
HAL Id: hal-04760682
https://hal.science/hal-04760682v1

Submitted on 30 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale image segmentation in a hierarchy of
partitions

O Lezoray, C Meurie, P Belhomme, A Elmoataz

To cite this version:
O Lezoray, C Meurie, P Belhomme, A Elmoataz. Multi-scale image segmentation in a hierarchy
of partitions. 2006 14th European Signal Processing Conference, Sep 2006, Florence, Italy. pp.1-5.
�hal-04760682�

https://hal.science/hal-04760682v1
https://hal.archives-ouvertes.fr


MULTI-SCALE IMAGE SEGMENTATION IN A HIERARCHY OF PARTITIONS

O. Lezoray, C. Meurie, P. Belhomme and A. Elmoataz

LUSAC EA 2607, Vision and Image Analysis, IUT SRC, 120 Rue de l’exode, F-50000 SAINT-L̂O, FRANCE
phone: + (33) 0233775517, fax: + (33)0233771167, email: Olivier.Lezoray@info.unicaen.fr

web: http://www.stlo.unicaen.fr/vai

ABSTRACT
In this paper, we propose a new multi-scale image seg-
mentation relying on a hierarchy of partitions. First of
all, we review morphological methods based on connections
which produce hierarchical image segmentations and intro-
duce a new way of generating fine segmentations. From
connection-based fine partitions, we focus on producing hier-
archical segmentations. Multi-scale segmentations obtained
by scale-space or region merging approaches have both bene-
fits and drawbacks, therefore we propose to integrate a scale-
space approach in the production of a hierarchy of partitions
which merges similar regions. Starting from an initial over-
segmented fine partition, a region adjacency graph is alterna-
tively simplified and decimated. The simplification of graph
nodes models tends to produce similar ones and this is used
to merge them. The algorithm can be used to simplify the
image at low scales and to segment it at high scales.

1. INTRODUCTION

Image segmentation consists in partitioning an image in more
or less regular or coherent zones according to a given crite-
rion. Thus one usually seeks an image partition in zones the
values of which follow a given model of organization. Au-
tomatic segmentation of images is a central problem in im-
age analysis since a partition of the image in regions makes
the extraction of the primary visual components from an im-
age possible, the latter being used to identify and recognize
objects of interest. However there is a gap between the im-
age itself and its description as a sole partition of the image
into several regions. A way of circumventing this gap is to
concentrate on region segmentation on the one hand and on
the other hand on perceptual groupings extracted by a hier-
archical vision of images. The union of regions is a group of
elements which also is a region at a given scale, with local
inner properties and global ones according to its neighbor-
hood. Most of the time, low-level image segmentation algo-
rithms cannot directly cope with this semantic gap since it is
very difficult to directly construct the best image partition (if
there is one). Thus it is necessary to deal with hierarchical
methods which produce a multi-scale image segmentation.
There are many ways of producing hierarchical partitions of
an image and we propose to integrate in a single approach
two of them which are usually not used together: scale-space
and region merging. Multi-scale segmentations obtained by
scale-space or region merging approaches have both bene-
fits and drawbacks, therefore we propose to integrate a scale-
space approach in the production of a hierarchy of partitions
which merges similar regions. Starting from an initial over-
segmented fine partition, a region adjacency graph is alterna-
tively simplified and decimated. The simplification of graph
nodes models tends to produce similar ones and this is used

to merge them. The algorithm can be used to simplify the
image at low scales and to segment it at high scales. In the
next section we focus on how to obtain fine partitions and
propose a new way of generating such ones. Third section
presents the proposed multi-scale image segmentation and
fourth section concludes.

2. HIERARCHY OF PARTITIONS

The traditional problem of the automatic segmentation of im-
ages is generally considered like a division of the image in
disjoined areas, the result being a partition of the image do-
main. An imageI is a set of pixelsI = {p1, p2, ..., pn} and
a regionR is a subset of the image pixels composed of|R|
pixels.

Definition 1 A partition P is a set of regions P=
{R1,R2, ...,Rk} so that: (1) the union of the partition regions

provides the initial set: I=
k
⋃

i=1
Ri , (2) regions are disjoined:

∀i, j, i 6= j,Ri ∩Rj = /0.

Then one can define an ordering relation between two parti-
tions: a partitionP is included in a partitionQ if every region
RP

j is completely included in a regionRQ
i . This defines a hi-

erarchy of nested partitions of an image. LetH be a set of
partitions associated to an image,H is a hierarchy of parti-
tions if it is possible to define an inclusion order between any
pair ofH elements.

Definition 2 A hierarchy of (nested) partitions is a set of
partitions H= {P1,P2, ...,Pl} so that the regions of the parti-
tion Pi = {Ri

1,R
i
2, ...,R

i
k} are all included in the regions of the

partition Pj = {Rj
1,R

j
2, ...,R

j
k′} with j > i,k > k′ and Ri

m⊆Rj
p

or Ri
m∩Rj

p = /0.

It means that two regions from two different partitions of a
hierarchy are either disjoined or included one in the other.Pi

is called theith level of the hierarchy,P0 if the lowest one and
is the finest partition,Pl is the highest level of the hierarchy
and is the coarsest partition. The regions of the lowest level
being always included in higher level regions, the regions of
the(i +1)th partition can be obtained by merging ones of the
ith partition. Therefore, a hierarchy of partitions is naturally
represented by a stack of Region Adjacency Graphs (RAGs)
also called an irregular pyramid [1]. Links between regions
that merge from one level to the next one are contained in a
so-called contraction kernel [2].
In mathematical morphology, to have an ordering relation be-
tween successive levels of the hierarchy implies that the lat-
ter forms a complete lattice. The main morphological criteria



that define hierarchies of partitions are based on connections
(connective criteria) [3]. This enables to divide an image
into zones according to a given criterion. For instance, an
imageI is divided into flat and connected zones when a par-
tition Pi is created, so that for everyx, the regionR∈ Pi with
x ∈ R is the highest connected component which includes
x and where the imageI is constant and always equal tox.
Whatever the connection criterion there always is a way of
partitioning an image into regions that fulfill that criterion.
The main morphological connective criteria are the flat zones
and the watershed. The flat zones of an imageI are the maxi-
mal connected components having a constant value, MEYER
further introduced the quasi flat zones principle, a threshold
connection [4].

Definition 3 Two points p and q belong to the same quasi
flat zone of an image I if there is a connected path
(p1, p2, · · · , pn) between those two points so that p1 = p and
pn = q and for each i,‖I(pi)− I(pi+1)‖ < λ

‖.‖ is aL2-norm and increasing values ofλ create a hierar-
chy of partitions.
The watershed is a region growing algorithm which defines a
pathwise connection. The watershed lines associate a catch-
ment basin to each minimum of a function. Typically, the
function to flood is a gradient function which catches the
transitions between the regions. Region seeds of the water-
shed are therefore the gradient minima. The waterfall algo-
rithm [5] enables to construct a non parametric hierarchy of
watersheds (a hierarchy of partitions) which performs region
merging between adjacent catchment basins. Flat zones hi-
erarchies usually are too fine and waterfall ones too coarse,
thus we propose a new connective criterion which is an inter-
mediate one between pathwise connections (watersheds) and
threshold connections (quasi flat zones). This new criterion
is referred to as homogeneous connections.

Definition 4 Two points p and q belong to a same homoge-
neous zone of an image I if‖I(p)− I(q)‖ ≤ k×λ (Seed(p))
with Seed(p) the initial seed of the region of p andλ (p) =
1
nv

∑
pv∈V(p)

‖I (p)− I (pv)‖

V(p) denotes the neighbors ofp andnv the cardinal of this
set,‖.‖ is a L2-norm andk is a real number which sets the
fineness of the partition.λ (p) being close to a gradient com-
putation, pixels in homogeneous regions (the color variation
among the considered neighborhood is small) will be consid-
ered first as candidate region seeds. Each pixel is a candidate
region seed which grows by aggregating adjacent pixels ac-
cording to the previous rule. This implies that a pixelq is
aggregated to a regionR if the distance between a pixelp
of R, neighbor ofq, is k times lower than the initial homo-
geneity of the seed pixel ofR. k is the accepted homogeneity
jump and states if two pixels belong to the same region. Ho-
mogeneous zones therefore produce partitions, the fineness
of which decreases whilek increases (the homogeneity con-
straint is slackened). Obviously, a hierarchy of partitions ob-
tained for increasing values ofk is not nested since it lowers
the number of initial seeds while slackening the homogene-
ity constraint. This is the same problem as producing nested
partitions with the watershed: one has to consider the output
of the ith level as an input for the(i + 1)th level. Therefore
it is possible to produce hierarchical partitions using homo-
geneous connections by applying the same principle on the

partition obtained at the previous level (an efficient imple-
mentation uses graphs).
Homogeneous connections produce hierarchical partitions
which are finer than the waterfall and coarser than the quasi
flat zones. However they are better suited in the case of au-
tomatic segmentation since they do not need a definition of
seeds on a given gradient and they locally adapt their be-
havior to the image content since the threshold which de-
termines if a pixel belongs to a region depends on the local
homogeneity at this pixel. Figure 1 presents several levels
of hierarchical partitions obtained by quasi flat zones, homo-
geneous connections and waterfall. The saliency map (right
column) illustrates the importance of each pixel among the
levels, the saliency of a pixel being defined as the highest
level for which it occurs at the boundary between two regions
(in the saliency map images, the gray level corresponds to the
hierarchy level, therefore the highest the brightest).
Partitions obtained from any connective criterio, provide, in
the low levels, over-segmented partitions called fine parti-
tions. These fine partitions are interesting for image simpli-
fication because they can be used as markers for connective
filters such as levellings [6]. However they have another
strong interest. Hierarchies of partitions, such as irregular
pyramids [7], usually use very simple fine partitions as the
lowest level of the pyramid, namely each pixel is a region. It
is totally useless to proceed in such a way since it makes the
hierarchical structure bigger by including evident mergings
at the lowest levels. Moreover the pixel grid is not a natural
representation of visual scenes. It is much more natural, and
presumably more efficient, to work with perceptually mean-
ingful entities obtained from a low-level grouping process.
To build a hierarchy of partitions, one thus might use a fine
segmentation, obtained from any connective criterion, as the
base of the pyramid. In this paper we are interested in build-
ing such hierarchies.

Figure 1: Hierarchies of partitions by quasi flat zones (top),
homogeneous connections (middle) and waterfall (bottom).
Depicted partitions correspond the levels 1, 5, 10 and the last
column presents the saliency maps of the produced hierar-
chies over ten levels.



3. MULTI-SCALE IMAGE SEGMENTATION

In the previous section we showed several connective crite-
ria which can be used to produce hierarchical partitions. The
produced partitions can be considered, for the finest levels,
as a low-level grouping process subject to further analysisto
generate an accurate multi-scale segmentation in a hierarchy
of partitions. Besides connective criterion, scale-spaceand
region merging can also be used to generate hierarchical par-
titions. Scale space approaches for hierarchical segmentation
use a scale generation and a linking mechanism. The scale
generation is usually performed by a diffusion and the link-
ing scheme aims at tracking the regions through the scale-
space [8]. The linking scheme is essential since without it
the inclusion relationship between successive levels of the
scale-space segmentation stack is not preserved. This is not
the case with region merging approaches but the difficulty is
reported on a region merging predicate which states if two
regions have to merge or not. In this section we propose to
combine these two approaches into a single one to produce
efficient hierarchical partitions.

3.1 Graph simplification

A fine partition is over-segmented but is very close to the
content of the original image. Constructing the so-called mo-
saic image (each pixel has the average color of its surround-
ing region) is equivalent to perform an image simplification
the result of which is piecewise constant. As stated before
there is no interest in working directly on the pixel grid and
it is more interesting to work on a fine partition. Once a
partitionPk is considered, an equivalent representation is its
Region Adjacency Graph (RAG)Gk, a hierarchy of parti-
tions then becomes a stack of nested graphs. A RAG is a set
of nodes representing connected components (the regions)
of the image and a set of links or edgesE connecting two
neighboring nodes. This RAG denoted byG = (V,E) is con-
structed to describe a partition of the image by the topology
and the inter-region relations of the image. It is defined by an
undirected graph whereV = {1,2, ...,K} is the set of nodes
(Vertices) andE ⊂ V ×V is the set of edges (links between
adjacent regions).K = |G| is the number of region nodes.
To each node is associated a model corresponding to the re-
gion the node represents, we consider a very simple model:
the average color of the region. Visual objects in an image
being significant only at a given scale level, this is also the
case for the nodes of the RAG. We can formalize this as-
pect by scale-space approaches, namely consider the image
at different scale levels. Contrary to classical scale-space ap-
proaches which directly operate on the pixel grid image [8],
we propose to generate successive scales directly on a RAG
obtained from a fine partition, and this comes to simplify
the models associated to the nodes. We propose to perform
this simplification by a non linear graph model simplification
which simplifies the models attached to nodes and therefore
generates a set of images corresponding to successive sim-
plification scale levels. To simplify the RAG, an iterative
process is used. Given the initial RAG (t = 0), a new model
is computed for each node at each iteration (t > 0) according
to the neighbors of each node. This new model is defined by
the following expression:

Vt+1
i =

∑ j

(

α t
i j ·V

t
j

)

∑ j α t
i j

(1)

with V0
i = Vi , α t

i j = g
(

d(Vt
i ,V

t
j )

)

where theVt
j node is a

neighbor of theVt
i node in the RAG at the iterationt. Vt

i de-
notes the mean color value associated to a node of the graph.
d is the classical euclidean distance between two color distri-
butions.g is a weighting decreasing positive function which

is defined in this paper byg(s) = e−( s
k)

2

. This approach is
similar to the one used by PERONA and MALIK in the choice
of their function for anisotropic diffusion [9] often used to
generate scale-space stack of images [8]. The graph simpli-
fication defined here produces a new simplified RAG where
the model associated to each node (a region in the image par-
tition) is obtained according to its neighbors. A first simple
output of this method used alone is that it produces a sim-
plified image (mosaic image)when associating to each pixel
of the original image the color of its surrounding region (a
node of the graph). Figure 2 presents an example of image
simplification. The initial fine partition was built from strict
flat zones withλ = 0 (the mosaic image is exactly the initial
image) and the mosaic images of the simplified RAGs are ob-
tained after 0, 5, 15, 50 and 200 iterations of the graph sim-
plification. Bottom row presents results on the same image
corrupted by gaussian noise. The simplified images could
have been obtained by a similar simplification on the initial
image, however performing the simplification on a RAG en-
ables a considerably faster execution time. This is interesting
for several reasons. Firstly this method is a faster alterna-
tive to classical image simplification since it operates on a
set which is much less important than the whole pixel grid.
Secondly classical scale-space generation by image simpli-
fication implies a loss of resolution and a displacement of
edges across the scales which has to be solved by the link-
ing scheme, this is not the case with our approach. Thirdly
the obtained RAG can be used to obtain easily an improved
segmentation as compared to the original fine one. There-
fore we propose to couple graph simplification with graph
decimation and to perform merging of nodes after each RAG
simplification step. Since the model attached to each RAG
is simplified at each iteration, similar regions tend to similar
models and can be merged. This will decrease once again
the computation time since the simplification will operate on
a restricted RAG after the merging of similar nodes. This is
the core of the next section.

Figure 2: Set of simplified images in a scale-space approach
on RAG after 0, 5, 15, 50 and 200 iterations (from left to
right) on the original image (top row) and a gaussian noise
corrupted one (bottom row).



3.2 Graph decimation

The graph simplification method that we proposed in the pre-
vious section is right to obtain simplified versions of the
models associated to nodes of the RAG of a fine partition.
However the simplification being a kind of scale-space on
graph, it does not generate a hierarchy of partitions but a hi-
erarchy of images simplified at different scale levels. We can
nevertheless take advantage of the simplification to simplify
the structure of the graph too. In fact, image simplification
tends to bring similar models closer and similar regions can
merge then. The idea of merging regions in a partition is
quite old [10] and is the basis of a lot of hierarchical meth-
ods such as irregular pyramids [7]. For a complete merging
strategy based on a RAG, several notions have to be defined
[11]:

• The region modelMR: a model defines how to represent
a region and also the union of two of them.

• The merging orderO(Ri ,Rj): it associates to each edge
of the RAG a similarity measure (a weight) between ad-
jacent nodes. This order is a function defined for each
couple of neighbor regions and its values belong to a to-
tally ordered setΛ which provides the set of scales.

• The merging predicateC(Ri ,Rj): this criterion defines if
two regions have to merge or not.

Creating a hierarchy of partitions by a region merging al-
gorithm simply consists in pairwise merging of regions and
in updating the RAG structure [12]. For each threshold
λ ∈ Λ, one can define a contraction kernel [2] on the graph
which merges regions the edge weight of which is lower than
a givenλ threshold. This provides a partitionPλ for each
scaleλ . The construction ofPλ is equivalent to finding the
maximal connected components on the graph the similarity
of which is under the scale levelλ andH = {Pλ}λ∈Λ is a
hierarchy of nested partitions since each region ofPλ+1 is
a disjoint union of regions ofPλ . We propose to combine
this type of hierarchical segmentation which proceeds to a
graph decimation with the previously proposed graph simpli-
fication. The principle is iterative and consists in alternating
simplification and decimation of the RAG. At each iteration,
models attached to each node are simplified and similar re-
gions are merged according to a merging criterion [13]. As
for simplification, the region model is very simple and is the
average color of each region:MRi = Vt

i . The union of re-
gions having to be computed fast, it is defined directly from
the two models merging:MRi ∪MRj = Vt

i ∪Vt
j = Vt

i +Vt
j .

The merging order is directly based upon the similarity be-
tween regions such as it was defined for the graph simplifi-
cation: O(Ri ,Rj) = O(Vt

i ,V
t
j ) = d(Vt

i ,V
t
j ). To perform the

merging of regions fulfilling the merging criterion, edges are
ranked into a hierarchical priority queue according to the
edge weights. At each merging, the edge of minimum cost
is removed from the hierarchical queue, the region model of
the merging and the weights of all the edges of the adjacent
regions computed, some edges being suppressed. The whole
algorithm is depicted in algorithm 1 whereλ is the level of
the hierarchy, one goes from one scale levelλ to the next one
(λ +1) only if regions have merged.|.| denotes the cardinal-
ity of a set.

λ : integer; λend : integer;
λ ← 0; Defineλend
Gλ = (Vλ ,Eλ ) for an initial partitionPλ .
While (λ ≤ λend) do

For the nodesVi ∈Vλ do
Simplify the node modelVi .

end For
For the edgesEl = (Vi ,Vj) ∈Vλ ×Vλ do

If (C(Vi ,Vj)) then
Add El to the contraction kernel
CKλ ,λ+1

end If
end For
Contract the graphGλ with the contraction kernel
CKλ ,λ+1 : Gλ+1 = Contraction[Gλ ,CKλ ,λ+1]
If (

∣

∣CKλ ,λ+1

∣

∣ > 0) then
λ ← λ +1

end If
done

Algorithm 1: Algorithm for multi-scale image segmen-
tation in a hierarchy of partitions by graph simplification
and decimation.

However one thing remains to be defined: the merging
predicateC(Vi ,Vj). In this paper we consider several possi-
ble choices: a fixed threshold, an evolving threshold and an
adaptive threshold. For fixed threshold the merging predi-
cate isO(Vi ,Vj) < T. For an evolving threshold, the merging
predicate is the same but after each iteration the threshold
is increasedT = T + ∆T, ∆T = 0.5 in this paper. For an
adaptive threshold we use the formulation of Nock (see in
[14]). Figure 3 presents multi-scale segmentations obtained
by the proposed approach with the different merging predi-
cates for the levels 1, 4, 9, 15 and 20: fixed threshold equal
to 1 (rows 1 and 2), evolving threshold (rows 3 and 4) and
adaptive threshold (rows 5 and 6). For each hierarchy, the
simplified image and the partition are provided. The initial
partition was obtained by homogeneous connection (k = 0.5,
row 7, first image). Saliency maps are given in row 7 for the
different thresholds. With a fixed threshold the number of
scales is high and the image simplification produced is very
close to the original image even if the number of regions is
much less important than the initial number of pixels. For
the other predicates, less levels and coarser segmentations are
obtained faster. This is related to the combination of simplifi-
cation and decimation when the decimation criterion changes
across scales. The produced hierarchies are good and extract
the primary visual components from the image. Contrary to
several multi-scale methods which first simplify the image
and then segment it [15], our approach enables to combine
these two approaches in a single faster algorithm.

4. CONCLUSION

In this paper, we proposed an algorithm for multi-scale im-
age segmentation in a hierarchy of partitions. This algorithm
couples graph simplification and decimation based on non
linear smoothing and region merging. Moreover the base
level of the hierarchy is obtained by generating a fine par-



tition by a new connective criterion. The proposed approach
blends together into a single algorithm scale-space and re-
gion merging for multi-scale image segmentation without the
need of a linking scheme to follow regions in the scale-space
stack. Obtained hierarchies are very good and the only pa-
rameter of the method is the merging predicate which can be
fixed, evolving or adaptive. The algorithm can be used for
image simplification as well as for image segmentation, both
being multi-scale.
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