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Abstract—Federated Learning (FL) is a growing technology
that enables training of Deep Learning models on private data.
Many FL enhancements have been proposed, notably for better
security and privacy. Current architectures and frameworks
focus on specific sets of enhancements with little extensibility and
do not support composition of enhancements. In this paper, we
introduce Ti-skol, an architecture and framework that supports
composition of security and privacy countermeasures, including
countermeasure incompatibilities. Ti-skol also enables modular
management of FL enhancements beyond security, being com-
patible with most enhancements. Ti-skol is promising to assess
the cost of countermeasures, individually or in combination.
We evaluate our framework on a use-case of Volunteer Deep
Learning – applying Volunteer Computing to reduce the cost
of large model training by harnessing idle resources of sin-
gle machines into the required massive distributed computing
power. Experimental results show that Ti-skol is scalable as the
network size increases. While adding security countermeasures
such as Byzantine protections or secure aggregation substantially
increase computing overheads, they do not change their order of
magnitude, individually or in combination. This tends to show the
practicality of the Ti-skol framework for on-demand FL security.

Index Terms—Federated Learning, Security, Countermeasure
Composition, Volunteer Deep Learning

I. INTRODUCTION

In recent years, IoT devices have produced a deluge of data,
enabling to train machine learning (ML) models for prediction
and classification in a large range of applications [1]. While
centralized model training raises privacy concerns, the promise
of Federated Learning (FL) [2] is to train joint models without
the data leaving the device. A server sends the model to the
devices holding the data. Data holders train the model on
their local data and send back model updates to the server
for aggregation. Only model updates are shared, not raw data.
FL systems have been extensively studied [3]. Yet, many
security and privacy vulnerabilities have been reported [4].
Threats target mainly privacy, integrity and identity: 1) ex-
tracting private information from training datasets [5], [6] or
reconstructing raw data [7]; 2) poisoning data samples [8],
polluting models through malicious updates [9], [10] or intro-
ducing backdoors [11]; and 3) Sybil attacks [12].

An even larger range of countermeasures has been proposed
to mitigate such threats with different security guarantees and
limitations [4] – with no one-size-fits-all countermeasure to
cover the full set of protection requirements. Countermeasures
remain difficult to compare and are often not compatible
with one another. While a few benchmarking frameworks
have been proposed [13], they do not address countermeasure
composition – referring to the case when countermeasures are
combined on-demand to complement one another.
To enhance FL security, composition of countermeasures
appears as a focal challenge to: 1) select on-demand the
countermeasures meeting the security requirements; 2) han-
dle countermeasure incompatibilities; and 3) assess the cost
of countermeasures, individually or in combination. Current
frameworks do not meet those goals and do not support
modular management of FL security enhancements.
In this paper, we propose TI-SKOL1, a modular architecture
for FL supporting highly expressive customization policies for
security countermeasure composition, enabling benchmarking
of countermeasures. We propose a framework implementing
the architecture and show how security countermeasures can
be composed within this architecture, taking as examples
Byzantine protection and aggregation integrity. TI-SKOL also
enables modular management of composition of FL enhance-
ments beyond security. Indeed, while many FL enhancements
have been proposed regarding model quality or performance,
current deployment frameworks focus on a specific set of
enhancements, but with little extensibility.
To evaluate the TI-SKOL framework, we consider a Volunteer
Deep Learning (VDL) use-case. VDL is an application of FL
based on the Volunteer Computing paradigm [14] to train DL
models. The idea is to use idle computing resources to reduce
the cost of large distributed computing tasks.
This paper provides the following contributions: 1) we pro-
pose a modular FL architecture that supports on-demand
composition of security countermeasures and effective bench-
marking in terms of impact on performance; 2) experimental
evaluations show that our framework can effectively support

1TI-SKOL is the breton word for school building. It provides the base infras-
tructure to organize lectures – centralized, around a teacher or decentralized,
rearranging the classroom. Additional security can be added if needed.
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countermeasure incompatibilities while preserving modularity,
with also good results in terms of performance and scalability.
The paper is organized as follows. Section II introduces
our reference architecture for FL compatible with legacy
enhancements. Section III explains the composition of security
countermeasures in our architecture. Section IV presents the
TI-SKOL framework. Section V evaluates TI-SKOL scalability
and security composition on a VDL use-case. Section VI
reviews related work. Section VII concludes.

II. ARCHITECTURE

This section presents the design of our architecture, in terms
of key properties, design principles and structure.

A. Properties

We consider the following properties for a FL architecture
applicable to real-world systems, regarding performance and
customization.

Performance – The architecture should not hamper applica-
tion performance nor reliability.

• The architecture should be scalable: enhancing perfor-
mance should be possible by increasing the computing
power of nodes (vertical scaling); or by supporting a
high number of nodes (horizontal scaling). FL has shown
weaknesses in horizontal scaling [15]. The central server
is a bottleneck, limiting client scalability due to available
bandwidth and computing resources.

• The architecture should be resilient to node failures: FL
has shown resilience on the client side, but remains weak
on the server side (single point of failure).

Customization – The architecture should be easy to improve
by integrating research results and composing them.

• The architecture should be compatible with legacy FL
systems: it should be expressive enough to support most
previous works on FL. It should be compatible with the
identified FL design patterns [16].

• Security countermeasure composition should be sup-
ported to provide on demand security and privacy to meet
use-case requirements. New countermeasures should be
easy to integrate in the architecture.

B. Design Principles

We adopt the following design principles, described next.

Performance – We adopt an architecture which is aggregator-
based and fully decentralized.

• Scalability ⇒ Aggregator-based architecture: the train-
ing process should allow multiple concurrent nodes in the
aggregation process to reduce the load on the server, as
more clients participate [15], [17]. This may be achieved
by placing intermediate aggregators between the server
and clients [15], [17] or with fully decentralized de-
signs [18], where participants aggregate the models of
their neighbors in the network.

• Resilience ⇒ Decentralized architecture: to tolerate
server failures, the architecture should have no central
node and be fully decentralized [15], [18].

Customization – We adopt an architecture which is compati-
ble with a reference FL architecture to enable extensibility and
is modular to support the composition of countermeasures.

• Legacy ⇒ Reference architecture compliance: the ar-
chitecture should follow a reference architecture such as
FLRA [19] to be compatible with most FL enhancements
and design patterns [16].

• Countermeasure composition ⇒ Modularity: families
of security countermeasures should be identified and
managed as components, with specific hooks defined
in the architecture. Their incompatibilities should be
identified. Seamless replacement of countermeasures with
new versions should be supported.

C. TI-SKOL Architecture

We propose TI-SKOL, an architecture based on the previous
design principles.
We first review current approaches (see Figure 1). FL and
decentralized learning both feature the same training loop
(Figure 1a): the model to train is sent to clients (1), trained
on local client data (2), and sent back to an aggregator to
update the model (3). In FL, the server sends the model
and aggregates the response. In decentralized approaches, any
participant may perform those tasks.
FLRA [19] is a reference architecture for FL describing the
sub-components on client-side and server-side and how they
communicate with each other (Figure 1b). Three components
are required for training: (1) Launch sends the models to train;
(2) Train trains the models on local data; and (3) Aggregate
aggregates the received trained models. In decentralized ap-
proaches [15], each participant includes all such components,
i.e., any component may perform aggregations.

Compatibility with legacy – We design our architecture to
be compliant with FLRA [19] and assume the same core
components. For decentralized learning, we add the Election
component to assign to nodes the relevant role in the training
process (i.e., client, aggregator, server).
A sample decentralized learning architecture [15] is shown in
Figure 2. Similarly to a FL server, the Aggregation component
features a Launch component that starts the training rounds
and an Aggregate component that receives and aggregates
trained models. The Train component trains the models simi-
larly to FL clients. Communications between components are
performed by a Network component, part of each node sub-
component. A Data component is in charge of storing Model
data and Training Data.
Countermeasure composition – In our architecture, the own-
ership relationship between components is structured as a tree.
Each branch is dedicated to one of the core system functions.
This design ensures that each component is responsible for a
specific function without overlap in terms of responsibilities,
i.e., only a single component is in charge of aggregation. The
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Fig. 1: Previous approaches: (a) training methods and (b) reference architectures for federated and decentralized learning

Fig. 2: TI-SKOL architecture

independence of components allows them to be distributed into
multiple execution environments for improved performance or
isolation.

Scalability and resilience – We extend our architecture to
support decentralized learning [15], [18]. Each node can be a
client or a server in the training task. Therefore, each node

should feature client and server components at any time. An
Election component is added to reach consensus with peer
nodes on their roles [15]. It provides the current role of a node
to other components (e.g., allow the Aggregate component to
launch a training round as server node) and discover other
nodes (e.g., find an aggregator in the network for a client).

III. SECURITY ARCHITECTURE

Our tree-based architecture enables to easily add legacy en-
hancements by compliance with a FL reference architecture.
We now focus on FL security and privacy challenges and
applicable countermeasures. We review the challenges, coun-
termeasures and their composition in our architecture. TI-
SKOL improves FL security by allowing the implementation
and combination of security countermeasures and the isolation
of FL software components.

A. Security Challenges

Many threats on DL [20] also apply to FL [4]. We focus on the
following key FL security challenges: 1) integrity, i.e., training
should produce a correct model; and 2) privacy, i.e., training
data should be kept private.
Threats can be categorized as: malicious, where participants
may deviate from the protocol; or honest but curious, where
participants respect the protocol, but try to gain information
from legitimate messages.

Privacy. Keeping training data private is a main driver for
FL adoption [2], [3]. But assessing the privacy guarantees of
FL schemes remains difficult. A common approach for FL



privacy is based on differential privacy (DP) [21]. DP provides
a probabilistic indistinguishability guarantee for processing a
specific data sample during training. This means that a specific
training sample cannot be extracted from the trained model –
the training data set probability distribution can still be leaked.
Privacy requirements may also include confidentiality of the
neural network architecture and of weights.

Integrity. FL does not require an exact model. It can even
be hard to get the same model every time due to floating-
point operations roundings that can vary between different
systems. Models can be the target of backdoor attacks [11],
where model performance is degraded on a specific class of
samples. Countermeasures may only filter part of malicious
updates sent by clients. Different levels of integrity may be
achieved depending of the update impact on the overall model.
The challenge is then to evaluate model integrity – model
accuracy is a first broad metric.

Identity threats. In Sybil attacks, an attacker creates multiple
identities to increase its voting power [12]. For FL systems,
such attacks are generally not considered, as mitigations such
as IP address bans provide a sufficient level of security.

B. Security and Privacy Countermeasures

Privacy countermeasures. Privacy countermeasures include:
1) differential privacy to prevent leakage of private data from
the model weights; and 2) secure aggregation protocols to
prevent the aggregating server from accessing the weights of
individual models.
DP [21] improves FL privacy by adding random noise to the
model weights. DP can be applied by clients to protect their
training data from aggregators; or by aggregators to protect
training data from other clients during the next training round.
DP increases privacy but reduces model accuracy.
Secure aggregation protocols [22] are cryptographic schemes
where clients encrypt their model before sending it to the
server for aggregation. The server is only able to access the
weights of the aggregated model and not of individual models
sent by clients. Secure aggregation schemes require high
processing power. An algorithm that is scalable, fault tolerant,
while supporting Byzantine protection and DP-enabled
privacy remains to be found.

Integrity countermeasures. For distributed machine learning,
training integrity is closely related to Byzantine resilience [23],
as malicious models may be introduced in such a decentral-
ized setting. Most solutions against Byzantine clients such
as FLAME [24] are based on filtering the most important
outliers. They convert the model weights into vectors and
compare them, e.g., keeping the median of vectors instead of
the average. FLAME also adds noise (DP) to further reduce the
effectiveness of backdoor attacks. Other approaches are based
on redundancy by making multiple clients perform the same
tasks or storing intermediate results. However, they breach
training data privacy, as clients have to share their training
data for safety checks.

To guarantee aggregation integrity, most solutions are secure
aggregation schemes [22] that may get in conflict with
Byzantine protections. For FL, this challenge is little explored
as the central server is considered trusted, under direct control
of the organizers.

Privacy and integrity. Trusted Execution Environments (TEE)
are also part of applicable counter-measures to achieve both
privacy and integrity [25], [26]. The TEE encrypted memory
and integrity guarantees may help to analyze training data,
train or aggregate models in a secure and privacy-preserving
manner. TEE remote attestation may also be useful for devices
to verify that tasks take place on secure nodes. How to
compose TEE with other privacy-enhancing technologies such
as distributed protocols, DP, and cryptographic schemes is still
an open research challenge.

C. Identity Countermeasures

In [12], two families of protections against Sybil attacks are
distinguished: a central identity management authority that
attributes an identity to each stakeholder, and Proof of X
protocols that grant voting rights according to the capacity of
the smallest participants – e.g., Proof of Work, where voting
rights are according to the computing power of a stakeholder.

D. TI-SKOL Security Architecture

The tree-shaped organization of components inside a node
enables to easily manage authorizations and enforce isolation.
A unified system for specifying and enforcing component
authorizations may be defined from the tree path, i.e., sub-
components inherit their authorizations from their parents.
This hierarchical approach helps enforcing the principle of
least privilege.
Sub-components are more likely to change than their parents,
due to more frequent system reconfigurations in the lower-
levels. They are therefore considered as less trustworthy.
Other sub-components behave as helpers for their parents
for core functional sub-tasks. They require similar levels of
authorizations as their parents.
This hierarchical approach to component identity management,
e.g., for enrolment, helps tracking the component initialization
status and increases accountability.

E. Countermeasure Composition in TI-SKOL

Figure 3 shows an extended architecture with the security
components (in grey) considered inside each node as part of
the training process.
We consider the following security countermeasures: Byzan-
tine protection, secure aggregation and DP. As [22], we
consider that a secure aggregation protocol features four
components: init, protect, aggregate and verify. Byzantine
protection replaces the aggregation function, with the models
to aggregate as input and the aggregated model as output. DP
updates the model weights after aggregation or during training.
The TI-SKOL tree is established by a human expert and cap-
tures incompatibilities between countermeasures. For instance,



Fig. 3: Countermeasure composition in a node

Fig. 4: TEE isolation for the aggregation process

a secure aggregation process may not tolerate Byzantine
protections due to privacy guarantees on individual trained
models. Conversely, it may allow both DP and Byzantine
protection at the same time.

DP can always be added after training or aggregation. Some
approaches include DP directly into their aggregation process
to improve privacy [22]. In that case, only the aggregated
model with DP is visible to the aggregator.

When secure aggregation is compatible with Byzantine pro-
tections (e.g., mean aggregation), a training round follows the
process shown in Algorithm 1.

A specific security composition (e.g., with/without DP and
at which scale, secure aggregation algorithm) aims to meet
specific security requirements. Such configuration is indepen-
dent from the training task and can be re-used for other
training tasks or projects. It can either be human or machine
generated, taking into account the component compatibilities,
performance and security properties for the combination to
answer the training requirements.

Algorithm 1 TI-SKOL training round

- Init: initialize secure aggregation with verify of clients;
- Aggregation/Launcher: send totrain() to train of
clients;
- Clients: train the model, send it to client verify;
- Clients: protect trained model, return result to Aggrega-
tion;
- Aggregation/Process: run Aggregate;
- Aggregate: run Byzantine protection if possible;
- Aggregate: send result to verify of clients.
normal component, security component

F. TEE Component Isolation

While TEE are not captured as a specific component of
the architecture, they may be simply applied to multiple
components. TEEs may help to isolate specific branches in
the tree-based TI-SKOL architecture to guarantee integrity and
confidentiality. Due to branch independence, this approach
enables to limit the trusted computing base (TCB) and enforce



selective component isolation. It also prevents dependence of
components on untrusted sub-components. Remote attestation
may be used to verify that a component is running in a TEE,
performed by other components communicating with it, inside
the same node or outside.
Figure 4 illustrates the case where the Aggregation Process
component is isolated in a TEE to improve aggregation
integrity and privacy. Its sub-component in charge of Byzan-
tine filtering is also isolated in the TEE. The two training
components (in the same node and in another node) both
first send a challenge to the aggregation process to verify
that it is running in a TEE (1). The aggregation process
sends back a proof (2). Once they have verified the proof,
the training components notify the aggregation process (3).
Remote attestation can be performed only during the first
communication. Swarm attestation approaches may help to
reduce the attestation overhead.

IV. IMPLEMENTATION

We now describe our implementation. We also develop a use-
case of volunteer deep learning for federated learning.

A. TI-SKOL Implementation

Figure 5 gives a high-level overview of the TI-SKOL frame-
work. Each participant runs the framework and loads a config-
uration file and the training data. The application then connects
to the cooperation network to participate in the training process
– to connect to the server (centralized FL) or to other peers
(decentralized learning).
We configure a node using a nested JSON file. A component is
described by its configuration and that of its sub-components.
This limits the configuration information shared between
components to the strict necessary. The initialisation process
follows the tree shown in Figure 3, where each component
is a js object that creates and configures its sub-components.
A component is fully initialized when its sub-components
are also initialized. Listing 1 illustrates the configurations of
the Aggregation component and of its two sub-components:
Launch and Aggregate. The configuration file can include other
files for specific parts, e.g., the Election component. This
design allows reusing well-specified and well-tested config-
uration for different projects or to create configuration file
templates.

Listing 1: Sample aggregator configuration
a g g r e g a t i o n l a u n c h c o n f i g : {

n u m b e r t r a i n i n g s t e p s : 10 ,
t r a i n i n g i n s t r u c t i o n s : {

f i t : {
epochs : 1

} ,
model : ”CNN1”

}
} ,

a g g r e g a t i o n a g g r e g a t e c o n f i g : {
s e c u r e a g g r e g a t i o n c o n f i g : {

sec agg : ”None ” ,

b y z a n t i n e p r o t e c t i o n : ”FLAME”
}

}

As in most FL systems, training data can be loaded internally
from a node or from a public database, e.g., distributed in P2P
networks such as IPFS. Nodes that do not have training data
may participate in training by providing computing resources.
The framework is implemented in JavaScript for simplicity of
deployment – it can be run on any device with a JavaScript
run-time (e.g., Node.js server, smartphone web browser,
video game console). Thus, a single framework may be
developed with user-level rights.
JavaScript allows us to run compute-intensive tasks using
WASM for improved performance and safety. WASM offers
close to native performance. It also improves safety, through
type-safe memory isolation for code sandboxing to minimize
impact on the operating system or the hypervisor.
Device GPUs may help to accelerate DL model training
using frameworks such as TensorflowJS based on CUDA APIs
(server side) or WebGL APIs (web browser side).
Communications between nodes are based on libp2p2. This
library for P2P networks supports direct communications
between nodes using multiple network protocols (e.g., TCP,
WebRTC). It provides a Kademlia Distributed Hash Table to
find resources in the network.
Each component includes a Network component in charge of
communications with other components, inside the same node
or between different nodes.
As shown in Listing 2, each component interface includes
the component name and a multiaddr. These are respectively
the path of the component in the tree and the network
identifier of the libp2p node. The network identifier includes
the communication protocol, IP address, port number, and a
hash of the node public key. The interface also includes the
methods which may be invoked on a component.

Listing 2: Sample component interface
{

component : ’ / r o o t / a g g r e g a t i o n / [ . . . ] ’ ,
m u l t i a d d r : ’ / i p 4 / 1 2 7 . 0 . 0 . 1 / t c p / 5 2 7 2 8 / [ . . . ] ’ ,
h a n d l e r : ’ b e c o m e c l i e n t ’ / / component methods

}

This unified communication model facilitates enforcement of
component access control policies. For instance, in the Net-
work component, a policy could specify that the component is
authorized to accept invocations originating only from another
specific component of the same node.

V. EXPERIMENTAL RESULTS

We evaluate the TI-SKOL framework scalability and the impact
of addition of security countermeasures on performance. We
illustrate the framework capabilities with a VDL use-case,
including the required security guarantees.

2https://libp2p.io/



Fig. 5: High-level framework overview

A. Testbed

We run our experiments on a Dell Precision 5750 laptop with
an Intel i7, 10th generation, 8 cores, 2.30 GHz CPU and
32 GB RAM, running Windows 10. Framework nodes are
run as concurrent Node.js processes on the same machine.
CPU usage is monitored with the Python library psutil.
Of course, a single local machine cannot be considered as
the optimal setup for a full assessment of scalability, but
nonetheless provides insightful results as a first step before
moving to a cloud platform.
We train a dense neural network of 101770 parameters in
2 dense layers on the MNIST dataset. This dataset includes
60000 28x28 gray-scale images of handwritten digits to be
classified.

B. VDL Use-case

We focus our evaluation on a Volunteer Deep Learning
(VDL) use-case. VDL applies the Volunteer Computing (VC)
paradigm to train deep learning models to reduce costs. We
shortly explain below the main ideas of the use-case.

Volunteer Computing. To reduce costs of large distributed
computing tasks, academia introduced Volunteer Comput-
ing [14]. Explored in projects such as Folding@home [27] or
BOINC [28], VC uses idle resources of computers (e.g., CPU
scavenging) for scientific tasks (e.g., protein folding simula-
tions, prime number research) that require massive computing
power or large amounts of data. Crowdsourcing [29] is a
related approach. It uses volunteers to produce data, e.g., to
label data sets. The Amazon Mechanical Turk (MTurk)3 is a
commercial example of crowdsourcing against a remuneration.

Volunteer Deep Learning: combining VC and DL. We
use the term Volunteer Deep Learning (VDL) to refer to
configurations when VC is applied to train DL models [30],
[31], [32]. VDL leverages federated learning [2] to train DL
models on confidential data directly on the devices holding
the data.

3https://www.mturk.com/

Compared with centralized model training, VDL presents
several critical challenges:

• Synchronization requires efficient communications and
to take into account device heterogeneity.

• Security countermeasures are needed to guarantee train-
ing integrity and privacy.

• Deployment guidelines should be defined to support a
high diversity of hardware and software.

While current works have focused on improving performance,
security and deployment remain little studied. The VDL use-
case requires scalability to support the maximal number of
participants. In a first approach, only training integrity is
needed. This implies to guarantee aggregation integrity and
to protect the system against Byzantine threats.

C. Security Countermeasures

We assessed the composition of countermeasures related to
aggregation integrity and Byzantine protection.

Fig. 6: CPU usage vs. number of training participants



More specifically, we evaluated the following countermeasures
for Byzantine protection:

• None: Aggregation is performed by averaging the models
sent by clients as in traditional FL.

• Median: Aggregation outputs the element-wise median
of weights of clients.

• FLAME: Following the approach of [24], aggregation
is based on clustering to eliminate outliers, e.g., using
geometric filtering. DP is also used to protect against
backdoors.

Regarding the last approach, our implementation did not
implement DBSCAN filtering, and as such underestimates
CPU usage.
We also evaluated the following countermeasures regarding
aggregation integrity:

• None: the aggregator averages models without any proof
sent to clients.

• None_Sec: the aggregator sends an empty proof to
clients, automatically accepted.

• Whole: each node receives the hashes of the aggregated
model and of models from other clients, downloads them
and performs again the whole aggregation operation.

• Hash: this countermeasure is based on “incremental”
(homomorphic) hashing [33]. The models are “hashed”
by being projected on a smaller space. The verifier
receives the hash of the aggregated model and of other
client models. It checks the means of the hashes of clients
models is identical to the hash of the aggregated model.

The Hash aggregation integrity countermeasure is not com-
patible with Median and FLAME Byzantine protections as
they do not output the means of a set of models.
In this paper, we do not evaluate protection efficiency or com-
pare the security guarantees of countermeasures. We refer the
reader to [24] for comparisons for Byzantine protections and
to [22], [34] for communication and computation efficiency
evaluations for advanced aggregation integrity protections.
Whole and Hash protections use IPFS to share a model.
Thus, every node has already downloaded a model and broad-
casts it. This reduces the server load by preventing the server
from sending all models to all nodes.

D. Scalability

We evaluate the scalability of TI-SKOL when increasing the
number of participants in the training process, spawning mul-
tiple processes, each acting as an independent client. We split
the dataset so that each client is allocated the same amount
of training data. The total amount of data remains the same
when increasing the total number of clients. The size of local
training datasets only results in being smaller.
Figure 6 shows the total CPU usage of server and clients (in
seconds) needed for a training step over the whole dataset.
In the case of the MNIST dataset, the training time itself is
negligible. We observe a linear increase of the overall CPU
overhead of the distribution with the number of participants.
Such results tend to show that the framework scales well with

the number of participants, as the overhead per participant
remains constant [35].

E. Security Countermeasure Composition

We evaluate the CPU overhead when countermeasures are
added. For each composition, we run multiple experiments
with 10 clients participating in the training process. We
compare to a baseline – a configuration with no security
countermeasures.
Figure 7a evaluates the total CPU usage for different aggre-
gation integrity protections. We observe a comparable CPU
usage with None_Sec when an empty proof is sent. This is
expected and may reflect a lightweight base cost for remote
attestation. Whole and Hash protections have much higher
CPU overheads – up to X4 on average, but remaining practical
nonetheless.
Figure 7b shows the total CPU usage for different Byzantine
protections. We observe an increased CPU usage for Byzantine
protections that remains in the same order of magnitude – up
to X2, which tends to show their practicality when used with
TI-SKOL.

byz protection type None median FLAME
sec agg type
None 1.00 1.37 0.88
None Sec 1.24 1.51 0.72
Whole 3.60 4.95 2.97
Hash 3.41 x x

TABLE I: CPU usage (normalized) vs. countermeasure com-
position

Table I shows the mean CPU usage when combining Byzantine
protections and secure aggregation countermeasures. In the
case of homomorphic hashing, only configurations with no
Byzantine protection are evaluated, since Byzantine protec-
tions are not compatible with the Hash integrity protection.
We observe that verifying the integrity of aggregation with that
scheme induces far more computing overheads than Byzantine
protections – e.g., for Whole and median countermeasures,
the overhead overhead of their combination (3.9) is greater
than the result of individual overheads (0.37, 2.6). This con-
firms that: 1) countermeasures are usually not compositional;
and 2) non-negligible overheads may result from composition.

F. Discussion

Scalability and VDL feasibility. We observe a linear increase
in the total computing overhead when adding clients. This
tends to show that TI-SKOLis scalable when adding FL en-
hancements.
Such results also encourage the use of decentralized or hier-
archical approaches for large-scale model training. We may
wonder how this approach scales when increasing the size of
the model. Such investigations are deferred for future work.
Security countermeasures composition. Experimental results
also show that the security features necessary for practical
VDL induce non-negligible CPU overhead, especially secure
aggregation and that their combination may exceed the sum
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Fig. 7: CPU usage (normalised): (a) aggregation integrity; (b) Byzantine protections

of individual costs. The security countermeasures composition
and management of incompatibility goals for TI-SKOLmay
thus be considered achieved in a first step.
Results also show that the different protections stay within
the same order of magnitude in terms of computing time (but
still with non negligible overhead). Those first experimental
results suggest that VDL still remains feasible with an upper
bound not exceeding 5 for the overhead – to be confirmed on
a testbed VDL platform.
TI-SKOL would show its benefits when there are more com-
puting between synchronizations, e.g., for bigger datasets and
with more epochs per training round. TI-SKOL then paves the
way for VDL at scale using decentralized learning approaches
and neural networks with more parameters.

VI. RELATED WORK

The TI-SKOL approach could be applied to a significant body
of work in two broad research areas: FL and VDL.
A. FL Frameworks

Existing architectures and frameworks for FL explore prop-
erties such as legacy compatibility, scalability, resilience and
security composition. They include FL simulation and produc-
tion frameworks and decentralized learning frameworks.

FL simulation frameworks. Middleware such as Tensorflow
Federated or PyTorch provide highly customizable environ-
ments to simulate FL training and add enhancements in a
modular manner. Security components can be implemented
but their combination often requires a redesign of the whole
system. Such middleware are not specifically designed to
be deployed for real-life use-cases. As such, scalability and
resilience concerns are not usually considered.

FL production frameworks. Middleware such as Flower [36],
FedML [37] and ModularFed [38] aim to provide fully
deployable frameworks. By design, they handle resilience
and scalability for centralized FL and may provide security
countermeasures – usually not freely configurable and that

need to be placed explicitly in the architecture. Unlike TI-
SKOL, such frameworks lack expressivity for enhancing FL
due to incompatibility with a reference FL architecture such
as FLRA [19].

Decentralized Learning. Architectures and frameworks such
as Gossip Learning [39], FDFL [15] and Hivemind [40],
[41] provide resilience and scalability. They do not explore
the implementation of security countermeasures. Addition of
legacy components is more difficult because they diverge
from traditional FL. Therefore, such architectures are not
compatible with all enhancements. TI-SKOL allows for the
extension of FDFL for security composition.

Unlike existing FL frameworks, TI-SKOL provides the cus-
tomization expressivity of simulation frameworks, including
for fully decentralized learning approaches while being de-
ployable. It also remains scalable and supports composition
of security countermeasures and management of their incom-
patibilities.

B. VDL Frameworks

VDL projects include [42], [30], [43], [31], [32], [44]. [31]
includes resilience mechanisms and AWS spot instances to
reduce computing costs (cloud optimization). Its client-server
architecture is implemented with the VC framework BOINC.
For training, two VDL projects are up to our knowledge
implemented and ready-to-deploy. Hivemind [40], [41] is used
to train LLMs 4. Disco [45] proposes to participate in the
training of DL models directly in the web browser, in a
federated or decentralized manner – without need to install
a software. For inference, Petals [46] runs in a cooperative
manner models too large to fit on a single computer.
Unlike current VDL frameworks, TI-SKOL supports composi-
tion of security countermeasures for training integrity of VDL
tasks.

4https://training-transformers-together.github.io/



VII. CONCLUSION AND NEXT STEPS

In this paper, we proposed an architecture and framework
supporting the composition of FL security and privacy coun-
termeasures and countermeasure incompatibilities. The frame-
work is scalable and compatible with most FL enhance-
ments. We showed how the framework can be applied to
a VDL use-case, highlighting the overhead of countermea-
sures, individually or in combination, tending to show the
framework practicality for on-demand FL security. TI-SKOL
enables benchmarking of security countermeasures and their
composition for FL frameworks.
Future work includes extending TI-SKOL with a library of
standardized security configurations for common FL use-cases.
This would be a first step towards an autonomic FL security
framework to dynamically adapt defenses to application secu-
rity requirements.
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