears only in the right side:

(√Fn+|F JKR , PO|+√|F JKR , PO|)2=4
3
E

¿

R
a3 (1.62)

The  DMT  model  is  derived  from  the  Derjaguin  approximation  (Derjaguin,  1934),  and 
assumes that the adhesion only acts outside the contact area, which is negligibly small; this 
assumption leads to a constant adhesive force Fadh = 4π𝛾R (see footnote 9), which adds to the 
external applied force Fn, determining a total normal force, which causes an increased radius 
of  contact  a,  as  in the case of  the JKR model.  At  odd with the JKR case,  however,  the 
adhesion  force  does  not  increase  with  indentation  and  does  not  depend  on  the  elastic 
properties of the sample. 

9 According to the Derjaguin approximation, the force between a curved surface of radius R and a flat surface is 
equal to F=2pRW, where W is the interaction energy per unit area. Assuming W = 2g and neglecting the area of 
the contact, this leads to a constant adhesion force Fadh = 4pgR.
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Thus, force versus contact radius relationship is still Hertzian, but with a total normal force Fn 

+ 4π𝛾R.

Fn+4 πγR= 4
3
E

¿

R
a3 (1.63)

It  follows  that  a  force-indentation  relationship  similar  to  the  Hertz  model  holds,  with  a 
constant force offset:

Fn=
4
3
E

¿ √Rδ
3
2−4 πγR (1.64)

Here, the critical or pull-off negative force, at which the tip detaches from the sample, is

FDMT ,PO=−4 πγR (1.65)

and the radius of contact at pull-off is zero, at odd with the JKR case.

 The JKR and DMT models are not commonly used for cell and tissue measurements, where it 
is typically assumed that non-specific adhesion is negligible but may help in realising on the  
effect of adhesion on the measured elastic parameters. This is particularly true for the DMT 
model,  where  only  adhesion  forces  outside  the  contact  region,  i.e. over  a  distance  are 
considered. Usually this could be due to van der Waals forces which act over 100s of nm and 
will always be attractive (except some exotic special cases). Since in cells, long range van der  
Waals forces are compensated by long range polymer forces (generated by the glycocalix) of 
cells, we expect that this model is not relevant for interactions between cells and probes. The 
JKR model,  on the other side assumes wetting like adhesion between the sample and the 
probe, characterized by a surface energy 𝛾. A wetting like behaviour has been described for 
spreading and adhesion of cells on solid supports by Sackmann and Bruinsma (Sackmann and 
Bruinsma,  2002).  However,  this  process  is  slow,  since  it  requires  diffusion  of  adhesion 
molecules on the cell surface, which requires some time to establish. Thus, it is safe, for most 
applications,  where  contact  time  is  short  (below  1  second)  that  adhesion  forces  can  be 
neglected in AFM mechanical data. The force-indentation functions of the JKR and DMT 
models considering adhesion are listed below in table Table 4:

Table 4 Force-indentation function of the JKR and DMT models considering adhesion, where 
Fn is the applied normal force and FPO is the pull-off force.

Probe 
geometry

Force-indentation function, F(δ) Reference
Limits of 
validity

JKR 
Model 

Sphere of 
radius R {(√Fn+|F JKR , PO|+√|F JKR , PO|)2=4

3
E ¿

R
a3

δ=a2

R
− 2
3 √ 9πγaE¿

F JKR ,PO=−3π γ R

(Johnson et 
al., 1971)

Other 
probe 
shapes 

(Popov et 
al., 2019b)

short-range 
adhesive 

interactions
deformable 

interface/large 
probe

(large contact 
area)
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DMT 
Model

Sphere of 
radius R

Fn=
4
3
E

¿ √Rδ
3
2−|FDMT ,PO|

FDMT ,PO=−4 πγR

(Derjaguin 
et al., 
1975) 

long-ranged 
adhesive 

interactions
rigid 

interface/small 
probe

(small contact 
area)

Thin shells

The theoretical framework described so far to determine the mechanical properties of living 
cells  assumes  a  contact  between  two  solid  bodies.  This  has  been  shown  to  be  a  good 
description for eukaryotic cells, but might not be the case for other types of cells, such as 
bacteria or plant cells. In that case, unlike the very compliant plasma membrane of eukaryotic 
cells, bacteria present a rigid cell wall that may be deformed by bending at very small depths 
caused by the AFM tip. Thus, the theory described above may not be valid except for a very 
small indentation depth  (Loskill et al., 2014). In case for larger deformations, the theory of 
thin shells has been used. The simplest model might be that of a convex spherical cap of  
thickness h and radius R loaded by a force F (the AFM tip) at one point. In this context, we 
can define two characteristic quantities, the bending stiffness:

Κ= Eh3

12 (1−ν2 ) (1.66)

and the extensional stiffness:

η= Eh

(1−ν2 ) (1.67)

The  relationship  between  force  and  deformation  can  be  derived  assuming  that  bending 
prevails over stretching and that the deformation  δ and thickness h of the shell are much 
smaller than the radius of the spherical cap (δ, h<<R), as shown in figureFigure 1-7 Schematic
drawing of the Landau and Lifshitz thin film model (Landau and Lifshitz, 1986)., (Landau 
and Lifshitz, 1986)

F= 4

√3(1−ν2)
Eh2

R
δ. (1.68)
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As can be seen from the equation above, the force-deformation relationship is linear in this  

case, with a slope being related to the geometry (R,  h) and the mechanical properties of the 
shell (E, ν). This theoretical framework has been used, for example, to determine the stiffness 
of microcapsules or bacterial cell walls (Arnoldi et al., 2000; Dubreuil et al., 2003; Fery and 
Weinkamer, 2007; Gaboriaud et al., 2005).  The force-indentation equation corresponding to 
the thin shell model is shown in tTable 5.

 Table 5 Thin shell model 

1.7 Finite element modelling 

In  the  previous  sections  of  this  chapter,  we  presented  some  of  the  principal  analytical 
solutions of contact problems for configurations commonly used in indenter experiments. As 
we explained, these analytical solutions can be obtained when the symmetry of the contact 
between the  two bodies  allows to  simplify  the  geometry  of  the  contact  problem.  This  is  
possible when the external force applied is normal to the sample’s surface and when the probe 
geometry is axisymmetric, the bodies are isotropic and the strains are small (even if some 
analytical  solutions  are  available  also  for  tangent  contact  (Popov  et  al.,  2019a).  These 
important assumptions allow the method of dimensionality reduction (MDR) (Popov and Heß, 
2013, 2015)) to reduce a three-dimensional contact mechanics problem to a two-dimensional 
problem.
This reduction, thus, is not always possible with all the probe geometries and the analytical 
solutions described in the previous sections are accurate only within the limits of validity 
mentioned for each model. In the cases in which analytical solutions are difficult to achieve,  
because  of  the  complexity  of  the  contact  problem resulting  from intricate  geometries  of 
contacting  bodies,  or  from large  deformations  and  nonlinear  materials,  the  most  general 
Bousinnesq problem of stresses and deformations or strains arising from to bodies in contact 
can often be solved numerically. In these cases, the stress-strain relation cannot be anymore 
simplified and in the case of a linear elastic material, it is described by the following general  
equation:

σ=D : ε ,σ ij=Dijkl εkl (1.1.69)

Where  σ  is the rank-2 stress tensor, ε  the rank-2 strain tensor and  D is a rank-4 elasticity 
tensor.  At  this  point  many  contact  mechanics  problems  are  described  by  the  theory  of 
mechanics  of  continuum bodies,  where  the  structural  problem is  formulated  as  a  set  of 
differential equations that are satisfied at every point in the domain. The system of differential 

Figure 1-7 Schematic drawing of the Landau and Lifshitz thin film model (Landau and Lifshitz, 1986).
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F= 4

√3 (1−ν2)
Eh2

R
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equations  is  obtained  considering  the  principal  three  fundamental  laws  of  mechanics: 
conservation  of  mass,  conservation  of  linear  momentum,  and  conservation  of  angular 
momentum. 
The principle of the conservation of mass allows a Lagrangian description of the contact 
problem, the principle of the conservation of the angular momentum guarantees that the stress 
tensor is symmetric, while the principle of conservation of linear momentum is imposed on an 
infinitesimal element of a structure to impose the principle of force equilibrium and obtain a  
system of partial differential equations (PDE) along with boundary conditions, that is called 
the boundary-valued problem (BVP). If the system is conservative, also a variational method 
based on the principle of minimum potential energy can be developed to solve the problem. 
The principal numerical implementations to solve variational equations or BVP problems, 
widely used and validated are the finite element method (FEM) and boundary element method 
(BEM). While the BEM have been used for general contact problems, the FEM method is 
specific for solid mechanics.  An exhaustive description of the numerical methods, with the 
derivation of all the equations, would need a specific manual, which goes beyond the aim of 
this chapter. Accordingly, we just briefly illustrate the basic concept of the FEM method, 
specific for solid mechanics, and we refer to more exhaustive works for further details.
The FEM method allows to solve partial differential equations in two or three space variables.
FEM analysis is widely used in many fields of physics or mechanical engineering to solve 
linear or non-linear problems, which cannot be solved analytically, such as contact problems 
for the study of the mechanical properties of new materials, climate models for atmospherical  
predictions,  mechanical  problems related to  seismology and geophysics  and many others. 
Nowadays, the FEM method is very used in several fields of industry, such as: biomechanical 
industry for the design of new prothesis, cosmetics, aeronautical or automotive industry to 
study the resistance of new materials to heat and impact, for example in case of vehicle crash.
The method consists in simplifying a complex problem, dividing a large system in smaller 
subunits (Example of a finite element simulation for a rigid indenter indenting orthogonally a
soft semi-infinite half space in the case of large deformations, using finite element package
ANSYS . The figure is reproduced from Wu et al. () with the permission of Elsevier. , for 
which the solution is simpler. The small subunits are called finite elements.
The subunits are obtained thanks to a discretization of the space in two or three dimensions, 

implementing a mesh of the object with finite number of points, that is the domain of the 
unknown function. Indeed, per each finite element, simpler equations are defined, which are 

Figure 1-8 Example of a finite element simulation for a rigid indenter indenting orthogonally a soft semi-infinite 
half space in the case of large deformations, using finite element package ANSYS . The figure is reproduced 
from Wu et al. () with the permission of Elsevier.
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(Wu et al.,  2016) then assembled in a large system of algebraic equations over the entire 
domain. 
The finite elements are connected through nodes to the adjacent elements. The variational 
equation solution of each finite element is then not solved analytically, but it is approximated 
in a polynomial form for the solution of the entire problem. The approximate solution u(x) is 
expressed as a sum of a number of functions that are called trial functions, as shown in figure  
Figure  1-9.  The  FEM  analysis  applied  in  contact  mechanics  can  answer  the  following 

questions: 1) if two or more bodies are in contact, 2) where is and what is the region of  
contact,  3)  how  much  force  and  pressure  is  distributed  in  the  contact  interface,  4)  the 
magnitude and distribution of the strains in the material due to the stresses and 5) the relative  
motion in general of the bodies after the contact. Therefore, the FEM method can be very 
useful to study contact problems that are not solvable analytically, but can be used also as  
supportive study to validate a contact mechanics analytical model. Indeed, FEM analysis can 
provide some additional information, for example the lateral displacements due to the probe 
indentation  of  a  soft  material,  which  are  not  considered  in  analytical  models  due  to  the 
assumption of perfect normal penetration of the indenter.
In many recent works, in which contact mechanics models are developed, the results of the 
analytical model are compared to those ones obtained thanks to a FEM analysis, in order to 
validate the analytical model. For example, in Efremov et al., Doss et al. and in Garcia et al.  
(Doss et al., 2019; Efremov et al., 2020; Garcia, 2020) the FEM simulations were used to 
compare different models (or just numerical, or numerical and analytical) to then choose the 
theoretical approach that could better model the experimental data. 
The principal steps for the contact analysis with FEM method are:

1. Defining the problem geometry and the contact pairs and types
2. searching for the contact point
3. calculating contact force and tangent stiffness

The detailed explanation of these three steps and the relative equations are described in a  
comprehensive but didactic manner in the book  Introduction to Nonlinear Finite Element  
Analysis  by Nam-Ho Kim  (Kim,  2015),  where  a  section  is  also  dedicated  to  the  Matlab 
implementation of FEM analysis for contact mechanics problems and where some Matlab 
codes  are  available.  Apart  from Matlab  FEM implementation,  several  software  tools  are 
nowadays available for a user-friendly application of FEM analysis, some are for example: 
ANSYS, COMSOL software (COMSOL Multiphysics;  CMSOL AB, Stockholm, Sweden) 
and Abaqus CAE (Simulia Corp. Providence, RI). 

1.8 Concluding remarks

Figure 1-9 Graphical representation of the linear approximation for the function u(x) with the finite element 
method used to solve a one-dimensional problem, as described by Kim (Kim 2015). 
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In this chapter,  we have tried to provide the most used contact  models to describe AFM 
measurements on cells and tissues. Those included purely elastic bodies, viscoelastic, finite 
bodies and adhesion. There are, of course, a large number of models that were not considered.  
For example, models including different layers of materials with varying elasticity, models 
considering surface tension and nonlinear materials (Bhushan and Peng, 2002). We have also 
constrained to models used to fit the force-indentation curves. Other approaches such as the 
Oliver and Pharr method, widely used in material science, or the early A-Hassan approach, 
developed for AFM measurements on cells, have been omitted as they can be derived from 
the formalism used here (A-Hassan et al., 1998; Lin et al., 2008; Pharr et al., 1992). Given the 
widespread of AFM as a nanomechanical tool in biology and given the heterogeneity and 
nonlinearity  of  biological  samples,  we  expect  the  emergence  of  more  sophisticated 
approaches and derivations likely involving computer simulations that would move further 
and further away from the seminal Hertz model.
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